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1. Introduction

In [MH93a,b] a nonmonotonic logic was introduced, called Epistemic Default Logic (EDL). It
is based on the metaphor of a meta-level architecture. It already has been established in
[MH93a,b] how upward reflection can be formalized by a nonmonotonic entailment based on
epistemic states, and the meta-level process by a (monotonic) epistemic logic. The meta-level
reasoning can be viewed as the part of the reasoning pattern where it is determined what the
possibilities are for default assumptions to be made, based on which information is available
and (especially) which is not. The outcome at the meta-level concerns conclusions of the form
P, where ¢ is an object-level formula. In EDL, default conclusions are kept separate from the
object level knowledge (they remain at the meta-level), by means of this explicit default
operator P (just like in NML3, see [Doh91]). If one wants to draw further conclusions from
them using object level knowledge this should be done at the meta-level. Compared to a meta-
level architecture, what was still missing was the step where the default assumptions are
actually made, i.e., where such formulas ¢ are added to the object level knowledge, in order to
be able to reason further with them at the object level. Here we actually “jump (down) to
conclusions”. This is what should be achieved by the downward reflection step. In the current
paper we will introduce a formalization of the downward reflection step in the reasoning pattern
as well. Thus a formalization is obtained of the reasoning pattern as a whole consisting of a
process of generating possible default assumptions and actually assuming them (a similar
pattern as generated by the so-called BMS-architecture introduced in [TT91]).

The formalization of downward reflection is inspired by [Tre94, HMT94], where it is pointed
out how temporal models can provide an adequate semantics for meta-level architectures in
general, and [ET93, ET94] where these ideas have been worked out to obtain a linear time
temporal semantics for default logic. The general idea is that conclusions derived at the meta-
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level essentially are statements about the state of the object level reasoning at the next moment
of time. So we can define downward reflection as a shift of time in a (reasoning) process that is
described by temporal logic.

In this paper in the Sections 2 to 6 the logic EDL is presented. As compared with earlier
publications ((MH91a, MH92a, MH93a,b]), the logic is slightly extended in order to cater for
downward reflection in subsequent sections. In Section 7 we define a labeled branching time
temporalization of this logic, in spirit of the approach of [FG92]. In Section 8 we define
sceptical and credulous entailment relations based on temporal models.

2. Epistemic logic

2.1. DEFINITION (epistemic formulas). We first introduce the language of epistemic logic that
we shall consider in the first instance. Let P be a set of propositional constants (atoms); P =
{px 1k € I}, where I is either a finite or countably infinite set. The set FORM of epistemic
formulas @, ,... is the smallest set containing P, closed under the classical propositional
connectives and the epistemic operator K, where K¢ means that ¢ is known, Moreover, we use
Mo as an abbreviation for —K—@, meaning that ¢ is epistemically possible. An objective
formula is an epistemic formula without any occurrences of the modal operators K and M. For
I' © FORM, we denote by Prop(I') the set of objective formulas in I".

Objective formulas are interpreted on ordinary valuations:

2.2. DEFINITION (propositional models). A valuation is a function from P to {t, f}. The set of
all valuations is denoted W. The powerset of W is denoted by ModSet(PC). For any M €
ModSet(PC) and each objective formula ¢ we define M = @ iff each w € M is a valuation for @.

To interpret the whole set FORM of epistemic formulas, we need richer structures:

2.3. DEFINITION (S5-Kripke models). A (simple) S5-model is a structure Ml = (M, mtyq, Ryp)
where M is a non-empty set, the elements of which are called worlds, Ty is a truth assignment
function of type M — (P — {t, f}) such that for all m;, my € M: myq(m;) = Tpg(my) = my =
mj, and Ry is the universal accessibility relation on M, i.e., Ryy = M x M. The class of
(simple) S5-models is denoted by Mod(S5).

The more general definition of an S5-model requires Ry only to be an equivalence relation, but
for our purposes we will assume S5-models always to be simple in the sense that we defined
above. One can show that this does not change the validities of the logic (cf. Def. 2.6 below),
but it facilitates a number of technical issues such as the definition of submodels and union of



models (cf. Def. 2.4 below). However, some caution is in order: although the restriction to
simple S5-models does not affect the notion of validity, some of the propositions on S5-models
below do depend on the simplicity of the models, and do not hold for general S5-models.

The set of worlds in an S5-model represents a collection of alternative worlds that are considered
(equally) possible on the basis of (lack of) knowledge. In the next section we shall use S5-
models as representations of the reasoner’s objective knowledge and epistemic meta-knowledge
(i.e., what he knows that he knows or does not know).

Note that, for any m € M, the function mtyg(m) = Ap-mpg(m)(p) is a valuation. Since we have
that in an S5-model it holds that mtyg(m;) = myq(m,) < m; = my, we may identify worlds m
with their valuations myg(m), and write, for m € M, m = myg(m) = Ap-my(m)(p). So, without
loss of generality, we may consider S5-models of the form M = (M, M. Ryp with M c W,
and in the sequel we will assume this indeed to be the case.

Two S5-models M= (M, 1, R{) and M, = (M, Ty, R,) are called compatible if for every m
€ M; N M, it holds that 7t(m) = 1ty(m). Note that models in which worlds are identified with
their valuation functions (and thus are such that M ¢ W) are always compatible.

2.4. DEFINITION (submodels and union of S5-models). We define a subset relation on
compatible S5-models by: My € M, iff M; ¢ M,. Moreover, if M= (My, ;, Ry) and M, =
(M,, m,, R,) are two compatible S5-models, their union is defined as: M; UM, =M, n, R),
where M = M; UM,, t(m) =my(m) if me M; (i=1,2),and R=M x M.

Note that 7 is well-defined because of the compatibility of M; and M.

2.5. DEFINITION (interpretation of epistemic formulas). Given M = (M, myy, Ryp), we define
the relation (M, m) & ¢ by induction on the structure of the epistemic formula ¢:

M, m)Ep < my(m)(p) =tforpe P

M, m)F YAy, & M, m)kE y;and (M, m) F y,

(M, m) E —y < M m)Ey

(M, m) £ Ky < (M, m') E y for all m' such that Ryg(m, m'")
M, m) E My < (M, m') F y for some m' such that Ryg(m, m').

Note that, in the present setting, the clause for the K-operator amounts to (M, m) = Ky being
true iff (M, m’) &= y for all m' € M. Thus, it states that @ is known precisely when ¢ holds in
the whole set of epistemic alternatives; that for the M-operator states that ¢ is considered
epistemically possible iff there is at least one epistemic alternative that satisfies ¢.



2.6. DEFINITION (validity and satisfiability).

(i) ©@isvalidin an S5-model M = (M, myq, Ryp), denoted M = ¢, if for all m € M: (M, m)
E Q. |

(i) @ is valid, notation Mod(SS) = ¢, if M = ¢ for all S5-models M.

(iii) ¢ is satisfiable if there is an S5-model M = (M, myq, Ryyp), and a world m € M such that
M, m) E o.

Validity w.r.t. S5-models can be axiomatized by the system S5:
2.77. DEFINITION (system S5). The logic S5 consists of the following:
Axioms:

(Al) All propositional tautologies
(A2) (Ko AK(9 = V) = Ky Knowledge is closed under logical consequence.

(A3) K-> 0o Known facts are true.
(A4) K¢ - KKo One knows that one knows something.
(AS) =K¢ —> K—-Ke¢ One knows that one does not know something.

Derivation rules:

_)
(R1) w Modus Ponens
(R2) 2 Necessitation
Ko

That @ is a theorem derived by the system S5 is denoted by S5+ ¢.

2.8. THEOREM (Soundness and completeness of S5). S5+ ¢ <> Mod(S5) = ¢

2.9. DEFINITION. We say a formula  is in normal form if it is a disjunction of conjunctions of
the form & = o A KBy A KBy A ...A KBy A MY; A MY, A ...A My, where a, B; andy;(i<n,]j
< k) are all objective formulas.

The following holds for S5-logic;

2.10. THEOREM ([MH94]) In S5 every formula ¢ is equivalent to a formula y in normal form.



In particular, this theorem implies that every epistemic formula can be represented equivalently
without nested epistemic modalities. In S5 one thus can do without nestings.

3. Epistemic states and stable sets

In this paper we simply define an epistemic state as an S5-model. The idea behind this was
already touched upon after Definition 2.3. The worlds in an S5-model represent the states of
the (real) world that the reasoner considers possible. Thus the S5-model as a whole delimit the
ways the real world is like as far as the reasoner is concerned. In other words, it determines
what he knows about the world and what he does not (what he has doubts about by

considering contradictory possibilities). Therefore, an S5-model represents truly the epistemic
state of the reasoner.

3.1. DEFINITION. An epistemic state is an S5-model M = (M, Ty, Ryp). The set M is the set of
epistemic alternatives allowed by the epistemic state M.

3.2. DEFINITION. Let M = (M, myq, Ryy) be an S5-Kripke model. Then K(M) is the set of
facts known in M: K(M) = {¢ | M F Ko@}. We call K(M) the theory of M or knowledge in M.

We mention here that the knowledge in M are exactly the validities in M: K(M) = {¢ IM
Ko} = {9 I M E ¢}. Cf. [MH94].

3.3. LEMMA. For any (simple) S5 models M; and My: M1 ¢ M3 iff Prop(K(M2)) <
Prop(K(Mp)).

3.4. REMARK. The converse relation of < on Kripke models (Cf. Definition 2.4), will play an
important role in the sequel. M; 2 M, means that the model M}, viewed as a representation of
the knowledge of a reasoner, involves a refinement of the knowledge associated with model
M. This has to be understood as follows: in the model M, less (or the same) worlds are
considered possible by the reasoner as compared by the model M. So, in the former case the
reasoner has less doubts about the true nature of the world. By Lemma 3.3 it turns out that this
means that with respect to model M, the reasoner has at least the objective knowledge
associated with model M, and possibly more. So in a transition of M; to M, we may say that
objective knowledge is gained by the reasoner. Thus the relation ‘2’ acts as an information
ordering on the set of S5-models. Finally we remark that Lemma 3.3 is a typical example of a
property that holds for simple S5-models only; with respect to general S5-models we would
only have the ‘only if” part of the Lemma (cf. the discussion following Def. 2.3).



3.5. PROPOSITION (Moore [Mo085]).

(1) The theory Z = K(M) of an epistemic state M is a so-called stable set, i.c., satisfies the
following properties:
(St 1) all instances of propositional tautologies are elements of Z;
(St2) ifpeXZandp >ye Zthenye Z;
(St3) pe Z=Kpe X
(St4) oeg X —Kpe X
(St5) X is propositionally consistent.

(ii) Every stable set X of epistemic formulas determines an S5-Kripke model My for which it
holds that ¥ = K(My). Moreover, if P is a finite set, then My is the unique S5-Kripke
model with this property.

3.6. PROPOSITION. A stable set is uniquely determined by the objective formulas it contains.

3.7. REMARK. Thus stable sets act as the epistemic contents of an epistemic state (viz. an S5-
model): a stable set = = K(M) describes exactly the formulas known by the reasoner when he is
is in epistemic state M. From Prop. 3.5(i) we see that this knowledge is closed under classical
propositional reasoning and under positive and negative introspection: if some formula is
known also the fact that this is known is in its turn known by the reasoner, and if some formula
is not known, the fact that it is not known is known itself. This reflects the (perhaps rather
strong notion of) rationality of the reasoner. On the other hand, Prop. 3.5(ii) says that a stable
set of epistemic formulas determines an S5-model, the epistemic state associated with
(knowing) this stable set. Prop. 3.6 states that a stable set, and thus the associated epistemic
state, is completely determined if one specifies exactly what objective knowledge is present at
the reasoner. The rest of the known set of formulas (the stable set) then follows.

4. Entailment based on epistemic states: upward reflection
On the basis of epistemic states, Halpern & Moses define an entailment relation k with which

one can infer what is known, and, more importantly, what is unknown in such epistemic states.

First we note that with every set of valuations we can associate an epistemic state, as follows:

4.1. DEFINITION. Given a set M c W of valuations, we define the associated S5-model ®(M),
given by ®(M) = (M, myg, Ryy) with Ty M X P — {t, f} such that myg: (m, p) = m(p).

Intuitively, ® associates with M the epistemic state given by considering (only) the set M of
classical propositional models to be the possible states of the world: this set, so to speak, gives
a partial description of the real world. In general, more than just one classical model is



considered possible so that only those facts are known that are true in all of them. We can

exploit this idea further and define an entailment relation based on the premise that we only
know some objective formula @. To this end we need some additional notation:

4.2. DEFINITION. Given some objective formula ¢, we define My, as the set of valuations

satisfying @, i.e., Mo = {me W I mk ¢}. We denote the epistemic state ®(M,,) associated
with Mg, by M,

We have the following alternative characterizations of M:

4.3. PROPOSITION. My = U {(MIME ¢} =U (M IM F Ko).

PROOF. The latter equality follows from the fact that we are in the realm of S5-models (cf. our
remark following Def. 3.2). The former equality is proved as follows: Mgy = @(My) = (M(p,
™M RM(p) with My = {m € W Im ¢}. On the other hand, M = (M, myq, Ry E ¢ &
(since @ is objective—adopting the view that MC WYME o M M. So U{MIME o}
=U{mm, v Ry IM My} = (M(p, ™ RM(p), since U {MIMc Mg}= My, Thus M,
=UMIME ¢}.m

Proposition 4.3 says that in order to get My, we can also consider all S5-models of ¢ and take
their union to obtain one ‘big’ S5-model. We denote the mapping ¢ — Mg by p: (@) = M,

Now we are ready to define an entailment relation based on this “big” model. Keeping in mind
that ‘2’ acts as an information order on models (Cf. 3.4), we define what are the consequences
of knowing only the objective formula @ as those formulas that hold in the “big”” model My

4.4. DEFINITION (Nonmonotonic epistemic entailment). For ¢ € Prop(FORM), and y €
FORM:

o H Yy & ye KMy)

Informally, this means that  is entailed by ¢, if y is contained in the theory (knowledge) of the
“largest S5-model” M, of ¢. Halpern & Moses showed in [HM84] that this “largest model”
need not always be a model of ¢ itself if we allow ¢ to contain epistemic operators. However,
in our case where we only use objective formulas ¢, My, is always the largest model for @. This
is obvious from our construction of M(p, since M(p E ¢ and therefore M(p = <I)(M(p) = <M<P’
™My RM¢> F @ (since @ is objective). Moreover, in this case the theory K(M,) of this largest
model is a stable set that contains ¢ and such that for all stable sets X containing ¢ it holds that
Prop(K(M(p)) C Prop(Z) (by Lemma 3.3 and Prop. 3.5), thus K(Mq,) is the “propositionally



least” stable set that contains @. So I can also be viewed as a preferential entailment relation in
the sense of Shoham [Sho87, 88], where the preferred models of ¢ are the largest ones, viz.
M, where the least objective knowledge is available.

We denote the mapping ¢ — K(Mg) by x: k(9) = K(My), the stable set associated with
knowing only ¢. Alternatively viewed, k() is the ~-closure of ¢. Note that since k(¢) =
KM,) is a stable set, it is also propositionally closed.

We give a few examples to show how the entailment b works: Let p and q be two distinct

primitive propositions. Then:

prK(pvaq

phk —Kq

pk Kp AM—q

pAqk K(pAq) AKpAKq
pvak K(pvq) AM—pAM-q

Obviously, the entailment relation I~ is nonmonotonic, justifying the name we have given it.
(For instance, we have p ~ M—q, while not p A g~ M—q; it even holds that p A g~ ~M—q.)

The nonmonotonic epistemic entailment ~ enables us to derive from an objective formula o,
characterizing the exact epistemic state of the reasoner (viz., technically, the epistemic state
M), exactly what is known and, even more importantly, what is unknown in this epistemic
state. This latter property renders the entailment relation context-sensitive and nonmonotonic,
so that the relation b goes beyond an entailment expressible in ordinary epistemic logic: with
respect to its premise the relation  involves a kind of epistemic closure.

Finally we state a property of that we shall need in the sequel:
4.5. PROPOSITION. The entailment relation k enjoys the property:
oY &OkY = oY AY,.
PROOF. Directly from Def. 4.4 and the fact that the stable set K(M(p) is closed under

conjunction (which in its turn follows from the fact that a stable set is closed under

propositional reasoning and contains the tautology y; —= (Y = (Y1 A Y)) ). B



S. The epistemic preference logic S5P

The “upward reflection” entailment relation ~ enables us to derive information about what is
known and what is not known. In this section we show how we can use this information to
perform default reasoning. To this end we extend our language with operators that indicate that
something is a default belief and thus has a different epistemic status than a certain fact. In this
way the proverbial “jump to conclusions” is not made directly in the logic, but a somewhat
more cautious approach is taken. The “jump” itself will be part of a next operation, the
“downward reflection”, which will be discussed in the next section when we incorporate a

temporal element into our approach.

Let I be a finite set of indexes. The logic S5P of epistemic default logic is an extension of the

epistemic logic S5 by means of special modal operators P; denoting default belief (w.r.t.
situation or frame of mind i), for i € I, and also generalisations P, fort c I.

Informally, P;@ is read as “¢ is a default belief (within frame of reference i)”. As we shall see
below, a frame of reference (or mind) refers to a preferred subset of the whole set S of

epistemic alternatives. This operator is very close to the PA (possible assumption) of [TT91]
and the D (default) operator of [Doh91]. The generalisation Pr¢ is then read as a default belief
with respect to the (intersection of the) frames of reference occurring in 7.

Formally, S5P-formulas are interpreted on Kripke-structures (called S5P-models) of the form
M = (M, mpyg, {Mj lie I}, Ry, {R;|i € I}), where M is a collection of worlds, Ttp;: M X P
— {t, f} is a truth assignment to the primitive propositions per world, Mj c M (i € I) are sets
(‘frames’) of preferred worlds, Ryy = M X M, and R; =M X M; (i € I). When writing M C
My, we always mean that the set of worlds of M is a subset of those of M. Again we may
identify worlds s and their truth assignments 7t(s). We let Mod(S5P) denote the collection of
Kripke-structures of the above form. Given an S5P-model M = (M, myg, {M;j li € I}, Ry,
{R; |i € I}), we call the S5-model M' = (M, my, Ryy) the S5-reduct of M.

5.1. DEFINITION (interpretation of S5P-formulas). Given a model M = (M, myq, {Mj li e I},
Ry, {Rj i € I}, ) we extend the truth definition on S5-models by the following clauses for
the P;- and P -operators:

(M, m) = P;@ iff (M, m') = ¢ for all m' with Ry(m, m"), fori € I,
M, m) = Pg iff (M, m') E ¢ for all m' with R;(m, m'), where R;=);cR;and T c L

Thus the former clause states that Pi@ is true if @ is a default belief w.r.t. subframe M;,
whereas the latter says that P is true if @ is a default belief w.r.t. the intersection of the
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subframes M;, i € T. We will sometimes denote this intersection by M. In the clause for P,
we assume that, for T = @, ;< {R; = Rj4. So in this special case we get that the P; modality
coincides with the knowledge operator K. Validity and satisfiability is defined analogously as
before.

It is possible to axiomatise (the theory of) Mod(S5P) as follows (cf. [MH91a, MH93a]): take
the S5 system for the modality K (and dual M) and use K45 for the P-modalities (both the P;
and the P), together with relating axioms, resulting in the system:

5.2. DEFINITION (system S5P). In the following, i ranges over I, and T over subsets of L.
Moreover, O is a variable over {K, P;, Pz!ie I, tc1}; ¥ and & range over {i,tlie It cI}.

(B1)  All propositional tautologies;

B2) OoAl(p—y) >0y
(B3) Oo¢—0O0¢9
(B4) —-0¢ — O0-0¢;

BS) Ko—o;

(B6)  KPy® < Py@
(B7)  —Pel > (PePa® & Pa0);

(B8) P9 Po
(B9 P> Ppo TcT
(B10) Pg < Ko.

(R1) Modus Ponens
(R2) Necessitation for K: - ¢ = + K@.

Axiom (B1) says that we are dealing with an extension of propositional logic; (B2) says that all
the operators K, P;, and P are ‘normal’; (B3 and B4) express that the relations R, R; and Rt
are transitive and Euclidean, respectively; (BS) says that R is reflexive; (B6) and (B7) help us
to get rid of nested modalities: a nested modality is always referring to the frame corresponding

to the innermost one. (B8) provides us with a bridge between the modalities with indices from
I and those of P(I); it also shows that in fact we could do without the P;i’s. (B9) says that if T <

7', then Ry < Ry . Finally, (B10) is the syntactical counterpart of our definition that Rgy = Ryy.
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We call the resulting system SSP. In the sequel we will write I' -gsp ¢ or @ € Thgsp(I) to
indicate that @ is an SSP-consequence of I'. We mean this in the more liberal sense: it is
allowed to derive @ from the assertions in I" by means of the axioms and rules of the system
SSP, including the necessitation rule. (So, in effect we consider the assertions in I” as

additional axioms: I' -gsp @ iff -gspr 9.)

As for S5, one can again prove a normal form theorem for SSP implying that all formulas can
be represented equivalently as formulas without nestings.

5.3. THEOREM I' + gsp ¢ < (for all M € Mod(S5P): MEF I'= Mk o)

PROOF. Combine the arguments given in [MH92a, MH93a] concerning the K- and P;-
modalities with the observations about subrelations given in [HM92].

6. Epistemic Default Logic (EDL)

In the language of SSP we express defaults of the form ¢ : y / % (using Reiter's notation, Cf.
[Rei80]) as @ A My — Pjy, for some i € I. Here ¢, y and y are objective formulas. The
reading of such a formula is “if ¢ is true and y is (considered) possible, then y is preferred
(within frame M;)”. Usually we consider cases where  is syntactically equal to i (the so-called

normal defaults).

By combining the formal apparatus of S5P with Halpern & Moses’ nonmonotonic epistemic
entailment we obtain a framework in which we can perform default reasoning. In this paper we
call this framework Epistemic Default Logic (EDL).

6.1. DEFINITION (default theory). A default theory © is a pair (W, A), where W is a finite,
consistent set of objective (i.e. non-modal) formulas describing (necessary) facts about the
world, and A is a finite set of defaults of the form ¢ A My — Py, where @, y and ) are again
objective formulas, and i € 1. The sets W and A are to be considered as sets of axioms, and we

may apply necessitation to the formulas in them.

In principle, it would be possible to use the index i of the P-operator in a completely arbitrary
way, to be chosen by the knowledge engineer. However, in order to be able to treat the various
defaults in a default theory separately from each other, in the sequel we shall assume all P-
operators in a default theory to be distinct. This will allow for a generic way to look at the
possibilities of combining default beliefs by using the P -operators. So, for example rather
than to look at a default theory with A = {p A Mq — Piq, r A Ms — Pjs}, in which for both
defaults the same operator P; is used, we consider the set A'= {p A Mq — Piq, r A Ms —
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Pys}, in which both defaults are represented by means of different operators P; and P,, and
consider the combined operator P(1 7.

6.2. DEFINITION (default entailment). Let a default theory ©® = (W, A) be given. Let W* be the

conjunction of the formulas in W. Note that W is a finite set, and moreover that W only
consists of objective formulas. Furthermore, let @ be an objective formula. Then we define the
default entailment relation g w.r.t. default theory © as follows: (Recall that k(@) stands for
the k-closure of ¢, where F is the nonmonotonic epistemic entailment of section 4.)

O e VY Sgef K(GAW*) U A-gsp .

This definition states that, given a default theory ©, y is a default consequence of @ iff y

follows in the S5P-logic from the defaults together with what is implied by knowing only the
conjunction of ¢ with the background information W.

Notice that the following equivalence holds, which states something about a modularity of the
entailment relations.

6.3 PROPOSITION
ooy = there exists a S§-formula y' € FORM such that
OAW*  y'and {Yy'} U Atgsp ¥

PROOF. This follows directly from the definition of g and Prop. 4.5. B

Instead of true g y, we simply write g Y. Note that, for ® = (W, A) we have ¢ kg v iff
o W, with © = (W U {@}, A). Furthermore, if T is a finite set of epistemic formulas, and W
an S5P-formula, then we define I" g W as I'* kg W, where I'* stands for the conjunction of

the formulas in T'.

6.4. EXAMPLE (Tweety). Consider the following default theory © = (W, A) with W = {p —
—f} and A = {b A Mf — Pf}, representing that penguins do not fly, and that by default birds
fly. (For convenience we omit the subscript of the P-operator.) Now consider the following
inferences):

(i). bk bA—K-—f '_SSPbAMfl_SSPPf’ i.e.,bl-@Pf,
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meaning that from the mere fact that Tweety is a bird, we conclude that Tweety is assumed to
fly. (Here k~ stands for Halpern & Moses’ nonmonotonic epistemic entailment.) This must be

contrasted to the inference: .
(i). bAa p ~ Kp Fssp K-f Fssp -Mf ¥ ssp Pf, i.e, not b A P I"‘@ Pf,

meaning that in case Tweety is a penguin, we cannot infer that Tweety is assumed to fly, but
instead we can derive that we know for certain that Tweety does not fly: b A p kg K—f.

7. A temporal formalization of downward reflection

In the previous section it has been described how upward reflection can be formalized by a
nonmonotonic inference based on epistemic states, and the meta-level process by a (monotonic)
epistemic logic. In the current section we will introduce a formalization of the downward
reflection step in the reasoning pattern. The meta-level reasoning can be viewed as the part of
the reasoning pattern where it is determined what the possibilities are for default assumptions to
be made, based on which information is available and (especially) which is not. The outcome at
the meta-level concerns conclusions of the form P, where ¢ is an object-level formula. What
is still missing is the step where the default assumptions are actually made, i.e., where such
formulas ¢ are added to the object level knowledge, in order to be able to reason further with
them at the object level. Here we actually “jump (down) to conclusions”. This is what should
be achieved by the downward reflection step. Thus the reasoning pattern as a whole consists of
a process of generating possible default assumptions and actually assuming them.

By these downward reflections at the object level a hypothetical world description is created and
refined. This means that in principle not all knowledge available at the object level can be
derived from the object level theory W: downward reflection creates an essential extension to
the object level theory. Therefore it is excluded to model downward reflection according to
reflection rules as sometimes can be found in the literature, e.g., “If at the meta-level it is
provable that Provable(¢) then at the object level @ is provable” (e.g., see [Wey80]):

MT  Provable(op)

OT+ ¢

A reflection rule like this can only be used in a correct manner if the meta-theory about
provability gives a sincere axiomatisation of the object level proof system, and in that case by
downward reflection nothing can be added to the object level that was not already derivable
from the object level theory. In the above rule the meta-theory is only concerned with one fixed
object level theory. Since we essentially extend the object level theory, and consequently want
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to move to another object level theory, an approach as taken in the rule above cannot serve our
purposes here.

In fact, in our case a line of reasoning at the object level is modelled by inferences from
subsequently chosen theories instead of inferences from one fixed theory, where in the choice
of the next object-level theory the upward and downward reflections play a role. Another
difference with the above “traditional” approach to meta-level reasoning is that we shall treat
these reflection steps model-theoretically instead of proof-theoretically, as shifts from one
model to another, which results in a temporal “super”’-model indicating how these shifts may
take place over time. Actually, to keep in perfect line with the above, we should explain by
means of these models how object knowledge (modelled by a set M of valuations) is reflected
upwards to get a model for epistemic meta-knowledge (modelled by an S5-model ®(M)), how
this meta-knowledge is then extended with meta-knowledge about default beliefs (modelled by
S5P-models), and how, subsequently, this meta-knowledge is reflected downwards to object
knowledge (modelled by a new set M' of valuations) again. However, representing such shifts
in a temporal model would involve (sequences of) three different models (sets of valuations,
S5-models and S5P-models), which would be quite involved and cumbersome. Therefore, in
order not to complicate our temporal models too much, in our present setting we shall not
represent the above three steps separately, but treat them “in one blow”, so to speak, i.e., as
one “super”-step. Now we are able to represent these “super”-steps as shifts from S5P-models
to S5P-models, so that our temporal “super”-model only involves sequences of one kind of
model, viz. S5P-models, of which the S5-reducts represent the reasoner’s objective knowledge
and epistemic meta-knowledge, and the frames (‘P-’) parts represent meta-knowledge in the
form of default (or preferred) beliefs. We shall still refer to these supersteps as downward
reflection, although as we stated above, apart from a reflection of the “meta-knowledge” in the
form of default beliefs contained in the SSP-model at hand to the object level by converting
some of these beliefs into object knowledge, it also includes an immediate upward reflection
from the next object level theory (or rather model) resulting from this to the next meta-level

theory as represented by an SSP-model again.

In [GTG93] such a shift between theories is formalized by using an explicit parameter referring
to the specific theory (called ‘context’ in their terms) that is concerned, and by specifying
relations between theories. In their case reflection rules (‘bridge rules’ in their terms) may have
the form:

MT + Provable(OT', ¢)

OT'F ¢
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Here it is assumed that at the meta-level, knowledge is available to derive conclusions about
provability relations concerning a variety of object level theories OT. So, if at the object level
from a (current) theory OT some conclusions have been derived, and these conclusions have
been transformed to the meta-level, then the meta-level may derive conclusions about
provability from another object level theory OT'. Subsequently one can continue the object level
reasoning from this new object level theory OT'. The shift from OT to OT" is introduced by use
of the above reflection rule.

As we said above, in the approach as adopted here we give a femporal interpretation to these
shifts between theories. This can be accomplished by formalizing downward reflection by
temporal logic (as in [Tre94]). In a simplified case, where no branching is taken into account,

the following temporal axioms can be used to formalize downward reflection:
P = Xo

for every objective formula ¢. Here X is the temporal operator asserting that in the next

(epistemic) state its argument is true.

In the general case we want to take into account branching and the role to be played by an index
T in P,¢. We will use this index 7 to label branches in the set of time points. By combining
EDL with the temporal logic obtained in this manner we obtain a formalization of the whole
reasoning pattern.

We start (following [FG92]) by defining the temporalized models associated to any class of
models and apply it to the classes of models as previously discussed.

In contrast to the reference as mentioned we use labeled flows of time. We use one fixed set L
of labels, viz. L = 21, the powerset of the index set I. However, in most definitions we do not
use this fact, but only refer to (elements 7 of) L.

7.1 Flows of time

7.1. DEFINITION (discrete labeled flow of time).

Suppose L is a set of labels. A (discrete) labeled flow of time (or Ift) , labeled by L is a pair T =
(T, (<p)1 e L) consisting of a nonempty (countable) set T of time points and a collection of
binary relations <y on T. Here for s, t in T and T in L the expression s <;t denotes that t is a
(immediate) successor of s with respect to an arc labeled by T. Sometimes it is convenient to

leave the indices out of consideration and use just the binary relation s < t denoting that s <t
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for some 7T (for some label T they are connected). Thus we have that < = Uz <;. We also use the

(nonreflexive) transitive closure « of this binary relation: « = <*.

We will make additional assumptions on the flow of time; for instance that it describes a

discrete tree structure, with one root and in which time branches in the direction of the future.

7.2. DEFINITION (labeled time tree)
Anlft T = (T, (<)t e L) is called a labeled time tree (Itr) if the following additional conditions
are satisfied (recall that < = U <)
(i) the graph (T, <) is a directed rooted tree.
(ii) (successor existence)
Every time point has at least one successor:
for all s € T there exists atand ate€ T such thats <t
(iii) (label-deterministic)
For every label 1 there is at most one T-successor:
foralls,t,t’ € Titholds: s<¢t,s<zt'=>t=t

There are still some additional properties that sometimes are required.

7.3. DEFINITION (sub-Ift and (maximal) branch)
a)  Anlft (T, (<'tr e L) is called a sub-Ift of an Ift (T, (<¢)re L) if T' < T and for all 7 it
holds <'r=<¢ N T' x T'. It is also called the sub-Ift of (T, (<¢)1 ¢ L) defined by T’, or
the restriction of (T, (<g)re L) t0 T .
b) A branchin anlft T is a sub-1ft B = (T, (<'g)r e L) of T such that:
i) «=«NnT xT1isatotal orderingon T' x T'
(ii) Everyt' in T' with a <-successor in T also has a <-successor in T
forallte T,te T:t' <t=thereisas'e T': t' <5
(iii) Every element of T that is in between elements of T is itself in T":
foralls'e Thte T, ue T :s'«t«u' =>te T
c) A branch is called maximal if every t' in T' with a T-predecessor in T also has a 7'-
predecessor in T' for some 1": forallte T,t'e T' :t<¢t', thereisatT andans'e T :
s' < t'. (Note that if T is a labeled time tree, this condition can be simplified to: the root r
of T is also the root of T".)

We now immediately have the following:

7.4. PROPOSITION Any branch of an ltt T is an Itt.
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7.5. DEFINITION

a) An Ift is called successor-complete if for every label T every time point has at least one 1-
successor: for all s and T there exists a t such that s < t.

b) A path is a finite sequence of successors: s, ....., Sy such that: s; < sj;1 for all 0 <i < n-1.

We call sq the starting point and sy the end point of the path.

7.6. DEFINITION (standard 1tt)
The standard It S over L is the set of all finite sequences over L equipped with the successor
relations:
(T, T1s veeees Tk) <t (T0s TLs wveees Tks T),
and the empty sequence () as root.

7.7. DEFINITION (embedding and isomorphism). Let T and T" be two Itt’s. A mapping f: T" —
T is an embedding if it is injective and successor-preserving: s <¢ t iff f(s) <¢ f(t). An

embedding is an isomorphism if it is surjective.

7.8. PROPOSITION
Every Itt T is uniquely embeddable in S (mapping T’s root to the root () of S). Moreover,
every successor-complete Itt is isomorphic to S.

This proposition implies that every element t in an ltt is uniquely described by the sequence of
labels of a (unique) path from the root to t.

7.9. PROPOSITION

In an Itt for every time point t the intersection of all maximal branches containing t is the set {s |
s « t} u {t}.

7.10. DEFINITION (time stamps). Given an ltt (T, (<¢)t e L), a mapping I-| : T — N is called a

time stamp mapping if for the root r it holds that Irl = 0, and for all time points s, t it holds s <t
= ltl = Isl + 1. (Note that this time stamp mapping is unique.)

Note that an ltt is infinitely deep, i.e., for every k € N there is a time point t € T with Itl = k.
This is a direct consequence of the following proposition:

7.11. PROPOSITION

If B is a maximal branch in an ltt, then any time stamp mapping is an isomorphism between B
and N.
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7.2 Temporal models
We first define our temporal formulas:
7.12. DEFINITION (temporal formulas).
a)  Given alogic L, temporal formulas over (the language of) L are defined as follows:
i 1if ¢ is a formula of L then C¢ is a temporal formula (also called a temporal atom)
ii if @ and y are temporal formulas, then so are:
=0, ¢ A Y, @ > VY, X319, X30, Xv 10, XvQ, F3¢, Fy@, G39, Gvo.
b) Below, our main concern will be temporal formulas over SS5P; we will also refer to them
as TEDL-formulas (temporal epistemic logic formulas).

The above temporal operators are fairly standard in branching-time temporal logic: X refers to
next-time, F to sometimes in the future and G to always in the future; the subscripts refer to
whether one considers only some (3) possible path (possibly with a fixed label t) or all (V) of
these. The C-operator is the least standard: it means ‘currently’. Usually in temporal logic this
operator is not really useful, since it just states that its argument, say ¢, holds in the current
state, which is normally represented by the formula ¢ itself, without a C in front. Here,
however, we have a logic where we mix temporal and epistemic logic, and the C-operator acts
as a kind of separator between the epistemic and temporal part: in Ce, its argument @ is an
epistemic formula, while C¢ itself is a temporal formula. This also facilitates the semantic
definition below.

7.13. DEFINITION (temporal models)

a) Let MOD be a class of models, and T = (T, (<¢)r e L) a labeled flow of time.

A temporal MOD-model over T is a mapping M: T — MOD. If M is a temporal MOD-
model] for any class MOD we call M a temporal model.

For t € T we sometimes denote M(t) (the snapshot at time point t) by M. The temporal
model can alternatively be denoted by (Mi)te T.

b) If we apply a) to the classes of models ModSet(PC), Mod(S5) and Mod(S5P), we call
these temporalized models temporal valuation-set-models (abbreviated temporal V-
models), temporal S5-models and temporal SSP-models over T, respectively.

¢)  Given an Ift T, the temporal formulas are interpreted on MOD-models over T as follows:
1 conjunction and implication are defined as expected; moreover

M, sE =@ iff not M, s o;
ii The temporal operators are interpreted as follows:
1)  Co means that in the current state @ is true, i.e.
M skE Coiff MsF @
2) X3¢ means that @ is true in some T-successor state i.e.,
M, sE Xg;(p iff there exists a time point t with s <gt such that M, t = ¢
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3) X3¢ means that there is a T with some T-successor in which @ is true.
M, s = X3¢ iff there exists a time point t with s <t such that M, t k= ¢
4) Xy 10, meaning that @ is true in all T-successor states, i.e.,
M, s E Xy 19 iff for all time points t with s <¢ t it holds M, t= ¢
5) Xy means that ¢ is true in all immediate successors:
M, s E Xy iff for all time points t with s <t it holds M, t = ¢
6) F3¢ means that @ is true in some future state, i.e.,
M, s E Fgo iff there exists a time point t with s « t such that M, t = ¢
7)  Fy@, means that for all future paths there is a time point where ¢ is true, i.e.,
M, s = Fy iff for all branches B starting in s there is a t in B with M, t = ¢@.
8)  G3¢ means that @ is true along some future path, i.e.,
M, s = G0 iff there exists a branch B starting in s with M, t = ¢ for all t in B.
9) Gy, means that @ is true all future states i.e.
M, s & Gy iff for all time points t with s « t it holds M, t = ¢.

Note that the operator C enforces a shift in the evaluation of formulas; taking us from a
temporal model M and a time point t to an SSP-model M;.

During the reasoning process we assume to gradually extend the information we have at the
object level, and consequently to shrink the set of possible worlds by means of reflecting
default beliefs downwards to object knowledge. In terms of temporal SS5-models we can
formulate this property as follows:

7.14. DEFINITION. A temporal S5P-model obeys downward reflection, if the following holds
forany sand 7 :
the frame My in M is non-empty < there is a t with s <¢t and for all such t

the set of worlds of M equals My

The above property expresses that the possible worlds in frame My (representing the P-default

beliefs) are taken to be the whole set of possible worlds (representing the objective knowledge)
in some (T-) successor epistemic state (or, rather, S5P-model).

Finally, we are ready to zoom in into the models we like to consider here, the temporal
epistemic default logic models.

7.15. DEFINITION (TEDL-models)
A TEDL-model M is a temporal SSP-model over an Ift T such that:
1) Tis alabeled time tree;
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2)  For every time point s, there is exactly one t with s <gs t;
3) M obeys downward reflection.

The following notion is a crucial one for the sequel:

7.16. DEFINITION (conservativity and limit models). Let T = (T, (<¢)r e L) be a labeled flow of
time. A temporal V-model M over T is conservative if for every two time points s and t with s
< t it holds that M(s) 2 M(t).

Suppose M is a conservative temporal V-model. The intersection of the models M(s) for all s in
a given (maximal) branch B = (T’, (<‘t)t e L) of the Ift T is called the limit model of the
branch, denoted limg M. The set of limit models for all (maximal) branches is called the set of
limit models of M. These definitions straightforwardly extend to S5- and S5P-models, by
identifying M with its set of worlds, M.

7.17. THEOREM. TEDL-models are conservative.

PROOF. Suppose s < t, that is, for some label T, s <¢ t. Since TEDL-models obey downward
reflection and the underlying Ift is an ltt, this means that the (now unique) set of worlds M; of
M; is the intersection frame My of M. Since M € Mg, the set of worlds of M, this gives M
< M, which proves the theorem. B

Since we know that TEDL-models are conservative, we have that once we have obtained that
somewhere in a time point s along some path of such a model some objective formula is
known, it remains known in all successor points of s. (This is in fact the rational behind the
name “conservative models”.) We can make this more precise if we introduce so-called cko-
formulas, which are formulas of the form CK@, where ¢ is objective. In the sequel we will
denote cko-formulas by o.. Then we have that:

7.18. PROPOSITION. Let M be a TEDL-model, and o a cko-formula.

If, for some s, M, sE o, then M, t = o for all t with s « t.

PROOF. Suppose M, s E o, for o = CK@. We show that for t with s <t we have that M, t =
o. (Then we can finish the proof by induction on the number of time point between s and t.)
By Theorem 7.17, we have that My ¢ M. This yields: M, sF o <& M, s CK¢ <& Mgk
Ko © Mg, mEFoforallminM; = M, mk ¢forallmin M; & Mk K¢ <& M, tE
CKp & M,sFo.N

Furthermore, TEDL-models enjoy a number of properties that can be expressed as validities in
our logic:
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7.19. THEOREM. TEDL-models satisfy the following validities:
TO  All the operators of {Xv 1, Xv, Fy, Gy} satisfy the K-axiom (C too) and generalisation;

Tl Fss5p @ = +TEDL CO (introduction of C)
T2 =Xyl (successor existence)
T3 X302 Xy 19 (label-deterministic)
T3' X350 & Xy ¢ (D-successor existence & label-deterministic)
T4  Xy19 < —X3:0¢ (duality)
TS5 Xy¢ & X3¢ (duality)
T6 Xy@ & NAqXy 1@ (< is union of <)
T7 X390 © Vic1X349 (dual of T6)
T8 C(—=Pil A P9) &> X3 ;CKo, if ¢ is objective (allowing downward reflection)
T8' CK¢ <> X3 »CK0, if ¢ is objective (trivial downward reflection)
T9 (Co — XyCo) A (CKo — XyCK@), if @ is objective (conservativity)
T10 Gy — Xy© (<<«
T1l Gyo = XyGy©® (since « is transitive closure of <)
T12 Gy(® = Xy®) = Xy¢ = Gy®) (induction)
T13 CK¢ — GyCKo (from conservativity and induction)

7.20. REMARK. The Theorem above says that the formulas T1 - T13 are at least sound; until
now we have not been concerned by designing a logic that is complete for TEDL-models.

8. TEDL models of default theories and entailment relations

We could formulate definitions of entailment of objective formulae related to any model, or any
model based on the standard tree. But it may well happen that there are branches in such
models, for instance labeled by the empty set only, that contain no additional information as
compared to the background knowledge. It is not realistic to base entailment on such
informationally poor branches in a model. Therefore we define:

8.1. DEFINITION (informationally maximal)

We define for TEDL-models M; and M, over the same flow of time that M), is informationally
larger than M;, M; < M, if for all t it holds M, (t) < M (t).

We call M, informationally maximal in a class M of models if it is itself the only model that is
informationally larger.

For a given model M we will apply this definition to the set B of all maximal branches, with T
= (T, (<p)r e L) as flow of time.

8.2. DEFINITION (regular model)
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A TEDL-model M is called regular if all maximal branches are informationally maximal in the

class of maximal branches. The submodel based on all time points t included in at least one
maximal, informationally maximal branch is called the regular core of M, denoted by reg(QMD.

8.3. REMARK.

In general the regular core will not be label-complete, because branches may be cut off. The
idea behind taking informationally complete branches is that we want to maximalise the effect of
applying defaults in order to obtain as much (default) knowledge as possible.

8.4. DEFINITION.

Let M be a TEDL-model over T = (T, (<t)t e L)-

We define fork e N
M® =Ue reg), 1t = k M'(D),
M®=Mge NM®,

where M'(t) stands for the S5-reduct of the SSP-model M(t).

8.5. PROPOSITION.

Let M be a TEDL-model.

a) For k < k' it holds M®&) c M®

b) M® = \UB maximal branch of reg(MD limg M

PROOE. a) follows directly from Theorem 7.17, b) follows from the distributivity of
intersection over union (and vice versa). B

8.6. DEFINITION (sceptical entailment)
Let M be a TEDL-model and o a cko-formula. We define the sceptical entailment relation by:
M Fscep 0 & for every maximal branch B in reg( M) there is a t in B such that M, t = o

An immediate consequence of this definition is:

8.7. PROPOSITION.

If, for some k € N, MK = Ko, then M Fcep CKOQ.

PROOF. Suppose M(K) = K¢, for some k € N. This means that M'(t) = K¢ for all S5-reducts
M'(t) with t in reg@M) and Itl = k. So for every maximal branch B in reg( M) we can find a t in
B such that M, t = K@ (viz. take t in B such that Itl = k. By Prop. 7.11 we can always do
this). Hence, M Fscep CK@. B

8.8. PROPOSITION.
Let M be a TEDL-model with root r. Let oo = CK@ be a cko-formula.
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The following are equivalent:

® M Fscep &

(ii) regM), r = Fyo

(i) MOk K¢

(iv)  limg M F Ko for every maximal branch B of the regular core of M.

PROOF. Clearly (i) and (ii) are equivalent.By Prop. 8.5 ailso (iii) and (iv) are equivalent. We
now show the equivalence of (i) and (iv). First we prove (i) = (iv): Suppose M Fscep CKO,
i.e. for every maximal branch B in reg( M) there is a t in B such that M, tE CKo. Now
consider a maximal branch B in reg( M). Then thereisatin B with M, t = CKo, i.e. M(t) F
K¢. By the conservativity of M we have that M(u) = K¢ for all u » t, i.e., all worlds of the
models M(u) with u » t satisfy ¢. But then also all worlds of the models M(u) withu»tandu
in B satisfy ¢. Consequently, limg M = (M j; p M(u) F Ko.

Next we prove (iv) = (i): Suppose limp M F K¢ for every maximal branch B of the regular
core of M. We have to prove that for every maximal branch B in reg( M) there is at in B such
that M, t = CK¢. Take some maximal branch B in reg( M. Then we know that limg M = Ko,
ie., Myinp M@)F Ko. By the conservativity of the model M (Theorem 7.17) we know
that the sequence <M(u) | u in B> is monotonically decreasing (with respect to <).LetPycP
the set of propositional atoms occurring in the formula a (or @). Clearly, P is finite. Now, for
any S5-model M with set S of worlds (truth assignment functions) we let My denote the model
with set Sq of worlds: Sg = {tIt=s1|p for some s € S}. Clearly, M F Ko iff My F K¢.
Now consider the sequence <M(u)g | u in B>. This is a monotonically decreasing sequence
with intersection M i, g M(u)g. Since Py is finite, and we identified worlds with truth
assignment functions, we have that all the models M(u)q contain only a finite number of
worlds. Together with the fact that the sequence is monotonically decreasing this yields that the
sequence must be stable from some point s in B on: M(u)g = M(s)q for all u » s. But then
obviously the intersection M ;, g M(u)g = M(s)g. So now M(s)o = K¢, and thus M(s) =
Ko,ie. M,sE CKo. B

For our definition of credulous entailment we can be less restrictive. Especially, too less
information in one branch can always be overcome by another, informationally larger branch.

8.9. DEFINITION (credulous entailment)
Let M be a TEDL-model. We define:

M Rk req CKQ & there exists an s with Isl = k and M(s) F K¢
M Ecreq CK@ = there exists an s with M(s) = K¢

8.10. PROPOSITION.
Let M be a TEDL-model, and o. = CK@ a cko-formula.
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The following are equivalent:

(1) M Fcred @

(ii) M FXcred o for some k € IN.

(i) M, r F F3o

(iv) limgp M F K¢ for some maximal branch B

PROOF. Since clearly (i), (il) and (iii) are equivalent, we concentrate on the equivalence of (ii)
and (iv): we first prove (ii) = (iv): Let M Fk req CK@ for some k € IN. This means that there
exists an s with Isl = k and M(s) = Ko, i.e., M, s = CKo. By Prop. 7.18, we then have that
M, t= CKo for all t with s « t. Now consider any maximal branch B through s. Clearly, this
branch has the property that the models M(t) with s « t all satisfy Ko, i.e., @ holds in every
world of every model M(t). But then @ holds in the intersection of these models as well. This
proves limgp M F K¢.

Next we prove (iv) = (ii): Suppose that limg M = K¢ for some maximal branch B. This
means that K¢ holds in the intersection of the models M(t) along B. By the conservativity of
the model M (Theorem 7.17) we know that the sequence <M(t) I tin B> is monotonically
decreasing (with respect to <). Let P, < P the set of propositional atoms occurring in the
formula o (or @). Clearly, Py is finite. As above, we denote, for any S5-model M with set S of
worlds (truth assignment functions), the model with set S of worlds by Mg where So={tlt
=s | p, for some s € S}. Again, M F K¢ iff My = K¢. Now consider the sequence <M(u)g | u
in B>. This is a monotonically decreasing sequence with intersection (M jp g M(w)o. Since Py
is finite, and we identified worlds with truth assignment functions, we have that all the models
M(t)o contain only a finite number of worlds. Together with the fact that the sequence is
monotonically decreasing this yields that the sequence must be stable from some point s on:
M(t)p = M(s) for all t » s. But then obviously the intersection (M j, g M(t)o = M(s)g. Since

the intersection satisfies K@, we obtain that M(s)g & KO, and thus M(s) = K¢. Hence M Foed
CKo. 1

We can now associate TEDL-models with default theories as follows.

8.11. DEFINITION (TEDL-model of a default theory).

Let © = (W, A) be a default theory. Then we define a TEDL-model of © as a TEDL-model M©
such that:

(i) (basis: the root) M®©, is an S5P-model such that (a) the S5-reduct of MO, is the S5-model
My, as defined in Section 4, and (b) Mer satisfies the set of defaults, i.e., Mer E A

(ii) (induction step) Suppose that we are given an S5P-model at snapshot M. Then we have
that for a(n S5P-) model M@, with s <¢ t, it holds that: (a) the S5-reduct of M®, is the S5-



25

model M as it appeared as a frame in Mes, and (b) Met satisfies the set of defaults again, i.e.,
MO, = A.

Note that, in general, there are multiple TEDL-models of a default theory ©. Furthermore, note

that clause (ii)(a) reflects the downward reflection operation with respect to the P,-defaults.

This definition enables us to finally give the definitions of sceptical and credulous entailment
from a default theory.

8.12. DEFINITION (entailment from a default theory).

Let © = (W, A) be a default theory, and ¢ an objective formula. Then:
O Fgcep @ iff for all models M of © it holds M Fscep CK®

O Fcred @ iff for all models M of © it holds M Fcred CK@

Of course, we have that what is entailed sceptically, also is entailed credulously:

8.13. PROPOSITION. For default theory © and objective formula @: © Fscep ¢ = © Fcred @

9. Conclusions

In [MH93a,b] an Epistemic Default Logic (EDL) was introduced inspired by the notion of
meta-level architecture that also was the basis for the BMS-approach introduced in [TT91]. In
EDL drawing a default conclusion has no other semantics than that of adding a modal formula
to the meta-level. No downward reflection takes place to be able to reason with the default
conclusions at the object level (by means of which default assumptions actually can be made).
In [TT91] downward reflection takes place, but no logical formalization was given: it was
defined only in a procedural manner.

In principle downward reflection disturbs the object level semantics, since facts are added
that are not logically entailed by the available knowledge. Adding a temporal dimension (in the
spirit of [FG92]) to EDL enables one to obtain formal semantics of drawing a default
conclusion in a dynamic sense: as a transition from the current object level theory to a next one
(where the default conclusion has been added). This view, also underlying the work presented
in [ET93, ET94] and [Tre94], turns out to be very fruitful. It turns out that a number of notions
can be formalized in temporal semantics in a quite intuitive and transparent manner. As an
example in the current paper we formalized the notions of sceptical and credulous entailment on
the basis of temporal models.
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