
The Parameterized Complexity

of Sequence Alignment and Consensus

Hans L. Bodlaender � Rodney G. Downey y Michael R. Fellows z

Harold T. Wareham x

Abstract

The Longest common subsequence problem is examined from the point of view
of parameterized computational complexity. There are several di�erent ways in which
parameters enter the problem, such as the number of sequences to be analyzed, the
length of the common subsequence, and the size of the alphabet. Lower bounds on the
complexity of this basic problem imply lower bounds on a number of other sequence
alignment and consensus problems. At issue in the theory of parameterized complexity
is whether a problem which takes input (x; k) can be solved in time f(k) � n� where
� is independent of k (termed �xed-parameter tractability). It can be argued that this
is the appropriate asymptotic model of feasible computability for problems for which
a small range of parameter values covers important applications | a situation which
certainly holds for many problems in biological sequence analysis. Our main results
show that: (1) The Longest Common Subsequence (LCS) parameterized by the
number of sequences to be analyzed is hard for W [t] for all t. (2) The LCS problem
problem, parameterized by the length of the common subsequence, belongs to W [P]
and is hard for W [2]. (3) The LCS problem parameterized both by the number of
sequences and the length of the common subsequence, is complete for W [1]. All of the
above results are obtained for unrestricted alphabet sizes. For alphabets of a �xed size,
problems (2) and (3) are �xed-parameter tractable. We conjecture that (1) remains
hard.

�Computer Science Department, Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, the Netherlands.
Research partially supported by the ESPRIT Basic Research Actions of the EC under contract 7141 (project
ALCOM II). hansb@cs.ruu.nl

yMathematics Department, Victoria University, P.O. Box 600, Wellington, New Zealand. Research sup-
ported in part by a grant from Victoria University IGC, by the United States / New Zealand Cooperative
Science Foundation under grant INT 90-20558. downey@math.vuw.ac.nz

zComputer Science Department, University of Victoria, Victoria, British Columbia V8W 3P6, Canada.
Research supported in part by the National Science and Engineering Council of Canada and by the United
States National Science Foundation under grant MIP-8919312. mfellows@csr.uvic.ca

xComputer Science Department, University of Victoria, Victoria, British Columbia V8W 3P6, Canada.
harold@sanjuan.uvic.ca

1

1 Introduction

The computational problem of �nding the longest common subsequence of a set of k strings
(the LCS problem) has been studied extensively over the last twenty years (see [Hir83,IF92]
and references). This problem has many applications. When k = 2, the longest common
subsequence is a measure of the similarity of two strings and is thus useful in in molecular
biology, pattern recognition, and text compression [San72,LF78,Mai78]. The version of LCS
in which the number of strings is unrestricted is also useful in text compression [Mai78], and
is a special case of the multiple sequence alignment and consensus subsequence discovery
problems in molecular biology [Pev92,DM93a,DM93b].

To date, most research has focused on deriving e�cient algorithms for the LCS prob-
lem when k = 2 (see [Hir83,IF92] and references). Most of these algorithms are based on
the dynamic programming approach [PM92], and require quadratic time. Though the k-
unrestricted LCS problem is NP-complete [Mai78], certain of the algorithms for the k = 2
case have been extended to yield algorithms that require O(n(k�1)) time and space, where n
is the length of the longest of the k strings (see [IF92] and references; see also [Bae91]).

In this paper, we analyze the Longest common subsequence problem from the point of
view of parameterized complexity theory introduced in [DF92]. The parameterizations of
the Longest Common Subsequence problem that we consider are de�ned as follows.

Longest common subsequence (LCS-1, LCS-2 and LCS-3)
Input: A set of k strings X1, ..., Xk over an alphabet �, and a positive integer m.
Parameter 1: k (We refer to this problem as LCS-1.)
Parameter 2: m (We refer to this problem as LCS-2.)
Parameter 3: (k;m) (We refer to this problem as LCS-3.)
Question: Is there a string X 2 �� of length at least m that is a subsequence of Xi for
i = 1; :::; k ?

Our results are summarized in Table 1.

In x2 we give some background on parameterized complexity theory. In x3 we detail
the proof that LCS-3 is complete for W[1]. This implies that LCS-1 and LCS-2 are W[1]-
hard, results which can be improved by further arguments to show that LCS-1 is hard for
W [t] for all t, and that LCS-2 is hard for W [2]. Concretely, this means none of these three
parameterized versions of LCS is �xed-parameter tractable unless many other well-known
and apparently resistant problems are also �xed-parameter tractable.

2

Table 1: The Fixed-Parameter Complexity of the LCS Problem

Alphabet Size j�j
Problem Parameter Unbounded Fixed

LCS-1 k W[t]-hard, t � 1 ?
LCS-2 m W[2]-hard FPT
LCS-3 k;m W[1]-complete FPT

2 Parameterized Computational Complexity

The theory of parameterized compuational complexity is motivated by the observation that
many NP -complete problems take as input two objects, for example, perhaps a graph G

and and integer k. In some cases, e.g., Vertex cover, the problem can be solved in linear
time for every �xed parameter value, and is well-solved for problems with k � 20. For other
problems, for example Clique and Minimum dominating set we have the contrasting
situation where the best known algorithms are based on brute force, essentially, and require
time
(nk). If P = NP then all three of these problems are �xed-parameter tractable.
The theory of parameterized computational complexity explores the apparent qualitative
di�erence between these problems (for �xed parameter values). It is particularly relevant
to problems where a small range of parameter values cover important applications | this
is certainly the case for many problems in computational biology. For these the theory
o�ers a more sensitive view of tractability vs. apparent intractability than the theory of
NP-completeness.

2.1 Parameterized Problems and Fixed-Parameter Tractability

A parameterized problem is a set L � ����� where � is a �xed alphabet. For convenience,
we consider that a parameterized problem L is a subset of L � ���N . For a parameterized
problem L and k 2 N we write Lk to denote the associated �xed-parameter problem Lk =
fxj(x; k) 2 Lg.

De�nition 1 We say that a parameterized problem L is (uniformly) �xed-parameter
tractable if there is a constant � and an algorithm � such that � decides if (x; k) 2 L

in time f(k)jxj� where f : N ! N is an arbitrary function.

3

2.2 Problem Reductions

A direct proof that a problem such as Minimum Dominating Set is not �xed-parameter
tractable would imply P 6= NP . Thus a completeness program is reasonable.

De�nition 2 Let A;B be parameterized problems. We say that A is (uniformly many:1)
reducible to B if there is an algorithm � which transforms (x; k) into (x0; g(k)) in time
f(k)jxj�, where f; g : N ! N are arbitrary functions and � is a constant independent of k,
so that (x; k) 2 A if and only if (x0; g(k)) 2 B.

It is easy to see that if A reduces to B and B is �xed parameter tractable then so too
is A. It is important to note that there are two ways in which parameterized reductions
di�er from familiar P -time reductions: (1) the reduction may be polynomial in n, but (for
example) exponential in the parameter k, and (2) the slice Ak must be mapped to a single
slice Bg(k) (unlike NP -completeness reductions which may map k to k0 = n�k, for example).

2.3 Complexity Classes

The classes are intuitively based on the complexity of the circuits required to check a solution,
or alternatively, the \natural logical depth" of the problem.

De�nition 3 A Boolean circuit is of mixed type if it consists of circuits having gates of the
following kinds.
(1) Small gates: not gates, and gates and or gates with bounded fan-in. We will usually
assume that the bound on fan-in is 2 for and gates and or gates, and 1 for not gates.
(2) Large gates: and gates and or gates with unrestricted fan-in.

De�nition 4 The depth of a circuit C is de�ned to be the maximum number of gates (small
or large) on an input-output path in C. The weft of a circuit C is the maximum number of
large gates on an input-output path in C.

De�nition 5 We say that a family of decision circuits F has bounded depth if there is a
constant h such that every circuit in the family F has depth at most h. We say that F has
bounded weft if there is constant t such that every circuit in the family F has weft at most
t. The weight of a boolean vector x is the number of 1's in the vector.

4

De�nition 6 Let F be a family of decision circuits. We allow that F may have many
di�erent circuits with a given number of inputs. To F we associate the parameterized circuit
problem LF = f(C; k) : C accepts an input vector of weight kg.

De�nition 7 A parameterized problem L belongs to W [t] if L reduces to the parameterized
circuit problem LF (t;h) for the family F (t; h) of mixed type decision circuits of weft at most
t, and depth at most h, for some constant h.

De�nition 8 A parameterized problem L belongs to W [P] if L reduces to the circuit problem
LF , where F is the set of all circuits (no restrictions).

We designate the class of �xed-parameter tractable problems FPT .

The framework above describes a hierarchy of parameterized complexity classes

FPT � W [1] � W [2] � � � � � W [P]

for which there are many natural hard or complete problems [DF92].

For example, all of the following problems are now known to be complete for
W [1] : Square tiling, Independent set, Clique, and Bounded post correspon-

dence problem, k-Step derivation for context-sensitive grammars, Vapnik-
Chervonenkis dimension, and the k-Step halting problem for nondeterministic

Turing machines [CCDF93,DEF93,DFKHW93]. Thus, any one of these problems is �xed-
parameter tractable if and only if all of the others are; and none of the problems for which
we here prove W hardness results are �xed-parameter tractable unless all of these are also.
Dominating set is complete for W [2] [DF92]. Fixed parameter tractability for Domi-
nating set, or any other W [2]-hard problem implies �xed parameter tractability for all
problems in W [1] mentioned above, and all other problems in W [2] � W [1].

3 The Reductions

In some sense the most basic of the three parameterized versions of LCS that we consider is
LCS-3, since hardness results for this problem immediately imply hardness results for LCS-1
and LCS-2.

Theorem 1 LCS-3 is complete for W [1].

5

Proof. Membership in W [1] can be seen by a reduction to Weighted CNF Satisfi-

ability for expressions having bounded clause size. By padding with new symbols or by
repeating some of the Xi, we can assume for convenience (with polynomially bounded blow-
up) that k = m. The idea is to use a truth assignment of weight k2 to indicate the k positions
in each of the k strings of an instance of LCS-3 that yield a common subsequence of length
k.

The details are as follows. Let X1; : : : ; Xk be an instance of LCS-3. By a trivial padding
with symbols having only a single occurence we may assume that the strings Xi are all of
length n. Let a[i; j] denote the jth symbol of Xi. Let B = fb[i; j; r] : 1 � i � k; 1 � j �
n; 1 � r � kg be a set of boolean variables. The interpretation we intend for the variable
b[i; j; r] is that the rth symbol x[r] of a length k common subsequence X = x[1] � � �x[k] occurs
as the symbol a[i; j] in the string Xi, that is, x[j] = a[i; j]. Let Bi be the set of elements
b[i; j; r] with �rst index i.

Let E = E1E2E3 be the boolean expression over the set of variables B where

E1 =
kY

i=1

kY
r=1

Y
1�j<j0�n

(:b[i; j; r] + :b[i; j 0; r])

E2 =
kY

1=1

nY
j=1

Y
1�r<r0�k

(:b[i; j; r] + :b[i; j; r0])

E3 =
kY

r=1

Y
1�i<i0�k

Y
1�j�j0�n

Y
a[i;j]6=a[i0;j0]

(:b[i; j; r] + :b[i0; j 0; r])

We claim that E has a weight k2 truth assignment if and only if the Xi have a common
subsequence of length k. It is easy to verify that a truth assignment corresponding to
a length k common subsequence according to our intended interpretation of the boolean
variables satis�es E. For the converse direction, suppose � is a weight k2 truth assignment
that satis�es E. The clauses of E1 insure (by the Pigeonhole Principle) that no more than
k variables of Bi are set true for i = 1; :::; k. Consequently there must be exactly k variables
set to true in each Bi, and since E2 is satis�ed, these must indicate k distinct positions in Xi

according to our interpretation. The clauses of E3 insure that the corresponding subsequence
symbols in the k strings are the same.

To show W [1]-hardness we reduce from Clique. Let G = (V;E) be a graph for which
we wish to determine whether G has a k-clique. We show how to construct a family FG

of k0 = f(k) sequences over an alphabet � that have a common subsequence of length
k00 = g(k) if and only G contains a k-clique. Assume for convenience that the vertex set of
G is V = f1; : : : ; ng.

6

The Alphabet We �rst describe the alphabet � = �1 [�2 [�3 [�4. We refer to these
as vertex symbols (�1), edge symbols (�2), vertex position symbols (�3), and edge position
symbols (�4).

�1 = f�[p; q; r] : 1 � p � k; 0 � q � 1; 1 � r � ng

�2 = f�[i; j; q; u; v] : 1 � i < j � k; 0 � q � 1; 1 � u < v � n; uv 2 Eg

�3 = f
[p; q; b] : 1 � p � k; 0 � q � 1; 0 � b � 1g

�4 = f�[i; j; q; b] : 1 � i < j � k; 0 � q � 1; 0 � b � 1g

We will use the following shorthand notation to refer to various subsets of �. The
notation indicates which indices are held �xed to some value, with *" indicating that the
index should vary over its range of de�nition in building the set. For example, �1[p; �; r] =
f�[p; q; r] : 0 � q � 1g is the set of two elements with the �rst and third indices �xed at p
and r, respectively.

An Example of a Clique Representation The sequences in F are constructed in such
a way that the k-cliques in G (considered with vertices in ascending order) are in 1:1 cor-
respondence with the common subsequences of length k00. It will be useful in motivating
the construction to consider an example of this intended correspondence. Consider a graph
having a 3-clique on the vertices fa; b; cg.

This 3-clique would be represented by the following common subsequence �(a; b; c),
which we describe according to a hierarchy of factorizations. (Exponential notation indicates
repetition of a symbol.)

�(a; b; c) = h�rst vertexihsecond vertexihthird vertexi

where
h�rst vertexi = hvertex 1ihedge (1,2)ihedge (1,3)ihvertex 1 echoi

hsecond vertexi = hvertex 2ihedge (1,2) echoihedge (2,3)ihvertex 2 echoi

hthird vertexi = hvertex 3ihedge (1,3) echoihedge (2,3) echoihvertex 3 echoi

and where the constituent subsequences over � are

hvertex 1i =
[1; 0; 0]w�[1; 0; a]
[1; 0; 1]w

hedge (1,2)i = �[1; 2; 0; 0]w�[1; 2; 0; a; b]�[1; 2; 0; 1]w

hedge (1,3)i = �[1; 3; 0; 0]w�[1; 3; 0; a; c]�[1; 3; 0; 1]w

hvertex 1 echoi =
[1; 1; 0]w�[1; 1; a]
[1; 1; 1]w

hvertex 2i =
[2; 0; 0]w�[2; 0; b]
[2; 0; 1]w

hedge (1,2) echoi = �[1; 2; 1; 0]w�[1; 2; 1; a; b]�[1; 2; 1; 1]w

hedge (2,3)i = �[2; 3; 0; 0]w�[2; 3; 0; b; c]�[2; 3; 0; 1]w

7

hvertex 2 echoi =
[2; 1; 0]w�[2; 1; b]
[2; 1; 1]w

hvertex 3i =
[3; 0; 0]w�[3; 0; c]
[3; 0; 1]w

hedge (1,3) echoi = �[1; 3; 1; 0]w�[1; 3; 1; a; c]�[1; 3; 1; 1]w

hedge (2,3) echoi = �[2; 3; 1; 0]w�[2; 3; 1; b; c]�[2; 3; 1; 1]w

hvertex 3 echoi =
[3; 1; 0]w�[3; 1; c]
[3; 1; 1]w

In the above, the position symbols are repeated w = w(k) times for reasons useful for
the correctness argument concerning the reduction.

The Target Parameters There are f1(k) = 2k+k(k�1) = k2+k matched pairs of position
symbols (in �3 and �4). We take w = f1(k)

2 + 1, k0 = f1(k) + 2, and k00 = (2w + 1)f1(k).

Symbol Subsets and Operations It is convenient to introduce a linear ordering on �
that corresponds to the \natural" order in which the various symbols occur, as illustrated
by the example above. We can achieve this by de�ning a \weight" on the symbols of � and
then ordering the symbols by weight.

Let N = 2kn (a value conveniently larger than k and n). De�ne the weight jjajj of a
symbol a 2 � by

jjajj =

8>>><
>>>:

pN6 + qN5 + r if a = �[p; q; r] 2 �1

q0iN6 + qjN6 + q0N4 + q0jN3 + qiN3 + uN + v if a = �[i; j; q; u; v] 2 �2

pN6 + qN5 + bN2 if a =
[p; q; b] 2 �3

q0iN6 + qjN6 + q0N4 + q0jN3 + qiN3 + bN2 if a = �[i; j; q; b] 2 �4

where q0 = (q � 1)2.

De�ne a linear order on � by a < b if and only if jjajj < jjbjj. The reader can verify that,
assuming a < b < c, the symbols of the example sequence �(a; b; c) described above occur in
ascending order.

For a; b 2 �, a < b, we de�ne the segment �(a; b) to be �(a; b) = fe 2 � : a � e � bg,
and we de�ne similarly the segments �i(a; b).

If � is a set of symbols, then h���i denotes an arbitrary string which contains as a
subsequence every string of length m over � (such as a string which simply runs through �
m times in any order).

If � � �, let (" �) be the string of length j�j which consists of one occurence of each
symbol in � in ascending order, and let (# �) be the string of length j�j which consists of
one occurence of each symbol in � in descending order.

String Gadgets We next describe some \high level" component subsequences for the con-
struction. In the following let l denote either " or #. Product notation is interpreted as

8

refering to concatenation. In describing some of the components we will use " lex to denote
increasing lexicographic order and # lex to denote decreasing lexicographic order.

Vertex and Edge Selection Gadgets

hl vertex pi =
[p; 0; 0]w(l �1[p; 0; �])
[p; 0; 1]
w

hl vertex p echoi =
[p; 1; 0]w(l �1[p; 1; �])
[p; 1; 1]
w

hl edge (i; j)i = �[i; j; 0; 0]w(l �2[i; j; 0; �; �])�[i; j; 0; 1]
w

hl edge (i; j) echoi = �[i; j; 1; 0]w(l �2[i; j; 1; �; �])�[i; j; 1; 1]
w

hl edge (i; j) from ui = �[i; j; 0; 0]w(l �2[i; j; 0; u; �])�[i; j; 0; 1]
w

hl edge (i; j) to vi = �[i; j; 1; 0]w(l �2[i; j; 1; �; v])�[i; j; 1; 1]
w

Control and Selection Assemblies

hl control pi = hl vertex pi

0
@p�1Y

s=1

hl edge (s; p) echoi

1
A

�

0
@ kY
s=p+1

hl edge (p; s)i

1
A hl vertex p echoi

h" choice pi =
nY

x=1

0
@
[p; 0; 0]w�[p; 0; x]
[p; 0; 1]w p�1Y

t=1

h" edge (t; p) to xi

�
kY

t=p+1

h" edge (p; t) from xi
[p; 1; 0]w�[p; 1; x]
[p; 1; 1]w

1
A

h# choice pi =
down to 1Y

x=n

0
@
[p; 0; 0]w�[p; 0; x]
[p; 0; 1]w p�1Y

t=1

h# edge (t; p) to xi

�
kY

t=p+1

h# edge (p; t) from xi
[p; 1; 0]w�[p; 1; x]
[p; 1; 1]w

1
A

Edge Symbol Pairing Gadget

hedge (i; j) from u to vi = �[i; j; 0; u; v] (��(�[i; j; 0; 1]; �[i; j; 1; 0])�)�[i; j; 1; u; v]

9

The Reduction We may now describe the reduction. The instance of LCS-3 consists of
strings which we may consider as belonging to three subsets: Control, Selection and Check.
The two strings in the Control set are

X1 =
kY

t=1

h " control ti

X2 =
kY

t=1

h# control ti

The 2k strings in the Selection set are, for p = 1; :::; k

Yp =

0
@p�1Y

t=1

h" control ti

1
A h" choice pi

0
@ kY
t=p+1

h" control ti

1
A

Y 0
p =

0
@p�1Y

t=1

h# control ti

1
A h# choice pi

0
@ kY
t=p+1

h" control ti

1
A

The 2
�
k
2

�
= k(k � 1) strings in the Check set are, for 1 � i < j � k

Zi;j =

i�1Y
t=1

h" control ti

!
h" vertex ii

i�1Y
s=1

h" edge (s; i) echoi

!0@ j�1Y
s=i+1

h" edge (i; s)i

1
A

� �[i; j; 0; 0]w
lex"Y

1 � u < v � n

uv 2 E

hedge (i; j) from u to vi

� �[i; j; 1; 1]w

0
@ j�1Y
s=i+1

h" edge (s; j) echoi

1
A
0
@ kY
s=j+1

h" edge (j; s)i

1
A

� h" vertex j echoi
kY

t=j+1

h" control ti

Z 0
i;j =

i�1Y
t=1

h# control ti

!
h# vertex ii

i�1Y
s=1

h# edge (s; i) echoi

!0
@ j�1Y
s=i+1

h# edge (i; s)i

1
A

� �[i; j; 0; 0]w
lex#Y

1 � u < v � n

uv 2 E

hedge (i; j) from u to vi

� �[i; j; 1; 1]w

0
@ j�1Y
s=i+1

h# edge (s; j) echoi

1
A
0
@ kY
s=j+1

h# edge (j; s)i

1
A

� h# vertex j echoi
kY

t=j+1

h# control ti

10

We comment that the key di�erence between Zi;j and Z 0
i;j is that in Zi;j the edge sym-

bol pairing gadgets occur in increasing lexicographic order, and in Z 0
i;j the gadgets are in

decreasing lexicographic order.

Proof of Correctness Where S1 and S2 are strings of symbols, let l(S1; S2) denote the
maximum length of a common subsequence of S1 and S2.

In the Control Strings X1 and X2 we distinguish certain substrings that we term posi-
tions. Note that both of these strings are formed as the concatenation of four di�erent kinds
of substrings: hvertexi, hvertex echoi, hedgei and hedge echoi, and that each of these \vertex
and edge selection" substrings begins and ends with a matched pair of substrings of repeated
symbols from �3 (in the case of vertex selection), or from �4 (in the case of edge selection).
These matched pairs of position symbol substrings determine a position | note that these
position symbol substrings (and therefore the positions de�ned) occur in the same order in
X1 and X2. Thus there are k(2 + k � 1) = k2 + k positions.

Between a matched pair of position symbol substrings in X1 there is a set of symbols
in increasing order that we will term a set of (vertex or edge) stairs, and in X2 in the
corresponding position there occurs the same set of symbols in decreasing order. The proof
of the following claim is trivial.

Claim 1. Suppose � is a linearly ordered �nite alphabet, and that S " is the string consisting
of the symbols of � in increasing order, and that S # is the symbols of � in decreasing order.
Then l(S "; S #) = 1. 2

Claim 2. A common subsequence C of the control sequences X1 and X2 of maximum
length l satis�es the conditions: (1) l = k00, and (2) C consists of the position symbol
substrings (common to X1 and X2) together with one symbol in each position de�ned by
these substrings.

Proof. It is clear that l � k00 because there are many di�erent common subsequences of
length k00 consisting of all the position symbol substrings (which are the same in X1 and X2)
together with a single choice of vertex or edge symbol in each position. Now suppose there
is a common subsequence C of length greater than k00 and �x attention on subsequences C1

of X1 and C2 of X2 that are isomorphic to C (for the reason that C might occur in more
than one way as a subsequence). Then C1 must contain two vertex or edge symbols �1 and �2
that occur on the same set of stairs in X1. By Claim 1, these two symbols, considered now
in C2, cannot occur on the same set of stairs in X2. This implies that any position symbols
between �1 and �2 in X2 do not belong to C2. Consequently, there are at least 2w position
symbols of X2 that do not occur in C = C2. But in order for the length of C to be at
least k00, this means that C must contain more than f1(k)

2 vertex and edge symbols. By the
Pigeonhole Principle, there must therefore be a set of stairs in X1 that contains m > f1(k)
vertex or edge symbols of C1. By Claim 1, no more than one of the corresponding symbols

11

in C2 can occur on any set of stairs in X2, and therefore X2 must have at least m sets of
stairs, a contradiction. This establishes (1), and furthermore shows that no two symbols of
a common subsequence of length k00 can occur on the same set of stairs. Thus (2) may also
be concluded by observing that there must be at least one vertex or edge symbol from each
set of stairs, else the length of C would be less than k00. 2

By Claim 2, if C is a common subsequence of X1 and X2 of length k00, we may refer
unambiguously to the vertices and edges represented in the various positions of C. In par-
ticular, note that these positions occur in k vertex units, each of which consists of an initial
vertex position, followed by k�1 edge and edge echo positions and concluding with a terminal
vertex echo position. If uv is an edge of the graph with u < v, then we refer to u as the
initial vertex and to v as the terminal vertex of the edge.

Claim 3. If C is a subsequence of length k00 common to the Control and Selection sets,
then in each vertex unit: (1) the vertex u represented in the initial vertex position is also
represented in the terminal vertex echo position, (2) each edge represented in an edge echo
position has terminal vertex u, and (3) each edge represented in an edge position has initial
vertex u.

Proof. Suppose C is a subsequence of length k00 common to X1 and X2. We argue that if
C is also common to Yp and Y 0

p then the statements of the Lemma are satis�ed for the pth

vertex unit. Let Cp and C 0
p denote speci�c subsequences of Yp and Y 0

p, respectively, with
C = Cp = C 0

p.

The strings Yp and Y
0
p di�er from the Control strings X1 and X2, respectively, only in the

replacement of a hl control pi gadget with a hl choice pi gadget. In particular, the position
symbols in the other constituent substrings occur in the same way in all four strings, and so
by Claim 2, Cp (C

0
p) must include all of the length w position symbol substrings in Yp (Y

0
p)

occuring outside of h" choice pi (h# choice pi). Furthermore, Cp must contain precisely two
vertex symbols � and �0, appropriately positioned, from h" choice pi, and C 0

p must contain
the same two (and no other) vertex symbols from h# choice pi.

The subsequence of Yp consisting of all the vertex symbols in h" choice pi is the vertex
index increasing sequence

S =
nY

x=1

(�[p; 0; x]�[p; 1; x])

and the subsequence of Y 0
p consisting of all the vertex symbols in h# choice pi is the vertex

index decreasing sequence

S 0 =
1Y

x=n

(�[p; 0; x]�[p; 1; x])

The only possibility for � and �0 to be common to S and S 0 is for � and �0 to represent the
same vertex u, that is, � = �[p; 0; u] and �0 = �[p; 1; u]. This establishes (1).

12

Consider the position symbols occuring in Yp between � and �0 in Cp, and occuring in
Y 0
p between � and �0 in C 0

p. Since these must occur in C (by Lemma 2) and this can happen
in only one way, all of these position symbols must belong to Cp and C 0

p, respectively. This
insures (2) and (3). 2

The length w substrings of the position symbols �[i; j; 0; 0] and �[i; j; 0; 1] in C de�ne
the (i; j)th edge position in the ith vertex unit and the length w substrings of the position
symbols �[i; j; 1; 0] and �[i; j; 1; 1] in C de�ne the (i; j)th edge echo position in the jth vertex
unit. We term these a corresponding pair of edge and edge echo positions.

Claim 4. If C is a subsequence of length k00 common to the Control, Selection and Check
sets, then for each corresponding pair of an edge position and an edge echo position, the
same edge must be represented in the two positions.

Proof. Suppose C is a subsequence of length k00 common to the Control and Selection
sets. We argue that if C is also common to Zi;j and Z 0

i;j then Lemma holds for the (i; j)th

corresponding pair of positions. Let Ci;j and C 0
i;j denote speci�c subsequences of Zi;j and

Z 0
i;j isomorphic to C.

It is convenient to consider Zi;j (and similarly Z 0
i;j) under the factorization Zi;j =

Zi;j(1)Zi;j(2)Zi;j(3) where

Zi;j(2) =
lex"Y

1 � u < v � n

uv 2 E

hedge (i; j) from u to vi

and where Zi;j(1) and Zi;j(3) are the appropriately de�ned pre�x and su�x (respectively)
of Zi;j.

Since none of the position symbols in Zi;j(1) or Zi;j(3) occur in Zi;j(2), all of the position
symbols in Zi;j(1) and Zi;j(3) must belong to Ci;j. Similarly, all of the position symbols in
Z 0
i;j(1) and Z 0

i;j(3) must belong to C 0
i;j. This implies, by Lemma 2, that Ci;j [Zi;j(2) =

C 0
i;j [Z 0

i;j(2) begins with a symbol �[i; j; 0; u; v] and ends with a symbol �[i; j; 0; x; y]. We
argue that necessarily u = x and v = y.

From the fact that �[i; j; 1; x; y] follows �[i; j; 0; u; v] in Zi;j(2), and from the construction
of the latter in increasing lexicographic order, we may deduce that (u; v) precedes (x; y)
lexicographically. Similarly, since Z 0

i;j(2) is constructed in decreasing lexicographic order, we
obtain that (x; y) precedes (u; v), and therefore (x; y) = (u; v). 2

We now argue the correctness of the reduction as follows. If G has a k-clique, then
it is easily seen that there is a common subsequence of length k00 in which the k vertex
units represent the vertices of the clique, and the edge and edge echo positions within each

13

vertex unit represent the edges incident on the represented vertex of the unit in increasing
lexicographic order. (Each edge is thus represented twice, in the vertex units corresponding
to its endpoints, �rst in an edge position in the initial vertex unit, and second in an edge
echo position in the terminal vertex unit.)

Conversely, suppose there is a common subsequence C of length k00. By Claims 2 and
3, C represents a sequence of k vertices of G. That these must be a clique in G follows
from Claim 4 and the de�nition of the \edge from" and \edge to" gadgets, which restrict
the edges represented in a vertex unit to those present in the graph and for which the vertex
is, respectively, initial or terminal. That completes the proof. 2

Theorem 1 implies immediately that LCS-1 and LCS-2 are hard for W [1], but it is
possible to say more about the parameterized complexity of these problems. Our theorem for
LCS-1, interestingly, provides the starting point for a number of other hardness reductions
in parameterized complexity theory, such as the results that Triangulating Colored

Graphs, Intervalizing Colored Graphs and Bandwidth are hard for W [t] for all t
[BFH94].

Theorem 2 LCS-1 is hard for W [t] for all t.

Proof. By the results of [DF92] we may take the source instance of the reduction to be a
t-normalized expression E and a positive integer k, where t is even and E is monotone. Let
n denote the number of variables of E. By simple padding we may assume that E has the
form:

E = ^n
i1=1 _

n
i2=1 � � � ^

n
it�1=1 _

n
it=1l[i1; : : : ; it]

Let V = fu1; :::; ung denote the set of variables of E. Thus in the above expression for E,
l[i1; : : : ; it] is always a positive literal, that is, an element of V . We show how to produce

an instance of LCS-1 consisting of
�
k
2

�
+ 2k + 2 strings that have a common subsequence of

length m if and only if E has a weight k truth assignment, with m described:

m = 3k + 3nt=2 + 2
tX

j=0

c(j)w(j; t)

where
c(j) = ndj=2e

and
w(j; t) = n2t(t�j)

We will use the following notation for indexing. The set f1; :::; ng is denoted as [n]. By
[n]r we mean the set f� = (a1; :::; ar) : 1 � ai � n for 1 � i � rg. By [n]0 we denote the

14

singleton set f�g where � denotes the unique vector of length 0 over [n]. If � 2 [n]s and
b 2 [n] with � = (a1; :::; as), then we write �:b to denote (a1; :::; as; b) 2 [n]s+1. We consider
that [n]r is ordered lexicographically. As in the proof of Theorem 1, we will use " lex to
denote increasing lexicographic order and # lex to denote decreasing lexicographic order. We
make use of the index set I de�ned

I =
t[

r=1

[n]r

We say that � 2 I is even if � 2 [n]r for r even, otherwise � is termed odd. If � 2 [n]r then
we write j�j = r and term this the rank of �. If �; � 2 I and � is a proper pre�x of � then
we write � � �.

The Alphabet

The alphabet � for target instance of LCS-1 can be expressed as the union

� = �1 [�2 [�3 [�4 [�5

where

�1 = fc[j]; c0[j] : 1 � j � kg

�2 = fv[i; j] : 1 � i � n; 1 � j � kg

�3 = fp[�]; p0[�] : � 2 Ig

�4 = fq[�; j]; q0[�; j] : � 2 [n]t; 1 � j � kg

�5 = fu[�; i; j] : � 2 [n]t; 1 � i � n; 1 � j � kg

Symbol Subsets, Order and Rank Let �0 denote �1 [�2 [�4 [�5. If S1 and S2

are sets of symbols of an ordered alphabet, then S1 < S2 denotes that for all a 2 S1 and
b 2 S2, a < b. We consider that �0 is linearly ordered in the unique way consistent with the
following requirements:

� (�1 [�2) < (�4 [�5)

� �2 is ordered lexicographically by symbol index.

� For all i 2 [n] and j 2 [k], c[j] < v[i; j] < c0[j].

� For 1 � i < j � k, fc[i]; c0[i]g < fc[j]; c0[j]g.

� If (�; j) precedes (�; h) lexicographically, then fq[�; j]; q0[�; j]g < fq[�; h]; q0[�; h]g.

� �5 is ordered lexicograpically by symbol index.

� q[�; j] < u[�; i; j] < q0[�; j] for all � 2 [n]t, i 2 [n] and j 2 [k].

15

By �0[a; b] we denote the set of symbols fs 2 �0 : a � s � bg in the above linear ordering.

Each of the symbols in �00 = �3 [�4 [�5 is (partially) indexed by some � 2 I. We
term the rank of a symbol s in this set, denoted jsj, to be the rank j�j of the index �. If
� � � is a set of symbols, then �00[r] denotes the set of symbols in � of rank r, 0 � r � t.

In discussing strings over the alphabet �, if � � � is a symbol subset and S 2 ��, then
by S \ � we denote the subsequence of S consisting of all symbols in �. We write jSj to
denote the length of a string S.

Substring Gadgets Product notation in the description of these components refers to
string concatenation. Where s is a symbol, the notation sw denotes the symbol s repeated
w times. Note that in some cases products are formed in decreasing order according to some
index, which is indicated by notation such as

1Y
i=n

� � �

The following strings provide gadgets for our reduction.

h" selection ji = c[j]

nY
i=1

v[i; j]

!
c0[j]

h# selection ji = c[j]

1Y

i=n

v[i; j]

!
c0[j]

h" select i =
kY

j=1

h" selection ji

h# select i =
kY

j=1

h# selection ji

As before, where � is a set of symbols, we use h���i to denote an arbitrary string which
contains as a subsequence every string of length m over �. As a notational convenience, we
write h�s:::t�i for h��3 [�0[s; t]�i.

Recursively, we de�ne h" �i and h# �i for � 2 I.

For � 2 [n]t and l[�] = ui 2 V :

h" �i = p[�]

0
@ kY
j=1

q[�; j]u[�; i; j]q0[�; j]

1
A p0[�]

16

h# �i = p[�]

0
@ 1Y
j=k

q[�; j]u[�; i; j]q0[�; j]

1
A p0[�]

In general:

h" �i = p[�]w(j�j;t)
nY
i=1

h" �:iip0[�]w(j�j;t)

h# �i = p[�]w(j�j;t)
nY
i=1

h# �:iip0[�]w(j�j;t) for � even

h# �i = p[�]w(j�j;t)
1Y

i=n

h# �:iip0[�]w(j�j;t) for � odd

The Reduction We may now describe the reduction. The instance of LCS-1 to which
we reduce consists of three sets of strings: the Control Strings, the Quorum Strings and the
Consistency Strings.

The two Control Strings are

X1 = h" select ih" �i

X2 = h# select ih# �i

Let � = f(r; s) : 1 � r < s � ng ordered lexicographically. The
�
k
2

�
Quorum Strings

are, for 1 � i < j � n

Yij =

0
@ "lexY

(r;s)2�

h�c[1] � � � c[i]�iv[r; i]h�c0[i] � � � c[j]�iv[s; j]h�c0[j] � � � c0[k]�i

1
A h��00�i

The 2k Consistency Strings are, for j = 1; : : : ; k

Zj =
nY

r=1

h selection j is variable r i

Z 0
j =

1Y
r=n

h selection j is variable r i

where

h selection j is variable r i = h�c[1] � � � c[j]�iv[r; j]h�c0[j] � � � c0[k]�i

�

0
@ " lexY
�2[n]t

h�q[�; 1] � � � q[�; j]�iu[�; r; j]h�q0[�; j] � � � q0[�; k]�i

1
A

17

Proof of Correctness The following general ideas are useful to our arguments. To the
expression E there naturally corresponds a Boolean tree circuit C = CE. A truth assignment
� to the variables V of E may be considered as an input vector x� to the circuit C, with
C(x�) = 1 if and only if � satis�es E. The circuit C maybe described:
(1) for each � 2 I, there is a gate g� of C (of rank j�j),
(2) g� is an and gate if � is even, and an or gate if � is odd,
(3) the output gate of C is g�,
(4) for j�j < t the gate g� takes input from the gates g�:i for i = 1; :::; n,
(5) the inputs to C are in 1:1 correspondence with V , and
(6) for j�j = t, the gate g� takes the single input ui 2 V such that l[�] = ui in E.

A subcircuit C 0 of C is a witnessing subcircuit if it satis�es the conditions:
(1) g� 2 C 0,
(2) for each even � 2 I, j�j < t, if g� 2 C 0 then for all i 2 [n], g�:i 2 C 0, and
(3) for each odd � 2 I, if g� 2 C 0 then there is a unique i 2 I such that g�:i 2 C 0.

The following observations about witnessing subcircuits are useful.

Claim 1. C(x) = 1 if and only if there is a witnessing subcircuit C 0 of C such that C 0(x) = 1
and each gate of C 0 evaluates to 1.

Claim 1 follows trivially from the monotonicity of C.

Claim 2. If C 0 is a witnessing subcircuit of C then the number of gates of rank r, for
r = 0; :::; t, is given by the function

c(j) = ndj=2e

Claim 2 follows by an elementary induction, noting the special structure of C.

The following fact about the \weighting function" w(j; t) will be useful.

Claim 3. For 0 � r � t� 1,

w(r; t) >
tX

j=r+1

jX1 \ �00[j]j

Claim 3 is easily veri�ed from the de�nitions.

Claim 4. In the Control Strings X1 and X2:
(1) Each symbol in �3 occurs as a block, that is, the symbol occurs only in a substring
consisting of some number of repetitions of the symbol.
(2) If � � � then all symbols with index � occur between the block of symbols p[�]w(j�j;t)

and the block of symbols p0[�]w(j�j;t).

18

(3) If � is an index of a symbol occuring between the symbol blocks p[�]w(j�j;t) and p0[�]w(j�j;t)

then � � �, with � � � properly if the symbol is in �3.

Claim 4 is readily observed from the de�nition of h" �i and h# �i.

In one direction, the argument for the correctness of the reduction is relatively easy.
Given a satisfying weight k truth assignment � : V ! f0; 1g for E, we describe a common
subsequence of length m in the following way. Let C 0 be a witnessing subcircuit of C for the
input vector corresponding to � . Let I 0 denote the set of indices of the logic gates of C 0

I 0 = f� : g� 2 C 0g

and suppose the variables set to 1 by � are vi1 ; :::; vik , with vi1 < vi2 < � � � < vik .

Let � denote the set of symbols

� = �1 [fv[ij; j] : 1 � j � kg [fp[�]; p0[�] : � 2 I 0g

[fq[�; j]; q0[�; j] : � 2 [n]t \ I 0; l[�] = vij ; 1 � j � kg

[fu[�; ij; j] : � 2 [n]t \ I 0; l[�] = vij ; 1 � j � kg

Claim 5. The string S = X1 \ � is a common subsequence of the Control and Consistency
Strings of length m.

Proof of Claim 5. First note that S = S1S2 where S1 2 (�1 [�2)
� and S2 2 (�00)� and that

similar factorizations hold for X1 and X2. An inspection of the de�nition of h" select i and
h# select i shows that S1 is a common subsequence of the �rst parts of X1 and X2, the main
point being that between each pair of symbols c[j] and c0[j] there is just the single symbol
v[ij; j] in S. Note also that the length of S1 is 3k.

Let X 0
i = Xi \ �00 for i = 1; 2. We argue that S2 is a subsequence of X 0

1 and X 0
2 by

inducting on the rank of symbols in S2. Let S2[r] denote the subsequence of S2 consisting of
the symbols of rank r. By Claim 4, it is su�cient to establish that S2[r] is a subsequence of
X 0

1 and X
0
2 for r = 0; :::; t. The base step of the induction, r = 0, is trivial. For the induction

step, by Claim 4, it su�ces to show that the subsequence of S consisting of symbols with
index � = �:i (for some i) having rank r + 1 is a subsequence of X 0

i (for i = 1; 2) occuring
between the symbol blocks p[�]w(j�j;t) and p0[�]w(j�j;t). If � is even then this follows from the
fact that the blocks of the symbols p[�:i] and p0[�:i] occur in ascending order in both X 0

1 and
X 0

2. If � is odd then this follows trivially because there is only one relevant index �:i 2 I 0.
Note that in S there are precisely 3 symbols between each pair of symbol blocks p[�]w(j�j;t)

and p[�]w(j�j;t) where � 2 [n]t \ I 0, and that there are nt=2 such pairs. From this it is easy to
verify that S has length m.

The above arguments establish that S is a subsequence of the Control Strings. By es-
sentially the same inductive argument, the symbols p[�] must occur in S in lexicographically

19

increasing order. Using this fact it is straightforward to verify that S is a subsequence of
h selection j is variable iji and thus S is a subsequence of Zj and Z 0

j for j = 1; :::; k. S2 is
trivially a subsequence of h��00�i. For p < q, vip < viq , so S is a subsequence of Ypq. 2

To complete the proof of correctness for the reduction, we argue that if T is a common
subsequence of the Control and Consistency Strings of length m then E is satis�ed by a
weight k truth assignment. In particular, we argue that T must correspond to a weight k
input vector and a witnessing subcircuit of C = CE with respect to this vector.

Because the Control Strings can be factored in a similar way, we may factor T as
T = T1T2 with T1 2 (�1 [�2)

� and T2 2 (�00)�.

Claim 6. The length of T1 is at most 3k.

Claim 6 follows simply from the fact that for any �xed index j the symbols v[i; j] occur
in X1 in increasing order with respect to i and they occur in X2 in decreasing order with
respect to i.

Say that an index � 2 I is represented in T if both of the symbols p[�] and p0[�] occur
in T . Say that an index � 2 I is forbidden in T if for all indices � with � � �, no symbol
with index � occurs in T . The following is an immediate consequence of the de�nition.

Claim 7. If � is forbidden in T , then for all i 2 [n], �:i is forbidden.

Claim 8. If � 2 I is odd, then there is at most one i 2 [n] with �:i represented in T .
Furthermore, if �:i is represented in T , then for all j 6= i, �:j is forbidden in T .

Proof of Claim 8. Suppose i < j with �:i represented in T . By the de�nition of X1 and X2,
all of the symbols with index �:i precede all of the symbols with index �:j in X1, and all of
the symbols with index �:i succeed all of the symbols with index �:j in X2. Consequently
no symbol with index �:j can occur in the common subsequence T . Furthermore, if � is
an index with �:j � beta, then by Claim 4, all symbols with index � occur in X1 and X2

between blocks of symbols with index �:j, so the above argument applies as well to symbols
with these indices, so that �:j is forbidden. The case of j < i is symmetric. 2

Let s(r) denote the number of indices � 2 I of rank r that are represented in T .

Claim 9. For r = 0; :::; t
(1) s(r) = c(r)
(2) Every index of rank r is either represented or forbidden.

Proof of Claim 9. By induction on r. For r = 0, if either p[�] or p0[�] fails to occur in T , then
necessarily jT \ �00[0]j � w(0; t), so T must contain at least w(0; t) symbols of rank at least
1, a contradiction of Claim 3. This establishes both (1) and (2).

20

For the induction step, if s(r + 1) < c(r + 1) then the induction hypothesis and the
de�nition of m imply that T must contain more than w(r + 1; t) symbols of rank greater
than r + 1, which contradicts Claim 3. Suppose s(r + 1) > c(r + 1).

Case 1: r is even. Then c(r + 1) = n � c(r). By (1) of the induction hypothesis, there are
precisely s(r) = c(r) indices of rank r represented in T , and all other indices of rank r are
forbidden. Since each represented index of rank r has only n extensions to an index of rank
r+1, there must be some rank r+1 index �:i represented in T for which � is not represented
in T . By (2) of the induction hypothesis, � is forbidden in T , a contradiction. Thus (1)
must hold, and by the same argument, if � of rank r is represented then for all i 2 [n], �:i
is represented. If � of rank r is forbidden in T , then by Claim 7, �:i is forbidden in T for all
i 2 [n]. This establishes (2).

Case 2: r is odd. Then c(r + 1) = c(r). By (1) of the induction hypothesis there are
precisely s(r) = c(r) indices of rank r represented in T , and all other indices of rank r

are forbidden. There cannot be an index �:i represented in T with � not represented, as
this would contradict (2) of the induction hypothesis. By the Pigeonhole Principle, there
must be an index � represented in T and i 6= j with both �:i and �:j represented in T , a
contradiction of Claim 8. Thus (1) must hold, and by the same arguments we see that for
each represented � of rank r there is a unique i 2 [n] with �:i represented. By Claim 8 we
get (2). 2

One can observe from the de�nition of h" �i and h# �i that there can be at most 3
symbols in T \ (�4 [�5) with a given index � of rank t, and that these must occur between
p[�] and p0[�] and must occur in a substring of the form: q[�; j]u[�; i; j]q0[�; j]. By this
observation and Claims 6 and 9 we can conclude:

Claim 10. The length of T1 is precisely 3k and the length of T2 is precisely

3nt=2 + 2
tX

j=0

c(j)w(j; t)

On the basis of Claim 10 we may associate to T a well-de�ned truth assignment � to
the variables of the expression E: �(ui) = 1 if and only if for some j, 1 � j � k, the symbol
v[i; j] occurs in T1. By Claim 10, there are exactly k symbols of �2 in T1. However, we must
argue that for j < j 0, only one of v[i; j] and v[i; j 0] occurs in T1, thus insuring that � has
weight k. To see this, note that T must be a subsequence of Yjj0. Suppose v[i; j] occurs in
T (necessarily in T1). The only symbols v[i0; j 0] occuring in Yjj0 after v[i; j] satisfy i < i0, by
the de�nition of Yjj0. Thus to T we may associate a truth assignment of weight k.

Claim 11. If � 2 [n]t is represented in T , with u[�; i; j] occuring between p[�] and p0[�], then
v[i; j] occurs in T1 (and � assigns ui the value 1).

21

Proof of Claim 11. By Claim 10, there must be a symbol v[p; j] in T1. The symbol u[�; i; j]
occurs only once in Zj and in Z 0

j. The symbols v[p; j] preceding the occurence of u[�; i; j] in
Zj satisfy p � i. The symbols v[p; j] preceding the occurence of u[�; i; j] in Z 0

j satisfy p � i.
Thus the only possibility is v[i; j]. 2

Claim 12. The indices � 2 I represented in T are those of a witnessing subcircuit C 0 of C
that accepts the input vector x� corresponding to the truth assignment � .

Proof of Claim 12. That the indices represented in T form a witnessing subcircuit C 0 of C
follows from Claims 8 and 9. Since C 0 is monotone, it su�ces to establish that all gates
of rank t evaluate to 1 in order to conclude that C 0(x�) = 1. This follows from Claim 11,
noting that if � of rank t is represented, then u[�; i; j] occurs between p[�] and p0[�] if and
only if l[�] = ui, by the de�nition of h" �i and Claim 4. 2

By the correspondence between C and E, we conclude that � is a weight k truth assign-
ment for E, which completes the proof of the theorem. 2

It is presently not known whether LCS-1 belongs to W [P]. The argument given above
does not seem to generalize to a proof of W [P]-hardness. It is easy to observe that LCS-2
belongs to W [P], by a reduction to whether a circuit C accepts a weight m vector indicating
the common subsequence s, where C represents a deterministic P-time computation verifying
for each input string Xi that s is a subsequence of Xi.

Theorem 3 LCS-2 is hard for W [2].

Proof. We reduce from Dominating Set. Let G = (V;E) be a graph with V = f1; :::; ng.
We will construct a set S of strings that have a common subsequence of length k if and only
if G has a k-element dominating set.

The alphabet for the construction is

� = f�[i; j] : 1 � i � k; 1 � j � ng

We use the following notation for important subsets of the alphabet.

�i = f�[i; j] : 1 � j � ng

�[t; u] = f�[i; j] : (i 6= t) or (i = t and j 2 N [u])g

The set S consists of the following strings.

Control Strings

X1 =
kY

i=1

(" �i)

22

X2 =
kY

i=1

(# �i)

Check Strings
For u = 1; :::; n:

Xu =
kY

i=1

(" �[i; u])

To see that the construction works correctly, �rst note that by Claim 1 of the proof of
Theorem 1, it follows easily that any sequence C of length k common to both control strings
must consist of exactly one symbol from each �i in ascending order. Thus to such a sequence
C we may associate the set VC of vertices represented by C: if C = �[1; u1] � � ��[k; uk], then
VC = fui : 1 � i � kg = fx : 9i �[i; x] 2 Cg.

We argue that if C is also a subsequence of the check strings fXug, then VC is a domi-
nating set in G. To this end, let u 2 V (G) and �x a substring Cu of Xu with Cu = C.

Claim. For some index j, 1 � j � k, the symbol �[j; uj] occurs in the (" �[j; u]) portion of
Xu, and thus uj 2 N [u] by the de�nition of �[j; u].

We argue by induction on k. The case of k = 1 is clear. For the induction step,
there are two cases: (1) the �rst k � 1 symbols of Cu occur in the pre�x (" �[1; u]) � � � ("
�[k � 1; u]) of Xu, and the induction hypothesis immediately yields the Claim, or (2) the
symbol �[k � 1; uk�1] occurs in the (" �[k; u]) portion of Cu \Xu. In case (2), this implies
that the symbol �[k; uk] of C = Cu also occurs in the (" �[k; u]) part of Xu.

By the Claim, if C is a subsequence of the Control and Check strings, then every vertex
of G has a neighbor in VC , that is, VC is a dominating set in G.

Conversely, if D = fu1; :::; ukg is a k-element dominating set in G with u1 < � � � < uk,
then the sequence C = �[1; u1] � � ��[k; uk] is easily seen to be common to the strings of S. 2

4 Conclusions

Our results suggest that the general LCS problem is not �xed-parameter tractable when
either k or m are �xed. It is important to note, however, that our results here apply only
to the version of the problem where the size of the alphabet is unbounded. Since many
applications involve �xed-size alphabets, the question of whether LCS-1 remains hard for W
for a �xed alphabet size is very interesting. We have recently been able to show that LCS

23

remains hard for W [t] for all t when parameterized by both the number of strings and the
alphabet size.

Our results also have implications for the �xed-parameter tractability of the multiple se-
quence alignment and consensus subsequence discovery problems in molecular biology. This
is so because the LCS problem is a special case of each of these problems. The problem
of aligning k sequences is often re-stated as that of �nding a minimal-cost path between
two vertices in a particular type of edge-weighted k-dimensional graph [Pev92]. The LCS
problem can be stated in this form using the edge-weighting in Section 3 of [Pev92], and is
hence a restriction of the multiple sequence alignment problem (albeit, that version of the
problem which allows arbitrary alignment evaluation functions). The LCS problem is shown
to be a restriction of the consensus subsequence problem in Section 3 of [DM93b]. By the
results of this paper, the general multiple sequence alignment (consensus subsequence dis-
covery) problem is W[t]-hard for all t (W [2]-hard), and hence unlikely to be �xed-parameter
tractable, when the number of sequences and the cost of the alignment (length of the con-
sensus subsequence) are �xed.

Fixed-parameter complexity analysis may be relevant to many computational problems
in biology. Many of these problems are known either to be NP-complete in general, e.g. evo-
lutionary tree estimation by parsimony, character compatibility and distance-matrix �tting
criteria (see [War93] and references), or to require timeO(nk) when k is �xed, such as multiple
sequence alignment using the SP or evolutionary tree alignment evaluation functions [Pev92].
To solve such problems in practice, investigators must often settle for suboptimal solutions
obtained by algorithms that are fast but are either approximate or solution-constrained
[KS83,San85,Pev92,Gus93,War93]. For instances of such problems, critical parameters such
as the number of sequences or taxa are often small but nontrivial, e.g., 5 � k � 20. These are
precisely the situations in which �xed-parameter tractability might be useful. Apart from
showing that for some problems �xed-parameter tractability is unlikely by analyses such
as presented in this paper, such results can be viewed as clarifying the contribution that
each parameter makes to a problem's complexity. This may suggest computation-saving
constraints that may yet yield restricted versions of these problems of feasible complexity.

References

[Bae91] R. A. Baeza-Yates. Searching subsequences. Theoretical Computer Science 78 (1991),
363{376.

[BFH94] H. Bodlaender, M. Fellows and M. Hallett. Beyond NP-completeness for problems
of bounded width: hardness for theW hierarchy. Proceedings of the 26th ACM Symposium
on the Theory of Computing (1994), 449{458.

24

[CCDF93] L. Cai, J. Chen, R. Downey and M. Fellows. The parameterized complexity of
short computations and factorization. University of Victoria, Technical Report, Depart-
ment of Computer Science, July, 1993.

[DEF93] R. Downey, P. Evans and M. Fellows. Parameterized learning complexity. Proc.
Sixth ACMWorkshop on Computational Learning Theory (COLT), pp. 51{57, ACM Press,
1993.

[DF92] R. Downey and M. Fellows. Fixed-parameter intractability (extended abstract). In
Proceedings of the Seventh Annual Conference on Structure in Complexity Theory, pp.
36{49, IEEE Computer Society Press, Los Alamitos, CA, 1992.

[DFKHW93] R. Downey, M. Fellows, B. Kapron, M. Hallett and H.T. Wareham. The pa-
rameterized complexity of some problems in logic and linguistics. Proceedings of the Sym-
posium on the Logical Foundations of Computer Science, Springer Verlag, Lecture Notes
in Computer Science, vol. 813 (1994), 89{100.

[DM93a] W. H. E. Day and F. R. McMorris. Discovering consensus molecular sequences.
In O. Opitz, B. Lausen, and R. Klar (eds.) Information and Classi�cation { Concepts,
Methods, and Applications, pp. 393{402, Springer-Verlag, Berlin, 1993.

[DM93b] W. H. E. Day and F. R. McMorris. The computation of consensus patterns in DNA
sequences. Mathematical and Computer Modelling 17 (1993), 49{52.

[Gus93] D. Gus�eld. E�cient methods for multiple sequence alignment with guaranteed
error bounds. Bulletin of Mathematical Biology 55 (1993), 141{154.

[Hir83] D. S. Hirschberg. Recent results on the complexity of common subsequence problems.
In D. Sanko� and J. B. Kruskal (eds.) Time Warps, String Edits, and Macromolecules:
The Theory and Practice of Sequence Comparison, pp. 325{330, Addison-Wesley, Reading,
MA, 1983.

[IF92] R. W. Irving and C. B. Fraser. Two algorithms for the longest common subsequence
of three (or more) strings. In A. Apostolico, M. Crochemore, Z. Galil, and U. Manber
(eds.) Proceedings of the Third Annual Symposium on Combinatorial Pattern Matching,
pp. 214{229, Lecture Notes in Computer Science no. 644, Springer-Verlag, Berlin, 1992.

[KS83] J. B. Kruskal and D. Sanko�. An anthology of algorithms and concepts for se-
quence comparison. In D. Sanko� and J. B. Kruskal (eds.) Time Warps, String Edits,
and Macromolecules: The Theory and Practice of Sequence Comparison, pp. 265{310,
Addison-Wesley, Reading, MA, 1983.

[LF78] S. Y. Lu and K. S. Fu. A sentence-to-sentence clustering procedure for pattern anal-
ysis. IEEE Transactions on Systems, Man, and Cybernetics 8 (1978), 381{389.

25

[Mai78] D. Maier. The complexity of some problems on subsequences and supersequences.
Journal of the ACM 25 (1978), 322{336.

[PM92] W. R. Pearson and W. Miller. Dynamic programming algorithms for biological se-
quence comparison. Methods in Enzymology 183 (1992), 575{601.

[Pev92] P. A. Pevzner. Multiple alignment, communication cost, and graph matching. SIAM
Journal on Applied Mathematics 52 (1992), 1763-1779.

[San72] D. Sanko�. Matching comparisons under deletion/insertion constraints. PNAS 69
(1972), 4{6.

[San85] D. Sanko�. Simultaneous solution of the RNA folding, alignment, and protosequence
problems. SIAM Journal on Applied Mathematics 45 (1985), 810{825.

[War93] H. T. Wareham. On the Computational Complexity of Inferring Evolutionary Trees,
M.Sc. Thesis, Technical Report no. 9301, Department of Computer Science, Memorial
University of Newfoundland, 1993.

26

