Revision by Communication:

Program Revision by Consulting Weaker Semantics

C. Witteveen and W. van der Hoek

UU-CS-1994-56
December 1994

Utrecht University

Department of Computer Science

3 Padualaan 14, P.O. Box 80.089,
477] rg\ 3508 TB Utrecht, The Netherlands,
Tel. : ... + 31 - 30 - 531454

Revision by Communication:

Program Revision by Consulting Weaker Semantics

C. Witteveen and W. van der Hoek

Technical Report UU-CS-1994-56
December 1994

Department of Computer Science
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands

09243275

.
.

IS8N

Revision by Communication

program revision by consulting weaker semantics

Cees Witteveen* Wiebe van der Hoek!

Abstract

We deal with the problem of revising logic programs that, according to
some non-monotonic semantics, do not have an acceptable model. We pro-
pose to study such revisions in a framework where a number of semantical
agents is distinguished, each associated with different semantics but interpret-
ing the same program. It is well-known that for logic programs the different
semantics can be partially ordered by inferential strength. If an agent cannot
find an acceptable model for the program, he has to perform program revi-
sion. In this revision process, the agent may consult his weaker colleagues,
adds the information they can infer to the program and tries to find an ac-
ceptable model for the expanded program. In this paper we will concentrate
on the kind of information needed to find successful revisions of programs.
This framework is a strict refinement and generalization of existing work in

program revision. We point out some parameters along which our framework

can be analyzed.

Keywords: Logic Programming, Revision, Non-monotonic semantics.

1 Introduction

In the logic programming community one usually distinguishes the set of intended

or acceptable models of a program from its set of classical models, the former usually

*Delft University of Technology, Dept of Mathematics and Computer Science P.O.Box 356,
2600 AJ Delft, The Netherlands, witt@cs.tudelft.nl

tUtrecht University, Dept of Computer Science, Utrecht, The Netherlands, wiebe@cs.ruu.nl

being a strict subset of the latter.

By using a set of intended models, one can obtain stronger (but defeasible) conclu-
sions from a program than by using classical models. This increase in inferential
power, however, does not hold for all programs: sometimes agents cannot establish
an intended model for a program, even if the program is classically consistent. In
this case there is a need for program revision: the current program does not satisfy
any interpretation acceptable to the agent.

For classical theories, there is a nice framework ([4]) for doing revision that essen-
tially is tnconsistency-driven. Briefly, it comes down to narrowing the theory in
order to remove inconsistencies by giving up some existing piece of information.
In this paper we will not deal with classically inconsistent theories. Instead, we
will investigate classically consistent theories, which under a given non-monotonic
semantics S, do not have an acceptable model. Let us call such a theory non-
monotonically inconsistent or nm-inconsistent. Solving nm-inconsistency is quite

different from solving the classical inconsistency problem:

e nm-inconsistent theories have a classical model and therefore retraction of

statements is not a prerequisite to restore consistency.

A number of attempts like [6, 11, 18, 17] recognized this difference and established a
framework for revision of nm-inconsistent programs, not by retracting information
contained in the program, but by adding information to it in order to restore nm-
consistency. In these approaches, however, the existence of different, but related,

non-monotonic semantics for programs has not been recognized: here, we propose

to exploit the following observation:

¢ in general there are several related non-monotonic semantics for a given class
of theories. At least for logic programs these semantics can be partially or-

dered according to inferential strength.

In existing approaches of solving inconsistency, the only source of additional in-
formation was consulting classical models to add information to the program.
Moreover, almost all attention has been given to the revision of programs under the
stable model semantics. In this paper we will extend the existing framework for

program revision as given in [6, 11, 18, 17] by paying attention to the interrelations

between different semantics of programs.

After we have given some preliminaries in 1.1, we will present our general framework
for revision by communication in Section 2. In Section 3 we will concentrate on one
aspect of this framework: the role that different kinds of information play in revising
programs. Then, in Section 4 we give some results that can be easily obtained about

the framework and that indicate some of its strength and limitations.

1.1 Preliminaries

We assume the reader to be familiar with some basic terminology used in logic pro-
gramming, as for example in Lloyd [8]. A normal program rule r is a directed propo-
sitional clause of the form A < By,..., B,,,~D1,...,mD,, where A, By,...,D1,...,D,
are all atomic propositions. The head of such a rule r is denoted by hd(r) and its
body by body(r) = a(r) A B(r), where a(r) denotes the conjunction of the B; atoms
and ((r) denotes the conjunction of the negative atoms —D;. A program is called
positive if for every rule r, f(r) = T (the empty conjunction). Constraints are
special rules of the form L < «, expressing that the conjunction of the literals
occurring in « cannot be true. We do not allow L (falsum) to occur in the body of
any rule r. If [is a literal, [equals —! if { is a positive atom and equals s if [= —s
for some s € Bp. Likewise, =L = {I |l € L}.

As usual, interpretations and models of a program are denoted by maximal con-
sistent subsets I of literals over the Herbrand base Bp of P, i.e., for every atom
a € Bp, either a or —a occurs in an interpretation I. A model of a program P is
an interpretation I satisfying all the rules and constraints of P. Here, a rule r is
said to be satisfied by an interpretation I iff I |= body(r) implies I = hd(r) and a
constraint L < «, f is satisfied by I iff I £ & A § or, equivalently, I is a model of
the constraint as a rule and I does not contain the special atom L.

We denote the set of classical models of P by Mod(P). The definitions of minimal
model, supported model and stable model are assumed to be well-known. If M is
both supported and minimal, M is called positivistic (see [1]).

To discuss properties of stable models, we use the Gelfond-Lifschitz reduction
G(P, M) of a program P with respect to a model M, where G(P,M) = {c +
alc—aANBeP MEPpS}

We use Mod(P), MinMod(P), Supp(P), Pos(P), Stable(P) to denote the class of
classical models, minimal models, supported models, positivistic models and stable
models, respectively.

It is well-known that the following inclusion relations hold (cf [1]): For every
logic program P, Stable(P) C Pos(P) C Supp(P) € Mod(P) and Pos(P) C
MinMod(P) C Mod(P)

In the subsequent sections, we will also need clause-representations of rules. If r
is the rule ¢ < ay,...,am, by, ..., by, then the clause C(r) associated with r is
C(r) = {c,nay,...,, "@m,by,...,by}. If P is a logic program, C(P) = {C(r) | r €
P} is the set of clauses associated with P. Conversely, if C is a set of clauses,
Normal(C) refers to the set of normal logic programs P such that C = C(P). Note
that, since we include constraints, for every set of clauses C, there exists such a
normal program P.

A clause C is called positive if it contains only positive atoms. A clause C is said to

be a prime implicate of a set of clauses ¥ iff ¥ |= C and there is no proper subset
C' C C such that & | C".

Let us finally mention some results that will be used in subsequent sections!.

Lemma 1.1 (Marek & Truszczynski [10])
Let M be a model of a program P. Then Tgppy tw C M.

Lemma 1.2 Let P be a program and M,.; = {—a | a € Bp} an interpretation of
P. Then the following statements are equivalent:

(1) Myey is a model of P.

(11) Mnpeq is a stable model of P.

(1ii) the body of every rule r of P contains at least one positive literal.

Lemma 1.3 (Expansion Lemma)

Let P be a program, P' C P and M a model of P. Then, if M is a (minimal,
supported, positivistic, stable) model of P', M also is a (minimal, supported, posi-
tivistic, stable) model of P.

PrROOF Let M be a minimal model of P’ and a model of P. Then it is immediate

that M is also a minimal model of P. For supported models the lemma is also

!Short proofs will occur in the final version but are omitted here.

trivially true, since M € Sup(P’') and M € Mod(P) implies that for all a € M
there is at least one rule r € P’ C P with hd(r) = a, such that M = hd(r) Abody(r).
Therefore, M is also a supported model for P. Combining the results for supported
an minimal models is sufficient to prove the property for positivistic models.

For stable models, assume that M is a stable model of P’ and a model of P. Then
M* = lfpTep my C Lfp(Tep,m)), where the last inclusion holds since G(P’, M)
and G(P, M) are positive programs and G(P', M) C G(P, M),

Since M is a model of P, by Lemma 1.1, it follows that {fp(Tepa) € MT. So
M* =1fp(Tepm)), and therefore M € Stable(P). a

2 Revision by Communication

What is considered as the intended meaning of a program clearly depends on the
possible applications the program designer had in mind ([2]). It is generally agreed
upon that these various intentions and notions of acceptability can be captured
by non-monotonic interpretations of logic programs as, for example, the minimal
model, supported model, positivistic model and stable model semantics. By using
intended models instead of the full set of classical models, an agent is able to derive
stronger (but defeasible) conclusions from a program than a classical agent is able
to derive.

The increase in inferential power, however, does not hold for all programs: some-
times we cannot establish an intended model for a program, even if the program is
classically consistent. In this case, there is a need for program revision. There exists
a well-known framework for doing revision in classical theories. This kind of theory
revision is inconsistency-driven ([13]) and revision is performed by retracting parts
of the theory in order to obtain a consistent subtheory. Program revision using a
non-monotonic logic, however, is not inconsistency-driven, since the program may
have classical models, but we cannot find acceptable ones. This means that we
have to change our idea about what should be the intended model of the program.
Certainly, retraction of information is not the only way to solve this problem.

In [17] we showed that for logic programs, an interesting result could be obtained:
we could provide every consistent logic program P with a stable model by adding

a subset of its classical consequences to P.

As a matter of fact, this is a result typical for the existing framework: only informa-
tion obtained from classical interpretations of programs is used in program revision.
For logic programming, however, there exist several, related, non-monotonic seman-
tics and they can be partially ordered according to their inferential strength. Since
classical logic is the weakest among these semantics, this means that in the current
framework we only used the weakest information possible to revise our program.
Therefore, in this paper we will generalize the existing framework in a significant
way. Instead of using one particular non-monotonic semantics and the use of clas-
sical information to perform program revision, we propose to do program revision
in a larger, distributed, framework.

In this set-up, several agents are associated with the different (non-monotonic)
semantics and each agent interprets the same program. These agents are partially
ordered according to their inferential strength. As soon as an agent cannot find an
intended model for the program, he is allowed to consult one or more weaker agents
in parallel. The information he obtains from them will be compared and the results
can be added to the program. Then the agent may try to find an intended model
for the ezpanded program. In this way the existing revision framework becomes a
set of borderline cases in the new framework.

To be more precise, let us assume that we have a set of agents each associated with
a particular semantics Sem € {Stable, Pos, Supp, MinMod, M od} and interpreting
the same program P in their own way. If A is an agent, Semy denotes the semantics
A uses in selecting the intended model of a program. This set of intended models is
denoted by Sem4(P) and Semy4 |= z denotes that x is true in all intended models
Sem4(P).

Then we say that an agent A is weaker than an agent B, denoted by A < B iff for
every program P, Semp(P) C Sem(P) and for at least one program P a strict
inclusion holds.

The idea of revision by communication essentially is that if an agent Sern cannot
find an acceptable model for a program P, he may consult a weaker colleague Sem/'.
This agent can tell him what he considers as true in his set of intended models. The
agent Sem can add this information to the program and tries to find an acceptable

model for the expanded program. So the intended models of P are equal to

Sem(P + {z € R| Sem/(P) = z})

where R is a set of statements that may be communicated to Sem, e.g. some subsets
of atoms or rules.

The framework sketched in [17] in fact was a very restricted one it was confined to
stable agents using classical consequences only. The intended models of the revised

theory were obtained as the stable model of classical expansions:
Stable(P + {z € R| Mod(P) E z})

In this paper, we will primarily concentrate on the nature of the information to be
provided if an agent Sem consults a weaker colleague Sem’. In Section 4 we will
briefly mention some general observation about this framework. Furthermore, we
will discuss revision for normal logic programs and always assume that the programs

to be revised are classically consistent.

3 Some General Results

Given some semantics Sem > Sem’ we would like to know which information Sem
needs from Sem’ in order to revise a program P successfully, i.e. obtaining an
expansion P’ such that Sem(P') # @. Since the information delivered by S em' has
to be added to the program, we distinguish between atomic or factual information
and tule information provided by Sem’'.

It is not difficult to show that in general, atomic information is not sufficient to

obtain an acceptable model for an arbitrary agent?.

Lemma 3.1 There are programs P and semantics Sem < Sem' such that
1. Sem/(P) # 0,
2. Sem(P + F) =0 for every F C {a € Bp | Sem/(P) = a}

Proor Consider the following program:

P: a « —ab
b « —¢
¢ — -b

d <« -d,c

2 Atomic information is sufficient if we do not require the skeptical form of revision, see Section

Take Sem = Stable or Sem = Pos and Sem! = MinMod. P has two minimal
models: M; = {a,b} and M, = {¢,d} and no positivistic or stable model. Note,
however that every positivistic or stable agent ends up with an expansion P=PF,

hence there exists no expansion for him having a positivistic or stable model. O

3.1 Rule information

Since atomic information does not always help, we will try to establish results for

agents also accepting rule information from their weaker colleagues.

Definition 3.2 If P is a program

e Rule(Bp) denotes the set of all normal rules that can be constructed from

atoms in Bp.

o Contra(P) C Rule(Bp) denotes the set of all logical contrapositives Contra(r)
of rules r such that Contra(r) again is a normal rule. So for example, if

a « —b, ¢ is a rule Contra(r) = {b « —a,c, 1 « —a,-b,c}

Clearly, Contra(P) C Rule(Bp).

Remark. There is a close correspondence between shift operations as defined in
[2] and taking contrapositives. In fact, contrapositives can be considered as bi-
directional shift operations where literals can be moved from the head of a rule to

the body and vice-versa. |

Before looking at the general case we will try to establish the information content
of contrapositives of rules. Contrapositives have been used to give a logical re-
construction of the idea of dependency-directed backtracking (see [3]), used in both
logic programming and truth maintenance as a revision technique. In [15] we have
shown that in a three-valued logic, adding contrapositives is successful in obtaining
a stable model of the expanded program. For 9-valued semantics, we will show
that this picture is different. Note that P k= Contra(P), so we can concentrate on
classical (or minimal) reasoners as our information source.

Our first result is that even for positivistic reasoners it is sufficient to use contra-

positive information:

Lemma 3.3 Let P be a program. Then:
Pos(P + {z € Contra(P)|Mod(P) z}) # 0

ProOF It is sufficient to show that there exists a set F C Contra(P) such that
P + F has a positivistic model. For, let Mp,s be such a positivistic model. Since
Mod(P) = Contra(P), clearly, Mpos l= Contra(P) — F and, by the Expansion
Lemma, M is a positivistic model of P + Contra(P).

Since P is assumed to be consistent, P has at Jeast one minimal model M. Recall
that C(P) is the set of clauses associated with P. We distinguish the following

Cases:

1. M does not contain a positive literal.
By Lemma 1.2, M is a stable model of P, and since Stable(P) C Supp(P),
M is a supported model of P.

9. M contains at least one positive literal.
Let M+ = {c1,c2,...,Cm}. Since M is a minimal model, for every ¢; € M~
there is at least one (not necessarily positive) clause C; = {ciyly- . slm}. in
C(P) containing the atom c;, such that M minimally satisfies C; by making
c; true and making the remaining literals [;, 7 =1,2,...,m false. For else, ¢;
could be safely removed from M +_contradicting the fact that M is minimal.
Then M = ¢; and M k= =l for y =1,...m, hence ¢; is supported by the

following rule 7(c;) associated with such a clause Cj:
T(Ci) =C; — l_l,l;,...,l—m.

Let Py+ = {r(ci) | c; € M*}. By definition, M is a supported model of Pp+.

Since M is a minimal model of P C P', M is also a minimal model of P'.

Hence M is a positivistic model of P'.

For the remaining clauses C(r) € C(P), take the original rules r € P and add
them to Py+. Note that since M = C(P), M |=r for every such a rule 7.

Let the resulting program be P’ and note that P' — P C Contra(P). By the

Expansion Lemma (Lemma 1.3), M is a positivistic model of P’

In the case of the stable model semantics, adding contrapositives in general is not

sufficient. We present a simple example:

Example 3.4 Take the following program:

P: b +— —a
a +— b

b « a

The unique (classical) model of P is M = {a,b}. Since Mod(P) =M od(P + F) for

every F' C Contra(P), if there is a stable model of some P + F, it should be equal
to M.

Note, however, that for each such a program P' = P + F, we have
G(P',M) C {a + bb+a}

Hence, [fp(Tap M) = § # M+ and M cannot be stable.

To summarize the results for adding contrapositives, we state the following theorem

as an easy consequence of both Lemma 3.3 and the previous example:

Theorem 3.5 For every program P and semantics Sem such that Stable > Sem,
Sem(P + Contra(P)) # 0.

3.2 Adding contrapositives and condensations

Since adding contrapositives is not always sufficient to help stable agents, we will
investigate the use of other rule information. We will now allow for the addition
of contrapositives of program rules in which some literals may have been removed.
Such condensations, however, of rules are only allowed if they appear as classical
consequences of P.

We will then show that combining contrapositives and condensations is sufficient
to allow a stable reasoner to find an acceptable model for every program. This

immediately implies that such information is sufficient to provide every weaker

reasoner with an intended model.

10

A condensation® then of a program P is a program in which every rule of P occurs,
except for the removal of some literals in the head or body of the rule.

We need to introduce some preliminaries.

Definition 3.6 A set of clauses C' is said to be a condensation of a set of clauses

C iff C' is an inclusion minimal set of clauses such that

1. for every clause C € C there exists a clause C' € C' such that ¢’ C C and

2. Mod(C) = Mod(C').
Remember that if a program P’ is related to P by adding contrapositives, then
C(P) = C(P").

Definition 3.7 We say that a program P’ can be obtained from a program P by
contracondens operations if C(P') is a condensation of C(P). ContraCondens(P)
denotes the set of rules that can be obtained from P by applying contracondens

operations.
It is often useful to consider extreme condensations of clauses and programs:

Definition 3.8 A set of clauses C' is a mazimal condensation (m.c.) of a set of

clauses C iff

1. C'is a condensation of C and
2. C' is mazimally condensed, i.e. for every condensation C" of C', C" =C'.

Analogously, a program P is a mazimally condensed program, or mclp, iff C(P) is
a maximally condensed set of clauses and C'(P) is a maximal condensation of P if

C'(P) is a maximal condensation of C (P).

The following easy result shows that maximal condensations of P can be obtained

by using prime implicates of C (P):

Proposition 3.9

Let TI(P) denote an inclusion-minimal set of prime-implicates of C(P) such that

for every C € C(P) there is a prime smplicate C' of C(P) with

3This notion is related to the notion of a condensation of a clause as discussed in [7] but not
identical. In this latter article, a condensation relation is a relation between two clauses instead

of sets of clauses.

11

e C'CC and
e C' e II(P).
Then TI(P) is a mazimal condensation of C(P).

A nice property of maximal condensations we will need in the next section is that
in every positive clause C of II(P) every atom c € C occurs in at least one minimal

model M of P that also minimally satisfies C:

Observation 3.10
For every positive clause C in II(P) and for every atom c in C there exists at least

one minimal model M of P such that M minimally satisfies C and M makes c true.

This property will be used in the next section to show that given an arbitrary
consistent program P, we can construct a normal program P’ from I1(P) such that
(i) P' C ContraCondens(P) and (ii) Stable(P') # 0.

3.3 Constructing stable models for mclp’s

In this section we will show that condensing + shifting is successful for every class
of programs with respect to the stable semantics.

The construction idea we will use can be summarized as follows:

1. We assume to be given a maximal condensation II = II(P) of an arbitrary

consistent program P.
2. From I1(P) we construct a normal program P’ and a stable model M".

3. We show that C(P') = II(P), i.e. the model-theoretical interpretation of P’

and P is identical.

Since for every logic program P there exists a maximal condensation II(P) of P,
this shows that for every program P there exists a program P + Contra(P) such
that P’ has a stable model.

As an important corollary, we note that shift operations are successful for the class

of maximally condensed logic programs.

12

The method we will present constructs P’ and M’ in a finite number of stages
i =0,1,...,n. At every stage i, ¢ > 0, the currently partial realization of P’ is
denoted as P and the (partial) model associated with P* as M".

We will show that:

Claim 1 At every stage i, M* will be a stable model of P* and a partial model of
I1, i.e. there exists at least one complete extension M of M* which is a model
of IL.

Claim 2 After a finite number of stages, P* will be a subset of Contra(Il) and M’
will be a stable model of P'.

The stages themselves are defined as follows:

At Stage 0, let P° = @ and M° = . Since M? is a stable model of PY and MO is
extendible to a model M of II, Claim 1 holds for Stage 0.

At Stage i + 1, proceeding inductively, we have at our disposal a partial model M i
of I, which is also a stable model of P*, where Pt C Contra(Il'), for some subset
IT' of IL.

Then we consider a set of clauses II*! = R(II, M?), derived from II and M* as

follows:
1. remove every clause C' from II containing a literal c such that M ‘=,
9. Temove in the remaining clauses C', every literal c such that M* |= —c;

3. let the resulting set of clauses be ¥t and construct a set II**! of maximally

condensed clauses from Yit!.

Note that, since M‘ has an extension M satisfying II, &' and II**' must be
satisfiable.

We distinguish two cases:

Case 1. ITI**! does not contain any positive clause.

By Lemma 1.2, My, = ~(Atoms(II) — Atoms(P?)), is a stable model of IT***.

Note that C(P?) C II. Let P” € Normal(Il — C(P*)) be an arbitrary normal
program, Pt = P*U P" and M = M* U M,.,.

Then it is not difficult to show that

13

Case 2.

(a) M* is a stable model P**!

(b) P! C Contra(Il)

This implies that Stage i is a final stage, M' = M i+1 and P’ = P**!, proving
Claim 142.

IT+! contains at least one positive clause C” = {c1, ..., Ck}-
Since IT*! is a maximally condensed set, by Observation 3.10, there is a
minimal model M,, of ITi*!, making c; true and every c;, j > 2 false.

Let C' D C" be a clause in i+l from which C” has been derived and

C={cl,""ckack+la-"7cm}

be the clause in II from which C’ has been derived.

Consider the following rule 7(C) to be added to P* to form the program pitl:

’I‘(C):Cl 4= Coy- vy ChyCrals+ 1 Cm

Let M+t = MU {c1, 63, . .,Cm}. Now we have to prove that:

(a) M+ is a stable model of P**1.

(b) there is at least one extension M of M+! such that M is a model of IL

These claims are easy to prove.

Finally, note that at the end of Stage ¢ +1, either

or

C(P"*!) = TI(P)

C(P') C C(P*Y) c II(P) and C(P™') - C(P*) # 0.

This means that after a finite number of stages, the construction of P’ is completed.

;From the properties of this construction, the following result can be easily derived:

14

Lemma 3.11
For every consistent magzimally condensed set of clauses T1, there is a normal pro-
gram P' C Contra(Tl), such that Stable(P') # 0.

The procedure given in Figure 3.3 is a succinct description of our method to find a

nearly stable model of a normal program P.

input: the set IT = II(P).
output: a transformation P’ € ContraCondens(P) and a stable model M of P'.

begin
Let =0
Let P := 0 let M7 :=0; Let IV ;=11
while I contains a positive clause C containing c; derived from
some C° = {c1,¢2,- .- Cm} €11
ri=cy 4 C2y.--yCm}
pitl .= P+,
ML= MI U {c1,C2, - - -+ Cm);
I+ .= R(1I, M7)
ji=3+1
wend
Let P" € Normal(Il — C(P?));
M' = M,
P :=PIUP"
return (P', M');
end;

Figure 1: Finding a suitable transformation of a normal program p

We present an examples to illustrate the application of the method described above.

Example 3.12

Consider the following program:

P: b «— —a

15

c «— —b

a « ¢
Since Stable(P) = 0, we transform P into a set of clauses
C(P)= {{e, b}, {b, ch{e, a}}.

Now II = II(P) = C(P). Note that TI° contains a positive clause {c,a}; so we let

P! contain the rule
F=c+ Ta
and
M = {c,~a}

Now the clauses {a,c} and {b,c} can be removed from TI° and a can be removed
from {a,b}. Therefore,

I = ' = {b}

Since {b} has been derived from {a,b}, P? will include the rule b + -~a M? =
{b,c,a}.

Note that now £2 = @ and therefore, does not contain 2 positive clause. Now
Il — C(P?) = {b,c}. So, let P" = {c « —b}. Then

P = P?uU{c+ b}
= {c(——-wa,b(—-wa,cf——lb}
and M’ = {b,c,—a} is a stable model of P'.

;From Lemma 3.11, by application of the expansion lemma, it follows immediately

that
Theorem 3.13 For every logic program P, Stable(P + ContraCondens(P)) # 0

Since P = ContraCondens(P), applying the Expansion Lemma, we obtain a much
stronger result for non-atomic information, stating that every reasoner cai use rule

information from weaker reasoners:

Theorem 3.14 For every program P and every semantics Sem > Sem', Sem(P +

{r € Rules(P) | Sem/(P) = r}) #0

16

4 Exploring the Framework

We have only explored a part of the new framework. We will briefly address some

more observations:

Disjunctive Programs

We have concentrated on normal programs + constraints. It is not difficult to show,
however, that (see [19]) ContraCondens additions to general, disjunctive programs
are sufficient to provide every (consistent) program with an acceptable model. In
that sense, ContraCondens operations are more powerful than the shift-operations

discussed in [14] to provide disjunctive programs with a (weakly)-stable model.

Skeptical versus credulous revision

The framework offers possibilities to study both skeptical and credulous forms of
revision. In this paper we have discussed the skeptical variant by requiring that
information should be inferable in every intended model belonging to some class.
Tt should also be possible to use the credulous form of revision by using one or a
few intended models belonging to a weaker semantics. In fact is is not difficult to
prove that for every credulous reasoner, atomic information from weaker reasoners

suffices.

Reducibility by communication

In [19] we have shown that using contrapositives and condensations, it can be shown
that stable agents reduce to minimal reasoners, i.e. if a stable reasoner consults his
minimal neighbours, the agent cannot obtain more information than by minimal
reasoning can be obtained. It is tempting to believe that in our framework this is
the general picture: by using information from weaker reasoners a stronger agent is

reduced to them.
This, however, is not true if we compare the positivistic semantics and the sup-
ported semantics: positivistic agents do not reduce to supported agents if they add

contrapositives to the program. Take the following example:

P: a + —ab

17

c 4+ b
d + &€
e —d

This program does not have a positivistic model. It’s supported models are M, =
{-a,b,c,d,e} and My = {-a,b,c,~d,ne}. Therefore, Supp(P) = —a,b,c, but
Supp(P) ¥ —d, —e. Clearly, Pos(P+Contra(P)) = {{a, b, ~c, d, —e}, {~a,b,c,~d, -e}}.
Hence, Pos(P + Contra(P)) = —d, —e.

Direct versus indirect communication

In this paper we have allowed stable reasoners to communicate with classical rea-
soners directly. It is, however, easy to show that if agents are allowed to consult
arbitrarily weaker agents, they weaken their semantics more than if they are forced
to consult their nearest neighbours:

Take the previous program P. If the stable agent is allowed to communicate with
classical agents, no atomic information can be used since M od(P) has no atomic
consequences. We can add the rules a < —b and b « —a to P, since these occur
in Contra(P) and thus are classical consequences of P. Then Stable(P + {b «
—a, a + —b}) = {{a, b, ¢, d, -e}, {~a,b,c,~d,~e}}. But now Stable' (P) —a
and can be seen to be weaker than the stable model semantics based on information

from supported agents only.

5 Conclusion

We have developed a new framework for doing revision of logic programs, stressing
the relations between different non-monotonic semantics and the kind of information
needed to find a successful revision of the program.

Our main results were:

1. pointing out an important difference between stable and positivistic (sup-
ported) reasoners in terms of the information they need to obtain from weaker

reasoners in order to revise their programs.

18

9 a characterization of the kind of information needed to do successful revision

for every reasoner.

observing that agent A that consults a weaker agent B does not always derive
exactly the conclusions of B; moreover, if C < B < A, there may be subtle
differences between A consulting C directly, and A consulting B (who then

may consult C).

References

(1]

2]

8]

]

N. Bidoit, Negation in rule-based database languages: a Survey, Theoretical

Computer Science, 78, (1991), 3-83.

J. Dix, G. Gottlob, V. Marek, Causal Models of Disjunctive Logic Programs,

in: Proceedings of the Tenth International Conference on Logic Programming
ICLP’94, 1994.

Doyle, J., A Truth Maintenance System, Artificial Intelligence 12, 1979
P. Girdenfors, Knowledge in Fluz, MIT Press, Cambridge, MA, 1988

M. Gelfond and V. Lifschitz, The Stable Model Semantics for Logic Program-
ming. In: Fifth International Conference Symposium on Logic Programming,
pp. 1070-1080, 1988.

L. Giordano and A. Martelli, Generalized Stable Models, Truth Maintenance
and Conflict Resolution, in: D. Warren and P. Szeredi (eds) Proceedings of
the Tth International Conference on Logic Programmang, pp- 427-441, 1990.

G. Gottlob, C. G. Fermiiller, Removing Redundancy from a clause, Artificial
Intelligence, 61 (1993), 263-289.

J. W. Lloyd, Foundations of Logic Programming, Springer Verlag, Heidelberg,
1987.

W. Marek, V.S. Subrahmanian, The relationship between stable, supported,
default and auto-epistemic semantics for general logic programs, Theoretical
Computer Science 103 (1992) 365—386.

19

[10] V. Marek and M. Truszczytski, Nonmonotonic Logic, Springer Verlag, Heidel-
berg, 1993.

[11} L. M. Pereira, J. J. Alferes and J. N. Aparicio, Contradiction Removal within
well-founded semantics. In: A. Nerode, W. Marek and V. S. Subrahma-
nian, (eds.), First International Workshop on Logic Programming and Non-

monotonic Reasoning, MIT Press, 1991

[12] L. M. Pereira, J. J. Alferes and J. N. Aparicio, The Extended Stable Models of
Contradiction Removal Semantics. In: P. Barahona, L.M. Pereira and A. Porto,
(eds.), Proceedings _EPIA 91, Springer Verlag, Heidelberg, 1991.

[13] H. Rott, Modellings for Belief Change: Base Contraction, Multiple Contrac-
tion, and Epistemic Entrenchment, in: D. Pearce and G. Wagner, Logics in

Al Springer Verlag Berlin, 1992.

[14] M. Schaerf, Negation and Minimality in Disjunctive Databases. In: C. Beeri
(ed.), Proceedings of the Twelfth Conference on Principles of Database Systems
(PODS-93), pp. 147-157, ACM-Press, 1993.

[15] C. Witteveen and G. Brewka, Skeptical Reason Maintenance and Belief Revi-
sion, Artificial Intelligence, 61 (1993) 1-36.

[16] C. Witteveen and W. van der Hoek. Belief revision by expansion. In M. Clarke,
R. Kruse, and S. Moral, editors, Symbolic and Quantitative Approaches to
Reasoning and Uncertainty, pages 380-387. Springer-Verlag, 1993.

[17] C. Witteveen, W. van der Hoek and H. de Nivelle. Revision of non-monotonic
theories: Some postulates and an apllication to logic programming. In
D. Pearce C. MacNish and L.M. Pereira, editors, Logics in Artificial Intel-
ligence, LNAI 838, pages 137-151. Springer-Verlag, 1994.

[18] C. M. Jonker and C. Witteveen. Revision by expansion. In G. Lakemeyer and
B. Nebel, editors, Foundations of Knowledge Representation and Reasoning,

pages 333-354. Springer Verlag, Lecture Notes in Al Series, Volume 810, 1994.

[19] C. Witteveen. Shifting and Condensing Logic programs. TWI-report 1994,
Delft University of Technology, to appear.

20

