Treewidth and Small Separators for Graphs with
Small Chordality*

Hans L. Bodlaender® Dimitris M. Thilikos?

January 30, 1995

Abstract

A graph G k-chordal, if it does not contain chordless cycles of length
larger than k. The chordality ¢l of a graph G is the minimum k for which
G is k-chordal. The degeneracy or the width of a graph is the maximum
min-degree of any of its subgraphs. Our results are the following;:

1. The problem of treewidth remains NP-complete when restricted on
graphs with small maximum degree.

2. An upper bound is given for the treewidth of a graph as a function of
its maximum degree and chordality. A consequence of this result is
that when maximum degree and chordality are fixed constants, then
there is a linear algorithm for treewidth and a polynomial algorithm
for pathwidth.

3. For any constant s > 1, it is shown that any (s + 2)-chordal graph
with degeneracy d contains a i-separator of size O((dn)™= ), com-
putable in linear time. Our results extent the many applications of

the separator theorems in [1, 33, 34] to the class of k-chordal graphs.

Several natural classes of graphs have small chordality. Weakly chordal
graphs and cocomparability graphs are 4-chordal. We investigate the com-
plexity of treewidth and pathwidth on these classes when an additional
degree restriction is used. We present an application of our separator the-
orem on approximating the maximum independent set on k-chordal graphs
with small degeneracy.

1 Introduction

In this paper, we study a relatively new graph parameter: the chordality of a
graph. (All graphs are assumed to be undirected, finite, and simple.) We call
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a graph k-chordal, if it does not contain a chordless cycle of length larger than
k. The chordality of a graph G is defined as the minimum k for which G is k-
chordal. In this paper we investigate the complexity of treewidth and pathwidth
in relation to this parameter, the maximum degree, and the degeneracity of G.
We also present a separator theorem for graphs with bounded chordality.

The class of k-chordal graphs contains as subclasses many known natural
classes of graphs, even for small values of k. Clearly 3-chordal graphs are exactly
the chordal graphs. Also the classes of the weakly chordal graphs and, as we
prove in Section 6, the cocomparability graphs are subclasses of the class of
4-chordal graphs.

The notions of treewidth and pathwidth appear to play an important role
in the analysis of the complexity of several problems in graph theory. They
were introduced by Robertson and Seymour in their series of fundamental pa-
pers on graphs minors (see [39]). Roughly spoken, the treewidth of a graph
is the minimum % such that G can be decomposed into a “tree structure” of
pieces with at most k + 1 vertices. (For the precise definition, see Section 2.) A
series of recent results show that many NP-complete problems become polyno-
mial or even linear time solvable, or belong to NC, when restricted to graphs
with small treewidth (see [5, 7, 9]). Much research has been done on the prob-
lem of determining the treewidth and the pathwidth of a graph, and find-
ing optimal tree or path decompositions with optimal treewidth or pathwidth.
These problems are NP-complete even if we restrict the input graph on cocom-
parability graphs [23], bipartite graphs [27] or the complements of bipartite
graphs [6]. Moreover, pathwidth remains NP-complete on chordal graphs [22],
planar graphs [38] and graphs with bounded maximum degree [38]. In Sec-
tion 3, we prove that treewidth is also NP-complete on graphs with bounded
maximum degree.

Treewidth can be computed in polynomial time on chordal graphs,
cographs [15], circular arc graphs [42], chordal bipartite graphs [29], permuta-
tion graphs [14], circle graphs [26] and distance hereditary graphs [3]. Bodlaen-
der presented in [10] a linear time algorithm that finds an optimal tree decom-
position for a graph with bounded treewidth. Also Bodlaender and Hagerup
in [12] provide (near) optimal parallel algorithms for constructing minimum-
width tree decompositions of graphs with bounded treewidth. In Section 4, we
prove that if a k-chordal graph has maximum degree bounded by a value A,
then there is a function f(k, A) that is an upper bound for treewidth. A conse-
quence of our result is that for k-chordal graphs with bounded maximum degree,
there is a linear time algorithm for computing treewidth and a polynomial time
algorithm for computing pathwidth.

In Section 5, we present a connection between the parameters of treewidth
and degeneracy for k-chordal graphs. The degeneracy of a graph G = (V| E)
is defined to be the maximum min-degree of any of the subgraphs of G (see
also [16, 20, 31, 35, 36, 41]). In [37], it is proved that the degeneracy of a graph
is equal to its width, a graph parameter that is also known as linkage (see also
[20, 25, 36]). A layout L of a graph G = (V, E) is a bijective function, mapping
its vertices to numbers {1,2,...,|V|}. The width of a layout L of G is the
maximum back-degree of any vertex in L (the back-degree of a vertex v € L is



defined to be the number of vertices that are adjacent to v and are preceding
it in L). The width of G is the minimum width over all possible layouts of G.
Width has been studied in the context of Constraint Satisfaction, as it is known
that for constraint graphs of bounded width, it is possible to apply backtrack
free search, the classical method to solve the Constraint Satisfaction Problem
(see [20]). Also, width appears in many combinatorial results. For instance,
in [2], improved time bounds are presented for algorithms that count and find
cycles, when the input graph is considered to have small width.

Several parameters characterizing the sparsity of a graph are related to
width. The arboricity a(G) of a graph a(G) is defined as the minimal number of
edge-disjoint spanning forests into which G can be decomposed. It is known that
a(G) = O(width(G)). A graph is called uniformly [-sparse, if every subgraph
has average degree at most 3. It is also known that width(G) < 3 (see [36]).
Finally it can be easily proved that if y is the genus of a graph, then width(G) =
O().

In this paper we also use the parameter width,. When s =n —1or s =1,
width; is equivalent with treewidth and width, respectively. In Section 2, we
prove that for all s, widths is equivalent to the s-dimension of a graph, a
parameter defined in [19]. In [19], Dendris, Kirousis, and Thilikos examine
various versions of fugitive search games on graphs and present their connections
with the parameters of treewidth, pathwidth, and width. They show that the
widths of a graph equals the number of searchers required to catch an inert
fugitive that resides on the vertices of G and moves with speed s (an inert
fugitive can only move just before a searcher is placed on the vertex it occupies).
Using the notion of width,, we prove a connection between width and treewidth
that leads to a separator theorem for (s + 2)-chordal graphs with small width.

Given a graph G = (V, F), a set S C V is a separator of G iff the G[V — 5],
the subgraph of G induced by the vertices in V' — S, contains at least two con-
nected components. Separator theorems have appeared to play an important
role for algorithmic graph theory as these (in combination with a divide and con-
quer strategy) lead to a series of important complexity results. In [33], Lipton
and Tarjan proved that any planar graph with weights assigned to its vertices
contains a separator S of size O(y/n), such that all the connected components
of G[V — S] have total vertex weight at most 2|V|. Several applications of this
separator theorem are presented in [32], including approximation algorithms
for NP-complete problems, nonserial dynamic programming, time-space trade
offs’ study, lower bounds on boolean circuit size, embedding of data structures,
and maximum matching (see also [32] for an application on sparse Gaussian
elimination and [30] for results relating small separators with layouts of graphs
in a model of VLSI). In [1], Alon, Seymour, and Thomas provide a consider-
ably more general result and extent the previous applications. They prove a
separator theorem for any graph not containing a specific graph as a minor.

Our separator theorem guarantees the existence of a separator of size
O(kn%) in a (s + 2)-chordal graph with width< k. Moreover our results
lead to a linear time algorithm that computes such a separator. As any graph
not containing a specific graph as a minor has bounded width, our separator



theorem gives an extension of the results in [1, 33, 34| for graphs with bounded
chordality, and improves the time bounds in [1] for such classes of graphs. We
present an application of our separator theorem for the problem of approximat-
ing the independent set problem on (s + 2)-chordal graphs with small width.

As there are sparse graphs with small width that do not contain small
separators (see Lemma 3) we feel that the requirements of small width and
small chordality help to approach a characterization of the concept of “usefully
sparse”, a question posed from Lipton and Tarjan in [34] about the existence
of separator theorems for non planar sparse graphs.

2 Definitions and preliminary results

In this section some definitions and results will be presented, which are useful
in later sections.

Let G = (V, E) be a finite undirected graph without multiple edges or loops.
For a set of vertices V' C V, the subgraph of G, induced by V' is denoted by
G[V']. The vertex and edge set of a graph G are denoted by V(G) and E(G),
respectively.

The notions of treewidth and pathwidth were introduced by Robertson and
Seymour in [40] and [39].

Definition 1 A tree decomposition of G = (V, E) is defined to be a pair ({X; :
i € I}, T), where {X; : i € I} is a collection of subsets of V' (we call these

subsets the nodes of the decomposition) and T = (I, F) is a tree having the
index set I as set of vertices, such that the following conditions are satisfied:

1. U’LGIXl:V
2. V{u,w} € B, €l :u,w e X,.
3. Vi,5,k €I:4fj s on apath inT from i to k then X; N Xy C X;.

The treewidth of a tree decomposition ({X; : i € I},T) is defined to be equal
to maX;eg |Xl| — 1.

The treewidth of G is defined to be the minimum treewidth over all tree decom-
positions of G.

Definition 2 A path decomposition of G = (V, E) is defined to be a sequence
{X; 1 =1,...,r} of subsets of V' (we call these subsets the nodes of the
decomposition) such that the following conditions are satisfied:

2. V{u,w} € E,3i :u,w € X;.
3. Wik, if L <i<j<k<r, then X; N Xy, C X;.

The pathwidth of a path decomposition {X; : i =1,...,r} is defined to be equal
to maxj<i<r |Xl| — 1.

The pathwidth of G is defined to be the minimum pathwidth over all path de-
compositions of G.



The problem of computing the treewidth of a given graph has been proved to
be NP-complete by Arnborg, Corneil, and Proskurowski in [6]. More precisely,
they proved that treewidth is NP-complete even when restricted to the class of
cobipartite graphs (i.e. the complements of bipartite graphs).

Bodlaender proved the following result about the fixed parameter complex-
ity of treewidth (see [10]).

Theorem 1 For any fized integer k, there is a linear time algorithm, that tests
whether a given graph G = (V, E) has treewidth at most k, and if so, outputs a
tree decomposition of G with treewidth at most k.

Treewidth can be characterized in terms of elimination orderings. Arnborg
introduced in [5] the notion of the elimination dimension of a graph and proved
that it is equivalent with treewidth. We give the definition of the s-elimination
dimension of a graph introduced in [19]. For the case where s = n — 1, this
parameter is equivalent to treewidth.

An elimination ordering of a graph G = (V,FE) is an ordering 7 =
(v1,...,vy) of its vertices (n = |V]).

Given an elimination ordering 7 and an integer s (1 < s < n — 1), the
graphs G;, ¢ = 1,...,n generated during an s-elimination of the vertices of G

according to 7 are defined to be: Gy = G; Viy1 =V — {v;} and E;1; is the set
of pairs {u,v} such that u,v € V;;;1 and there is a path in G that from u to v
with length at most s and all its vertices except u and v (we call these vertices
internal vertices of a path) belong to the set {vy,...,v;}.

Definition 3 The s-dimension of v; with respect to 7 s defined as the degree
of vi 1 Gj.

The s-dimension of 7 is defined as the mazimum s-dimension of any verter v;
with respect to .

The s-elimination dimension of G is the minimum s-dimension over all elimi-
nation orderings of G.

A cycle C = (vy,...,v,v1) in a graph G = (V, E) is chordless if it does not
contain any chords (i.e. Yv;,vj, [—1>[i —j| > 1 {v;,v;} € E). We denote as
le(G) the length of the longest chordless cycle in G and call this parameter the
chordality of a graph (in the case that G is a tree we take le(G) = 2). A graph
G is k-chordal if cI(G) < k. Tt is easy to see that lc(G) can take a wide range
of values as is shown in the following easy extremal result.

Lemma 1 If G is a graph with n vertices and e > n edges and p = (3) —e then
the following holds:

3<1e(G) <

(34+vV9+8p)

N | =

moreover the above inequality is tight.

Proof It is sufficient to observe that if G contains a chordless cycle of length
s, then it cannot have more that (3) — (3) + s edges. 0

Using the notation above we mention the following result proved in [19].



Theorem 2 Let G be a graph such that le(G) < s+ 2. The treewidth of G
equals its s-elimination dimension.

Theorem 3 The problem of computing the s-dimension of a graph is NP-
complete when s > 1.

Proof As mentioned above, treewidth is NP-complete also when restricted on
the class of cobipartite graphs. As for any graph G in this class lc(G) = 4, the
result follows from Theorem 2 and the NP-completeness of treewidth. O

The parameter width(G) introduced below characterizes treewidth in terms
of layouts when s =n — 1.
Let L = (vy,...,vy,) be a layout of the vertices in G.

Definition 4 The widths of a vertex v € L is the number of vertices preceding
v in L that are connected with v via a path of vertices not preceding v which
has length at most s.

The width, of a layout of G is the mazimum widths over all vertices of G.
The widths of a graph G is the minimum widths over all possible layouts of G.

Theorem 4 For any graph G and s > 1, s-dimension(G) =widths(G).

Proof Suppose that s-dimension(G) = k and let 7 = (v1,...,v,) be an
elimination ordering such that s-dimension(w) = k. Consider the layout
L = (vp,...,v1) obtained by reversing 7. We claim that for any vertex v; € L
the widthy of v; is equal to the s-dimension of v; with respect to the ordering
7 and hence < k: note that the number of vertices that precede v; and are
connected with v; via paths of length at most s with internal vertices in the set
{v1,...,v;_1} is equal, by definition, to the degree of v; in G; with respect to
.

Suppose now that widthy = k. Using a similar argument we can prove that
given a minimal layout L with widths(L) = k, for any vertex v; in the ordering
obtained by he inversion of L, the s-dimension of v; is equal to the widthg(v;)
and thus < k. O

A graph H is a minor of a graph G if H can be obtained from a subgraph of
G by a number of edge contractions. (A contraction of an edge {u,v} replaces
the vertices v and v by a new vertex that is adjacent to all vertices that were
adjacent to v or w.)

We use the following well known result (for a proof see e.g., [8]).

Lemma 2 Let H be a minor of G. Then treewidth(H) < treewidth(G).

For s = 1, Definition 4 gives the width of a graph. An already known
corollary of Theorems 4 and 2 is that for chordal graphs, treewidth is equal
to width, which is polynomially computable and has an NC approximation
algorithm for constant approximation factors < 3 (see [4]). It can be easily
proved that width is bounded for classes of graphs with an excluded minor, i.e.
graphs with no minor isomorphic to a given graph H (see [17]). However the
class of graphs with bounded width is larger: there are graphs with small width

containing arbitrary large minors, as is shown in the following lemma.



Lemma 3 For any k > 3 and any graph H, there is a graph G such that
width(G) < k and H is a minor of G.

Proof Suppose H has h vertices. It is enough to construct a graph G of width
3, containing as a minor a clique with h vertices. The construction is given by
the following procedure:

1. Let i be the smaller integer such that h — 1 < 2¢ + 2.

2. Initialize G' as a clique with 2° + 3 vertices where each vertex has degree
d=2"+2.

3. Repeat the following step as long as there are vertices with degree d:

Let v be a
vertex with neighborhood {vi,...,v4}. Replace v by two vertices u,w
and add the edges {u,w}, {u,v1},..., {u,va}, {w,va }, ..., {w, va}.

2 2

d
4. d= 5+ 1.
5. if d > 3 goto step 3.

From the procedure above we see that the obtained graph G has all the
vertices of degree 3 < k and contains a clique with 21 4 3 > h vertices as a
minor. O

Lick and White in [31] proved the following extremal result about width
(see also [25]).

Theorem 5 Let G be a graph with n vertices, e edges and width(G) < k. Then
e < (g) + k(n — k).

Clearly widths, (G) <width,,(G) when s; < s3. Using this fact, we can see
that the above extremal result holds also for width, Vs > 1.

Definition 5 Let G = (V,E) be a graph and w : V — R a function assigning
a positive real weight to each vertex in V. We call the sum of the weights over
all the vertices of a set V' CV the total weight of V' and denote it as w(V').

Aset S CVisa %-sepamtor of the function w i G iff the sum of the
weights of the vertices in each of the connected components of G[V — S| is no
more than $w(V).

It seems to be useful to have results that tell how to find separators of
small cardinality in graphs, as these have several applications in combination
with a divide-and-conquer strategy. For such theorems and applications see
e.g. [34, 33, 1]. A well known separator result is the following.

Theorem 6 Let G = (V,E) be a graph and w: V — R a function assigning
a positive real weight to each vertex in V.. Then any tree decomposition ({X; :
i € I}, T) of G with treewidth< k, contains a node that is an %—sepamtor of w
mn G.

This theorem is a straightforward generalization of Theorem 3.5 in [11], and
can be proved in the same way.



3 Treewidth is NP-complete for graphs with
bounded max-degree

In this section we prove that treewidth is also NP-complete when restricted on
graphs with maximum degree at most 9.
The decision version of the treewidth problem is the following:

TREEWIDTH
Instance: Graph G = (V, E), integer k < |V| — 1.
Question: Is the treewidth of G at most k?

Definition 6 We call a graph (ni,mi,ny, my)-bigrid if it can be constructed
in the following way:

Take two grids G1 and G with sizes ni,mq and no, my respectively. Extend
each grid G; 1 = 1,2 in the following way:

Let S; = {vi,...,v,.} CV(G;) be the vertices of a side of G; containing n;
vertices. Add a vertex set S! = {ui,... ,uﬁl} and connect v§ with u; for g =
1,...,n;. We call the two graphs obtained, the pruned grids of the construction
and we denote them as G and GY.

The construction is completed by adding an arbitrary number of edges, each
between a verter in S7 and a vertezx in S%.

We call the transformation below a g-clique-grid transformation from a co-
bipartite graph G to a bigrid graph G'.

Let G = (V, E) be a cobipartite graph where V1, V5 induce disjoint cliques
and |Vi|+ |Va| = |V|. Let ny = |Vi] and ny = |Va|. Now we take a (n1, ¢, na, q)-
bigrid G’ = (V', E’) in the following way: each vertex in S; represents a vertex
in V; and each edge e = {v},v?}, vi € Sj,v} € S} represents the edge in E
which has as endpoints the corresponding to u}c and u? vertices of V.

We now need the following, rather technical lemmas.

Lemma 4 Consider a tree decomposition ({X;,j € J},T) of a graph G =
(V.E). Then for any clique K of G, 3j € J:V(K) C X;.

For a proof of this lemma see e.g., [15, 21].

Lemma 5 Let G be a grid with sizes n,q and ({X; : j € J},T) be a tree
decomposition of G with width < k. Then if ¢ > 2k + 3, there is a node X; in
the decomposition that contains at least one vertex of each of the ¢ rows of G.

Proof Let w : V — RT be a function such that Vo € V, w(v) = 1. As
treewidth(G) < k, from Theorem 6 it follows that there must exist a node X;
in the decomposition tree that is a %—separator of G. Clearly X; has common
vertices with at most k41 columns in G. So there are at least ¢—(k+1) columns
in G not meeting X;. Suppose that all of the vertices of these columns belong
in the same component of G[V — X;]. As X is a %—separator of w in G, this
component must contain < (ng) vertices. Therefore n(q — (k+ 1)) < 2(ng)

which gives ¢ > 2k + 2, a contradiction. Hence, there are two columns in



different components of G[V — X;]. Now any row contains a vertex of each
of the two components, and hence X; must contain a vertex of each row, by
definition of tree decomposition. O

The following lemma, asserts that treewidth is an invariant of the g-clique-
grid transformation when ¢ is sufficiently large.

Lemma 6 Let G be a cobipartite graph. Let G' be the graph we obtain from
G if we apply a q-clique-grid transformation on G with ¢ > 2k + 3. Then
treewidth(G) < k, if and only if treewidth(G') < k.

Proof Suppose that treewidth(G) < k. We will prove that treewidth(G’) < k.
Notice first that G contains two cliques C; of n; vertices each (i = 1,2). By
Lemma 4, G must have a tree decomposition that has a node X]’ containing C;.
An easy construction shows that any (n;,m;)-grid has a tree decomposition of
treewidth < n;, that contains all the vertices of some side of n; vertices in one
of its nodes. Using this fact, we can build a tree decomposition of each pruned
grid G%, i = 1,2 in G’ that has width < n; and has a node containing S;. Now
if we identify the vertices of each clique C; in G with the corresponding set S’
in each pruned grid, we can see that, composing the tree decompositions of G,
G and GY, the graph G erge thus obtained has a tree decomposition of width
< max{ni, ny, treewidth(G)} < k. As G’ is a subgraph of Gerge we have the
required result.

Suppose now that treewidth(G’) < k. Fix a tree-decomposition ({X; | i €
I},T) of G' of treewidth at most k. Let G” be obtained from G’ by adding
edges between all pairs of vertices v,w for which there is at least one node
i € I with v,w € X;. Clearly, ({X; | ¢ € I},T) is also a tree-decomposition
of G”. Let G be the graph, obtained by contracting all rows in both grids
with the corresponding vertex u;. Note that G is a subgraph of G'': edges
between vertices in the different cliques clearly are present. We must verify all
edges in the cliques are present in G": when v, w belong to the same clique in
G, then two rows in one of the grids in G” have been contracted to v and w,
respectively. As there is a node that contains a vertex of each row of this grid
(Lemma 5), it follows there is an edge between a vertex of v’s row and a vertex
of w’s row in G”, hence v and w are adjacent in G"”. So, G is a minor of G"".
The result now follows by Lemma 2. O

Theorem 7 Treewidth remains NP-complete when restricted to graphs with
mazimum degree 9.

Proof In the NP-completeness proof of Arnborg et al [6], a transformation
from the cutwidth problem to cobipartite graphs is given. Cutwidth is NP-
complete when restricted to graphs with maximum degree at most three [38].
Applying the transformation from [6] to graphs of maximum degree three yields
cobipartite graphs where any vertex is connected to at most eight vertices in
the clique to which it does not belong. Hence, treewidth is NP-complete for the
latter type of cobipartite graphs. When we apply a g-clique-grid transformation
on such a cobipartite graph, we obtain a graph of degree at most 9. Applying
such a transformation with a properly chosen value of ¢ (e.g., take ¢ = 2k + 3,
where k is the desired treewidth), yields the result. O



4 Graphs with bounded A(G) and 1c(G)

In the previous section we proved that treewidth is NP-complete for graphs
with maximum degree > 9. Similarly, pathwidth is NP-complete for graphs of
maximum degree 3 [38]. In this section we show hat if both max-degree and
the length of the chordless cycles are bounded, then the treewidth is bounded
by a constant, and hence computable in linear time. It also follows that there
is a polynomial time algorithm for pathwidth in this case.

For graphs G, let D(G) denote 32, cy (e (A — deg(u)).

Lemma 7 Letk, A, s be fixed constants. Let D be the class of connected graphs
such that for any G € D holds that:

1. 2<AG) <A

2. there exists a verter v € V(G) such that deg(v) < k < A and for any
vertex u € V(QG) there is a path between w and v of length at most s.

Then D(G) < k(A —1)°.

Proof First observe that if |[V(G)| = n and |E(G)| = e, D(G) = nA — 2e.
Consider fixed values of £, A and s. If A = 2, then D(G) = max{2,k} and if
s =0, then D(G) = k. We now examine the case that A > k£ > 2 and s > 0.

Note that D is a finite set. Consider a graph G in D such that D(G) is
maximal. We will prove first that G is a tree. Assume that G contains a cycle.
Let T be a breath first spanning tree of G with root v, and let e be the edge of
the cycle not in E(T). Now let G’ be the graph obtained by deleting e from G.
Clearly G’ € D and D(G") = D(G) + 2, a contradiction.

We claim now that each vertex in V(G)—{v} that is not a leaf has degree A
and that deg(v) = k. Suppose w is not a leaf, and either v = w and deg(v) < k,
or v # w and deg(v) < A. We construct a graph G’ by adding a new vertex and
connecting it with w. Now G’ € D and D(G’") = D(G)+ A —2, a contradiction.
Finally, for each leaf w, the unique path between v and v in G must have length
s because otherwise we can add a vertex w to G connected with v and the thus
obtained graph G’ also belongs to D and D(G') = D(G)+A -2, a contradiction.

Now observe that there is only one possibility left for G. It is easy to see
that e=k + k(A —1)+... + k(A -1)*t= L ((A-1)*-1) and, as Gis a
tree, we have that D(G) = (e + 1)A —2e =e(A —2) + A = k(A —1)%. O

Definition 7 Let G = (V,E) be a graph and let A, B C V,ANB =0. We
define the degree of A in B, denoted by deg(A, B), as the number of vertices in
B that are connected with vertices in A.

Theorem 8 Let G be a graph with A(G) = A > 2 and width(G) < k. Let
s > 1. Then widths(G) < k(A —1)571,

Proof We examine the nontrivial case when s > 1. As width(G) < k, there is

a layout L such that width(L) < k. Consider L’ as the layout of V' obtained
by reversing L. Let v be any vertex in L'. Tt is sufficient to prove that the

10



s-width of v cannot be more than k(A — 1)*~!. Let A be the set of vertices
not preceding v in L’ that are connected with v via paths of vertices not pre-
ceding v; and of length < s — 1. Also let B be the set of vertices preceding
v. Clearly widths(v) = deg(A, B). Using the notation G4 = G[A], we can see
that deg(4,B) < D(Ga) = Yyev(a,)(A — deg(u)) (the degree of u is taken
with respect to G4). Also notice that G 4 is a connected graph with A(G) < A,
vertex v € G 4 has degree< k and is connected with any vertex in V(G 4) with
a path of length < s — 1. Now by Lemma 7 we have the required result. O

As width(G) < A(G) we have the following corollary.

Theorem 9 Let G be a graph where 2 < A(G) < A, Let s > 1. Then
widths(G) < A(A —1)571,

The following result can easily be derived from Theorems 2, 4, and 9.

Theorem 10 Let G be a graph such that lc(G) < s+ 2 and A(G) < A. Let
s > 1. Then treewidth(G) < A(A —1)51,

Corollary 1 Let s > 1, and A be fized constants. Let G be the class of graphs
with le(G) < s+ 2, and A(G) < A. Then there exist:

1. A linear time algorithm that computes the treewidth of graphs in G.
2. A polynomial time algorithm that computes the pathwidth of graphs in G.

3. A O(log?n) time parallel algorithm that computes the treewidth of graphs
in G and that uses O(n/log*n) processors on an EREW PRAM.

Each of the above algorithms outputs the corresponding tree or path decomposi-
tion of minimum treewidth or pathwidth.

Proof Theorems 1 and 10 imply the first result. The second result follows
from the result in [13] stating that for graphs with bounded treewidth, there
is a polynomial time algorithm for pathwidth. The third result is obtained by
combining the parallel algorithm given in [12] with Theorem 10. |

5 A separator theorem for k-chordal graphs with
small width

In this chapter we will prove a separator theorem for s-chordal graphs with
small width. We first give the following lemma about the high degree vertices
of a graph with small width.

Lemma 8 Let G be a graph where width(G) < k and let Vg be the set of vertices
that have degree > d > k. Then |Vy| < 2£2.

Proof Each vertex in V; has degree at least d.  Therefore d|Vy| <
Yovev, deg(v) < 3 ey deg(v) < 2|E|. By Theorem 5 we have that d|Vy| <
k% — k + 2kn — 2k? < 2kn which completes the proof of the lemma. O

When the width of a graph is given, the following theorem provides an upper
bound to widths.

11



Theorem 11 Let G be a graph G with width(G) < k. Then widths(G) <
s—1 s—1

(2k) = ns .

Proof By Lemma 8 we have that if d = an, then there are at most % vertices
with degree > an in G (« is a value to be chosen later). Let L be a layout of
width < k and Viicn be the set of vertices with degree at least an. Notice that
any vertex in L that is not in Vi, is connected with at most an vertices in
Viich

We take a layout L’ of G such that the vertices in Vi, are the |Via|
first vertices. We arrange the rest of the vertices (we call them poor vertices)
following the reversed order of their arrangement in L. Clearly the widths of
each of the first % vertices in L is at most %

Notice that any poor vertex v can be adjacent to at most k vertices not
preceding it in L'. Following the notation of Theorem 8, we define A as the
set of vertices not preceding v in L’ that are connected with v via paths of
vertices not preceding v; of length < s — 1 and denote G4 = G[A]. Also,
let B be the set of vertices preceding v. Clearly widths(v) = deg(A, B) <
D(Ga) = Yucviaa)(A — deg(u)) (the degree of u is taken with respect to
G 4). If we observe that deg(v) < k in G 4 and all the vertices in V(G 4) have
degree < an, then from Lemma 7, it follows that widths(v) < k(an)*~!. So
width(L') < max{%, k(an)*~'}. We obtain the optimum value if we choose

o= 2%71_5%1, where we have that widthy(G) < k(2n)szl. O

s—1

Corollary 2 Iflc(G) < s+2 and width(G) < k, then treewidth(G) < k(2n) = .

We see that for a graph where 1¢(G) < s + 2, we can find a layout L
as in Theorem 11 that has widthy(L) < (2k)s;1n%. As treewidth(G) <

(2k)5§1n%, from the proof of Theorem 4 it follows that reversing L, we can

obtain an elimination ordering for G. As, when given an elimination ordering,
a tree decomposition can be found in linear time (see [5]), this leads to a linear
time algorithm that finds a %—separator in G with the required size. Thus we
have the following theorem.

Theorem 12 Let G = (V, E) be a graph and w : V — R a function assigning
a positive real weight to each vertex in V. Then if width(G) < k and le(G) <
s+ 2, there is a linear time algorithm computing a %—sepamtor of w in G that

s—1

has size < k(2n)"s .

6 Graphs with small chordality

In this section, we give small upper bounds for the chordality of some well
known classes of graphs, thus enabling to apply results of the previous section
to such graphs.

Definition 8 A graph G is a weakly chordal graph iff neither G or G¢ contain
a chordless cycle of length > 5.

12



The class of weakly chordal graphs was introduced by Hayward in [24]. An
immediate corollary is the following.

Lemma 9 If G is weakly chordal then G,G¢ are 4-chordal.

We mention that the class of weakly chordal graphs is quite a large one, as it
contains the classes of co-chordal graphs, chordal bipartite graphs, permutation
graphs, trapezoid graphs, tolerance graphs, 2-threshold graphs and others (see
also [18]).

It is known that for chordal bipartite graphs, treewidth is polynomially
computable in time O(e?) (see [29]) and pathwidth is NP-complete [28].

Definition 9 A partial order P on a set V is an irreflexive and transitive
binary relation on V. If a,b € V and (a,b) € P then we write a < b and call
a,b comparable. If two elements of P are not comparable, then we call them
incomparable.

Definition 10 A graph G = (V, E) is a comparability graph if there exist a
partial order P on V' such that Yv,u € V, {v,u} € E iff v < w oru < v in
P. A graph G = (V, E) is a cocomparability graph if it is the complement of a
comparability graph.

Lemma 10 If G is a cocomparability graph then G is 4-chordal.

Proof Suppose that G contains a chordless cycle C' = (vy,...,v,v1). of length
[ > 5. We denote the complement of G as G¢. Clearly G¢ is a comparability
graph. Hence, G¢ does not contain an odd chordless cycle (see [18], page 43). If

[ =5, then the complement of G°[{v1,...,v5}] is also a cycle with five vertices,
contradiction. If [ > 6, then vy, v3,vs form a triangle in G€¢, contradiction.
Hence, GG is 4-chordal. O

As mentioned above, treewidth and pathwidth are NP-complete when re-
stricted to cocomparability graphs (see [23]). When additionally a degree re-
striction is put on the graphs, we have the following result, which can be derived
directly from Theorem 10 and Lemmas 10 and 9.

Theorem 13 For any constant A, there exist:

1. A linear time algorithm for computing the treewidth of cocomparability
graphs or weakly chordal graphs, with maximum degree A.

2. An optimal parallel algorithm for computing the treewidth of cocompara-
bility graphs or weakly chordal graphs, with maximum degree A.

3. A polynomial algorithm for computing the pathwidth of cocomparability
graphs or weakly chordal graphs, with mazimum degree A.

Also, the next results follows from Theorem 12.

13



Corollary 3 Let G = (V,E) be a graph and let w : V — R be a function

assigning a positive real weight to each vertex in'V. If G is a 4-chordal graph and

width(G) < k, then treewidth(G) < kv/2n and there is a linear time algorithm
1 -

computing a 5-separator of w in G of size at most kv/2n.

As an additional example of classes of graphs with a constant upper bound
on the chordality, we mention the the graphs that are complements of r-partite
graphs (graphs with chromatic number at most r): these do not have a chordless
cycle of length more than 2r.

It is easy to prove that any graph that does not contain a specific graph as a
minor has constant bounded width. Therefore separator Theorem 12 straight-
forwardly extents the results of Lipton and Tarjan in [33, 34] and Alon, Sey-
mour, and Thomas in [1] in the setting of 4-chordal graphs with small width.
Moreover, Theorem 12 can give applications for any class of graphs where
chordality and width are bounded.

We present below the application of our separator theorem to the problem
of approximating the independent set problem on (s + 2)-chordal graphs with
small width.

We examine the non trivial case where s+ 2 > 3. Let G be a given (s + 2)-
chordal graph where width< k where £ is a fixed constant. By repeatedly
finding a separator as in Theorem 12 we can obtain the following immediate
generalization of Theorem 3 in [34].

Proposition 1 Let s > 1, k be constants. Let G be the set of (s + 2)-chordal
graphs G with width(G) < k, given with a function w : V. — R assigning
weights to the vertices of G such that Y o, w(v) = 1. Then there is an
O(nlogn) algorithm, that when given an € 0 < € < 1, and a graph G € G,
finds a set of at most O(ns;_1 67%) vertices, whose removal leaves G with no
connected component of total weight exceeding e.

Applying now the previous proposition with ¢ = logn/n and giving each
vertex weight 1/n, we can find a set of vertices C' of size O(n/ log% n), whose
removal leaves no connected component with more than logn vertices. If now
we apply exhaustive search to each connected component, we can find a collec-
tion of independent sets whose union is denoted as I. Let I* be a maximum
independent set in G. Following the same arguments as in [34] and taking in
mind that if width(G) <k then [I*] > 5%, we can conclude to the following:

Proposition 2 Given an (s+2)-chordal graph G that has constant width, there

is an O(n?) algorithm that finds an independent set I in G with relative error

|I*“I_‘|I| = O(l/log% n), where I'* is a maximum independent set.

7 Discussion

From Theorem 6 it follows that, in a graph whose treewidth is small compar-
atively to the number of its vertices (e.g., treewidth(G) = O(y/n)), there exist
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also an equal size j-separator. Using this fact, it would be useful to deter-
mine classes of graphs where treewidth is small enough to provide a separator
theorem.
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