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It is well-known that termination is an undecidable property of finite TRS’s.
The first proof was given in [8]. It has even been proved (]2, 11]) that termination
is an undecidable property of single rewrite rules. A TRS is called simply termi-
nating if it is compatible with a simplification order, i.e., a well-founded mono-
tonic order possessing the subterm property. Simple termination is stronger than
termination, but weaker than total termination. Simple termination has been
proved to be undecidable ([1]), even for single rewrite rules ([12]).

In this paper we prove that total termination is undecidable too !. As in [11]
we give a transformation from an arbitrary instance of Post’s Correspondence
Problem to a TRS. It is a rather straightforward observation that the TRS is
terminating if and only if it is simply terminating, if and only if the instance of
Post’s Correspondence Problem has no solution. This gives a new proof of unde-
cidability of simple termination. The main part of this paper consists of the proof
that the TRS is also totally terminating whenever it is terminating, hence prov-
ing undecidability of total termination. This is proved by constructing a suitable
monotonic well-founded total order > on ground terms. This construction needs
two auxiliary orders J and > and an auxiliary TRS S. Let N denote the normal
form with respect to .S, then the final order is defined by

t>u <= N({)3IN(u)V(NE)=N@u)At>u).

In section 2 we give some preliminaries. In section 3 we present the construc-
tion of the TRS from an arbitrary instance of Post’s Correspondence Problem
to a TRS. In section 4 we define the auxiliary order 7 and derive some of its
properties. In section 5 we define the auxiliary order > and prove that the order
> satisfies all required properties.

2 Preliminaries

Let F be a signature containing at least one constant. We write 7(F) for the set
of ground terms over F. Any transitive irreflexive relation is called an order. An
order > is total if for any two distinct elements ¢, u one has either ¢ > u or u > t.
An order > is called well-founded if there is no infinite descending sequence

1>t >t >t >,
An order > on T(F) is called monotonic if

t>u = F(...,t..)>F(..,u,...)

In September 1994 Albert Rubio conjectured that total termination is decidable and Jean-
Pierre Jouannaud conjectured that total termination is undecidable. They arrived at a wager:
if within two years undecidability of total termination was proved Albert Rubio was willing to
offer one bottle of champagne. Jean-Pierre Jouannaud however was more sure of his conjecture:
if within the same term the contrary was proved he was willing to offer a box of bottles of
champagne. This paper shows that Jean-Pierre Jouannaud was right
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for all F € 7. A TRS R and an order > are called compatible if ¢t > u for all
rewrite steps ¢t =g u. For compatibility with a monotonic order it suffices to
check that [ > r? for all rules [ — 7 in R and all ground substitutions . It is
well-known that a TRS is terminating if and only if it is compatible with some
monotonic well-founded order. An order > on T (F) is said to have the subterm
property if

F(...)t,..)>t

for all F € F and t € T(F). A monotonic order satisfying the subterm property
is called a simplification order. A direct consequence of Kruskal’s theorem ([10, 7])
is that any simplification order over a finite signature is well-founded. A TRS
over a finite signature is called simply terminating if it is compatible with a
simplification order. In [13] it is described how simplification orders extend to
infinite signatures.

A TRS is called length-preserving if |I?| = |r°| for all rules [ — r and all
ground substitutions o. Here |t| denotes the number of operation symbols. It
is not difficult to prove that any length-preserving terminating TRS is simply
terminating.

Definition 1 A TRS is called totally terminating if it is compatible with a mono-
tonic well-founded total order.

As remarked above every terminating TRS is compatible with a monotonic
well-founded order. On the other hand, using this result and Zorn’s lemma it
is possible to show that every terminating TRS is compatible with a total well-
founded order, see [3]. Hence it is the combination of totality and monotonicity
that makes the notion of total termination stronger than termination.

The following well-known proposition (see e.g. [16], proposition 2.3.4) states
that the well-foundedness condition may be replaced by the subterm property.

Proposition 2 Let > be any monotonic total order on ground terms over a finite
signature. Then > is well-founded if and only if it has the subterm property.

Proof: For the ‘if’-part assume > has the subterm property. Since it is also
monotonic it contains the homeomorphic embedding. Kruskal’s theorem states
that any order extending the homeomorphic embedding is well-founded, hence >
is well-founded.

For the ‘only if’-part assume > has not the subterm property. Then there
exist terms ¢ and FY(...,t,...) such that not F(...,¢,...) > t. Since the terms
are distinct and the order is total we obtain ¢ > F(...,t,...). Write C[t] =
F(...,t,...). From monotonicity we obtain

t > Clt] > ClC[t]] > ClCICH]] > ---

contradicting well-foundedness. O



The ‘if’-part of this proposition will be used to prove well-foundedness of
the order we construct in this paper; the ‘only if’-part implies that any totally
terminating TRS is simply terminating. We give two standard examples. The
TRS

f(f=) = fle(f(x)))

is terminating but not simply terminating. The TRS
fla) — f(b)

g(b) — g(a)

is simply terminating since it is length preserving, but not totally terminating
since a and b are incomparable.

In our order construction we will use the lezicographic path order, a well-known
variant of the recursive path order introduced in [9]. It is defined recursively as
follows. Let > be any order on the signature F. Then for two ground terms
t=F(t,...,t,) and u = G(uy,...,un) one has t >y, u if and only if

® t;=wuort; >y uforsomei=1,... n,or
o F>»Gandt>p,u; foralli=1,...,m, or

o F=Gand (t1,...,t,) > (ug,..., um).

lpo

Here for any order > the order >‘® means the lexicographic extension of > to
sequences. The lexicographic comparison has to be done in a fixed direction; in
the paper it will be from right to left. Note that only sequences of equal length are
compared, since we require that every symbol has a fixed arity. It is well-known
that >, is monotonic and has the subterm property. Further >1p0 is total on
ground terms if and only if > is total on F.

3 The construction of the TRS

Given a finite alphabet I" and a finite set P C I'™* x I'* it is undecidable whether
there exists some natural number n > 0 and (o;,3;) € P fori = 1,...,n such
that

g o = BBy B

This problem is referred to as Post’s Correspondence Problem (PCP)2. It origi-
nates from Emil Post ([14]); an extensive recent investigation can be found in [15].
A standard method to prove undecidability of some new problem is the following.

20ften the equivalent formulation of PCP is used: given oy, 0,...,0an, 51, 082,...,08, € T'*,

is there a1,a2,...,am such that ag, 00, - - Qa,, = Ba, Baz +* Ba,,? Our formulation however
needs less indexing.



Start with an arbitrary instance P of PCP. Using this instance P, construct an
instance of the new problem such that PCP has a solution for P if and only if
the constructed instance of the new problem has a solution. If we have such a
construction, then we have proved the undecidability of the new problem. We
follow this method in proving undecidability of total termination; we only add a
negation. We give a construction of a TRS Rp from an arbitrary instance P of

PCP such that Rp is totally terminating if and only if PCP has no solution for
P.

Before defining Rp we define the signature and define some notation. Let P
be an arbitrary instance of PCP over an alphabet I'. For any symbol a € T" we
introduce two unary function symbols ¢ and @ Further we have one function
symbol f of arity 4. Finally we assume a constant ¢ whenever we need ground
terms. For any string @ = a1a;---a, € I'* and any term ¢ we define

a(t) = aifez(-- (an(t))-+))

and
a(t) = an(@n-1(-+-(@ar(t)) ).
Now the TRS Rp consists of the rules

flofz),y, B(2),w) = f(z,8(y), 2, B(w))

for all (e, B) € P, and

f(z,a(y),z,a(y)) — fla(z),y,a(z),y)

for all a € I'. Now we can state our main theorem, from which undecidability of
total termination is a direct consequence.

Theorem 3 Let P be an arbitrary instance of PCP and let Rp be defined as
above. Then the following statements are equivalent:

1. Rp s totally terminating;
2. Rp 1is terminating;

3. PCP has no solution for P.

The implication (1) = (2) is trivial. The major part of this paper is devoted
to proving the implication (2) = (1). The equivalence between (2) and (3) is
immediate from the following two propositions.

Proposition 4 If PCP has a solution for P then Rp admits an infinite reduc-
tion.



Proof: Using the second kind of rules in Rp it is clear that

f(za(y),z,a(y)) =k, fla(z),y,a(z)y)

for any string a. Let

a = mag-coy = [iffa P
be a solution of PCP for P. Then we have the infinite reduction

fla(@),y,0(x),y) =  flaa(---(an(@)) )y, Bl - (Bul@)) - )s9)
—rp flaa(-(an(@)) - )@()ﬂ( (Ba(z)) -+ ), B1(y))
ke @ (- (@®) )3, Ba(- - (Br(y)) -+ -))
= f(CC, d(y),a:, c‘r(y))
-, fla(z),y,2(z),y)

Proposition 5 If Rp admits an infinite reduction then PCP has a solution for
P.

Proof: We introduce a many-sorted TRS R}, having the same rules as Rp, but
in which there are two distinct sorts s; and s;. The symbols a and @ have type
s; — 81, the symbol f has type s; X $; X 83 X 81 — Sg, all variables have type
sy. All rules of Rp are well-typed, i.e., there are no type clashes and each left
hand side has the same type as the corresponding right hand side. The type
elimination result from [19, 20] states that if the TRS does not contain both
collapsing and duplicating rules, then the many-sorted version terminates if and
only if the one-sorted version terminates. Since Rp contains neither collaps-
ing nor duplicating rules, this result applies here. Assume that Rp admits an
infinite reduction, then also R, admits an infinite reduction. Such an infinite
R)p-reduction is an infinite Rp-reduction in which the symbol f only occurs as
head symbols®. Fix such a reduction. Let R; consist of the rules of Rp of the
shape f(a(z),y,B(z),w) = f(z,a(y), 2, B(w)) and let Ry consist of the rules of
Rp of the shape f(z,a(y),z,a(y)) — f(a(z),y,a(z),y). Since R, is terminating,
the infinite reduction contains infinitely many R,-steps. Since R; is terminating,
not all of these infinitely many R,-steps are subsequent. Hence there exists a
reduction of the shape

tl —R, (2 —)};l t3 —R, t4.

3By means of a minimality argument it is also possible to construct such an infinite Rp-
reduction in which the symbol f only occurs as head symbols without using type elimination.



Since f only occurs as the head symbol and due the shape of the rules of Ry
we have t, = f(t,t,t,t') and t3 = flu,u',u,u') for some terms t,t',u, u' not
containing f-symbols. Focussing on the first and third argument of f and
due to the shape of the rules of Ry this implies that ¢t = on(--- (an(u)):++) =
Bi( - (Bn(w)) - - ). Hence we obtain a solution of PCP for P. O

Since Rp is length preserving we conclude that Rp is terminating if and
only if it is simply terminating. Together with the above two propositions we
obtain that Rp is simply terminating if and onmly if PCP has no solution for
P. This proves that simple termination is undecidable. For people not familiar
with the undecidability of uniform termination of linear bounded automata this
undecidability proof of simple termination is much simpler than the proof given
in [1]. It can even be simplified further: for simple termination there is no need
to distinguish between a and a. Let Rp be the simplified version of Rp in which
all bars have been removed, then we still have with the above proof that Rp
is simply terminating if and only if PCP has no solution for P. However, for
this simplified version R’ there is no equivalence between termination and total
termination any more. For example, if P = {(01,10)} then clearly PCP has no
solution for P, and R)» consisting of the rules

F(0(1(z)), ¥, 1(0(2)),w) — f(z,1(0(y)),2,0(1(w)))
f(z,0(y), z,0(y)) - f(0(2),,0(z),y)
f(z,1(y),z,1(y)) - f((2),¥,1(z),y)

is terminating. Let > be any monotonic order compatible with R, then the
assumption 1(0(c)) > 0(1(c)) yields the contradiction

F0(1(c)), ¢, 1(0(0)), ) > f(e,1(0(c)), 6,0(1(c))) > f(e,0(1(c), ¢, 0(1(c))) >
£(0(¢), 1(c),0(c), 1()) > F(1(0(c)), ¢, 1(0(c)),¢) > f(0(1(e)), €, 1(0(c)); €)

while the assumption 0(1(c)) > 1(0(c)) yields the contradiction
£(0(1(c)), 6, 1(0(c)), €) > f(e,1(0(c)),¢,0(1(c))) > £(c,1(0(e)), ¢,1(0(e)) >
£(1(c),0(0), 1(c),0(¢)) > F(0(1(c)), ¢, 0(1(c)),¢) > f(0(1(e)), ¢, 1(0(c)), ©)-

We conclude that > is not total, hence Rp is not totally terminating.
In the next two sections we assume that Rp is terminating and we finally
prove that Rp is totally terminating.



4 An auxiliary order

It remains to show that if the system Rp is terminating then it is also totally
terminating. In the next section we construct a total well-founded monotonic
order > on ground terms such that 1° > r° for all rules | — 7 of Rp and all
ground substitutions o, proving total termination. In this section we construct
an auxiliary order 1 that plays an essential role in the construction of >.

We define the TRS S consisting of the rules

f(z,a(y), zw) = fla(z),y,2,w)

f(z,y, z,a(w)) = f(z,y,a(2),w)

for all a € I'. Clearly S is terminating. Further S is confluent since its critical
pairs are convergent. For a term t write N(t) for the unique normal form of ¢ with
respect to S. The following proposition follows immediately from the definitions.

Proposition 6 Let | — 7 be a rule of Rp and let o be a ground substitution.
Then N(1°) = N(r7).

The property that we need for the auxiliary order 1 is given in the following
theorem.

Theorem T There exists a total order J on ground terms such that if N(t) 3
N(u) for ground terms t and u, then

e N(a(t)) 3 N(a(w)) and

N(a(t)) 3 N(a(u)) and
N(f(t,s,8',s") 2 N(f(u,s,¢',5")) and
N(f(s,t,8',5") 2 N(f(s,u,8',5")) and
N(f(s,8t,5") 3 N(f(s,5',u,5") and
o N(f(s,8,5",t)) 3 N(f(s,8,5" 1)

for alla € T' and all ground terms s,s',8".

In order to define an order 1 satisfying this theorem we introduce the function
rev on ground terms that reverses strings of a-symbols and does not affect the
rest of the term. For example, we want

rev(0(1(f(0(1(<)), 0(0(1(€))), 0(1(c)), 0(0(L(e))N)) =
1(0( (1(0(c)), 0(0(1(e))), 0(2(e)), T(OO()))))-
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The function rev can be defined as follows. Any ground term t can uniquely be
written as

t = @@l -alglts,- . 1))
where either g=corg=forg=a for some a € ['. We recursively define
rev(d (@z( - - an(9(t1, - - - A0))) = Gn(@n-1( -ay(g(rev(ts),- - -, rev(ty)):))).

Lemma 8 The function rev is bijective.

Proof: One easily proves by induction that rev(rev(t)) = t for all ground terms
t, hence rev is bijective. O

Choose a total precedence >> on the signature satisfying
f>a c>»a, b>a
for all a,b € T, and for which
a>b < a>b

for all a,b € T'. Let >y be the lexicographic path order associated with this
precedence, in which the arguments of f are compared lexicographically from
right to left. It is well-known that this order >, i8 monotonic and total on
ground terms. We still need two lemmas over >ipo-

Lemma 9 Let Gn(@n-1(: - - 31(t)")) >ipo b (D1 (- + - b1 (2)+)) for some term t. Then
an(an—l(' e (—11(’11,))) >1po Bm(l—)m—l(' e Bl(u)))

and
an(@no1 (- 02 (1))) >ipo B (b1 (- - - b1(w)"))

for all terms u.

Proof: If n = 0 or m = 0 then either the assumption is not fulfilled or the lemma
is trivial. So assume n > 0 and m > 0. We proceed by induction on n +m. We
distinguish three cases.

e 4, = by, and a, = by. From the assumption we obtain
1 (-+ - 81 (t)") >tpo bmoa(-: D))

Now the induction hypothesis and monotonicity of >, yields the desired
result.



e @, > b, and a, > by,. From the assumption we obtain
Gn(@ni (- 81())) Stpo Dmr (- B1(2))-

Now we apply the induction hypothesis and use @, > b and ap > by to
achieve the desired result.

e b, > G, and by > a,. From the assumption we obtain
C_Ln—l(’ : 'al(t)') leo 5m(l—’m—l(' v El(t)))

Now we apply the induction hypothesis and use the subterm property to
achieve the desired result.

a

Lemma 10 Let @p(@n—1(- - 81()")) >ipo b (b1 (- - - b1(w)*)) for ground terms t
and u whose root symbols are not of the shape a for a € I. Leta €. Then

G (Gt (- - 31(@(1))")) >1p0 b (Brna (- B1(@(w))"))-
Proof: From the assumption and the subterm property we obtain
G (@n-1(-+@1(t)))) >ipo U-

Since the root symbol of u is greater than all symbols a@; with respect to the
precedence > we obtain ¢ >p %. We distinguish two cases.

e ¢ = u. Now the lemma follows from lemma 9.

e t >, u. Since the root symbol of t is greater than a and all symbols b;
with respect to the precedence > we obtain t >y B (b1 (- + - b1 (@(w))*))-
Now the lemma follows from the subterm property.

Now we define the order 1:
tdu <= rev(t) >ipo rev(u).

Since >, is transitive and irreflexive, the same holds for 3. Since >0 is total
and rev is injective by lemma 8, the order 1 is total too.
Let N(t) O N(u) for ground terms ¢ and u. Write

N(t) = 81(@s(- - @a(t))) and N(u) = by(ba(- - -bm(v)-))
for terms ¢’ and v’ having a root symbol not of the shape @ for a € I'. We have

Gn(Gn_i1(- - - 31 (rev(t)) ) = rev(N(t)) >upo rev(N(u)) = b (b1 (- - - by (rev(u’))-)).

Now we prove the remaining proof obligations of theorem 7.
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o rev(N(a(t))) = rev(a(N(t))) = a(rev(N(t)) >ipo
a(rev(N(w))) = rev(a(N(u))) = rev(N(a(u)))
by monotonicity of >0, hence N(a(t)) 3 N(a(u)).
o rev(N(@@(®)) = rev(@nN(@®) = @n(@n-1( -8 @(rev(t))))) >uo
B (B (- - B (@(rev(w)))")) = rev(@(N(w))) = rev(N(a(v)))
by lemma 10, hence N(a()) 2 N(a(u))-

o In N(f(t,s,s,s")) write s = &1(a(- - .x(3)-)) where the root symbol of 5 is
not of the shape @ for a € T'. Using monotonicity of >p, We obtain

rev(N(f(t,s,5,5"))) rev(f(cx(- -+ (ci(N(2)))), N(8), .-, .- )
e+ (ca(rev(N(2))))-), rev(N(8)); - - - )
Fex(- -+ (ca(rev(N(w))))-), rev(N(3)), - )
rev(f(ck(-++ (ct(N()))-), N(8), - )
rev(N(f(u,s,5',s")),

hence N(f(t,s,s',s")) 2 N(f(u,s,8',s")). The proof of N(f(s,s',t,8")) 3
N(f(s,s',u,s")) is similar.

Y
<
o

T

e Asin lemma 10 we conclude from

@@ (- 31 (rev(t)))) >tpo BB (-~ bulrev(w))-))

that rev(t') >0 rev(u’). In the following we apply the fact that the argu-
ments of f are compared lexicographically from right to left in the case that
rev(t') >ipo rev(u'), in the case of rev(# ) = rev(u') we apply lemma 9:

rev(N(f(s,t,5,5"))) rev(N(f(s, N(t),',5")))

rev(N(f(s,a1(@a( - - @n(t)")), ', 8")))
rev(f(an(an-1(- -+ a1(N(8)))),t's .. s--- )
Fan(@noa(- - a1 (rev(N(s))))), rev(t'), .- )
F(bm(bmor (- - br(rev(N(5))) ), rev(w), .- .- )
rev(f (b (brm—1(- - - 01 (N(8)))), s s )
rev(N(f(s,b1(ba(- - - bm(u')-)), 8", 8")))
rev(N(f(s, N(u),s',5")))

rev(N(f(s,u, ', 5")))-

Hence N(f(s,t,¢',s")) 0 N(f(s,u,s',s")). Note that for this part of the
proof the introduction of rev is essntial. The proof of N(f(s,s',s",t)) O
N(f(s,s',s",u)) is similar.

i |I%/ T T
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This concludes the proof of theorem 7.
To achieve the subterm property for our final order we need the following
version of the subterm property for J.

Proposition 11 Let t be any ground term. Then
e N(a(t)) D N(t) and
e N(a(t)) 2 N(t) and
o N(f(t,s,s,s")) 2 N(t) and
o N(f(s,t,8,5")) 2 N(t) and
e N(f(s,s',t,s")) 0 N(t) and
o N(f(s,s',s",t)) 3 N(t)
for all a € T and all ground terms s, s, 5"

Proof: As before write N(t) = @1 (@2(- -+ @a(t'))) for a term ¢ having a root
symbol not of the shape a for a € . By monotonicity and subterm property of
>1p0 We obtain

o rev(N(a(t))) = rev(a(N(t))) = a(rev(N(t))) >ipo rev(N(2)).
o rev(N@@(t)) = rev(@N (1)) = an(@na(--@(a(rev(t'))))) >uwo
Gn(ln_a (- - 31 (rev(t)))) = rev(N(t)).

o In N(f(t,s,5',8")) write s = €1(Ca(- - -2x(5))) where the root symbol of § is
not of the shape @ for a € I'. We obtain

ev(N(f(t,5,8,8") = rev(f(al--(@®®))),NG),....--)
= fle(+ (ea(rev(N(1)))), rev(N (), s )
>0 rev(N(t))

Hence N(f(t,s,s',s")) 3 N(t). The proof of N(f(s,s',t,8")) O N(t) is

similar.

e Since f > a for all a € T' we obtain

rev(N(f(s,t,s',5"))) rev(N(f(s, N(t),s’,5")))

rev(N(f(s, dl(a’2(' ot an(t,)'))a sla 3”)))
rev(f(an(@n-1(- - @1(N(5)))),ts ..., )
F(an(an1(- -~ ar(rev(N(s))))), rev(t), ..., .. )
G (@1 (- - - Ba(rev(t))-))

rev(@1(az(- - - @a(t))))

rev(N(t)).

Hence N(f(s,t,8',s")) 3 N(t). The proof of N(f(s,s',s",t)) O N(t) is

similar.

I u.gl/ o
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We conclude this section by showing that for the validity of theorem 7 it is
essential to distinguish between barred and unbarred symbols. Let S’ consist of
the rules

f(z,a(y), z,w) = f(a(z),y,2w)
f(z,y,z,a(w)) = f(z,9,a(z),w)

for all @ € I'. Assume that N(t) was defined to be the normal form of ¢ with
respect to S’ instead of S. Then we show that theorem 7 does not hold any
more. Assume that 1 satisfies all the assertions of theorem 7. If I satisfies
1(0(c)) = N(1(0(c))) 2 N(0(1(c))) = 0(1(c)), then we get the contradiction

f(O(l(c)), C, Gy C) = N(f(ca 1(0(0))a ¢,c) 3 N(f(C, O(I(C))’ ¢ C)

f(l(O(C)), c,c,c) = N(f(].(O(C)), G C)) 3
N(f(O(l(C)), C, Cy C)) = f(O(l(C)), GG C).
On the other hand if 7 satisfies 0(1(c)) = N(0(1(c))) 2 N(1(0(c))) = 1(0(c)),
then we get the contradiction

F(1(0(0)), ¢, ¢,¢) = N(f(c,0(1()),c,¢) T N(f(e,1(0(c)), e,¢) =

F0(1(c)),¢,¢,¢) = N(f(0(1(c)), ¢ 6,¢)) 3
N(f(l(O(C)), G Gy C)) = f(].(O(C)), ¢ G, C)'

We conclude that the distinct terms 1(0(c)) and 0(1(c)) can not be compared by
the order 1, contradicting totality as required in theorem 7.

5 The final order

To construct the final order we need a total order > extending the rewrite relation
—Rp. Since we assume that Rp is terminating, we know that —ﬁEP is a well-
founded order. The existence of > is now immediate from the following well-
known lemma, which is equivalent to the axiom of choice.

Lemma 12 Every order on a fized set extends to a total order.

Proof: Apply Zorn’s lemma to the set of all orders on the fixed set extending
the given order, ordered with the usual set inclusion. O

Using a more delicate construction one can prove that every well-founded
order extends to a total well-founded order. However, this total well-founded
order is usually not monotonic. Even more, if R is any terminating TRS which
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is not totally terminating, we know that any total well-founded order extending
—7% is not monotonic. For our purposes we do not need to worry about well-
foundedness at this moment since the final order will satisfy the subterm property
by which well-foundedness will follow from proposition 2. From now on we assume
that > is any total order on ground terms for which

if t >R, u then t > u.

To achieve monotonicity we only want to apply the order > on ground terms
having f as its root symbol, and not containing other f symbols. We introduce
another order &> extending > to ground terms containing several f symbols. We
still need some definitions. We do not need to distinguish between barred and
unbarred symbols any more, we write I for the set of all a and @ for a € I'. As
before we write a(t) = a1(aa(- - (an(t)))) for @ = @10~ an € " and any term
t. Any ground term ? can uniquely be written as ¢ = o(t') with either t' = c or
the root symbol of ¢’ is f. We define cap(t) = . Further we define

trunc(a(f(t1, t2, 3, t4))) = f(cap(t1), cap(ts), cap(ts), cap(ts))
for all o € I and all terms t1,12,%3,%4- Now we recursively define
t = a(f(t, b2, t3,ts)) > B(f (uy, ua, us, ug)) = v
if and only if o = § and either
e trunc(t) > trunc(u), or
e trunc(t) = trunc(u) and (t1,t2,t3,t4) Dlex (ul,uz,u3,u4).
Terms not of the shape a(f(t1,1t2,t3, t4)) are not related by the relation .

Lemma 13 The relation ©> is irreflezive, transitive and monotonic.

Proof: By induction on the depth of the terms. For monotonicity we need the
observation that ¢ > u implies trunc(f(t,s,¢',8")) = trunc(f(u, s, s, s")), and
similar for the second, third and fourth arguments of f. O

Lemma 14 Let | — 7 be a rule of Rp and let o be a ground substitution. Then
.

Proof: Let o' be the ground substitution defined by z° = cap(z”) for all vari-
ables z. Let t = f(t1,t2,t3,t4) be any term for which f does not occur in
t1,ts, 3, ts. Then cap(ty) = t¢' for i =1,2,3,4, hence
trunc(t”) = f(calp(tif),c,ap(fg),cap(tg),cap(ti))
= f(ttly ;15,13 7tZ)

= tal

14



Since both I and r satisfy the conditions we assumed for ¢, and we have t = u if
t =g, u, we obtain

trunc(l’) = I° = r% = trunc(r?),
proving [7 > r?. O
The following lemma follows directly from the definition of N.

Lemma 15 Let oy, 02,03,04 € '™ and let

N(f(ou(c), aa(c), as(c), as(0)) = f(Bu(e), (o), Bs(c), Ba(c))-

Let ty,12,t3,t4 be ground terms that are either equal to ¢ or have f as its root
symbol. Then

N(f(0r(ty), calte), aa(ts), cata))) =
F(BL(N(t1)), Ba(N(t2)), Ba(N(t3)), Ba(N(ts)))-

Lemma 16 Let t,u be two ground terms satisfying t # uw and N(t) = N(u).
Then either t > u or u D> t.

Proof: We proceed by induction on the depth of the terms.

From ¢ # u and N(t) = N(u) follows that both t and u contain at least one
symbol f. Hence we can write t = a(f(t1,t2,t3,4)) and v = ﬁ(f(ul,u2,u3,u4))
for o, B € I'*. From N(¢) = N(u) follows that o = §. If trunc(t) # trunc(u) then
the lemma follows from totality of >.

In the remaining case we have trunc(t) = trunc(u). So we can write ¢; = a;(t;)
and u; = o;(u}) for t,uj be ground terms that are either equal to c or have f as
its root symbol, for i = 1,2,3,4. From lemma 15 we obtain B, B2, Ba, Bs € T
such that

a(f (BN (1), BaN (), Bs(N (t5)), Ba(V ()

a(N(f(a(th), aa(th), aa(ts), a(ts)))

N(a(f(ar(th), aa(th), as(ts), ca(t))))

N(t)

N(u)

N(a(f(on(uh), aa(uh), as(uh), 0a(vs))))

(N (f (s (), 0a(uh), as(ub), 2a(uh))))

a( F (BN (1)), Ba(N (), Ba(N (us)), Ba(N (ua))))
Hence N(t) = N(u;) and consequently N(t;) = ai(N(t)) = a;(N(u})) = N(w)
for i = 1,2,3,4. From t # u and a = 0 we conclude that ¢; + u; for some ¢ =
1,2,3,4. Applying the induction hypothesis yields that either (tl,tz,tg,t4) D> lex

I [

(1|
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(1, Uz, U3, Ug) OT (1, Uz, U3, U4) Dles (t1,t2, 3, ta)- Consequently either ¢ > u or
u t> t, which we had to prove. 0O

Now we can define the final order > on ground terms:
t>u < N@#) 3NV NG = N(u) At D> u).

Clearly > is indeed irreflexive and transitive. Moreover, it satisfies the fol-
lowing properties.

e > is total. This follows from totality of 3 (theorem 7) and lemma 16.

e > is monotonic. This follows from theorem 7 and lemma 13.

e > satisfies the subterm property. This follows from proposition 11.

e > is well-founded. This follows from the above results and proposition 2.

e I° > r° for any rule I — 7 of Rp and any ground substitution o. This
follows from proposition 6 and lemma 14.

We conclude that Rp is compatible with the monotonic well-founded total
order >, hence Rp is totally terminating. This concludes the proof of theorem 3.

6 Conclusions

We proved that total termination is an undecidable property of finite term rewrit-
ing systems. We conjecture that total termination is even undecidable for a single
rewrite rule.

Acknowledgements: We should like to thank Alfons Geser and Maria Fer-
reira for their comments on an earlier version of this paper.
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