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Abstract

A vertex (edge) coloring c : V ! f1; 2; : : : ; tg (c0 : E ! f1; 2; : : : ; tg)
of a graph G = (V;E) is a vertex (edge) t-ranking if for any two vertices
(edges) of the same color every path between them contains a vertex (edge)
of larger color. The vertex ranking number �r(G) (edge ranking number

�0

r
(G)) is the smallest value of t such that G has a vertex (edge) t-ranking.

In this paper we study the algorithmic complexity of the vertex ranking

and edge ranking problems. Among others it is shown that �r(G) can
be computed in polynomial time when restricted to graphs with treewidth
at most k for any �xed k. We characterize those graphs where the vertex
ranking number �r and the chromatic number � coincide on all induced
subgraphs, show that �r(G) = �(G) implies �(G) = !(G) (largest clique
size) and give a formula for �0

r
(Kn).

1 Introduction

In this paper we consider vertex rankings and edge rankings of graphs. The ver-
tex ranking problem, also called the ordered coloring problem [15], has received
much attention lately because of the growing number of applications. There
are applications in scheduling problems of assembly steps in manufacturing sys-
tems [19], e.g., edge ranking of trees can be used to model the parallel assembly
of a product from its components in a quite natural manner [6, 12, 13, 14].
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Furthermore the problem of �nding an optimal vertex ranking is equivalent to
the problem of �nding a minimum-height elimination tree of a graph [6, 7].
This measure is of importance for the parallel Cholesky factorization of matri-
ces [3, 9, 18]. Yet other applications lie in the �eld of VLSI-layout [17, 26].

The vertex ranking problem `Given a graph G and a positive integer t,
decide whether �r(G) � t ' is NP-complete even when restricted to cobipartite
graphs since Pothen has shown that the equivalent minimum elimination tree
height problem remains NP-complete on cobipartite graphs [20]. A short proof
of the NP-completeness of vertex ranking is given in Section 3. Much work
has been done in �nding optimal rankings of trees. For trees there is a linear-
time algorithm �nding an optimal vertex ranking [24]. For the closely related
edge ranking problem on trees a O(n3) algorithm was given in [8]. Recently,
Zhou and Nishizeki obtained an O(n logn) algorithm for optimally edge ranking
trees [28] (see also [29]). E�cient vertex ranking algorithms for permutation,
trapezoid, interval, circular-arc, circular permutation graphs, and cocompara-
bility graphs of bounded dimension are presented in [7]. Moreover, the vertex
ranking problem is trivial on split graphs and it is solvable in linear time on
cographs [25].

In [15], typical graph theoretical questions, as they are known from the
coloring theory of graphs, are investigated. This also leads to a O(

p
n) bound

for the vertex ranking number of a planar graph and the authors describe a
polynomial-time algorithm which �nds a vertex ranking of a planar graph using
only O(

p
n) colors. For graphs in general there is an approximation algorithm

of performance ratio O(log2 n) for the vertex ranking number [3, 16]. In [3]
it is also shown that one plus the pathwidth of a graph is a lower bound for
the vertex ranking number of the graph (hence a planar graph has pathwidth
O(
p
n), which is also shown in [16] using di�erent methods).
Our goal is to extend the known results in both the algorithmic and graph

theoretic directions. The paper is organized as follows. In Section 2 the nec-
essary notions and preliminary results are given. We study the algorithmic
complexity of determining whether a graph G ful�lls �r(G) � t and �0r(G) � t,
respectively, in Sections 3, 4, and 5. In Section 6 we characterize those graphs
for which the vertex ranking number and the chromatic number coincide on
every induced subgraph. Those graphs turn out to be precisely those con-
taining no path and cycle on four vertices as an induced subgraph; hence, we
obtain a characterization of the trivially perfect graphs [11] in terms of rankings.
Moreover we show that �(G) = �r(G) implies that the chromatic number of
G is equal to its largest clique size. In Section 7 we give a recurrence relation
allowing us to compute the edge ranking number of a complete graph.

2 Preliminaries

We consider only �nite, undirected and simple graphs G = (V;E). Throughout
the paper n denotes the cardinality of the vertex set V andm denotes that of the
edge set E of the graph G = (V;E). For graph-theoretic concepts, de�nitions
and properties of graph classes not given here we refer to [4, 5, 11].
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Let G = (V;E) be a graph. A subset U � V is independent if each pair
of vertices u; v 2 U is nonadjacent. A graph G = (V;E) is bipartite if there is
a partition of V into two independent sets A and B. The complement of the
graph G = (V;E) is the graph G having vertex set V and edge set ffv; wg j v 6=
w; fv; wg 62 Eg. For W � V we denote by G[W ] the subgraph of G = (V;E)
induced by the vertices of W , and for X � E we write G[X] for the graph
(V;X) with vertex set V and edge set X.

De�nition 1 Let G = (V;E) be a graph and let t be a positive integer. A
(vertex) t-ranking, called ranking for short if there is no ambiguity, is a coloring

c : V ! f1; : : : ; tg such that for every pair of vertices x and y with c(x) = c(y)
and for every path between x and y there is a vertex z on this path with c(z) >
c(x). The vertex ranking number of G, �r(G), is the smallest value t for which
the graph G admits a t-ranking.

By de�nition adjacent vertices have di�erent colors in any t-ranking, thus any t-
ranking is a proper t-coloring. Hence �r(G) is bounded below by the chromatic

number �(G). A vertex �r(G)-ranking of G is said to be an optimal (vertex)

ranking of G.
The edge ranking problem is closely related to the vertex ranking problem.

De�nition 2 Let G = (V;E) be a graph and let t be a positive integer. An
edge t-ranking is an edge coloring c0 : E ! f1; : : : ; tg such that for every pair

of edges e and f with c0(e) = c0(f) and for every path between e and f there is

an edge g on this path with c0(g) > c0(e). The edge ranking number �0r(G) is
the smallest value of t such that G has an edge t-ranking.

Remark 3 There is a one-to-one correspondence between the edge t-rankings
of a graph G and the vertex t-rankings of its line graph L(G). Hence �0r(G) =
�r(L(G)).

An edge t-ranking of a graph G is a particular proper edge coloring of G. Hence
�0r(G) is bounded below by the chromatic index �0(G). An edge �0r(G)-ranking
of G is said to be an optimal edge ranking of G.

As shown in [7], the vertex ranking number of a connected graph is equal
to its minimum elimination tree height plus one. Thus (vertex) separators and
edge separators are a convenient tool for investigating rankings of graphs. A
subset S � V of a graph G = (V;E) is said to be a separator if G[V n S] is
disconnected. A subset R � E of a graph G = (V;E) is said to be an edge

separator (or edge cut) if G[E nR] is disconnected.
In this paper we use the separator tree for studying vertex rankings. This

concept is closely related to elimination trees (cf.[3, 7, 18]).

De�nition 4 Given a vertex t-ranking c : V ! f1; 2; : : : ; tg of a connected
graph G = (V;E), we assign a rooted tree T (c) to it by an inductive construction,

such that a separator of a certain induced subgraph of G is assigned to each

internal node of T (c) and the vertices of each set assigned to a leaf of T (c) have
pairwise di�erent colors:
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1. If no color occurs more than once in G, then T (c) consists of a single
vertex r (called root), assigned to the vertex set of G.

2. Otherwise, let i be the largest color assigned to more than one vertex by c.
Then fi+1; i+2; : : : ; tg has to be a separator S of G. We create a root r of
T (c) and assign S to r. (The induced subgraph of G corresponding to the

subtree of T rooted at r will be G itself.) Assuming that a separator tree

Ti(c) with root ri has already been de�ned for each connected component

Gi of the graph G[V n S], the children of r in T (c) will be the vertices ri
and the subtree of T (c) rooted at ri will be Ti(c).

The rooted tree T (c) is said to be a separator tree of G.

Notice that all vertices of G assigned to nodes of T (c) on a path from a leaf to
the root have di�erent colors.

3 Unbounded ranking

It is still unknown whether the edge ranking problem `Given a graph G and
a positive integer t, decide whether �0r(G) � t ' is NP-complete. Clearly, by
Remark 3 this problem is equivalent to the vertex ranking problem `Given
a graph G and a positive integer t, decide whether �r(G) � t ' when restricted
to line graphs.

On the other hand, it is a consequence of the NP-completeness of the mini-
mum elimination tree height problem shown by Pothen in [20] and the equiva-
lence of this problem with the vertex ranking problem [6, 7] that the latter
is NP-complete even when restricted to graphs that are the complement of
bipartite graphs, the so-called cobipartite graphs.

For reasons of self-containedness, we start with a short proof of the NP-
completeness of vertex ranking, when restricted to cobipartite graphs. The
following problem, called balanced complete bipartite subgraph (abbre-
viated bcbs) is NP-complete. This is problem [GT24] of [10].

Instance: A bipartite graph G = (V;E) and a positive integer k.

Question: Are there two disjoint subsets W1;W2 � V such that
jW1j = jW2j = k and such that u 2 W1, v 2 W2 implies that
fu; vg 2 E?

Theorem 5 vertex ranking is NP-complete for a cobipartite graphs.

Proof: Clearly the problem is in NP. NP-hardness is shown by reduction from
bcbs.

Let a bipartite graph G = (V1; V2; E) and a positive integer k be given. Let
G be the complement of G, thus G is a cobipartite graph.

We claim that G has a balanced complete bipartite subgraph with 2 � k
vertices if and only if G has a (n� k)-ranking.
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Suppose we have sets W1 � V1, W2 � V2, such that jW1j = jW2j = k
and such that for all u 2 W1, v 2 W2: fu; vg 2 E. We now construct a k-

ranking of G. Write Wi = fv(i)1 ; : : : ; v
(i)
k g for i 2 f1; 2g, write V n (W1 [W2) =

fv01; : : : ; v0n�2�kg. We de�ne a vertex ranking c of G as follows:

c(v
(1)
j ) = c(v

(2)
j ) = j for all j, 1 � j � k.

c(v0j) = k + j for all j, 1 � j � n� 2 � k.

One easily observes that c is a vertex (n� k)-ranking.
Next, let c be a (n�k)-ranking forG. Since G is a cobipartite graph, for each

color, there can be at most two vertices with that color, one lying in V1 and the

other in V2. Therefore, we have k pairs v
(1)
j and v

(2)
j with c(v

(1)
j ) = c(v

(2)
j ) and we

can assume that W1 = fv(1)j j1 � j � kg � V1 and W2 = fv(2)j j1 � j � kg � V2.
Now we show that the subgraph induced by the setW1[W2 forms a balanced

complete bipartite subgraph in G. To show this, we prove that each pair of

vertices u 2 W1, v 2 W2 is not adjacent in G. Suppose v
(1)
i and v

(2)
j are

adjacent inG. Then, the colors of these vertices must be di�erent. Furthermore,

assume w.l.o.g., that c(v
(1)
i ) < c(v

(2)
j ). Then we have a path (v

(1)
j ; v

(1)
i ; v

(2)
j ) with

c(v
(1)
i ) < c(v

(1)
j ) = c(v

(2)
j ) contradicting the fact that c is a ranking. Hence the

subgraph induced byW1[W2 is indeed a balanced complete bipartite subgraph.
This proves the claim, and the NP-completeness of vertex ranking. 2

We show that the analogous result holds for bipartite graphs as well.

Theorem 6 vertex ranking remains NP-complete for bipartite graphs.

Proof: The transformation is from vertex ranking for arbitrary graphs
without isolated vertices. Given the graph G, we construct a graph G0 =
(V 0; E0). We take

V 0 = V [ f(e; i) j e 2 E; 1 � i � t+ 1g
and

E0 = ffv; (e; i)g j v 2 V; e 2 E; 1 � i � t+ 1 where v 2 eg:
Clearly, the constructed graph G0 is a bipartite graph. Now we show that G
has a t-ranking if and only if G0 has a (t+ 1)-ranking.

Suppose G has a t-ranking c : V ! f1; : : : ; tg. We construct a coloring ĉ for
G0 in the following way. For the vertices v 2 V we set ĉ(v) = c(v) + 1 and for
the vertices (e; i) 2 V 0 n V we set ĉ((e; i)) = 1. Clearly ĉ is a (t+ 1)-ranking of
G0.

On the other hand, let ĉ : V 0 ! f1; : : : ; t+1g be a (t+1)-ranking of G0. We
show that ĉ(v) > 1 for every vertex v 2 V . Suppose not and let v be a vertex
of V with ĉ(v) = 1. Let e = fv; wg be an edge incident to v in G. Hence v is
adjacent to (e; 1); (e; 2); : : : ; (e; t + 1) in G0. Then ĉ(v) = 1 implies ĉ((e; i)) > 1
for i = 1; 2; : : : ; t+1. Since ĉ is a (t+1)-ranking, there are l; l0 with l 6= l0 such

5



that ĉ((e; l)) = ĉ((e; l0)), implying a path (e; l) � v � (e; l0) which contradicts
the assumption that ĉ is a ranking. This proves that ĉ(v) > 1 holds for every
vertex v 2 V . As a consequence, for each edge e = fu; vg 2 E, there is a
vertex (e; i) 2 V 0 with ĉ((e; i)) < min(ĉ(u); ĉ(v)). Thus, changing ĉ on V 0 n V
to ĉ((e; i)) = 1 for all (e; i) 2 V 0, we obtain another (t+ 1)-ranking of G0. Now
we de�ne c(v) = ĉ(v) � 1 for every v 2 V . The coloring c is a t-ranking of
G since the existence of a path between two vertices v and w of G such that
c(v) = c(w) and all inner vertices have smaller colors implies the existence of a
path from v to w in G0 with ĉ(v) = ĉ(w) and all inner vertices having smaller
colors, contradicting the fact that ĉ is a (t+ 1)-ranking of G0. 2

4 Bounded ranking

We show that the `bounded' ranking problems `Given a graphG, decide whether
�r(G) � t (�0r(G) � t) ' are solvable in linear time for any �xed t. This will be
done by verifying that the corresponding graph classes are closed under certain
operations.

De�nition 7 An edge contraction is an operation on a graph G replacing two

adjacent vertices u and v of G by a vertex adjacent to all vertices that were

adjacent to u or v. An edge lift is an operation on a graph G replacing two

adjacent edges fv; wg and fu;wg of G by one edge fu; vg.

De�nition 8 A graph H is a minor of the graph G if H can be obtained from

G by a series of the following operations: vertex deletion, edge deletion, and

edge contraction. A graph class G is minor closed if every minor H of every

graph G 2 G also belongs to G.

Lemma 9 The class of graphs satisfying �r(G) � t is minor closed for any

�xed t.

Proof: Since vertex/edge deletion cannot create new paths between
monochromatic pairs of vertices, we only have to show that edge contrac-
tion does not increase the ranking number. Let G = (V;E) be a graph with
�r(G) � t, and assumeH = (V 0; E0) is obtained fromG by contracting the edge
fu; vg 2 E into a new vertex cuv. Suppose c is a t-ranking of G. We construct
a coloring ĉ : V 0 ! f1; 2; : : : ; tg of H as follows.

ĉ(x) =

(
c(x) if x 2 V n fu; vg
max(c(u); c(v)) if x = cuv

Suppose ĉ is not a t-ranking of H. Then there is a path P : x0 � x1 � � � � � xs,
s � 1, of H such that ĉ(x0) = ĉ(xs) > ĉ(xi) for every i 2 f1; 2; : : : ; s�1g. Since
c is a t-ranking of G the vertex cuv must occur in the path. Depending on its
neighbors in P we can `decontract' cuv in the path P into u, v, u � v or v � u
getting a path P 0 of G violating the ranking condition, in contradiction to the
choice of c. 2
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Corollary 10 For each �xed t, the class of graphs satisfying �r(G) � t can be
recognized in linear time.

Proof: In [1], using results from Robertson and Seymour [22, 23], it is shown
that every minor closed class of graphs that does not contain all planar graphs,
has a linear time recognition algorithm. The result now follows directly from
Lemma 9. 2

As regards edge rankings, a simple argument yields a much stronger asser-
tion as follows.

Theorem 11 For each �xed t, the class of connected graphs satisfying �0r(G) �
t can be recognized in constant time.

Proof: For any �xed t, there are only a �nite number of connected graphs G
with �0r(G) � t, as necessary conditions are that the maximum degree of G is
at most t, and the diameter of G is bounded by 2t � 1. 2

Certainly, the above theorem immediately implies that the graphs G satis-
fying �0r(G) � t can be recognized in linear time, by inspecting the connected
components separately. This result might have also been obtained via more
involved methods, by using results of Robertson and Seymour on graph immer-
sions [21]. Similarly, one can show that for �xed t and d, the class of connected
graphs with �r(G) � t and maximum vertex degree d can be recognized in
constant time.

De�nition 12 A graph H is an immersion of the graph G if H can be obtained

from G by a series of the following operations: vertex deletion, edge deletion

and edge lift. A graph class G is immersion closed if every immersion H of a

graph G 2 G also belongs to G.
The proof of the following lemma is similar to the one of Lemma 9 and therefore
omitted.

Lemma 13 The class of graphs satisfying �0r(G) � t is immersion closed for

any �xed t.

Linear-time recognizability of the class of graphs satisfying �0r(G) � t now also
follows from Lemma 13, the results of Robertson and Seymour, and the fact
that graphs with �0r(G) � t have treewidth at most 2t+ 2.

5 Computing the vertex ranking number on graphs

with bounded treewidth

In this section, we show that one can compute �r(G) of a graph G with
treewidth at most k in polynomial time, for any �xed k. Such a graph is
also called a partial k-tree. This result implies polynomial time computability
of the vertex ranking number for any class of graphs with a uniform upper
bound on the treewidth, e.g., outerplanar graphs, series-parallel graphs, Halin
graphs.
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The notion of treewidth has been introduced by Robertson and Seymour
(see e.g., [22]).

De�nition 14 A tree-decomposition of a graph G = (V;E) is a pair (fXi j i 2
Ig; T = (I; F )) with X = fXi j i 2 Ig a collection of subsets of V , and T =
(I; F ) a tree, such that

� Si2I Xi = V

� for all edges fv; wg 2 E there is an i 2 I with v; w 2 Xi

� for all i; j; k 2 I: if j is on the path from i to k in T , then Xi \Xk � Xj.

The width of a tree-decomposition (fXi j i 2 Ig; T = (I; F )) is maxi2I jXij �
1. The treewidth of a graph G = (V;E) is the minimum width over all tree-

decompositions of G.

We often abbreviate (fXi j i 2 Ig; T = (I; F )) as (X;T ). When the
treewidth of G = (V;E) is bounded by a constant k, one can �nd in O(n)
time a tree-decomposition (X;T ) of width at most k, such that I = O(n) and
T is a rooted binary tree [1]. Denote the root of T as r. We say (X;T ) is a
rooted binary tree-decomposition.

De�nition 15 A terminal graph is a triple (V;E;Z), with (V;E) an undirected

graph, and Z � V a subset of the vertices, called the terminals.

To each node i of a rooted binary tree-decomposition (X;T ) of graph
G = (V;E), we associate the terminal graph Gi = (Vi; Ei;Xi), where Vi =SfXj j j = i or j is a descendant of ig, and Ei = ffv; wg 2 E j v; w 2 Vig. As
shorthand notation we write p(v; w;G; c; �), i� there is a path in G from v to
w with all internal vertices having colors, smaller than � under coloring c. If
p(v; w;G; c; �), we denote with P (v; w;G; c; �) the set of paths in G from v to
w with all internal vertices having colors (using color function c), smaller than
�. In the following, suppose t is given.

De�nition 16 Let G = (V;E;Z) be a terminal graph, and let c : V !
f1; : : : ; tg be a vertex t-ranking of (V;E). The characteristic of c, Y (c), is

the quadruple (cjZ ; f1; f2; f3), where
� cjZ is the function c, restricted to domain Z.

� f1 : Z�f1; : : : ; tg ! ftrue,falseg, is de�ned by: f1(v; i) = true if and only

if c(v) = i or there is a vertex x 2 V with c(x) = i and p(v; x;G; c; i).

� f2 : Z � Z � f1; : : : ; tg ! ftrue,falseg, is de�ned by: f2(v; w; i) = true, if

and only if there is a vertex x 2 V with c(x) = i and p(v; x;G; c; i) and

p(w; x;G; c; i).

� f3 : Z � Z ! f1; : : : ; t;1g is de�ned by: f3(v; w) is the smallest integer

t0 such that p(v; w;G; c; t0). If there is no path from v to w in G, then
f3(v; w) =1.
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De�nition 17 A set of characteristics S of vertex t-rankings of a terminal
graph G is a full set of characteristics of vertex t-rankings for G (in short: a

full set for G), if and only if for every vertex t-ranking c of G, Y (c) 2 S.
A set C of vertex t-rankings of a terminal graph G is an example set of

vertex t-rankings for G (in short: an example set for G), if and only if for every

vertex t-ranking c of G, there is an c0 2 C with Y (c) = Y (c0), or, equivalently,
the set of characteristics of the elements of C forms a full set of characteristics

of vertex t-rankings for G.

If t = O(logn), then a full set of characteristics of vertex t-rankings of
G = (V;E;Z) (with jZj � k + 1, k constant) has size polynomial in V : there
are O(logk+1n) possible values for cjZ , 2O((k+1) log n) possible values for f1,

2O((k+1)
2 log n) possible values for f2, and there are O(log

1

2
k(k+1) n) possible val-

ues for f3. The following lemma, given in [3], shows that we can ensure this
property for graphs with treewidth at most k for �xed k.

Lemma 18 If the treewidth of G = (V;E) is at most k, then �r(G) = O(k �
logn).

Let (X;T ) be a rooted binary tree-decomposition of G. Suppose j 2 I is a
descendant of i 2 I in T . Suppose c is a vertex t-ranking ofGi. The restriction of
c to Gj is the function cjGj

: Vj ! f1; : : : ; tg, de�ned by 8v 2 Vj : cj(v) = c(v).
Clearly, cjGj

is a vertex t-ranking of Gj. If c
0 is another vertex t-ranking of Gj,

we de�ne the function R(c; c0) : Vi ! f1; : : : ; tg, by:

R(c; c0)(v) =

(
c(v) if v 2 Vi n Vj
c0(v) if v 2 Vj

Lemma 19 Let (X;T ) be a rooted binary tree-decomposition of G = (V;E).
Let j be a descendant of i. Let c be a vertex t-ranking of Gi, and c

0 be a vertex
t-ranking of Gj. If Y (cjGj

) = Y (c0), then R(c; c0) is a vertex t-ranking of Gi,

and Y (c) = Y (R(c; c0)).

Proof: For brevity, we write c00 = R(c; c0), W1 = (Vi nVj)[Xj , W2 = Vj nXj,
and we write Y (cjGj

) = Y (c0) = (c0jXj
; f1; f2; f3).

We start with proving two claims.

Claim 20 For all v; w 2W1 and all t0 � t: p(v; w;Gi; c; t
0), p(v; w;Gi; c

00; t0).

Proof: Let v; w 2 W1, and suppose we have a path p 2 P (v; w;Gi; c; t
0).

We consider those parts of the path p that are part of Gj: write p =
(p0; p

0
0; p1; p

0
1; : : : ; pr�1; p

0
r�1; pr), such that each p� (0 � � � r) is a path

with all vertices in W1, and each p0� (0 � � � r � 1) is a path in Gj.
(Each path is a collection of successive edges, i.e., the last vertex of a path
is the �rst vertex of the next path.) Write v� for the �rst vertex on path
p0� and w� for the last vertex on path p0� (0 � � � r � 1). Note that
p0� 2 P (v�; w�; Gj ; c; t

0), hence f3(v�; w�) � t0. We now have that there also
exists a path p00� 2 P (v; w;Gj ; c

0; t0). (In words: there exists a path from v
to w in Gj such that all colors of internal vertices are smaller than t0, using
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coloring c (or, equivalently cjGj
). As cjGj

and c0 have the same characteristics,
there also exists such a path using color function c0.) Now, the path formed by
the sequence (p0; p

00
0; p1; p

00
1; : : : ; pr�1; p

00
r�1; pr) is a path in Gi between v and w

with all colors of internal vertices smaller than t0, hence p(v; w;Gi; c
00; t0). This

shows: p(v; w;Gi; c; t
0) ) p(v; w;Gi; c

00; t0). p(v; w;Gi; c; t
0) ( p(v; w;Gi; c

00; t0)
can be shown in the same way. 2

Claim 21 For all v 2 W1, t
0: there exists a vertex w 2 Vi (w 2 Vj) with

p(v; w;Gi; c; t
0) and c(w) = t0, if and only if there exists a vertex w0 2 Vi

(w0 2 Vj) with p(v; w0; Gi; c
00; t0), and c00(w0) = t0.

Proof: Let w 2 Vi with p(v; w;Gi; c; t
0) and c(w) = t0. If w 2 W1, then, by

claim 20, we have p(v; w;Gi; c
00; t0). Otherwise, let x be the last vertex on a path

p 2 P (v; w;Gi; c; t
0) that belongs to W1. Write p = (p0; p00), where x is the last

vertex of p0 and the �rst vertex of p00. p0 2 P (v; x;Gi; c; t
0), hence there exists

a path q0 2 P (v; x;Gi; c
00; t0). p00 2 P (x;w;Gj ; cjGj

; t0), hence f1(x; t
0) = true.

Using equality of the characteristics of cjGj
and c0, we have that there exists a

vertex w0 2 Vj with c0(w) = t0 = c00(w) and a path q00 2 P (x;w0; Gj; c
0; t0). Now

(q0; q00) is a path from v to w0 in Gi with all internal vertices of color (under color
function c00) smaller that t0, hence p(v; w0; Gi; c

00; t0). The reverse implication of
the claim can be shown in a similar way. 2

We now show that c00 is a vertex t-ranking, or, equivalently, that for all
v; w 2 Vi, if c

00(v) = c00(w), then :p(v; w;Gi; c
00; c00(v)). Let v; w 2 Vi with

c00(v) = c00(w) = t0; v 6= w be given. We consider four cases:

1. v; w 2 W1. If p(v; w;Gi; c
00; t0), then by Claim 20, p(v; w;Gi; c; t

0), and
c(v) = c00(v) = t0, c(w) = c00(w) = t0, hence c is not a vertex ranking,
contradiction.

2. v 2 W1, w 2 W2. If p(v; w;Gi; c
00; t0), then by Claim 21, there exists a

w0 2 Vi with p(v; w0; Gi; c; t
0) and c(w0) = c(v), hence again c is not a

vertex ranking, contradiction.

3. w 2W1, v 2W2. Similar to Case 2.

4. v; w 2 W2. Let p 2 P (v; w;Gi; c
00; t0). If all vertices on p belong to W2,

then p is a path in Gj, and hence c0 was not a vertex ranking of Gj,
contradiction. So, there exist vertices on p that belong to W1.

Let x be the �rst vertex on p that belongs to W1. Then p = (p1; p2), with
p1 2 P (v; x;Gj ; c

00; t0) and p2 2 P (x;w;Gi; c
00; t0). By Claim 21, there

must exist vertices v0; w0 2 Vj with c(v0) = c(w0) = t0 and paths q1; q2,
with q1 2 P (v0; x;Gj; c; t

0), q2 2 P (x;w0; Gi; c; t
0). The path q = (q1; q2) is

a path from v0 to w0 with all internal vertices of color (with color function
c) less than t0. Hence c is not a vertex ranking, contradiction.

It remains to show that Y (c) = Y (c00). Clearly, cjXi
= c00jXi

. Suppose
Y (c) = (cjXi

; g1; g2; g3), and Y (c00) = (cjXi
; g01; g

0
2; g

0
3). It follows directly from

Claim 21 that g1 = g01.
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Consider v; w 2 Xi, t
0 2 f1; : : : ; tg. Suppose g2(v; w; t0) = true. Let x 2 Vi

be the vertex with c(x) = t0 and p(v; x;Gi; c; t
0) and p(w; x;Gi; c; t

0). If x 2W1,
then, by Lemma 20, p(v; x;Gi; c

00; t0) and p(w; x;Gi; c
00; t0), hence g02(v; w; t

0) =
true. If x 2 W2, Let p1 2 P (v; x;Gi; c; t

0), and let p2 2 P (w; x;Gi; c; t
0). We

can write p1 = (p11; p12) with p11 2 P (v; y;Gi; c; t
0), p12 2 P (y; x;Gj ; c; t

0)
and y 2 Xj. (Let y be the last vertex in Xj on p1.) Similarly, we can write
p2 = (p21; p22) with p21 2 P (w; z;Gi; c; t

0), p22 2 P (z; x;Gj ; c; t
0) and z 2 Xj .

This implies that f2(y; z; t
0) is true. Hence, there is a vertex x0 with paths

p012 2 P (y; x0; Gj; c
00; t0) and p022 2 P (z; x0; Gj; c

00; t0). Also, by Lemma 20, we
have paths p011 2 P (v; z;Gi; c

00; t0) and p021 2 P (w; z;Gi; c
00; t0). Now, using

path (p011; p
0
12) from v to x0 and path (p021; p

0
22) from w to x0, it follows that

g02(v; w; t
0) is true. So g2(v; w; t

0) ) g02(v; w; t
0). An almost identical argument

shows g02(v; w; t
0)) g2(v; w; t

0), hence g2 = g02.
Finally, it follows directly from Claim 20 that g3 = g03. 2

We now describe our algorithm. After a rooted binary tree-decomposition
(X;T ) of G = (V;E) has been found (in linear time [1]), the algorithm computes
a full set and an example set for every node i 2 I, in a bottom-up order. Clearly,
when we have a full set for the root node of T , we can determine whether G
has a vertex t-ranking, as we only have to check whether the full set of the root
is non-empty. If so, any element of the example set of the root node gives us a
vertex t-ranking of G.

It remains to show that we can compute for any node i 2 I a full set and
an example set, given a full set and an example set for each of the children
of i 2 I. This is straightforward for the case that i is a leaf node: enumerate
all functions c : Xi ! f1; : : : ; tg; for each such function c, test whether it is a
vertex t-ranking of Gi, and if so, put c in the example set, and Y (c) in the full
set of characteristics.

Next suppose i 2 I has two children j1 and j2. (If i has one child j1, then
we can add another child j2, which is a leaf in T and has Xj2 = Xi.) Suppose
we have example sets Q1, Q2 for Gj1 and Gj2 . We compute a full set S and an
example set Q for Gi in the following way:

Initially, we take S and Q to be empty.
For each triple (c1; c2; c3), where c1 is an element of Q1, c2 is an element of

Q2, and c3 is an arbitrary function c3 : Xi n (Xj1 [ Xj2) ! f1; : : : ; tg, do the
following:

� Check whether for all v 2 Xj1 \ Xj2 , c1(v) = c2(v). If not, skip the
following steps and proceed with the next triple.

� Compute the function c : Xi ! f1; : : : ; tg, de�ned as follows:

c(v) =

8><>:
c1(v) if v 2 Vj1
c2(v) if v 2 Vj2
c3(v) if v 2 Xi n (Xj1 [Xj2)

� Check whether c is a vertex t-ranking of Gi. If not, skip the following
steps and proceed with the next triple.
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� Compute Y (c).

� If Y (c) 62 S, then put Y (c) in S and put c in Q.

We claim that the resulting sets S and Q form a full set and an example
set for Gi. Consider an arbitrary vertex t-ranking c0 of Gi. Let c1 2 Q1 be the
vertex t-ranking of Yj1 that has the same characteristic as c0jGj1

. By de�nition
of example set, c1 must exist. Similarly, let c2 2 Q2 ful�ll Y (c2) = Y (c0jGj2

).
Let c3 : Xi n (Xj1 [ Xj2) ! f1; : : : ; tg be de�ned by c3(v) = c(v) for all v 2
Xi n (Xj1 [Xj2). When the algorithm processes the triple (c1; c2; c3), the �rst
test will hold. Suppose c is the function, computed in the second test. Now
note that c = R(R(c0; c1); c2). Hence, by Lemma 19, c is a vertex t-ranking
and has the same characteristic as c0. Hence, S will contain Y (c), and Q will
contain a vertex t-ranking of Gi with the same characteristic as c and c0.

As the size of a full set, and hence of an example set for graphs Gi, i 2 I is
polynomial, it follows that the computation of a full set and example set from
these sets associated with the children of the node, can be done in polynomial
time. (There are a polynomial number of triples (c1; c2; c3). For each triple, the
computation given above costs polynomial time.) As there are a linear number
of nodes of the tree-decomposition, computing whether there exists a vertex
t-ranking costs polynomial time (assuming t = O(logn).) By testing for each
applicable value of t (see Lemma 18) for the existence of vertex t-rankings of
G, we obtain the following result:

Theorem 22 For any �xed k, there exists a polynomial time algorithm, that

determines the vertex ranking number of graphs G with treewidth at most k,
and �nds an optimal vertex ranking of G.

6 The equality �r = �

In this section we consider questions related to the equality of the chromatic
number and the vertex ranking number of graphs.

Theorem 23 If �r(G) = �(G) holds for a graph G, then G also satis�es

�(G) = !(G).

Proof: Suppose that G = (V;E) has a vertex t-ranking c : V ! f1; 2; : : : ; tg
with t = �(G). We are going to consider the separator tree T (c) of this t-
ranking. Recall that T (c) is a rooted tree and that every internal node of
T (c) is assigned to a subset of the vertex set of G which is a separator of the
corresponding subgraph of G, namely more than one component arises when
all subsets on the path from the node to the root are deleted from the graph.
Furthermore, all vertices assigned to the nodes of a path from a leaf to the root
of T (c) have pairwise di�erent colors.

The goal of the following recoloring procedure is to show that either �(G) =
!(G) or we can recolor G to obtain a proper coloring with a smaller number of
colors. However, the latter contradicts the choice of the �(G)-ranking c.

We label the nodes of the tree T (c) according to the following marking rules:

12



1. Mark a node s of T (c) if the union U(s) of all vertex sets assigned to all
nodes on the path from s to the root is not a clique in G.

2. Also, mark a leaf l of T (c) if the union U(l) of all vertex sets assigned to
all nodes on the path from l to the root is a clique in G, but jU(l)j < t.

Case 1: There is an unmarked leaf l.
We have jU(l)j = t and U(l) is a clique. Hence, !(G) = �(G).

Case 2: There is no unmarked leaf.
We will show that this would enable us to recolor G saving one color, contra-
dicting the choice of c.

Since every leaf of T (c) is marked, every path from a leaf to the root consists
of marked nodes eventually followed by unmarked nodes. Consequently, there
is a collection of marked branches of T (c), i.e., subtrees of T (c) induced by one
node and all its descendants for which all nodes are marked and the father of
the highest node of each branch is unmarked or the highest node is the root of
T (c) itself.

If the root of T (c) is marked then we have exactly one marked branch,
namely T (c) itself. Then, by de�nition, the separator S assigned to the root is
not a clique. However, none of its colors is used by the ranking for vertices in
V n S. Simply, any coloring of the separator S with fewer than jS j colors will
produce a coloring of G with fewer than �(G) colors; contradiction.

If the root is unmarked, then we have to work with a collection of b marked
branches, b > 1. Notice that all color-1 vertices of G are assigned to leaves of
T (c) and that any leaf of T (c) belongs to some marked branch B. We are going
to recolor the graph G by recoloring the marked branches one by one such that
the new coloring of G does not use color 1. Let us consider a marked branch
B. Let h be its highest node in T (c), and S(h) the set assigned to h. Since h
is marked but the root is unmarked, there must exist a vertex x of S(h) and a
vertex y belonging to U(h) which are nonadjacent. Then c(x) 6= c(y) since all
vertices of U(h) have pairwise di�erent colors.

Assume c(x) = 1 or c(y) = 1. Then h is a leaf of T (c). Hence, x and y,
respectively, is the only color-1 vertex of G assigned to a node of B. We simply
recolor x and y with max(c(x); c(y)).

Finally consider the case c(x) 6= 1 and c(y) 6= 1. All color-1 vertices in the
subgraph of G corresponding to B are recolored with c(x) and x is recolored
with c(y). By the construction of T (c), this does not in
uence other parts of
the graph, since they are separated by vertex sets with higher colors.

Having done this operation in every marked branch, eventually we get a
new color assignment of G which is still a proper coloring (though usually
not a ranking). Since all leaves of T (c) are marked, and no internal node
of T (c) contains color-1 vertices, color 1 is eliminated from G, contradicting
the assumption �r(G) = �(G). Consequently, Case 2 cannot occur, implying
�(G) = !(G). This completes the proof. 2

Clearly, �r(G) = �(G) does not imply that G is a perfect graph. (Trivial
counterexamples are of the form G = G0 [ K�r(G0) where G

0 is an arbitrary
imperfect graph.) On the other hand, if we require the equality on all induced
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subgraphs, then we remain with a relatively small class of graphs that is also
called `trivially perfect' in the literature (cf. [11]).

Theorem 24 A graph G = (V;E) satis�es �r(G[A]) = �(G[A]) for every A �
V if and only if neither P4 nor C4 is an induced subgraph of G.

Proof: The condition is necessary since �r(P4) = �r(C4) = 3 and �(P4) =
�(C4) = 2.

Now let G be a P4-free and C4-free graph. The graphs with no induced
P4 and C4 are precisely those in which every connected induced subgraph H
contains a dominating vertex w, i.e., w is adjacent to all vertices of H [27].
Hence, the following e�cient algorithm produces an optimal ranking in such
graphs: If H = (V 0; E0) is connected, then we assign the color !(H) to a
dominating vertex w. Clearly, �(H[V 0nfwg]) = !(H[V 0nfwg]) = !(H)�1, and
it is easily seen that �r(H[V 0nfwg]) = �r(H)�1 also holds; thus, induction can
be applied. On the other hand, if H is disconnected, then an optimal ranking
can be generated in each of its components separately. 2

7 Edge rankings of complete graphs

While obviously �r(Kn) = n, it is not easy to give a closed formula for the edge
ranking number of the complete graph. The most convenient way to determine
�0r(Kn) seems to introduce a function g(n) by the rules

g(1) = �1,
g(2n) = g(n),

g(2n+ 1) = g(n+ 1) + n.

In terms of this g(n), the following statement can be proved.

Theorem 25 For every positive integer n,

�0r(Kn) =
n2 + g(n)

3
:

Proof: The assertion is obviously true for n = 1; 2; 3. For larger values of n
we are going to apply induction.

Similarly to vertex t-rankings, the following property holds for every edge
t-ranking of a graph G = (V;E): if i is the largest color occurring more than
once, then the edges with colors i+ 1; i+ 2; : : : ; t form an edge separator of G.
Moreover, doing an appropriate relabeling of these colors i + 1; i + 2; : : : ; t we
get a new edge t-ranking of G with the property that there is a color j > i such
that all edges with colors j; j + 1; : : : ; t form an edge separator of G which is
minimal under inclusion.

We have to show that the best way to choose this edge separator R with
respect to an edge ranking in a complete graph is by making the two components
of G[E nR] as equal-sized as possible. Let us consider a Kn, n � 4. Let n1 and
n2 be the numbers of vertices in the components, hence n1 + n2 = n and the
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corresponding edge separator has size n1n2. Every edge ranking starting with
this separator has at least

n1n2 +maxf�0r(Kn1); �
0
r(Kn2)g = n1n2 + �0r(Kmaxfn1;n2g)

colors, and there is indeed one using exactly that many colors. De�ning a1 :=
min(n1; n2) and repeating the same argument for n0 := n � a1, and so on, we
eventually get a sequence of positive integers a1; : : : ; as, for some s, such thatPs

i=1 ai = n and
ai �

X
i<j�s

aj for all i; 1 � i < s: (1)

Notice that at least the last two terms of any such sequence are equal to 1.
It is easy to see that the number of colors of any edge ranking represented by
a1; : : : ; as is equal to

P
1�i<j�s aiaj , consequently

�0r(Kn) = min
X

1�i<j�s

aiaj =

 
n

2

!
�max

sX
i=1

 
ai
2

!
;

subject to the condition (1). Since a decreasing sort of the sequence main-
tains (1) we may assume a1 � a2 � : : : � as. Thus, for each value of
n, min

P
1�i<j�s aiaj is attained precisely by the unique sequence satisfying

ai = b12
P

i�j�s ajc for all i, 1 � i < s. In particular, we obtain

�0r(Kn) = �0r(Kdn=2e) + bn=2cdn=2e:

Applying this recursion, it is not di�cult to verify that, indeed, �0r(Kn) can be
written in the form 1

3(n
2 + g(n)), where g(n) is the function de�ned above. 2

Observing that g(2n) = �1 for all n � 1, we obtain the following interesting
result.

Corollary 26

�0r(K2n) =
4n � 1

3
:

8 Conclusions

We studied algorithmic and graph-theoretic properties of rankings of graphs.
For many special classes of graphs, the algorithmic complexity of vertex rank-
ing is now known. However the algorithmic complexity of vertex ranking

when restricted to chordal graphs or circle graphs is still unknown. Furthermore
it is not even known whether the edge ranking problem is NP-complete.

We started a graph-theoretic study of vertex ranking and edge ranking as
a particular kind of proper (vertex) coloring and proper edge coloring, respec-
tively. Much research has to be done in this direction. It is of particular interest
which of the well-known problems in the theory of vertex colorings and edge
colorings are also worth studying for vertex rankings and edge rankings.
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