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Abstract. We give a short survey on various compact routing methods
used in communication networks. The routing schemes considered are
Interval Routing, Prefix Routing and Boolean Routing. Various known
characterizations of networks that have such routing schemes are pre-
sented. A few open problems in this area also are given.

1 Introduction

In a parallel or distributed system, as more processors are added to increase
the overall computing power, the underlying communication network needs to
scale favorably along with the expansion. As the amount of storage space at
each processor is limited, the expansion of the network should not put undue
burden locally by requiring excessive space for communication purposes. The
routing methods used should also be simple and dynamically adjustable with
the expansion. The underlying network structure can be quite arbitrary, so the
routing methods should not rely on any fixed topology. More and more emphasis
is given to this type of universal routing on arbitrary networks (see, for example,
[MT90], [I91], [HKRI1]). This gives rise to a need of simple compact routing
methods that are scalable with the growth of networks and independent of any
underlying topology. For instance, the C104 Router Chip used in the INMOS
T9000 Transputer design [I91] uses one such method called Interval Routing,
which was introduced in [SK82] and [LT83]. In this paper we survey a few of the
available methods.

* This research was partially supported by EC Cooperative Action IC-1000 (project
ALTEC: Algorithms for Future Technologies) and by the Netherlands Organization
for Scientific Research (NWO) under contract NF 62-376 (NFI project ALADDIN:
Algorithmic Aspects of Parallel and Distributed Systems).



1.1 Communication Model

We shall model the interconnection network as a (finite) graph and phrase the
terminologies accordingly. Let G =< V, E > be a connected graph with vertez
set Vof size n and edge set E of size e. Vertices (nodes) carry unique identifiers
(addresses) taken from some ordered domain, and edges (links) are assumed to
be bidirectional. We shall concentrate on distributed models, where processors
have access only to their own local memory and communicate with each other
by sending messages. Each message contains headers that typically include the
source and destination addresses of the processors. In order to route a message
m from processes ¢ to j, a path from ¢ to j must be identified to transport m.
Traditionally a path of shortest distance or cost is used, but there are other
variants. The path information must be stored somehow at each intermediate
node to allow progress of the message from source to destination. Typically the
necessary information is stored in a routing table with n entries, one entry for
every possible destination and one table at every node. As the message m arrives
at an intermediate node, it checks if it is indeed the intended destination target.
If so the message is processed, otherwise the local routing table is consulted for
an appropriate link to further relay the message. The message m thus travels
in a series of hops until it reaches its final destination. Normally the routing is
implemented by a special unit termed the router that is associated with each
processor. It is thus the function of the router to decide whether it should keep
the message for local processing or pass it on further to a neighboring router via
an appropriate link. The routing method can be described as follows:

procedure SEND(id, dest, m)
{m is a message to be sent from current node id to node dest}
if id = dest
then process m
else
find the appropriate link z out of node id to be used towards dest
send m over the link «
id := the node that receives m over link z
SEND(id, dest, m)
end if
end{procedure SEND }
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Figure 1

The original sender source of a message m will then invoke the protocol
SEND(source, dest, m) to send the message to its proper destination dest.

1.2 Compact Routings

With the expansion of the networks, the above method of keeping routing tables
becomes untenable, as at each node the table size is O(n) (measured in logn-
size words). A more compact way of representing the tables is needed. Now, in



practice, the degree d (the maximum number of edges incident to a node) of a
graph is usually much smaller than the size of the graph. Thus, if we arrange the
routing table according to the edges, then we may hope to get a more compact
table, with only d rows of entries, though each entry may now consist of more
than one node-label. Searching the table for a node-label will be less efficient
however, as there is no special ordering in the entries in general.

We can make the tables more compact if we can represent the group of nodes
associated with an edge in a simple way. Some kind of a relation needs to be
established among the nodes that belong to the same group. In this survey, we
look at some of the relations that have been used to compactify such groups of
nodes. The first relation we study is the Interval Labeling Scheme. The idea here
is to label the nodes in the graph such that all the nodes belonging to the same
edge form a (cyclic) interval modulo n. This is presented in section 2. Section
3 covers a special case of Interval Labeling called Linear Interval Labeling. In
section 4, we look at Prefiz Labeling, where nodes having a maximum common
prefix in their string addresses belong to the same group. Section 5 introduces
Boolean routing, which uses certain boolean predicates to define its relations.
Finally in section 6 we discuss extensions of the above relations to multi-label
relations. Throughout we discuss the known results for each scheme and list
some open problems.

We assume that the nodes and links do not fail and that messages eventually
arrive over the link over which they are sent. We also concentrate mainly on
results pertaining to networks with shortest path or minimum cost routing.

A preliminary version of this paper was presented in the Colloquium on

Structural Information and Communication Complexity at Carleton University
([LT94]).

2 Interval Routing

The idea behind an Interval Labeling Scheme (ILS) is to group the destination
nodes belonging to the same outgoing link in a cyclic interval (modulo n). This
is done by first labeling all the nodes in the graph with some unique integer in
[0..n — 1]. Each link is then labeled with a unique interval [a, b). Wrap-around of
intervals is allowed, so if @ > b then [a,b) = {a,a +1,...,n — 1,0,....,b— 1}. The
set of all such intervals associated with the edges of a node must form a partition
of the cyclic interval [0..n). The routing protocol is exactly as procedure SEND
presented in Figure 1, with line 4 modified to :

4 find the link z at node id with label [a, b) such that dest € [a,b)

An ILS is valid if for all nodes ¢ and j of graph G, messages sent from i to j
by means of the procedure SEND eventually reach j. Figure 2 gives an example
of a valid ILS. It is not a priori clear that there is a valid ILS for every graph.
Of course, one cannot just label the graph arbitrarily, as the route may contain
a cycle and any message caught in the cycle on the way will never reach its



proper destination. There is an O(n?) algorithm for checking whether a given
ILS is valid ([LT83]). A valid ILS is termed an Interval Routing Scheme (IRS)
for short.

Figure 2

Interval Routing was introduced by Santoro and Khatib [SK82]. They showed
that any tree and ring admits a valid ILS. By constructing a valid ILS on a
spanning tree of a graph, one can thus impose an IRS on an arbitrary graph
also, but then ‘most’ links are not being used. Van Leeuwen and Tan [LT83],
who introduced the term ‘interval routing’, showed the fundamental result that
interval routing can be done on general graphs in such a way that all links are
actually being used for routing (in both directions) and identified further uses of
it. In either case however, the IRS constructed is not necessarily optimal (shortest
path).

As the union of all the disjoint intervals spans the cyclic interval [0..n), we
can reduce the size of the routing table further, by listing only the left end-points
of the intervals. Also, as there is no overlapping of intervals, the path specified
by the IRS is unique. This gives rise to deterministic schemes and allows for
efficient searching. Sort the interval labels and arrange the tables accordingly to

.the sorted order. One can then use a modified binary search to search quickly
the desired link for each dest.

We now mention some known results.

2.1 Uniform Cost Links

Suppose by optimum we mean shortest path. This case can be considered as
assigning positive uniform cost to each link and then finding the minimum cost
routes.

The following graphs (with uniform cost links) have optimum IRS.

Santoro and Khatib [SK82]
Trees
Rings

van Leeuwen and Tan [LT85]



Meshes

Complete bipartite graphs
Complete graphs

Grids with column-wrap-around

Frederickson and Janardan [FJ86]
Graphs whose biconnected components are either outerplanar or Ky

Hofestadt, Klein and Reyzl [HKR91]
‘Clos-like’ multi-stage networks
Modified Butterfly networks

Fraigniaud and Gavoille [FG94]
Unit circular graphs

Chordal Rings have been studied by Flammini, Gambosi and Salomone [FGS94].
They present some positive and negative results concerning the existence of
optimal (shortest path) IRS for these networks.

Not unexpectedly, there also is a negative result.

Ru%icka [R88] There are networks with no optimum (shortest path) IRS.

On the other hand, as mentioned earlier, we know at least the following,.

van Leeuwen and Tan [LT83] Every network has a valid (but not necessarily
optimum) ILS which uses all edges of the graph and each edge in both directions.

It is not clear exactly what type of graphs admits an optimum IRS.

OPEN PROBLEM: Characterize the graphs with uniform cost links that
admit an optimum IRS.

It has been conjectured that it is actually NP-Complete to decide whether a
graph has an optimum IRS. Things look more positive if we abandon the re-
striction to uniform cost links.

2.2 Dynamic Cost Links

Suppose a graph is given and one is allowed to label the nodes appropriately. It
is reasonable to assume that the names of the nodes remain fized over time, to
avoid confusion, for example. But over time, it is to be expected that the cost of
the links may vary (dynamic cost links). Assume that the cost of the links are
non-negative numbers that vary over time. Can one always relabel the links of
the graphs accordingly (with no change of the labels of the nodes) to allow for
an optimum (minimum cost) IRS?

Frederickson and Janardan [FJ86] came up with a very nice way of charac-
terizing the type of graphs with dynamic cost links that allow optimum IRS. But
they did this over a stricter class of IRS. An ILS is termed strict if no interval
assigned to the edges of a node contains the label of the node itself. Thus, for
example, a node with label 5 cannot have an edge that is labeled with the inter-
val [3,7), as the interval contains the node label. (Note however, that the given



example is a legal interval for the regular ILS as we have defined it earlier.) Of
course, this is only a conceptual difference and in no way affects the size of the
routing table. It can be shown that every graph admits a strict (static) IRS in
which each edge is used in at least one direction for routing.

Frederickson and Janardan [FJ86] A graph G with dynamic cost links has
an optimum strict IRS if and only if G is an outerplanar graph.

The corresponding result for a general IRS is almost similar, with one extra
graph included in the characterization.

Bakker, van Leeuwen and Tan [BLT94] A graph G with dynamic cost links
has an optimum IRS if and only if G is an outerplanar graph or K.

2.3 Dynamic Cost Links with Dynamic Node Names

In analyzing the adaptability of an optimum IRS in the case of dynamic cost
links in a fixed topology, it was assumed that the names of the nodes should
remain fixed over time. A different situation arises if we allow the nodes to be
renamed every time a change in link costs arises (dynamic node names). We can
expect more topologies to admit an optimum IRS no matter how link costs vary,
if we can change the node names after every change in link costs. We note the
following result.

Frederickson and Janardan [FJ86] A graph G with dynamic cost links has
an optimum strict IRS with dynamic node names if and only if its biconnected
components are either outerplanar or Kjy.

OPEN PROBLEM: Characterize graphs with dynamic cost links and dy-
namic node names that have optimum (regular) IRS.

From a networking point of view, the changing edge and node labels may be
hard to maintain distributively as the changes in link costs arise.

OPEN PROBLEM: Develop efficient distributed algorithms for maintaining
the optimum IRS in the classes of dynamic networks discussed above.

2.4 Other Results and Directions

We now state some further results and areas of research concerning IRS (see also
section 6).

Nondeterministic IRS We introduced ILS as a deterministic scheme by in-
sisting that the intervals assigned to the edges incident to a node do not overlap.
In this way we could restrict the routing labels to the left end-points of the in-
tended intervals, leaving their full specification implicit. In practice it might be
profitable to assign complete intervals [a,b) to the link instead of just their left
end-points and allow intervals to overlap. With this nondeterministic scheme,



a destination label may belong to several links and a message for a destination
j may be routed by sending it over a random link whose interval contains j.
This gives greater flexibility in distributing the traffic in the network. This is a
suggestion for further study mentioned in [LT83]. We state it here as an open
problem.

OPEN PROBLEM: Study the above nondeterministic IRS’s.

Clearly the existence of an optimum (shortest path) nondeterministic IRS implies
the existence of an optimum IRS in the ordinary sense: whenever two intervals
at a node overlap, omit the part of one of the intervals that is covered by the
other interval (although this may lead to links without intervals).

3 Linear Interval Routing

A Linear Interval Labeling Scheme (LILS) is an ILS in which no intervals ‘wraps
around’. Thus an interval such as [5,1) is definitely not allowed as a label in an
LILS. It is a special case of a Prefiz Labeling Scheme, to be discussed in the next
section. As expected, the class of graphs that have a Linear Interval Routing
Scheme (LIRS) is much smaller than IRS. Yet it contains some interesting net-
works, such as the hypercubes. This, together with the simplicity of the schemes,
explains why some implementors have shown considerable interest in linear IRS.

3.1 Uniform Cost Links

The following classes of graphs with uniform cost links have optimum (shortest
path) LIRS.

Bakker, van Leeuwen and Tan [BLT91]
Complete Graphs
Hypercubes
d-Dimensional Grids
Rings of size < 4
d-Dimensional Tori II¢ ,d; with d; < 4 for each ¢
Trees which contain no T-graph (see Figure 3) as a subgraph

Figure 3

Kranakis, Krizanc and Ravi [KKR93]



Complete r-Partite Graphs® K, n,,..n, With 7 > 2,0, > 1
The product-graph II'X, G; if G; has an optimum LIRS for each i

Fraigniaud and Gavoille [FG94]
Unit Interval Graphs

It is known that there are many types of interconnection networks that do
not have optimum (shortest path) LIRS, such as the Cube-Connected-Cycle, the
Star-graph and so on (see [BLT91] and [FG94] for a list). A complete character-
ization is still elusive.

OPEN PROBLEM: Characterize the graphs with uniform cost links that
have optimum LIRS or strict LIRS.

3.2 Dynamic Cost Links

Again the situation is more pleasant for networks with dynamic cost links.

Bakker, van Leeuwen and Tan [BLT91] A graph with dynamic cost links
has an optimum LIRS if and only if it is a centipede.

A centipede is defined recursively as follows: it is one of the following two
graphs (see Figure 4):

Figure 4

or a centipede joined by another centipede, where by joining we mean that the
head (h) of the centipede is identified with the tail () of another centipede that
is “attached” to it. Figure 5 gives an example of a centipede.

Figure 5

Bakker, van Leeuwen and Tan [BLT94] A graph with dynamic cost links
has an optimum strict LIRS iff it is a line ( a tree of degree 2).

3 A complete r-partite graph is a graph with r groups of nodes of sizes n; through n,
in which every pair of distinct groups of nodes is connected as a complete bipartite
graph.



3.3 Dynamic Cost Links and Dynamic Node Names

Similar characterization results for dynamic cost links with dynamic node names
are also known for optimum LIRS.

Bakker, van Leeuwen and Tan [BLT94] A graph with dynamic cost links
and dynamic node names has an optimum LIRS iff it is a centipede, a K3 — Star
or a K4 — Star. (A K, — Star graph is the complete graph K,, with zero or more
leaf-nodes attached to each node.)

Bakker, van Leeuwen and Tan [BLT94] A graph with dynamic cost links
and dynamic node names has an optimum strict LIRS iff it is a line or a ring of
size 3 or 4.

4 Prefix Routing

A Prefiz Labeling Scheme (PLS) is based on the notion of source or path routing.
This type of routing assumes that the address in each message explicitly or
implicitly specifies a particular path, for example cuny/mesunfruuinf!.... Thus
the address is a sequence of names consisting of strings of characters with suitable
separators. When a message is to be relayed, the next name in the sequence, i.e.
a prefiz of the address, is extracted and the routing table is consulted for the
next link in the path.

The idea behind PLS is to group nodes together on a link by the mazimum
common prefiz. This is done by labeling each node with a string, over some al-
phabet X, which serves as name. Each link also is labeled with a unique string,
possibly by €, the empty string. When a message arrives at a node with desti-
nation dest, the routing table is consulted for a link label that is the mazimum
length prefir of the address. For example, if the destination address is abc and
the link labels available are €, a,ab, ca, then the link label ab will be selected,
as it is a prefix of abc of maximum length. Of course, each link must be prop-
erly labeled so for any address there is always a maximum length prefix. The
routing protocol is also similar to procedure SEND (Figure 1), with appropriate
modification to line 4.

4 find the link z at id with a label that is the maximum length prefix of dest

Figure 6



A PLS is valid if procedure SEND works correctly, i.e. if it makes all messages
arrive at their proper destination eventually. Figure 6 shows a valid PLS. Again
for short, we call a valid PLS a Prefix Routing Scheme (PRS). The feasibility of
such a scheme is shown in the following result.

Bakker, van Leeuwen and Tan [BLT90] There is a valid PLS for any dy-
namically growing network. Insertions of links and nodes require an adaptation
cost of O(1).

We now look at known results on optimality.

4.1 Uniform Cost Links

Unfortunately most graphs do not have an optimum (shortest path) PRS. The
following graphs (with uniform cost links) have optimum (shortest path) PRS.

Bakker, van Leeuwen and Tan [BLT90]
Trees
Rings of size < 4
Complete Graphs
Complete Bipartite Graphs
Hypercubes
d-Dimensional Grids
d-Dimensional Tori IT{ ,d; with d; < 4 for each i

As with all previous routing schemes, we have the following unsatisfactory situ-
ation.

OPEN PROBLEM: Characterize the graphs (with uniform cost) that have
optimum (shortest path) PRS.

4.2 Dynamic Cost Links

Again assume that the labels of the nodes remain fixed but allow that the cost
of the links may vary non-negatively. In the previous schemes (ILS and LILS)
we only considered fized networks, i.e. there were no insertions and deletions of
nodes or links. We now consider the dynamic cost case for PRS first.

Bakker, van Leeuwen and Tan [BLT90] A fized (with no insertion or deletion
of nodes and links) network with dynamic cost links has an optimum PRS iff its
biconnected components are of size < 4.

As PRS is a dynamic scheme, with arbitrary insertions and deletions of nodes
and links allowed (as long as this does not cause the network to be disconnected),
we also consider dynamic networks.

Bakker, van Leeuwen and Tan [BLT90] A dynamic (with insertion and
deletion of nodes and links and no disconnection of the network) network (with
dynamic cost links) of more than 4 nodes has an optimum PRS iff it contains
no cycle of length > 3.
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Nothing much is known about the type of graphs that admit optimum PRS with
dynamic cost links and dynamic node names.

OPEN PROBLEMS: Characterize static and dynamic graphs with dynamic
cost links and dynamic node names that admit optimum PRS.

4.3 Remarks

A PLS is a naturally dynamic scheme. Insertion and deletion of nodes and links
(without disconnecting the network) are easy to do with constant adaptation
cost. Only the neighboring nodes and links that are affected need to adjust
their routing tables. There is no massive update of the whole network involved.
Unfortunately, in general the address label can be quite large, up to O(Diameter-
log(Degree)) in length. We note also that if the alphabet X consists of only one
symbol, then PLS is exactly LILS. Thus LILS is a special case of PLS. There are
quite a few variants of PLS. For example, the Path Labeling Scheme, where the
destination address is shortened as it is relayed by stripping off the prefix. (This
is fairly similar to the technique used in UUCP.) See [BLT90] for more details.

5 DBoolean Routing

In an IRS and a PRS, to route a message we check for a link label that satisfies
a certain condition. This relation can be expressed as a boolean predicate. In
more general terms, this leads to the idea behind Boolean Labeling Schemes. In
a Boolean Labeling Scheme (BLS) destinations in the network are grouped to-
gether to share the same link at a node if they satisfy a certain boolean predicate
on their name labels. Strings of bits are assigned as labels to nodes and predicates
are attached to the links based on these labels. Elementary boolean functions
such as =, V, A, <, ... are used to form the predicates. For example, one can rep-
resent a LILS by using the predicate p;(dest) = (a; < dest) A ~(ay1 < dest)
at a link [; that has label [a;,a;+1) in the LILS, for each link /;. When a mes-
sage arrives, each predicate is checked in turn until a predicate is found that is
satisfied. The appropriate line 4 in procedure SEND (Figure 1) becomes:

4  find link = at node id with predicate p, such that p,(dest) is true

00 0% ~1p

*1 *1
*0 *0
01 OOl

Figure 7
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Figure 7 gives an example of a walid BLS (a Boolean Routing Scheme or
BRS), where 0* is the predicate bit; (v) = 0, i.e. check if the first bit of v is 0,
*1 is the predicate bita(v) = 1 to check for the second bit, and so on. Note that
a destination label may satisfy more than one predicate, in which case either
one can be used. Thus the above scheme represents all shortest paths in the
network. This is an advantage over a deterministic ILS; searching becomes less
efficient however. Boolean Routing was introduced by Flammini, Gambosi and
Salomone [FGS93] to represent schemes with all pair shortest paths. They show
that with no more than 2logn bits of strings as labels for the nodes, one can
design predicates such that there are optimum (all pair shortest paths) BRS for
the following networks:

Flammini, Gambosi and Salomone [FGS93]
Rings
Trees
Hypercubes
d-Dimensional Grids
Complete Bipartite Graphs
Complete Graphs

See [FGS93] for the exact predicates used for each type of graph.

6 Multi-Label Routing

All labeling schemes considered so far assumed a unique label per link. If we
relax this condition and allow multiple labels (up to n) to be associated with
every link, then we have a multi-label scheme. The routing decisions at the nodes
are made in a straightforward way, where we observe that we have again the
choice of allowing the intervals to overlap or not. If we are only interested in
optimum schemes, it makes no difference what we impose here, for the same
reason as given in section 2.3. A scheme is termed optimal if and only if all
implied source-to-destination paths are optimal.

Essentially, a labeling scheme LS is a ¥-LS if there are at most k labels per
link (k > 0). Thus the standard ILS is just 1-LS. Multi-label schemes were
considered by van Leeuwen and Tan in [LT85] to handle certain graphs that do
not have 1-ILS. For example, 1-LILS is quite restrictive: a ring of more than 4
nodes has no optimum 1-LIRS; but a ring of any size has an optimum 2-LIRS.
Thus the class of graphs that admits an optimum scheme expands sharply as we
increase the admissible number of labels. Of course, trivially any graph has an
optimum (n-1)-LS for any scheme LS (ILS, LILS, PLS, BLS): just label a link
with all the node labels that need to be sent optimally via this link. This boils
down to the traditional complete routing table.

Unfortunately, nothing much is known about the graphs that admit an op-
timum k-label Routing Scheme (k-RS) with & > 1. Flammini, Gambosi and
Salomone [FGS95] have shown that it is NP-hard to determine whether a graph
with an arbitrary k& > 0 admits an optimal multi-label IRS (however the k is

12



of order n in the construction). Further results along this line are few. Freder-
ickson and Janardan [FJ86] consider the design of (optimum) &-RS with small
k for planar graphs and, more generally, for graphs of a certain genus. We can
reformulate the open problem from section 2.1. as follows.

OPEN PROBLEM: Is there an efficient algorithm to decide, for each k£ and
each graph G with uniform link costs, whether G has an optimum k-RS.

Recent work of Flammini, van Leeuwen and Marchetti-Spaccamela [FLM94] sug-
gests that ‘most’ networks need a very large k in order to admit an optimum
k-RS. This would imply that even multi-label RS can imply a saving over full
routing tables only for very structured networks, in the case of optimal routing.

6.1 Hierarchies of Graphs

As characterization results on optimum (shortest paths) multi-label RS on graphs
with uniform cost links are non-existent, we change our focus and consider the
routing problem for graphs with dynamic cost links.

Let k—RS be the class of graphs with dynamic cost links that have optimum
(minimum cost) k-RS. Then obviously we have k — RS C (k + 1) — RS for any
k-RS and k — LIRS C k — IRS. Only a little bit more is known.

Frederickson and Janardan [FJ86]
k—IRSC(k+1)-1IRS

Bakker, van Leeuwen and Tan [BLT91]
k— LIRS C (k+1) — LIRS
k—IRS C(k+1)- LIRS
1— LIRS £1—IRS

Bakker, van Leeuwen and Tan [BLT90]
k- LIRS Ck—PRS
k—IRSC(k+1)-PRS
1-IRS #1-PRS

OPEN PROBLEM: Characterize k — RS for £ > 1 for IRS, LIRS and PRS.

6.2 Further Results and Directions

We now state some further results and areas for further research dealing with
compact routing.

Near-optimal routing In most of the results in this survey we insisted on
optimal routing. This may be overly restrictive considering that, for example,
many interesting networks do not admit an optimal ILS (i.e., a 1-label RS). It
would be interesting to study the potential of Interval Routing and consider
the same characterization questions as above, if it is sufficient to guarantee that
the implied source-to-destination routes are within a certain (fixed) factor of
optimality. Very little is known here, but the question has been considered in

13



combination with different techniques for space-efficient (or: compact) routing.
For example, Frederickson and Janardan [FJ89] have designed compact routing
techniques for planar networks that can guarantee routes that are within ‘a small
constant factor’ (like 3) from optimal. In [FJ90] they have shown that a similar
result holds for all networks which have recursive decompositions using ‘small’
(bounded size) separators. This includes e.g. all series-parallel graphs and all
k-outerplanar graphs (for any constant k). A fair number of results is known
showing different kinds of trade-off between the quality of the implied routes
and the compactness of the routing scheme (measured in bits per node).

Notions of compact routing In section 2 we indicated that Interval Routing
is only one of many options one has for defining a compact routing technique.
Its simplicity and applicability in useful cases has made it interesting for im-
plementation in scalable processor networks. The variants of the basic scheme
that have emerged and that have been surveyed here, clearly suggest the need
for a more general combinatorial framework for compact routing. One possible
approach would be to use boolean circuits for realizing the routing decisions at
the network nodes, and to relate the complexity of the routing problem in a
network to the complexity of the necessary circuits. It can be shown that every
network of n nodes and e edges admits a specification of its optimal routes in
these terms in no more than O(n?log<) bits total [FLM94]. This means, for
example, that in every planar network the shortest path information can be rep-
resented and employed for optimal routing in an average of O(n) bits per node.
The study of other compact schemes seems to open many interesting questions
of an algorithmic and graph-theoretic nature.
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