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Abstract

Our approach solves a version of the Job-shop Scheduling Problem
(JSP) with alternative plans for the jobs and alternative machines for the
operations. The search space of this formulation of the JSP is considerably
larger than the one of the simple JSP, but our systems is robust, obtaining
good solutions with a high probability. It also shows little sensitivity to
parameter variation and performs equally well in both the simple and the
more complex version of the JSP. We obtain worse results than many
other researchers but we use a small population for a small number of
generations. The manual for a graphical version of the system is also
included in this report.

*The work described in this report was partially supported by a COMETT scholarship.
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Chapter 1

Introduction

This paper describes a Evolutionary Computation (EC) -based tool for the Job-shop Scheduling
Problem (JSP).

In the first chapter, we give a brief introduction to scheduling and Evolutionary Com-
putation. In chapter two, we describe our approach in detail. Finally, the results of the
experiments performed are presented and analyzed in chapter three.

1.1 Scheduling

Scheduling problems [2], in general, consist of a set of concurrent and conflicting goals, to
be satisfied using a limited set of resources. Often, as in the case of the JSP, all valid
combinations of these goals and resources constitute an exponentially growing problem (and
search) space. In such cases, it is believed that it is impossible to devise deterministic methods
or optimization algorithms [1] to obtain the optimal solution in polynomial time and using
polynomial memory. This means that they are NP-complete.

So, when an optimal solution cannot be found, a near-optimal or good solution can be
very useful. Much work has been done on developing methods that find good solutions with a
comfortable degree of confidence. These methods are called approzimation algorithms. They
are classified according to the range of the problems tackled, from tailored to general [1]. The
former are designed for a specific problem type while the latter are applicable to a broad
range of problem types. Some of the general approximation algorithms, e.g. Evolutionary
Computation can be considered as algorithmic templates, since they are generic methodologies
and the problem specific details still need to be filled in to obtain an operational algorithm.

Another reason for the use of approximation algorithms is that the real world problems
often have characteristics that imply side constraints on the basic scheduling problem. It is

often easier to incorporate these constraints in approximation algorithms than in optimization
algorithms.

1.2 The Job-shop Scheduling Problem

The Job-shop Scheduling Problem is known to be one of the hardest combinatorial problems
[10]. The considerable amount of attention it has received from researchers both in the fields
of Operations Research and applied Artificial Intelligence can be explained by its relation to



an important problem in a large number of industries, which is the Manufacturing Planning
and Scheduling (MPS) problem.

Husbands and Mill [8] divide the MPS into several phases, and we concentrate on the
following two: '

1. problem definition, and

2. simultaneous planning and scheduling.

In the first phase, the parts or components to be produced and the respective quantities
are determined, according to the orders and the available stock, thus defining the jobs to be
completed. Supposing our case consists of an order of 10 units to a bicycle factory, and the
stock contains two finished units and three sets of wheels. The list of jobs to be completed
consists of five complete bicycles and the production of three bicycles without wheels and the
assembly of the stored set of wheels on those. After the jobs are defined, the plan space
is generated, which consists of all possible plans for each job. Each plan consists of a set
of operations and these operations can be assigned to one or more alternative machines.
The schedule space is implicitly defined when the plan space is generated. A scheduleis a
valid assignment of all the operations to time slots in machines in order to complete the jobs.

In the second phase, both spaces are searched simultaneously, looking for the best solu-
tion (a set of plans and their scheduling), according to a predetermined cost or objective
function. This function can take into account general features, like:

¢ total makespan, i.e. the total length of the schedule,
e average job completion time,

¢ warehouse costs,

lateness costs,

¢ earliness costs,

underutilization of resources,
¢ client (job) priorities.

or other problem specific ones.

One of the most important aspects of this definition is the simultaneous search in both
the plan space and the schedule space. Considering that each of them is usually complex,
we find ourselves dealing with a huge search space. This is why, traditionally, planning and
scheduling are independent processes, with the first creating optimal individual plans which
are then fed to the scheduler. This approach is only acceptable when time is a resource with
irrelevant cost. Otherwise, it is obvious that a plan that minimizes the cost of a particular

component might not be the best when considering all the components together in a valid
schedule.

Some common constraints are:

e a machine can perform at most one operation at a time,

e an operation cannot be interrupted.



o critical due dates (jobs which due date cannot be violated),
¢ machines’ maintenance periods, and

¢ machines’ setup times! .

The dimension of the search space has created the necessity of dealing with a smaller
version of this problem, referred to as simple JSP in the rest of this paper. The simple JSP
consists of n jobs or orders, to be completed using m machines. Each job consists of a
sequence of operations, which must be executed in a given order. That order defines the
plan for the job and it is unique. Each operation has to be executed on a given machine for
a given period of time, which defines its duration. Two constraints are enforced:

¢ a machine can perform at most one operation at a time, and

e an operation cannot be interrupted.

The problem is to find a schedule (an assignment of the operations to time intervals),
such that the makespan is minimal.

Although interesting and useful to study, the simple JSP is not sufficient for real-world
application. This happens because the simplifications described are by far to restrictive [8].

1.3 Evolutionary Computation

In this section, we make a brief explanation of an Evolutionary Computation (EC) general
algorithm. Two examples of clear and complete explanations are the ones by Michalewicz [9)]
and Goldberg [6].

In EC, a solution to a problem is searched by evolving a population of genotypes. Each
genotype encodes a solution, this way defining the representation.

That population goes through an iterative process of selection and processing by search
operators which is expected to simultaneously make an exploration of the search space and
an exploitation of the best solutions.

The selection process should choose the fittest genotypes more often (exploitation) without
totally removing the possibility for lower fitness ones to reproduce (exploration). The fitness
is a quality measure of the solution represented by a genotype. This way, before the selection,
every genotype in the population is evaluated, which means that it will be decoded and then
its fitness will be calculated.

Two common search operators are the crossover and the mutation. In the former, a set
of one or more genotypes, called parents, exchange information by creating a new one, called
ofspring, which inherits values from them. Mutation makes random changes in a genotype.

1A machine needs a setup time when an operation different than the previous one is to be executed.



We present the an informal description of a general EC algorithm, adapted from Heitoker

and Beasley [7]:

// start with an initial time
te0

// initialize a usually random population of individuals

initpopulation P(t)

// evaluate fitness of all initial individuals in population

evaluate P(1)

// test for termination criterion (time, fitness, convergence, etc.)

while not done

// increase the time counter

te—t<+1

/[ select sub-population for offspring production
P'(t) « selectparents P(t - 1)

recombine the “genes” of selected parents
3

recombine P’'(t)

// perturb the mated population stochastically

mutate P’(t)

// evaluate it’s new fitness

evaluate P'(t)

// new population
P(t) « P'(t)

endwhile

1.4 Evolutionary Computation for JSP

As already stated, Genetic Algorithms (GA), or in a broader sense Evolutionary Computation
(EC), are one of the algorithmic templates for combinatorial optimization problems. Although
they are more survival (or adaptation) than optimization oriented [3, 6] they have been adapted
for this purpose, with successful or, at least, encouraging results.

Some of the features of EC for optimization are:

¢ they combine directed search (exploitation of good solutions) with stochastic search
(exploration of the search space);

¢ a population of potential solutions is maintained;

o although they are a general (weak) method, they can easily, by including problem-
specific information in the implementation, be converted to a specific (strong) method;

o efficiency and robustness.

Hybrid optimization can include an EC, sampling large search spaces randomly and effi-
ciently and obtaining near-optimal solutions, which will be used by another technique, heuris-

tic or deterministic, to look for the optimum.

Some of the EC approaches to the JSP and the MSP are described in [2, 8, 10].

7
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Chapter 2

~Approach

In this chapter, we present in detail the approach we have chosen for our implementation of
the Job-shop Scheduling Problem (JSP). It is based on the work by Bagchi et al. [2].

We describe the representation, the evaluation, the selection and the operators that con-
stitute our Evolutionary Computation algorithm for the JSP.

2.1 Problem definition

We consider a problem that is a version of the simple JSP that includes part of the planning
task: there is the possibility of having alternative plans for the jobs and alternative pairs of
machines and durations for the operations [2]. Throughout this paper we will call it enhanced
JSP.

It is important to notice that both the schedule space and the plan space are searched
simultaneously, thus increasing considerably the total search space.

An enhanced JSP is as follows: it consists of n jobs! to be completed using m machines.
A job is defined as a quantity of a part. To produce a part, one of a set of alternative plans
(orderings of operations) must be completed. For every operation there are one or more
alternative pairs {machine, duration} that can be used. The following two constraints are
enforced:

¢ a machine can perform at most one operation at a time, and

e an operation cannot be interrupted.

In our implementation, as opposed to the one described in [2], the setup times for the
machines are not taken into account.

The problem is to select sequences of operations that will satisfy the n jobs and the
assignment of a start time, an end time and resources (a machine) for each operation, in

order to minimize the makespan. The makespan, as already stated, is the total time to
execute the n jobs.

'In [2] a jobis called an order.



jobs:

number  part quantity
0 0 1
1 1 1
plans:
part operations
0 0,1,2
0 3,1,2
1 1,3
1 2,0
operations:

operation machine duration

W NN~ P~ O
—_-0 = O O
o O = B W N

Figure 2.1: A simple problem.

2.2 Representation

Bagchi et al. [2] describe two types of representation:

o direct and

o indirect.

In the first representation, the schedule is directly coded in a genotype. In this represen-
tation not every genotype corresponds to a valid schedule. In fact, only a small amount of all
the possible genotypes are legal. All the other genotypes require correction which represents
a significant computational overhead. Also due to the same problem, complicated operators
are required: for example, if an operation on a machine is postponed then care must be taken
to avoid that it conflicts with the following operation on the same job.

Instead, we use an indirect representation, which means that a schedule builder or a
decoder is necessary to translate a genotype into a valid schedule. This representation is
inspired by the one used for the Traveling Salesman Problem in [9], and a genotype represents
the queue of jobs, i.e, the scheduling priority of the jobs. In this representation, with an
appropriate schedule builder, all the genotypes correspond to valid schedules and both the
structure and the operators are simpler. On the other hand, there is the need to create the
schedule builder and the computational overhead must be taken into account because the
fitness evaluation is executed once every generation for every genotype.

10



op:1} op:3 op:0| op:1| op:2
job: 1 P P job: 0 P P P
mO0 | m1 mO| m1{ mO

Figure 2.2: An example of a genotype (op is the operation and m is the machine).

Together with each job, information is stored about the selected plan and also, with each
operation, the selected machine from the set of possible alternatives. '

To illustrate the representation, we define a small enhanced JSP with two jobs, two ma-
chines and four operations (see figure 2.1).

A genotype for this problem could be the one presented in figure 2.2. It represents a
schedule in which the priority of job 1 is bigger than the one of job 0. For job 1, the first
alternative plan, which consists of operations 1 and 3, was chosen. For operation 1, the
first alternative was chosen (machine 0, duration 3) and operation 3 can only be executed in
machine 1 with a duration of 3 time units.

2.2.1 Schedule Builder

Bagchi et al. [2] consider that deterministic search should be kept to a minimum. We
consider this to be true if the objective of one’s work is to study the isolated behavior of the
EC algorithm, as is our case. But, if a system is meant to solve real-world problems then a
hybrid solution seems to us as a better choice. One such solution could be, for example, the
EC algorithm doing the initial sampling of the search space, obtaining a set of good solutions
which would then be processed by a conventional optimization technique for scheduling.

In our system all the search is carried out by the EC. The schedule builder simply creates
a valid schedule from the genotype. It does so using the information about the selected plans
and machines stored in the genotype. When a conflict arises between two jobs, then the
ordering of the jobs in the genotype is used to solve it. We define a conflict as the situation
when more than one operation from different jobs have the same desired start time on the
same machine.

The genotype in figure 2.2 would result in the schedule represented in figure 2.3.

CONFLICT NO CONFLICT
time: i 1| | 3| | 6| (. 91
machine jm————
0 0= Y
1 0 0
1 1 0

Figure 2.3: The schedule obtained from the example genotype.
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An informal description of the schedule building algorithm is as follows. The function
machine(op, j) returns the machine chosen for operation op in job j and duration(op, m)
returns the duration of operation op on machine m.

for all jobs j

nezt.operation in j + first on the chosen plan
desired_stari_time_for.next_operation in j « 1
end for

time=1
while there are operations to schedule

for all unoccupied machines m at time time

for all jobs j in the genotype, in a descendent priority, while the slot
is not assigned

if machine(nezt_operation in j, j) = m and
the desired_stari_time_for_nezi_operation in j = time

assign slot [time, time + duration(nert_operation in j, m) - 1]
to j
desired_start_time_for_next.operation in j «
desired_start_time_for-nezt_operation + duration(neztoperstion in j, m)
nezt_operation in j « next in the chosen plan
end if

end for

time « time + 1
end for

end while

When building the schedule represented by the chromosome in figure 2.2, a conflict is
detected on time = 1 because both jobs want to start at the same time on the same machine.
But on time = 6 there is no conflict because job 1 is already scheduled at the time when job

0 wants to use machine 1. So, the latter must wait until job 1 finishes the operation on that
machine.

2.3 Evaluation and Selection

The fitness function used is a simplified version of the one that Bagchi et al. [2] use. It equals
the inverse of the makespan of the schedule. This means that the genotypes with higher

fitness are the ones with smaller makespan. This is the most common fitness measures used
for the JSP.

Our system uses tournament selection [6, 9] with tournament size 2: for every place in
the mating pool, two genotypes are randomly picked, and the one with the highest fitness is
selected to fill that place.

12



2.4 Search operators

The operators implemented are similar to those described in [2]. Each of these operators is
explained in the next sub-sections. They are:

e two crossover operators:

— order crossover #1 (0X), and
— plan crossover (PX);

¢ and two mutation operators:

— swap mutation (SM), and
— plan mutation (PM).

Instead of the partially-mapped crossover (PMX), as Bagchi et al. [2], we have imple-
mented the order crossover #1 (OX). A description of these order based crossover operators
is given by Starkweather et al. [11].

2.4.1 Crossover operators

The OX crossover is widely used in order representations. The description presented here was
adapted from [9]:

1. Randomly select two parents.
2. Select a random sub-string from the first parent.

3. Fill the offspring from the beginning to the position where the chosen substring starts,
with jobs (and respective plans) from the second parent. The jobs are chosen, starting
from the beginning of the second parent, and skipping every job which belongs to the
chosen substring,.

4. Copy the chosen substring (including the job’s plans) from the first parent to the off-
spring.

5. Fill the rest of the offspring as in step 3.

Figure 2.4 shows an example of how this operator creates offspring from two parents.
The problem-specific crossover (PM) we implemented is slightly different from the one
described in [2]. Our version can be described as follows:

1. Randomly select two parents.
2. Select a random sub-string from the first parent.

3. Exchange plans (and selected machines for the operations) in the selected substring
with the corresponding element in the second parent.

An example of this kind of crossover is presented in figure 2.5.
In average, the number of crossover operations executed each cycle is:

popsize * pC

in which, popsize is the population size and pC is the crossover probability.

13



substring chosen
Farent 1 job: 0 job: 1 job: 2 job:3 jobz4
Pazent 2 jobs 1 job:3 jobr 4 job: 2 job: 0
STEP3
Offspring job: 1 job: 4
STEP4
Offspring job: 1 job: 4 job: 2 job: 3
STEPS
Offspring job: 1 job:4 jobz 2 job: 3 job: 0

Figure 2.4: An example of the domain independent crossover (OX) operation. The chosen
plans and operations were omitted for the sake of clarity.

i substring chosen ]

| |

Parent 1 job: 1 op:1} op:3 job: 0 op:0] ol op:2
m:0| m:l ) m0| m1l} mo

Parent 2 job:0 op:4| op:1| op:2 b 1 op:2{ op:0
) m:]l | m:0]| m:0 o m:l | mO

Offspring 1 jobe 1 op:1| op:3 job:0 op:d4| op 1| op:2
m:0 | m:l i ml| m:0] m0

Offspring 2 jobe 0 op:0f op:lf op2 jobz 1 op:2| op:0
m0]| ml]| mO i ml | m0

Figure 2.5: An example of the problem specific crossover (PM) operation.

14



2.4.2 Mutation operators

The swap mutation exchanges the position of two randomly selected jobs in a randomly chosen
genotype.

The plan mutation randomly selects a genotype and a position in it, and then randomly
chooses a plan and machines for the operations of that plan.

In average, the number of mutation operations executed in each cycle is:

popsize ¥ n * pM

in which, popsize is the population size, n is the number of jobs and pM is the mutation
probability.

2.4.3 Selection of operators

As pointed out by Bagchi et al. [2], a question arises on how to combine the two different
operators in each of the operator types. To solve this problem we associate a probability
value with the problem independent operator in each of the types (spC and spM). These
values give the probability of selection of the domain independent operator for executing all
the operations in a generation. We give an example using the crossover operator type. If the
selection probability of the problem independent crossover operator (OX) is spC = 0.2, then
the selection probability of the plan crossover (PX) will be 1.0 - 0.2 = 0.8. In this case the
domain independent operator will be used in 20% of the crossover operations and the problem
specific one in the other 80% .

In [2], only one selection probability is used for both the types of operators, i.e. spC= spM.
We decided to use one for each because we think that a value that gives the best combination
between the problem independent and the problem specific operators on one type of operators,
might not yield an equally optimal result on the other type.

Every generation only one operator of each type is used, which means that all crossovers
will be of the same kind, and also the mutations will be all of the same type.

15



Chapter 3

Results

Our aim was to test this approach not only in JSPs with simultaneous planning and scheduling
(enhanced JSPs), which was already done by Bagchi et al. [2], but also in instances of the
simple JSP.

The program was tested with three problems (see appendix C). Two of them are well
known and often used. They are instances of simple JSP, i.e., there is only one plan for each
job and only one machine for each operation. The representation used is thus redundant and
the problem specific operators were not used, except in one simple test. The latter was carried
out to prove that those operators are not useful for this kind of problem, but nevertheless,
the system performs a successful search.

The third problem is used by Bagchi et al. [2] to test their implementation. In this
problem, each part has two or three alternative plans, and each operation can be executed on
one or two alternative machines. In our implementation, the setup times are not considered.

The first problem, to which we will refer as Problem 1 (see appendix C), is a 6x6 problem,
which means that it has six jobs (n = 6) and six machines (m = 6) with a best solution known
to be 55. The second problem (Problem 2) is a 10x10 problem with a best solution known
to be 930. In these problems the number of operations to schedule is fixed and is 36 for
Problem 1 and 100 for Problem 2. We could not find information on the best solution for
the third problem (Problem 3).

We used these problems to test the effect of parameter variation on the quality of the
solutions. The parameters tested are population size (popsize), crossover rate (pC), mutation
rate (pM) and the selection probabilities of the domain independent over the problem specific
implementations of these operators (spC and spM).

3.1 Testing conditions

Every test was carried out for 100 generations on Problem 1 and 200 on the others. Fewer
generations were studied on the first problem because it is a simple problem. All results are
averaged over five runs, except when otherwise indicated. In the tables, the column named
best lists the best result in the five runs, and the average and variance columns respectively
list the average of the best over the five runs and the variance on that average.

16



Parameters

Problem | Problem 1
popsize || best | average | variance Population | in test
10 58 | 58.0 0.0 # Generations | 100
30 58 | 58.0 0.0 Crossover rate | 0.6
50 58 | 58.0 0.0 spC | 1.0
100 58 | 58.2 0.16 Mutation rate | 0.1
spM | 1.0
#runs | 5
Parameters
Problem | Problem 2
popsize | best | average | variance Population | in test
10 1013 | 1034.2 | 122.96 # Generations | 200
30 1013 | 1024.0 484 Crossover rate | 0.6
50 1017 | 1023.6 14.64 spC| 1.0
100 997 | 1010.8 | 158.56 Mutation rate | 0.1
spM | 1.0
#runs | 5
Parameters
Problem | Problem 3
popsize || best | average | variance Population | in test
10 4385 | 4565.0 | 38420.0 # Generations | 200
30 4125 | 4141.0 384.0 Crossover rate | 0.6
50 4125 | 4125.0 0.0 spC| 0.5
100 4125 | 4125.0 0.0 Mutation rate | 0.1
spM | 0.5
#runs | 5

Figure 3.1: Effect of population size.
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3.2 Population size

The set of values tested for the population size was {10, 30, 50, 100}. Standard probabilities
of 0.6 and 0.1 were used, respectively, for crossover rate and mutation rate. The selection
probabilities of the domain independent operators over the problem specific ones were 1.0 on
the first two problems, which means that only the former were used. On the other problem
values of 0.5 were used, which means that each operator is chosen with 50% chance.

The results are presented in figure 3.1.

Problem 1 is a simple problem as the results show. The slight decrease in the average
for popsize = 100 is due to one run with a best result of 59, which can be explained by the
stochastic nature of the process. In the two other problems, the evolution is as expected:
the quality of the solutions increases with the population size. In Problem 2, the variance
increases for popsize = 100, but not significantly. In conclusion, a population size of at least
30 should be used.

3.3 Crossover probability

The values tested for the crossover rate were {0.0, 0.1, 0.5, 0.6, 0.7, 0.8, 0.9}. In these exper-
iments, the population size was 30, and the mutation probability was 0.1. Both the operator
selection probabilities were set to 1.0 on the first two problems and to 0.5 on Problem 3.
The results of the first set of experiences were not conclusive, so another set of tests was
performed only this time the results were averaged over 10 runs.

The results of the second set of tests are presented in figure 3.2.

In the problems tested the optimal value for the crossover rate appears to be in the range
[0.6, 0.8] although the results are not conclusive. Overall the chosen crossover operator does
not seem to have a big effect, which is compatible with the work by Eiben and Perck [4] and
with the comparison of sequencing operators done by Starkweather et al. [11]. In the latter
study it is shown that the order crossover #1 does not have a good performance in scheduling
problems. For this kind of problems, the referred study concludes that the best crossover
operators are the cycle crossover and the order crossover #2.

3.4 Mutation probability

The set of values tested was {0.0, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9}. In these experiments, the
population size was 30, and the crossover probability was 0.6. Both the operator selection
probabilities were set to 1.0, on the first two problems and to 0.5 on the third.

The results are presented in figure 3.3.

In Problem 1 and Problem 2 the results seem to indicate that the value for the mutation
rate should be at least 0.1 but it is difficult to define a small optimal range. In Problem 3
the results are similar with the usual values for the mutation rate, and indicate 0.05 and 0.1
as the best.
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pC || best | average | variance
0.0 58 | 58.3 0.21

0.1 58 | 58.2 0.16

0.5 58 | 58.1 0.09

0.6 58 | 58.0 0.0

0.7 58 | 58.2 0.16

0.8 58 | 58.2 0.16

0.9 58 | 58.3 0.21

pC || best | average | variance
0.0 997 | 1028.9 | 271.49
0.1 997} 1031.1 | 203.29
0.5 || 1018 | 1032.8 76.96
0.6 || 1017 | 1028.6 93.84
0.7 || 997 | 1016.0 | 1826
0.8 997 1027.7 | 20541
0.9 {| 1013 | 1027.0 82.8
pC || best | average | variance
0.0 || 4125 | 4385.0 8416.0
0.1 |{ 4125 | 4187.0 8036.0
0.5 || 4125 | 4172.5 | 20306.25
0.6 || 4125 | 4153.5 2500.25
0.7 || 4125 | 4139.0 804.0
0.8 || 4125 | 4125.0 0.0
0.9 || 4125 | 4179.0 | 10244.0

Figure 3.2: Effect of crossover probability.

19

Parameters

Problem

Problem 1

Population

30

# Generations

100

Crossover rate

in test

spC

1.0

Mutation rate

0.1

spM

1.0

# runs

10

Parameters

Problem

Problem 2

Population

30

# Generations

200

Crossover rate

in test

spC

1.0

Mutation rate

0.1

spM

1.0

# runs

10

Parameters

Problem

Problem 3

Population

30

# Generations

200

Crossover rate

in test

spC

0.5

Mutation rate

0.1

spM

0.5

# runs

10




best

oM average | variance
0.0 58 | 59.8 1.76

0.05 58 | 58.2 0.16

0.1 58 | 58.0 0.0

0.3 58 | 58.0 0.0

0.5 58 | 58.0 0.0

0.7 58 | 58.0 0.0

0.9 58 | 58.0 0.0

pM || best | average | variance
0.0 |} 1018 | 1066.6 | 629.04
0.05 || 1018 | 1040.8 | 189.76
0.1 997 | 1024.4 | 208.24
0.3 || 1016 | 1027.4 87.84
0.5 || 1022 | 1035.0 | 115.2
0.7 || 1018 | 1031.6 75.44
0.9 997 | 1024.2 | 230.56
pM || best | average | variance
0.0 || 5580 { 6323.0 | 363436.0
0.05 || 4125 | 4137.0 576.0
0.1 || 4125 | 4180.0 6100.0
0.3 || 4200 | 4364.0 16064.0
0.5 || 4360 | 4553.0 44276.0
0.7 || 4700 | 4825.0 6420.0
0.9 || 4685 | 4825.0 30340.0

Figure 3.3: Effect of mutation probability.
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Problem 1

Population

30

# Generations

100

Crossover rate

0.6

spC

1.0

Mutation rate

in test

spM

1.0

# runs

5

Parameters

Problem

Problem 2

Population

30

# Generations

200

Crossover rate

0.6

spC

1.0

Mutation rate
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. spM

1.0
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5

Parameters

Problem

Problem 3

Population

30

# Generations

200

Crossover rate

0.6

spC

0.5

Mutation rate

in test

spM

0.5

# runs

5




Parameters
Problem | Problem 1
spC | spM || best | average | variance Population | 30
1.0} 1.0 58 | 58.0 0.0 # Generations | 100
0.5 1.0 58 | 58.2 0.16 Crossover rate | 0.6
1.0 | 0.5 58 | 58.4 0.24 spC | in test
0.5 ] 0.5 58 | 58.2 0.16 Mutation rate | 0.1
spM | in test
#runs | 5
Parameters
Problem | Problem 2
spC | spM || best | average | variance Population | 30
1.0 | 1.0 | 1013 | 1022.6 30.24 # Generations | 200
0.5 1.0 || 1017 | 1023.4 51.44 Crossover rate | 0.6
1.0 | 0.5 |{ 1019 | 1033.2 | 109.36 spC | in test
0.5 0.5 Il 1018 | 1038.6 | 543.04 Mutation rate | 0.1
spM | in test
# runs | 5

Figure 3.4: Effect of domain independent/problem-specific selection probabilities in Prob-
lem 1 and Problem 2.

3.5 Operator selection probabilities

The two operator selection probabilities were studied at the same time for the first two
problems, which are simple JSPs. Four tests were executed with the following values: spC =
1.0, spM = 1.0; spC = 0.5,spM = 1.0; spC = 1.0, spM = 0.5; spC = 0.5,spM = 0.5. In the
third problem they were studied one at a time, with the other being set to 0.5. The set of
values used for the parameter in test was {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. For these tests, the
population size was 30, the crossover probability was 0.6 and the mutation probability was
0.1.
The results are presented in figures 3.4 and 3.5.

As would be expected, in the two first problems, where there are no alternative plans, the
problem specific operators are not useful, and the best results are achieved using only the
domain independent ones. Inspite of that, the decrease in performance is not significant.

The first set of tests to study the operator selection probabilities for the crossover operators
on Problem 3 did not yield conclusive results and so another set of tests was performed, this
time averaging results over 10 runs. Analyzing the final results for this problem, we conclude
that the value for both probabilities should be in the interval [0.2, 0.8]. For the crossover
operators the best results are obtained with spC = 0.8 and they decrease from that value to
0.2. As for the mutation operators, the best are obtained with 0.2 and decrease until spM =
0.8. In both cases the decrease is not very significant. Similar results were obtained by Bagchi
et al. [2], although they use the same probability for both types of operators (spC = spM).
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Parameters
spC || best | average | variance Problem | Problem 3
0.0 || 4125 | 4204.5 | 18382.25 Population | 30
0.2 || 4125 | 4159.5 3872.25 # Generations | 200
0.4 || 4125 | 4145.0 1920.0 Crossover rate | 0.6
0.6 || 4125 | 4136.5 1190.25 spC | in test
0.8 || 4125 | 4131.0 324.0 Mutation rate | 0.1
1.0 || 4125 | 4176.5 6295.25 spM | 0.5
# runs | 10
Parameters
spM || best | average | variance Problem | Problem 3
0.0 || 4320 | 4496.0 9024.0 Population | 30
0.2 || 4125 | 4125.0 0.0 # Generations | 200
0.4 || 4125 | 4208.0 17356.0 Crossover rate | 0.6
0.6 || 4125 | 4223.0 24016.0 spC | 0.5
0.8 || 4125 | 4303.0 17366.0 Mutation rate | 0.1
1.0 || 5580 | 6914.0 | 1059794.0 spM | in test
# runs { 10

Figure 3.5: Effect of domain independent/ problem-specific selection probabilities Problem 3.

3.6 Conclusions and future work

Our objective was to study the behavior of a representation designed for enhanced JSPs
(JSPs with simultaneous planning and scheduling) not only in this kind of problems but also
in simple JSPs.

For the two simple JSPs tested, we have obtained good results (within 10% of the opti-
mum), although in a problem like the 6x6 (Problem 1) better results were expected, due to
its simplicity: our best was 58, which is 5.4% from the optimum, 55. This can be explained
intuitively by the fact that in this approach only one priority list (or ordering) is used to
resolve conflicts in every machine, and the best ordering for a set of jobs on one machine
may not be the best on another. A different reason could be the conflict definition adopted,
which only considers the situation where two jobs have the same desired start time on the
same machine. These problems could possibly be avoided with changes in the representation
or with a different decoder. In the 10x10 problem (Problem 2), which is considered to be
hard, the results are quite good: the best result we have obtained was 997, which is within
7.3% of the optimum, 930. We have performed an experiment for each of these two problems
with popsize = 500 and for 300 generations, and no better solutions were found. We found no
information about the best results for the problem described by Bagchi et al. [2] (Problem
3), although they could only be used as a reference, because we solved an adapted version
which did not consider the setup times. Our best was 4125.

The table in figure 3.6 was based on two tables, one from Nakano and Yamada [10] and the
other from Yamada and Nakano [12] and also some results from Fang et al. [5]. It lists some
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Papers | Algorithms || 6x6 | 10x10
Barker85 BAB 55 960
Carlier89 BAB 55 930
Nakano91 EC 55 965
Yamada92 EC 55 930

Fang93 EC - 949
Soares94 EC 58 997
Optimal 55 930

Figure 3.6: Table of best results of several approaches

Papers popsize | #generations | #evaluations
Nakano91 1000 150 150000
Bagchigl 50 1000 50000
Fang93 500 300 150000
Soares94 30 200 6000

Figure 3.7: Table of best results of several approaches

of the results obtained by other researchers on the two simple JSPs that were also tested
in this report. The algorithms used are either Branch and Bound (BAB) or Evolutionary
Computation (EC)!.

Our results, although worse than the ones obtained by all other EC approaches, have
some interesting features when compared to them. Either the population size or the number
of generations we normally use is smaller than the ones that all the others use (see figure
3.7). Also listed in this table are the values for those parameters used by Bagchi et al. [2],
although they do not test their implementation in these problems. In their paper, Yamada
and Nakano [12] do not describe the values used for the parameters.

We also want to stress the fact that the results listed in table 3.6 are, in some cases, the
best obtained in a series of tests. In the conclusions of their paper, Yamada and Nakano [12]
state that:

(...) the rate of obtaining optimal solutions is still small, so further improvements
to the algorithm are required (...) '

We have obtained a small variance in the average best values over a series of five or ten runs
with the same parameters, which is a good indication of the robustness and the efficiency in
finding always a good solution.

Another interesting characteristic of our system is the absense of some common features
in EC algorithms and GAs for optimization, e.g. elitism. The implementation of such mech-
anisms could result in a better solution quality.

Tests were made on the parameter sensitivity. Although some conclusions were drawn,
the results are not very clear and seem very problem dependent. Anyway, it seems that the

1We include the Genetic Algorithm approaches in the broader class of Evolutionary Computation.
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system is not very sensitive to changes in the parameters, which increases our believe in its
robustness. In general more tests are necessary with this and other problems.

The choice of the order crossover #1 was not the best, as Starkweather et al. demonstrate
in their comparison of sequencing operators for scheduling [11]. An order crossover #2ora
cycle crossover should be used instead. Inspite of this, we consider that the refinement of the
representation or of the decoder is more important to improve the quality of the solutions
than the order operators used. This conclusion is compatible with the work of Eiben and
Perck [4].

Also the time complexity of the program was tested, but the results are not yet fully
analyzed. We stress that the code was not optimized. Comparison with other approaches
would be important to measure the computational efficiency of this approach. Some code
optimization would be useful before that.

A lot of work remains to be done regarding the Job-shop Scheduling Problem. Some
refinement could be done on the representation and new operators could be defined with
more problem specific knowledge included. Also some different approaches for the schedule
builder can be tested. The most important, however, is the extension of the problem to move
it towards the practical problem it has originated from, the Manufacturing Scheduling and
Planning.
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Chapter 4

User Manual

We describe the use of the program implemented. The graphical version was built using two
toolkits developed at Utrecht University!:

o Forms Library and

¢ PlaGeo.

This tool can be retrieved from the anonymous ftpsite ftp.cs.ruu.nl in the directory
pub/RUU/CS/NEURO/Planning. It is compiled for the IRIX 5.2 Operating System on the SGI
Indy/Indigo Series. The files needed to run it are listed in the file README. JSP.

4.1 Start

The command line can have one of two formats:

¢ niceguy [RETURN]

e niceguy parameters_file [RETURN]

In the first case the program loads the default parameters file (see section 4.2.2 below) and
in the other, the parameters are read from the file with file name parameters._file (see section
4.2 below).

If there is no default parameters file, or the parameters file can not be opened?, a warning
message and then file selector (see figure 4.1) will be presented (see section 4.2.1 below). The
default extension for parameters files is “* par’.

If Cancel is pressed, then hard-coded default values will be used and another file selector
will be presented, this time to choose the problem file (see section 4.3 below). In case no
problem file is selected, then the user will be prompted to confirm the exit from the program.

The interface for the program can be seen in figure 4.2.

1These libraries can be retrieved from the ftpsite ftp.cs.ruu.nl, in the directories /pub/SGI/FORMS and
pub/SGI/GEQ, respectively.
2\Whether it is the default parameters file or the one given by the user.
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I Choses the prbiom e

Figure 4.1: File selector. In this case, to choose the parameters file.

4.2 Parameters File

The format of the parameters file is described in appendix A.

4.2.1 Choose Parameters File

To choose a different parameters file, the Parameters File button should be pressed.

If there are unsaved changes in the parameters, then a file selector will be presented to
save this parameter setting. If saving is not desired, then press the Cancel button.

Then another file selector is presented to choose the new parameters file. Eventual errors
in the parameters file will cause a file with the name ‘parameters_ﬁle-name.errors’ to be
created. Those parameters that can not be read from the file, will be initialized to the

corresponding hard-coded values. If Cancel is pressed then the last used parameters file will
be reloaded.

The parameters file can be changed only before the GA is started.

When one quits the program (see section 4.7 below) and parameters have been changed,
then a file selector is presented, to save the changes.

4.2.2 Default Parameters File

To set the default parameters file, click the Default button.

4.3 Problem File

The format of the problem file is described in appendix B.
To select a new problem file, the Problem button should be pressed.
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famd/alchemy/home/csoares/ext/gui/nakano.prb

Figure 4.2: The interface of the program.
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If errors are detected in a problem file, whether when the program starts or the user
selects a new one, then a warning will be presented and an errors file is created with the name
‘problem.ﬁle_name.errors’. Then, the file selector will be shown once again.

If Cancel is pressed, then the previous problem, if any, will be reloaded.

4.4 GA Parameters

There are six GA parameters:

Population size This is the number of chromosomes in the population. This parameter can
only be changed before the GA is started.

#Generations The value of this parameter determines the number of cycles the GA will
run.

pC The probability of the crossover operator be applied in a chromosome.

ratioC This value is the selection probability of the domain independent crossover operator
(PMX) being selected over the problem specific one.

pM The proba‘bility of the mutation operator be applied to a chromosome.

ratioM This value is the selection probability of the domain independent mutation operator
being selected over the problem specific one.

4.4.1 Effect of Changes in the Parameters
All the parameters described, except for the population size, can be changed anytime during
the execution of this program. This means that they can be changed when the GA is not
started, when it is paused or when it is running. The changes made are introduced in the GA
before it starts, or after the completion of the current cycle.
4.5 Output
4.5.1 Output Types
Three types of output are available:

o graphical,

o text, and

o file output.

The second type of output is directed to the terminal where the program was called.

If it is not possible to create the given output file, then a file selector will be presented.
Also, if the File button is on and the execution is initiated and there is no output file indicated,
the file selector will appear.
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Figure 4.3: Charts window.

4.5.2 Output Features

There are eight output features implemented. To enable/disable a feature, click the output
features window on the respective name.
We will explain their meanings in three groups:

Generation Current generation number.
Best The fitness of the best chromosome so far.
Average The average fitness of the current population.

Variance The variance on the average fitness of the current population.

These values are presented in the control panel, above the parameter settings. In the text
and file interfaces, when the a new generation is finished, their values are printed and saved,
respectively.

Best (Chart)
Average (Chart)

Variance (Chart)

These charts are displayed in a separate window (figure 4.3), that will be shown only when
at least one of this features is enabled. It is important to notice that the time (x axis) is
increases from right to left.

These features do not produce text or file output.
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Figure 4.4: Output of a best schedule for a 6x6 problem.

Best Schedule This feature presents a graphical representation of the schedule for the best
chromosome so far (figure 4.4). It is possible to print it or save it to a postscript file.
In the latter case, a file selector will be presented.

This feature does not also produce text or file output.

4.6 Execution

4.6.1 Execution Types

There are two possible execution types:

Step Pauses after the initialization of the GA and after every cycle,

Run Runs for the given number of generations or until the Pause or Stop buttons are
pressed.

4.6.2 Execution Control

The following are the execution control buttons:

Play (>) This button starts the execution of the GA. It will remain pressed until the exe-
cution is over.

Pause (| |) This button is used to stop the execution. It will have effect only after the
current cycle ends. It will automatically be pressed after each cycle in Step execution
type (see section 4.6.1 above).
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Stop (O) When this button is pressed, a window is presented to confirm the interruption of
the current execution.

4.6.3 End of Execution

When all the desired number of generations is passed, a confirmation on the end of the
execution is required. To continue, change the number of generations and release the Pause
_ button by clicking it (see section 4.6.2 above).

4.7 Quit

When the Quit button is clicked, a confirmation window is presented.
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Appendix A

Parameters file format
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In this appendix, the format of the parameters file is described.

It consists of two sections, the interface and the CA section. The first is initialized with
the command word INTERFACE, and the second with GA. The interface section is divided
in two parts, the output type, with the information about what types of output are desired,
and the name of the output file, if any.

The default file extension is ‘*.par’.

Bold expressions are commands, which must be in uppercase, e.g. INTERFACE; Italic
expressions are boolean variables, e.g. graphical_interface(bool) which take integer values 0
or 1; integer variables, e.g. population_size(int); probability variables which are float vari-
ables in the range [0.00, 1.00], e.g. crossover_probability(prob) or character strings, e.g. out-
put_file(str).

The file name line is only necessary if the file output is on.

INTERFACE

GRAPHICAL: graphical_output(bool)

TEXT: text_output(bool)

FILE: file_output(bool)

FILENAME: output_file(str)

THISGENERATION: this_generation_feature(bool)

BEST: best_fitness_feature(bool)

AVERAGE: pop_average_ﬁtness_feature(bool)
VARIANCE: pop_ﬁtness_variance.featum(bool)
CHARTBEST: best_fitness_chart_feature(bool)
CHARTAVERAGE: pop-average. fitness.chart_feature(bool)
CHARTVARIANCE: population_ﬁtness_variance_chart_feature(bool)
BESTSCHEDULE: best_schedule_feature(bool)

GA

PROBLEM: problem._file(str)

POPSIZE: population_size(int)

GENERATIONS: no_of_generatinons(int)
PROBCROSSOVER: crossover_probability(prob)

PROBPMX: domain_ind_crossover_sel_probability(prob)
PROBMUTATION: mutation_probability(prob)
PROBPIMUTATION: domain_ind_mutation_sel_probability(prob)
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Appendix B

Problem file format
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In this appendix, the file format for problems is described.

The default file extension is “*.prb’.

Bold expressions are commands, which must be in uppercase, e.g., NRORDERS:; Italic
expressions are integer variables, e.g., number_of_orders.

Note that, after every alternative for an operation, a colon is necessary.

NRORDERS: no.of-orders
NRMACHINES: no.of-machines
NRPLANS: total_no_of_plans
NROPERATIONS: no.of-operations
ORDERS:
part_no quantity
part_no quantity
PLANS:
part_no no.of-operations operation! operation? ...
part_no no.of-operations operationl operation? ...
OPERATIONS:
no_of-alternatives alternative_machinel_no durationl :
alternative_machine2.no duration2 :
no_of-alternatives alternative_machinel_no durationl :
alternative_machine2_no duration? :
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Appendix C

Problems
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C.1 Problem 1 : a 6x6 problem

jobs:

plans:

operations:

operation

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

quantity

[ e

operations

10, 0, 7, 14, 26, 21
4,9,16,24, 3,12
9,12,22,2,8,18
51,9,13,19,23
11,6, 17,25,0, 15
6, 13, 23, 3, 20, 10

machine duration

0 3
0 5
0 9
0 10
1 8
1 5
1 3
1 6
1 1
2 5
2 1
2 9
3 4
3 3
3 7
3 1
4 10
4 5
4 7
4 8
4 4
4 6
5 8
5 9
5 10
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C.2 Problem 2 : a 10x10 problem

jobs:
quantity

(D@NG)O‘-#WMD—'O"E,
-1
o

T

plans:

part operations

0 0,1,2,3,4,5,6,7,8,9

1 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
2 20, 21, 22, 23, 24, 25, 26, 27, 28, 29
3 30, 31, 32, 33, 34, 35, 36, 37, 38, 39
4 40, 41, 42, 43, 44, 45, 46, 47, 48, 49
5 50, 51, 52, 53, 54, 55, 56, 57, 58, 59
6 60, 61, 62, 63, 64, 65, 66, 67, 68, 69
7 70, 71, 72, 73, 74, 75, 76, 77, 78, 79
8 80, 81, 82, 83, 84, 85, 86, 87, 88, 89
9 90, 91, 92, 93, 94, 95, 96, 97, 98, 99

operations:
operation machine duration

29
78
9
36
49
11
62
56
44
21
43
90

= =0 00 =IO G kW =O

-0
OO WO =IO WN O
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12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

45
46
47
48
49
50
51
52
53
54
55
56
57

75
11
69
28
46
46
72
30
91
85
39
74
90
10
12
89
45
33
81
95
71
99

52
85
98
22
43
14

22
61
26
69
21
49
72
53
84

52
95
48
72
47
65
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58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

25
46
37
61
13
32
21
32
89
30
55
31
86
46
74
32
88
19
48
36
79
76
69
76
51
85
11
40
89
26
74
85
13
61

64
76
47
52
90
45
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C.3 Problem 3 : the problem used by Bagchi et al.

jobs:

part quantity
0 40
1 20
0 10
1 20
2 15
1 50
2 40
0 35
1 35
2 80
0 120

plans:
art operations
0,3,5

s

-
-

- .
~

-~ W O Gt

-
~

NN == OO0
wogowo
@M\?Or—-oo.;;

~

operations:
operation duration

40
7
10
20
12
30
5
16
8
15
12

g
e
®

© W00~ ~IDHOD UGN =O
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