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Figure 13 displays the general structure of our mechanical veri�cation work with HOL. The
core of this work is the UNITY module, which includes the standard UNITY, Sander's extension
[San91], and the extension presented in this paper. A simple language to construct actions has
also been added. So far, the module has been applied to verify a simple alternating bit protocol,
a generalized version of the program MinDist, and a hierarchical version thereof. Verifying the
alternating bit protocol was very simple. The veri�cation of the generalized version of MinDist

is not. It also requires a lot of knowledge of general mathematics, such as lattice theory, graph
theory, theory on well-founded relation, and so on. HOL has to be extended with these theories
before we can use them. At the time we wrote our modules, only theories on sets and string
are available in HOL. The most work in the veri�cation of MinDist is not in the application of
the programming logic |which we estimate only covers 10% of the total work| but rather, in
the application of theories such as lattice theory, graph theory, and so on, which are not directly
related to the programming logic.
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the standard de�nition of UNITY and hence cannot provide the compositionality results that we have. The package
does not provide laws for self-stabilization either.
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The transformation does not preserve (8.4). If initially a 6= b, consider the execution:

(a1; a3; a2; a4)
�

The execution is fair, but a = b will never happen. The transformation does not preserve (8.5)
either since the described stability can be destroyed by a1 or a2. This problem remains even if we
use other models for the channels (such as queues).

The example above has a broader implication. For example suppose we want to replace the
link registers in the program MinDist from Subsection 7.5 with queues. A queue can be viewed as
a sequence (with variable length) of link registers. Consequently we will have the same problem
as in the example above. For example, speci�cation MD4.1 and MD4.2 will no longer be valid.
Still, let us take a closer look. We have re�ned the original speci�cation MD0 into the pair:

MD2:a : preOkn P:a` true dataOkn

MD2:b : preOkn ^ dataOkn P:a` true comOkn

MD2.a states that the system must establish and maintain acceptable values for the current
round, assuming the system, including all communication means, has been stabilized for all pre-
vious rounds. MD2.b states that the system must also stabilize its communication means. So far
the calculation is independent of the exact de�nition of comOk, which is the only part of the spec-
i�cation that depends on the selected method of communication. We can at this point choose for
the queues model and instantiate the de�nition for comOk accordingly. Then we proceed with the
calculation. Unfortunately this means that we have to re-do some part of the original calculation
(in the link registers model). It would be indeed easier, as we have remarked it before, if we can
just transform back and forth between various models of communication. So far, however, there
are not much results in this direction that we are aware of. People still handle the problem of
self-stabilization in an asynchronous distributed system as a separate problem, for example as in
the work of Dolev, Israeli, and Moran [DIM90].

9 Conclusion

We have introduced an extension of UNITY which will enable us to formally reason about self-
stabilizing systems. The operators and the notational style that we introduced are concise and
carry enough detail to allow a nice set of compositionality laws. We seldom see a really formal
proof of distributed programs, and those that attemp, such as in [LS93], tend to end up with overly
complicated proofs. We believe that the situation can be improved if one can learn to translate,
in a natural way, novel but intuitive ideas to the formal level. We have presented three examples
of increasing complexity, with which we demonstrated the application of various laws introduced
in this paper, and with which we also showed a few examples of the afore mentioned translation.
We hope the reader has learned something from them.

All displayed theorems and corollaries have also been mechanically veri�ed with theorem prover
HOL. HOL is a general purpose theorem prover based on Higher Order Logic. The logic is
extensible and hence all our mechanized theorems can be re-used to mechanically verify other
programs. For example, they have been used to mechanically verify the program MinDist from
Subsection subsec.dist. Our complete HOL library is available at request8 .

Currently, we are working on a thesis on mechanical veri�cation of distributed programs. The
thesis should be available soon. We are also working on the veri�cation of a hierarchical version
of the program MinDist. A hierarchical network is considered instead of an ordinary one. In such
a network, vertices are grouped into domains, and the domains are ordered in a tree-hierarchy.
The program is part of a routing program for such a network of computers. There is a notion of
visibility, de�ning which domains are visible from another. The intention is to reduce the amount
of routing information which needs to be locally present in each node by requiring that the node
needs only to be aware of visible domains.

8There is a standard UNITY library for HOL written by F. Anderssen [And92], but the package only supports
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restriction which may be imposed by the program. For example, in the case of program MinDist

the the graph of the processes is required to remain connected.

8 A Note on the Implementation

In some parallel system, a process can directly access the state of another process. Such a system
has thus a memory space which is basically accessible for all processes (so called shared memory

system). In fact this is the memory model of UNITY. Designing programs for such a system is
thus rather straightforward in UNITY. Comparing the examples in Subsection 7.4 and 7.5 will
illustrate this. However, many distributed systems do not have this property as a process can
only access the state of another process by means of a channel. Such a system is however write-
disjoint. This means that we can apply the compositionality results in Sections 6 to decompose
a given speci�cation into a set of local speci�cations of each (write-disjoint) process. One often
implements such a process sequentially. A typical example is:

program i

upon the receiving of data x from j do:

add j to P:i ;

send an ackowledgement to j ;

broadcast x to all neighbors not in P:i ;

� � �

We can transform a progress speci�cation for such a program into a Hoare triple speci�cation
and contionue the calculation using the much simpler sequential programming logic. A typical
speci�cation of a component program has the form:

J P` true� q (8.1)

which states that given that the input variables of P satis�es J , P will eventually establish q. If
P has the form (S0;S2; : : : ;Sn�1)�, then (8.1) is met if the S's satisfy:

(8i : i < n : fJg Si fJg) (8.2)

fJg (S0;S2; : : : ;Sn�1) fqg (8.3)

where fpg S fqg means total correctness.
That we can use sequential programming logic to deal with the sequential part of the program

is �ne. Still, the addition of channels makes reasoning about the program, in some respect, more
complicated. It may be easier to �rst design an (higher level) program that assumes shared
memory, then transform it to a program that communicates with channels. A simple example
below shows that such a transformation does not always preserve a given speci�cation.

Consider a composite program P []Qwhere P and Q each consists of the following single actions:

P : a := b and Q : b := a

The program P []Q satis�es:

true P []Q` true� (a = b) (8.4)

P []Q` � (a = b) (8.5)

Let us now add (asynchronous) channels to P []Q. Like in the example in Subsection 7.5, we use
link registers to model channels. Link register r:a will be the Q's copy of a and r:b will be the P 's
copy of b. So now, for example, P can only read b indirectly via r:b. This gives us the following
program:

(a1) a := r:b []
(a2) r:a := a []
(a3) b := r:a []
(a4) r:b := b
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MinDist = ([]a; b : a; b 2 V : MinDist:a:b) where MinDist:a:b is de�ned as follow:

prog MinDist:a:b

read fb0 : b0 2 E:b : r:a:b:b0g [ fb0 : b 2 E:b0 : r:a:b0:bg [ fd:a:bg
write fb0 : b 2 E:b0 : r:a:b0:bg [ fd:a:bg
init true

assign d:a:b := �ba:(r:a:b) [] ([]b0 : b 2 E:b0 : r:a:b0:b := d:a:b)

Round Solvable Problems

The program above is self-stabilizing: if an adversary corrupts the values of d or r the program
simply continues its computation and eventually the value of every d:a:b will become acceptable
for all rounds in A. When this situation is reached, our notion of acceptability must be strong
enough to conclude that the original goal of the computation is reached |in this case computing
the minimal distance between vertices. This requirement is stated in Finish Condition.

The program above is actually apt for a class of problems, instead of just the minimal distance
problem. Note that in arguing about the correctness of the program we only relied on the existence
of a set of A of rounds, ordered by a well-founded ordering �, and a function � satisfying the
property RS. So, as long as we can �nd these (A;�) and � for a given notion of acceptability (the
predicate ok) the program above is a solution of the problem. Problems that can be solved this
way are called Round Solvable [Len93].

As for the minimum distance problem, the following instantiation will satisfy Finish Condition

and RS. The proof of this can be found in, for example [Len93]. We have also mechanically veri�ed
this result. For A we choose the set of natural numbers less than or equal to the diameter of the
network (V;E). � is instantiated to <, and ok and � are de�ned as:

De�nition 7.8 :
For all a; b 2 V and n 2 A:

oknb :X =

�
X = �:a:b if �:a:b � n

n � X otherwise

De�nition 7.9 :
For any f 2 V !N and a; b 2 V :

�ba:f =

�
0 if a = b

(min(f �E:b)) + 1 otherwise

7.6 Dynamic System

Let us here add a little comment about dynamic system. In a distributed and dynamic system, it
is possible that a network of processes changes during the lifetime of the system: a process may
temporarily cease to function or a new process may be created. The same thing may also happen
to a link between two processes.

A self-stabilizing program can be parameterized by the topology of the network, as is the case
with the program MinDist. If we can show that the program converges to its goal under any
topology then the program can recover from a topological change. If after some time there is a
change in the topology the computation will be temporarily in chaos while the environment is
busy updating various topology-related data in, deleting suspended processes from, and adding
new or re-activated processes to the program. Once this is done, the program simply continues its
computation. Since the program has been shown to converge to its goal given, roughly speaking,
any topology, it will also do so now. Of course, we assume that the new topology satis�es the
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(preOkn ^ dataOkn) ensures oknb :(r:a:b
0:b)

( f ensures Post-weakening (analogous to Theorem 4.13 g

(preOkn ^ dataOkn) ensures (preOkn ^ dataOkn ^ oknb :(r:a:b
0:b)

( f de�nition of dataOk; ensures Post-weakening g

(preOkn ^ dataOkn) ensures (preOkn ^ dataOkn ^ (r:a:b0:b = d:a:b))

( f ensures PSP law; (7.13) g

true ensures (r:a:b0:b = d:a:b)

Notice that the resulting ensures speci�cation can be implemented by an assignment r:a:b0:b :=
d:a:b. To summarize, we can re�ne MD3.b to:

MD4:a MinDist:a:b` � (preOk
n ^ dataOkn)

MD4:b MinDist:a:b` � (preOk
n ^ dataOkn ^ oknb :(r:a:b

0:b))
MD4:c MinDist:a:b` true ensures (r:a:b

0:b = d:a:b)

Now let us continue with MD3.a. Just as what we did to MD3.b, we apply (ensures, ) Intro-
duction law to re�ne MD3.a to:

MinDist:a:b` �preOkn (7.16)

MinDist:a:b` � (preOkn ^ oknb :(d:a:b)) (7.17)

MinDist:a:b` preOkn ensures oknb :(d:a:b) (7.18)

The progress speci�cation (7.18) requires the program to establish oknb :(d:a:b) from preOkn.
The latter implies that the link registers r:a:b0:b of all b0 2 E:b are all ok for any previous round
m. We might be able to establish ok

n
b :(d:a:b) by applying some function � to those link registers.

Let us suppose that there exists such a function. More speci�cally, assume:

There exists a function � satisfying:

RS : (8m; b0 : m � ^b0 2 E:b : okmb0 :(f:b
0)) ) oknb :(�

b
a:f)

for all n 2 A and a; b 2 V and f .

Let us now see how we can use RS to simplify (7.18). The calculation is similar to that of
(7.15):

preOkn ensures oknb :(d:a:b)

( f ensures Post-weakening g

preOkn ensures (preOkn ^ oknb :(d:a:b))

( f de�nition of preOk; use RS and choose f  r:a:b; ensures Post-weakening g

preOkn ensures (preOkn ^ (d:a:b = �ba(r:a:b)))

( f ensures PSP law; (7.16) g

true ensures (d:a:b = �ba(r:a:b))

The last can be implemented by an assignment d:a:b := �ba(r:a:b). To summarize, we can re�ne
MD3.a to:

MD5:a MinDist:a:b` �preOk
n

MD5:b MinDist:a:b` � (preOk
n ^ oknb :(d:a:b))

MD5:c MinDist:a:b` true ensures (d:a:b = �ba:(r:a:b))

Without further proof we give a code for MinDist which satis�es MD4 and MD5:
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Assuming Finish Condition we can re�ne MD1 to:

true MinDist:a` true  (8n : n 2 A : dataOkn) (7.9)

The Round Decomposition principle suggests that we can implement (7.9) by converging to
dataOkn at each new round n, given that dataOkm holds for any previous round m. Unfortunately
dataOk does not tell anything about the state of the link registers. Without this knowledge we
cannot tell anything about the result of a local computation of a node since it is based on the
values of the link registers. So, what we do is strengthen (7.9) by requiring that the values of
the link registers should also be made acceptable at each new round. This gives us the following
speci�cation:

true MinDist:a` true  (8n : n 2 A : dataOkn ^ comOkn) (7.10)

Let us now try to apply the Round Decomposition principle to re�ne (7.10) further. We derive:

true ` true  (8n : n 2 A : dataOkn ^ comOkn)

( f De�nition of preOk; Round Decomposition g

(8n : n 2 A : preOkn ` true  dataOkn ^ comOkn)

( f Accumulation g

(8n : n 2 A : (preOkn ` true dataOkn) ^ (preOkn ` dataOkn  comOkn))

( f  Stable Shift g

(8n : n 2 A : (preOkn ` true dataOkn) ^ (preOkn ^ dataOkn ` true  comOkn))

So, MD1 can be re�ned by MD2 and MD3 de�ned as follows:

For all n 2 A:

MD2:a : preOkn MinDist:a` true  dataOkn

MD2:b : preOkn ^ dataOkn MinDist:a` true  comOkn

By unfolding the de�nition of dataOk and comOk and by applying the  Conjunction law
(Theorem 5.11) we can re�ne above speci�cations to the following. For all n 2 A, b 2 V , and
b0 2 E:b:

preOkn MinDist:a` true oknb :(d:a:b) (7.11)

preOkn ^ dataOkn MinDist:a` true  oknb :(r:a:b
0:b) (7.12)

Let us insist that MinDist:a = ([]b : b 2 V : MinDist:a:b) where the MinDist:a:b's are pair-wise
write-disjoint. Using the Transparency law (Theorem 6.7) we can delegate the task of ful�lling
(7.11) and (7.12) to MinDist:a:b. If we do this, we end up with the following re�nement of MD2:

For all n 2 A; b 2 V , and b0 2 E:b:

MD3:a : preOkn MinDist:a:b` true  oknb :(d:a:b)
MD3:b : preOkn ^ dataOkn MinDist:a:b` true  oknb :(r:a:b

0:b)

Let us �rst continue with MD3.b since this is easier. By applying (ensures, ) Introduction
law (Theorem 5.5) we can re�ne MD3.b to the following primitive level speci�cations:

MinDist:a:b` � (preOkn ^ dataOkn) (7.13)

MinDist:a:b` � (preOkn ^ dataOkn ^ oknb :(r:a:b
0:b)) (7.14)

MinDist:a:b` (preOkn ^ dataOkn) ensures oknb :(r:a:b
0:b) (7.15)

The progress speci�cation (7.15) can be simpli�ed using (7.13):
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( f MinDist = ([]a : a 2 V : MinDist:a);  Transparency g

(8a : a 2 V : true MinDist:a` true (8b : b 2 V : d:a:b = �:a:b))

So, MD0 can be re�ned by MD1:

For all a 2 V :

MD1 : true MinDist:a` true (8b : b 2 V : d:a:b = �:a:b)

We will now divide the execution of each MinDist:a into rounds (the rounds are abstract, that
is, we pretend as if they exist, but in the program itself we do not actually have to be aware of
them). Let us say that upon �nishing a round n the program MinDist:a establishes and maintains
q:n where:

q:n = (8b : b 2 V : �:a:b � n) (d:a:b = �:a:b)) (7.8)

Notice that upon reaching a su�ciently 'large' round n the program MinDist:a will have achieved
its goal as speci�ed in MD1. Since the program maintains each q:m, upon entering round n,
(8m : m < n : q:m) holds. The obligation of round n can be expressed by:

(8m : m < n : q:m) q:n

This sounds reasonable. Unfortunately (8m : m < n : q:m) does not provide enough information
to establish q:n.

Suppose �:a:b = n + 1. To complete round n + 1 we must compute �:a:b to be assigned to
d:a:b. Theorem 7.6 suggests that we can compute this from �:a:b0 of all neighbors b0 of b. Since
we have passed round n before coming to round n + 1 we know that �:a:b0 of any neighbor b0

such that �:a:b0 = n has been computed correctly and stored in d:a:b0. Unfortunately, nothing is
known about the value of the d:a:b0 of other neighbors. Another problem is that the link registers
may initially contain garbage values which may circulate through the system and prevent it from
stabilizing. Obviously, there are more things which have to be done before a round can be declared
completed. Before we write down the details, let us �rst see how far we can go without a complete
knowledge of the obligations of each round.

Let us assume the existence of a �nite domain A of rounds, ordered by a well founded ordering
�. Later, we will have to come up with a concrete A and �.

Before we continue, let us introduce some abbreviations. In the de�nition below, d and r are
(arrays of) program variables. The role of d should be clear by now. r:a:b0:b is the link register
between vertices b and b0. It is intended to be a copy of d:a:b for vertex b0.

De�nition 7.7 : Let A be a �nite set of rounds ordered by a well-founded relation �. For
all n 2 A, a; b 2 V , and f 2 V !A:

oknb :X = "X is an acceptable value for round n and vertex b"

dataOkn = (8b : b 2 V : oknb :(d:a:b))
comOkn = (8b; b0 : b 2 V ^ b0 2 E:b : oknb :(r:a:b

0:b))
preOkn = (8m : m � n : dataOkm ^ comOkm)

So, oknb :(d:a:b) means the value d:a:b is acceptable for round n and oknb :(r:a:b
0:b) means that

the link register r:a:b0:b contains an acceptable value for round n. The meaning of 'acceptable' is
left open for now, but in any case it is su�cient if:

FinishCondition : (8n : n 2 A : dataOkn)) (8b : b 2 V : d:a:b = �:a:b)

dataOk
n means that all d:a:b's are acceptable for round n and comOk

n means the value of all
link registers are also acceptable for round n. Finally, preOkn means that the value of all d:a:b's
and their copies are acceptable for all rounds previous to round n.
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7.5 Example: Computing Minimal Distances

Recall again the program MinDist from Section 2, which computes the minimal distance between
any two vertices a and b in a network described by (V;E). V is the set of all vertices in the network
and the connectivity between vertices is described by E 2 V !P(V ) such that E:i describes the
set of all neighbors of i. The network is assumed to be connected. The program (in UNITY
notation) is redisplayed below:

prog MinDist

read fa; b : a; b 2 V : d:a:bg
write fa; b : a; b 2 V : d:a:bg
init true

assign ([]a : a 2 V : d:a:a := 0) []
([]a; b : a; b 2 V ^ (a 6= b) : d:a:b := (min(d:a �E:b)) + 1)

The actual minimal distance between a and b is denoted by �:a:b. The function � is also
characterized by the following property, which also tells us how to compute �:a:b from the �:a:b0

of the neighbors b0 of b:

Theorem 7.6 :

(8a : a 2 V : �:a:a = 0) ^ (8a; b : a; b 2 V ^ a 6= b : �:a:b = (min(�:a �E:b)) + 1)

The program MinDist is required to compute and maintain �. This speci�cation can be ex-
pressed as follows:

MD0 : true MinDist` true (8a; b : a; b 2 V : d:a:b = �:a:b)

Observe that upon reaching its �xpoint, the programMinDist will have the value of d satisfying
the equation in Theorem 7.6, and since the equation characterizes �, then d is equal to �. The
problem is however, how do we know that this program will ever reach its �xpoint, especially since
it can start in an arbitrary state? To prove this we will have to construct and prove a scenario we
think the program obeys while converging to its �xpoint.

Another point is that in the above program, as are the programs from the previous examples,
it is assumed that each (parallel) component can directly access the variables of a neighboring
component. For some architectures such a direct access is not possible and all communication
has to take place through channels. Let us now try to also take this into account. We model
channels with link registers. The mechanism is simple, but captures the idea of asynchronous
communication adequately. Sending a messege into a channel is modelled by writting to a link
register. There is no primitive synchronization: the reciever is not obliged to immediately fetch the
message and the sender is free to send another message at any time. Consequently, it is possible
that the sender overwrites a message it has sent, but which the reciever has not yet read. This
mimics the fact that messages can be lost and hence that channels may be unreliable (however,
due to the fairness assumption of UNITY, it is not possible in this model for a channel to loose
messages continously). If a program can be shown to work properly using link registers then it is
is tolerant to this kind of unreliability.

First of all, we observe from Theorem 7.6 that �:a can be computed without any information
about �:a0 for distinct a0. We can delegate this task to a component program.

Let MinDist = ([]a : a 2 V : MinDist:a) where the MinDist:a's are pair-wise write-disjoint. Using
the Transparency law we can delegate the computation of �:a to MinDist:a:

true MinDist` true (8a; b : a; b 2 V : d:a:b = �:a:b)

( f  Conjunction g

(8a : a 2 V : true MinDist` true  (8b : b 2 V : d:a:b = �:a:b))
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( f (ensures,�) Introduction; �Compositionality g

(P` �preOk
i) ^ (P:i` � (preOk

i ^ oki)) ^ (P:i` preOk
i ensures oki)

To summarize, we have re�ned M2 to the following speci�cation:

Let P = ([]j : j 2 V : P:j) such that (8i : i 2 V : w(P:i) = fy:ig). For all i 2 V :

M3:a : P` �preOk
i

M3:b : P:i` � (preOk
i ^ oki)

M3:c : P:i` preOk
i ensures oki

In particular, M3.c states that we have to establish oki from preOki. This can be done by
computing u(x � S�:i) from u(x � S�:j) of all sons j of i:

Lemma 7.5 :

u(x � S�:i) = (u((u � (x�) � S�) � S:i)) u x:i

Proof: To prove the above we use the following property of a semi-lattice. In a semi-lattice, the
u operator that belongs to that lattice satis�es:

u([V ) = u(u � V ) (7.7)

An instance of above property is: u(U [ V ) = (uU ) u (uV ). Now let us prove the lemma above:

u(x � S�:i)

= f a property of S� g

u(x � (([fj : j 2 S:i : S�:jg) [ fig))

= f de�nition � g

u(x � (([(S� � S:i)) [ fig))

= f properties of �: (7.6), (7.5), and (7.4) g

u(([(((x�) � S�) � S:i)) [ fx:ig)

= f (7.7) and (7.4) g

(u((u � (x�) � S�) � S:i)) u x:i

�

The lemma suggests that oki can be established by the assignment:

y:i := (u((u � (x�) � S�) � S:i)) u x:i

However, preOk implies that for all sons j of i, y:j = u(x�S�:j). It follows that the expression
(u � (x�) � S�) � S:i in the assignment above can be replaced by y � S:i. So, the assignment
y:i := (u(y �S:i))ux:i will do the job. Without further proof we give now a program that satis�es
M3.

P = ([]i : i 2 V : P:i) where for all i 2 V , P:i is de�ned as follows:

prog P:i

read fj : j 2 S:i : x:jg [ fx:i; y:ig
write fy:ig
init true

assign y:i := (u(y � S:i)) u x:i

As its self-stabilizing property, the program automatically re-computes the value of the y:i's if
some adversary changes the value of x.
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Let us however consider a more general problem. Instead of the standard minimumoperator we
consider the least upper bound operator u (also called the 'cap' operator) of some given complete
semi-lattice 7. Using the map operator the problem can be stated as: compute u(x � S�:�). If we
let the result to be stored in y:�, the problem can be speci�ed as follows:

M1 : true P` true  (y:� = u(x � S�:�)

Let us �rst introduce some abbreviations which we will use later:

For all i 2 V :

oki = (y:i = u(x � S�:i))

preOki = (8j : j 2 S+:i : okj)

oki states that process i has a 'correct' value of y:i and preOki states that all processes that
'preceed' i, which here means being proper descendants of i, have correct values of their y's.

As a preparation for further calculation let us express M1 in terms of ok and then strengthen
the goal to include a similar goal for each process i:

true (y:� = u(x � S�:�))

= f de�nition ok g

true ok�

( f  Substitution g

true (8i : i 2 V : oki)

So, M1 can be re�ned by M2:

M2 : true P` (8i : i 2 V : oki)

To establish ok our strategy is as follows. Suppose that somehow we can establish okj for all
proper descendant j of i, then we might try to establish oki using this knowledge. This is done
repeatedly until ok� is established. This sounds very much like round deomposition: V is the set
of rounds, ordered by S+ , and oki is the goal of round i. The following calculation will make this
apparent:

true P` true (8i : i 2 V : oki)

( f S+ is well founded; Round Decomposition g

(8i : i 2 V : (8j : j 2 S+ :i : okj) P` true  oki)

= f de�nition of preOk g

(8i : i 2 V : preOki P` true oki)

Notice that the �nal speci�cation re
ects our strategy. Furthermore, we observe that the task
of establishing oki can be delegated to process i, which we will call P:i. If we insist that for
each i 2 V , wP:i = fy:ig then P = ([]i : i 2 V : P:i) consists of programs that are pair-wise
write-disjoint, which is nice because we can now apply the Transparency principle. We continue
the calculation:

preOki P` true  oki

( f P = ([]j : j 2 V : P:j);  Transparency; �Compositionality g

(P` �preOk
i) ^ (preOki P:i` true  oki)

7An equivalent approach would be to use an idempotent, commutative, and associative operator � instead of a
semi-lattice.
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( f Well-founded Induction g

(8n : n 2 A : (8m : m � n : J ` true q:m) ) (J ` true  q:n))

If n is a minimal element then:

(8m : m � n : J ` true q:m) ) (J ` true  q:n)

( f predicate calculus g

J ` true  q:n

= f n is a minimal element, hence there is no m such that m � n g

J ^ (8m : m � n : q:m) ` true q:n

If n is not a minimal element then:

(8m : m � n : J ` true q:m) ) (J ` true  q:n)

( f  Conjunction g

(J ` true  (8m : m � n : q:m)) ) (J ` true  q:n)

( f  Transitivity g

J ` (8m : m � n : q:m) q:n

( f  Stable Shift g

(8m : m � n : q:m) 2 Pred:(wP ) ^ ( �J) ^ (J ^ (8m : m � n : q:m) ` true q:n)

( f  Confinement ; con�nement is preserved by 8 g

( �J) ^ (J ^ (8m : m � n : q:m) ` true  q:n)

�

In the next two subsections we will give examples illustrating the use the Round Decompo-

sition principle. In the �rst example we show a derivation of a self-stabilizing program which
computes the minimum input value of a set of processes connected in a tree. The derivation also
demonstrates how our intuitive ideas regarding the division of tasks among component programs
can be translated to the formal level using the compositionality laws from Section 6. The sec-
ond example is about the program MinDist from Section 2. The self-stabilizing property of this
program is not easy to be proven. In addition, we deliberately make the problem more compli-
cated by forbidding a component program to directly access the state of other component. This
should illustrate the complexity when dealing with self-stabilization in an asynchrounous system,
in contrast to doing the same for a synchronous system. We will return to this point in Section 8.

7.4 Example: Self-stabilizing Computation of Minimum

We have a �nite, non-empty set of vertices V connected to form a tree with root �. The connec-
tivity in V is re
ected by a function S such that for any i 2 V , S:i is the set of all sons of i. Just
as in the case of a dag (see Subsection 7.1), we can de�ne S� and S+. The �rst describes the set
of all descendants of a given vertex, the second the set of all proper descendants. We can regard
S+ as a relation by de�ning i S+ j = i 2 S+:j. Since a tree is a special kind of dag, it follows
that S+, regarded as a relation, is well-founded. Note also that S�:� = V .

Each process i has an input x:i and the problem is to compute the minimum of the x:i's of all
vertices in V , or in other words, of all descendants of �.

Before we continue, let us �rst introduce a function map which will be useful in specifying the
problem. For any function f and any set A, let f �A (the map 6 of f on A) be de�ned as:

f �A = fx : x 2 A : f:xg (7.3)

Map satis�es the following properties:

f � (g � V ) = (f � g) � V (7.4)

f � (U [ V ) = (f � U ) [ (f � V ) (7.5)

f � ([V ) = [((f�) � V ) (7.6)

6The notation is borrowed from Functional Programming
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prog R

read fi : i < N : x:ig
write fi : i < N : x:ig
init true

assign if x:(N � 1) < x:0 then x:0 := x:(N � 1)
[] ([]i : i < N � 1 : x:(i+ 1) := x:i)

Note that the common natural number will be computed in a non-deterministic way: there
is no way of saying which of the initial values of the x:i's will be picked as the common natural
number. The self-stabilizing property of the program implies that when an adversary changes the
value of some x:i at any time, the program simply re-computes a new common natural number.

7.3 Monotonic Systems

A program is called monotonic if it makes progress through a sequence of totally ordered phases

or rounds. Note however that by mapping program states to an empty domain of rounds every
program can be considered monotonic . Therefore the notion of monotonic program is only useful
if there is an objective, which is ful�lled when all rounds in the sequence have been passed. Usually
to each round n we associate a predicate q:n describing a goal to be established in that round.

Consider again the program MinDist from Section 2. The program computes the minimal
distance between any pair of vertices (a; b) in a network (V;E). Let �:a:b denote the minimal
distance between a and b. Let nmax be the greatest of the minimal distances between two vertices
in the network (V;N ). Let q:n, the goal of round n, be:

q:n = (8a; b : a; b 2 V : �:a:b � n) d:a:b = �:a:b) (7.2)

If the program is indeed monotonic with respect to [0; : : : ; nmax] 7as the domain of the rounds,
ordered by <, then we know that eventually, when all rounds have been passed, hence also the
last round, that all distances have been computed correctly.

In sequential programming, we have a law for decomposing a while-loop speci�cation into the
speci�cations of the loop's guard and body. Monotonic programs are comparable with while-
loops. One may expect that an analogous decomposition principle holds for monotonic programs.
Consider a �nite set A of rounds, totally ordered by �. Suppose we want to establish (8n : n 2
A : q:n). If each q:n is stable then we know that upon entering a round n the program will
have established (8m : m � n : q:m). The obligation of the round n is then to progress from
(8m : m � n : q:m) to q:n. Since the program is monotonic, it will traverse through all n's
and eventually it will reach its �nal goal, namely (8n : n 2 A : q:n). This principle is called
round decomposition: it decomposes the speci�cation of a monotonic program into a round-wise
speci�cation. The principle is formulated below. Note that a total ordering is an instance of
well-founded relations.

Theorem 7.4 : Round Decomposition

For any �nite and non-empty set A and any well-founded relation �2 A� A:

P :
( �J) ^ (8n : n 2 A : J ^ (8m : m � n : q:m) ` true  q:n)

J ` true (8n : n 2 A : q:n)

Proof:

(Let P be a UNITY program) we derive:

J ` true  (8n : n 2 A : q:n)

( f  Conjunction g

(8n : n 2 A : J ` true  q:n
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true ok

( f De�nition of  g

(true� ok) ^ ( �ok)

( f Bounded Progress g

(8M :: (x:0 =M )� (x:0 < M ) _ ok) ^ ( �ok)

For the progress part of above speci�cation we derive further:

(x:0 = M )� (x:0 < M ) _ ok

( f � Disjunction g

((x:0 =M ) ^ ok� (x:0 < M ) _ ok) ^ ((x:0 = M ) ^ :ok� (x:0 < M ) _ ok)

= f (),�) Introduction g

(x:0 = M ) ^ :ok� (x:0 < M ) _ ok

( f � Substitution g

(x:0 = M ) ^ :ok� (x:0 < M )

The last speci�cation above states that the value of x:0 must decrease while ok is not estab-
lished. But if ok is not yet established then there must be some i such that x:i 6= x:0. A naive
solution is to send the minimum value of the x:i's to x:0 but this results a deterministic program
which always chooses the minimumvalue of the x:i's as the common value. So, we will have to try
something else. We let each process copy its x:i to x:i+. In this way the value of some x:i which
smaller |not necessarilly the smallest possible| than x:0, if one exists, will eventually reach
process 0. Of course it is possible that values larger than x:0 reach process 0 �rst, but process 0
simply will ignore these values.

Let ts be de�ned as follows:

ts = N � maxfn : (n � N ) ^ (8i : i < n : x:i = x:0) : ng (7.1)

Roughly, ts is the length of the tail segment of the ring whose elements are yet to be made equal
to x:0. Note that according to the just described strategy the value of x:0 either remain the same
or it decreases. If it does not decrease, it will be copied to x:1, then to x:2, and so on. In doing
so ts will be decreased. Note that ts = 0 implies ok. This is, again, an instance of the Bounded
Progress principle with ts as the bound function. Above strategy can be translated to the formal
level. Continuing our calculation:

(x:0 = M ) ^ :ok� (x:0 < M )

( f Bounded Progress g

(8K : K < N : (x:0 =M ) ^:ok ^ (ts = K)� ((x:0 = M ) ^ :ok ^ (ts < K)) _ (x:0 < M ))

( f (ensures,� Introduction g

(8K : K < N : (x:0 =M )^:ok^(ts = K) ensures ((x:0 = M )^:ok^(ts < K))_(x:0 < M ))

So, to summarize, we come to the following re�nement of LS0:

For all M 2 N, K < N , and X:

LS1.a: �ok

LS1.b: (x:0 = M) ^ :ok ^ (ts = K) ensures ((x:0 =M) ^ :ok ^ (ts < K))_ (x:0 <M)

LS1.a states that once the processes agree on a common value, they maintain this situation.
LS1.b states that if a common value has not been found, then either the length of the tail segment
should become smaller, which can be achieved by copying the value of x:i to x:i+, or x:0 should
decrease.

Without proof we give a program that satis�es the above speci�cation.
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Figure 12: A ring network.

(8M 0 :M 0 �M : p ^ (m = M 0) q) ) (p ^ (m = M ) q)

( f  Disjunction g

(p ^ (m �M ) q) ) (p ^ (m = M ) q)

( f q q;  Disjunction g

((p ^ (m �M )) _ q  q) ) (p ^ (m = M ) q)

( f  Transitivity g

p ^ (m = M ) (p ^ (m �M )) _ q

�

As an example in the next subsection we will show a calculation for a self-stabilizing leader
election.

7.2 Example: Leader Election

We have N processes numbered from 0 to N � 1 connected in a ring: process i is connected to
process i+ where + is de�ned as:

i+ = (i+ 1) mod N

Figure 12 shows such a ring of six processes.
Each process i has a local variable x:i that contains a natural number less than N . For

example, the numbers printed above the circles in Figure 12 show the values of the x:i's of the
corresponding processes. The problem is to make all processes agree on a common value of the
x:i's. The selected number is then the number of the 'leader' process, which is why the problem
is called 'leader election'. The computation has to be self-stabilizing and non-deterministic. The
latter means, for example as in the case shown in Figure 12, that the computation should not
always choose 4 (the initial value of x:0) as the leader, or 0 (the minimum value of the x:i's).

To do this we extend the x:i's to range over natural numbers and allow them to have arbitrary
initial values. The problem is generalized to computing a common value of x:i's. The identity of
the leader can be obtained by applying mod N to the resulting common natural number.

Let us de�ne a predicate ok as follows.

ok = (8i : i < N : x:i = x:i+)

The speci�cation of the problem can be expressed as follows:

LS0 : true ring` true  ok

Here is our strategy to solve this. We let the value of x:0 decrease to a value which can no longer
be 'a�ected' by the value of other x:i's |we choose to rule that only those x:i's whose value is
lower than x:0 may a�ect x:0. This value of x:0 is then propagated along the ring to be copied to
each x:i and hence we now have a common value of the x:i's. Formally this is just an instance of
the Bounded Progress principle with x:0 as the bound function. Let us now apply the principle
to re
ect the strategy. We calculate for LS0:
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Theorem 7.1 : Well-founded Induction

For any well-founded relation �2 A!A!bool:

(8y : y 2 A : (8x : x � y : X:x)) X:y) = (8y : y 2 A : X:y)

For example, < is well-founded. Other examples are �nite dags (directed acyclic graph).
A dag can be represented by a pair (A; S) where A describes the set of vertices in the graph and

for each a 2 A, S:a describes the set of all 'sons' of a. If we de�ne S0:a = fag and Sn+1 = S �Sn,
we can de�ne the 'transitive' closure of S (denoted by S+) as S+ :a = [fi : 0 < i : Si:ag and the
'transitive and re
exive' closure of S (denoted by S�) as S�:a = S+:a [ S0:a. The function S�

and S+ describes the set of, respectively, descendants and proper descendants of a given vertex.
We can regard S; S+, and S� as relations. For example: a S b = a 2 S:b. A pair (A; S) is a dag
if S+ is irre
exive, that is, :(a S+ a) for any a 2 A. If (A; S) is a dag and A is �nite, then S+ is
well-founded.

Suppose we have a function m that maps program states to A and we have a well-founded
relation � de�ned on A. Suppose that the program is such that either it decreases the value of
m with respect to �, or it reaches q. From the well-foundedness of � it follows that the program
cannot decrease m forever and hence q must eventually hold. This principle is well known; we call
it here Bounded Progress principle and we call m the bound function. The principle applies for
progress by � and also for convergence.

Let � be a well founded relation over a non-empty set A and let m be some metric function
(also called bound function) that maps states of program P to A.

Theorem 7.2 : � Bounded Progress

P; J :
q 2 Pred:wP ^ (8M :M 2 A : p ^ (m =M )� (p ^ (m �M )) _ q)

p� q

Theorem 7.3 :  Bounded Progress

P; J :
(q  q) ^ (8M :M 2 A : p ^ (m = M ) (p ^ (m �M )) _ q)

p q

Note: with some overloading omitted the expression p^ (m =M) (p^ (m �M))_qcan be written

as: p ^ (�s: m:s =M) (p ^ (�s: m:s �M)) _ q

Below we give the proof for the  case. Notice that the proof only relies on the disjuctivity,
transitivity, and re
exivity of . So the principle applies to any other relation with such properties.
Proof:

p q

( f  Disjunction g

(8M :M 2 A : p ^ (m = M ) q)

= f Well-Founded Induction g

(8M :M 2 A : (8M 0 :M 0 �M : p ^ (m = M 0) q) ) (p ^ (m = M ) q))

If M is a minimal element, thus there is no M 0 such that M 0 �M , we derive:

(8M 0 :M 0 �M : p ^ (m = M 0) q) ) (p ^ (m = M ) q)

( f predicate calculus g

p ^ (m = M ) q

= f M is a minimal element, so (m �M ) = false g

p ^ (m = M ) (p ^ (m �M )) _ q

If M is not a minimal element:
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( f  Transparency; P �Q g

(J P` p q) ^ (Q` �J) ^ (J Q` r s) ^ (P` �J)

= f  Stable Background (Theorem 5.3) g

(J P` p q) ^ (J Q` r s)

�

This concludes our discussion about compositionality. Some examples to show how we exercise
formal calculation of self-stabilizing programs will be presented in the next section.

7 Examples

In this section we will present three examples of increasing complexity to illustrate how various laws
which we have introduced can be used to derive self-stabilizing programs and argue about their
correctness. The �rst example deals with the problem of leader election among a set of processes
which are organized as a ring. The second one deals with the computation of the minimal input
of a set of processes which are organized in a tree, and the third one is about the program MinDist

introduced in Section 2. Our aim is to expose the calculation methods being used. One may
compare our style of reasoning with those in [LS93, Len93]. What we would also like to illustrate
is how to translate our intuitive understanding of, for example, strategies for implementing a given
speci�cation, in a natural way to the formal level.

In all the three examples we will need to use induction. Many distributed programs exploit
spanning trees in their computation. Reasoning about these programs may require the use of
tree induction. In sequential programming well founded induction is used to prove termination.
In [CM88] Chandy and Misra use well-founded induction as a standard way to prove progress.
Needless to say, induction plays an important role in programming since it enables us to reason
about an unbounded number of possibilities in �nitely many steps. In many textbooks inductions
are formulated and treated in a semi-formal way; perhaps because the principle is so intuitive
that we think we know exactly what we mean every time the word "induction" occurs in our
semi-formal proofs. Sometimes however, we have to be very precise, especially when dealing with
a complex problem. When such precision is required, we need not only a precise formulation of an
induction principle, but also the skill and style to e�ectively excercise the principle at the formal
level.

Often reasoning about self-stabilizing programs relies heavily on �nding a well-founded rela-
tion, used to prove the progress part while preserving stability. Finding the right well-founded
relation is often not easy |as in the case of, for example, the leader election and the computa-
tion of a spanning-tree [CYH91]| but in any case this is something that can be done outside
the programming logic. We will begin this section by presenting the formulation of some design
methods in which we typically employ well-founded induction to prove convergence. Well-founded
induction is a very general induction principle. For example, it encompasses the natural number
induction, tree induction, and directed acyclic graph (dag) induction.

For the sake of the readability we will omit the con�nement requirement (that is, expression
of the form p 2 Pred:V ) from our formulas.

7.1 Bounded Progress

A well-founded relation over A is a relation �2 A � A such that it is not possible to form an
in�nitely decreasing sequence. That is, an in�nite sequence : : : � x2 � x1 � x0 is not possible. A
well-founded relation satis�es the well-founded induction principle given below5.

5It has been showed that the above formulation of well-foundedness is actually equivalent with the admittance
of the well-founded induction itself.
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property is usually constructed, either using transitivity, disjunction, or conjunction principles,
from a number of simpler progress/convergence properties. Using the principle we can delegate
each constituent property, if we so desire, to be realized by a write-disjoint component of a program.
This is formulated by the following theorems.

Theorem 6.8 : Spiral Law

(P �Q) ^ (P` � (J ^ s)) ^ (Q` �J) ^ (J P` p� s) ^ (J ^ s Q` true� r)

J P []Q` p� s ^ r

Proof:

J P []Q` p� s ^ r

( f � Transitivity and PSP g

(J P []Q` p� s) ^ (J P []Q` s� r) ^ (P []Q` � (J ^ s))

( f � Stable Shift, Stable Background, and Confinement g

(J P []Q` p� s) ^ (J ^ s P []Q` true� r) ^ (P []Q` � (J ^ s))

( f � Transparency; �Compositionality; assumptions g

(J P` p� s) ^ (J ^ s Q` true� r) ^ (Q` � (J ^ s))

( f (6.1) and� Stable Background g

(J P` p� s) ^ (J ^ s Q` true� r) ^ (Q` �J) ^ s 2 Pred:(wP )

( f � Confinement g

(J P` p� s) ^ (J ^ s Q` true� r) ^ (Q` �J)

�

The Spiral law is used to implement a sequential division of tasks. For example if we want to
do a broadcast, we can think of a two-steps process: �rst, construct a spanning tree, and then do
the actual broadcast. Usually we have separate programs for both tasks. The Spiral Law provides
the required justi�cation for this kind of separation, where in this case P constructs the spanning
tree and Q performs the broadcast under the assumption that s describes the existence of this
spanning tree. Typically, the law is applied when P and Q form a layering. A layering, if the
reader recalls, is a parallel composition of two write-disjoint programs in which the computation
of one program depends on the other (but not necessarily the other way around). See also the
discussion in Section 2 and speci�cally De�nition 2.2.

Now recall again the program MinDist from Section 2. The program computes of the minimal
distance between any two vertices in a network. It is known that the minimal distances from a
vertex a and the minimal distances from a di�erent vertex b can be computed independently. This
suggests a parallel division of tasks. The following law �ts well in this kind of decomposition. The
law is typically applied when P and Q form a fork or non-interfering parallel composition. For the
meaning of these constructs see the discussion in Section 2, speci�cally De�nitions 2.3 and 2.4.

Theorem 6.9 : Conjunction by []

For any non-empty and �nite set W :

J :
(8i; j : i; j 2W ^ (i 6= j) : P:i� P:j) ^ (8i : i 2W : P:i` p:i q:i)

([]i:i2W :P:i)` (8i : i 2W : p:i) (8i : i 2 W : q:i)

Proof:

We are going to prove the theorem for the simple case where W consists only of two elements.
The general case can be proven using �nite set induction. We derive:

J P []Q` p ^ r q ^ s

( f  Conjunction (Theorem 5.11) g

(J P []Q` p q) ^ (J P []Q` r s)
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6.1 Write-Disjoint Composition

A much nicer compositionality rule can be obtained for a network of write-disjoint programs,
that is, a network of programs which share no common write variable (De�nition 2.1). In such
a network a program can only write to its own variables, or to other program's input variables.
Consequently, if P and Q are write-disjoint and p 2 Pred:(wP ) then Q cannot destroy p. This is
a crucial property in deriving the Transparency principle (2.4) we mentioned in Section 2.

(P �Q) ^ p 2 Pred:(wP )

Q`�p
(6.1)

We have de�ned � in such a way that all intermediate pairs p0 � q0 required to construct
J P` p� q are con�ned by wP . Consequently, by (6.1), if we have another program Q which is
write-disjoint with P and which also respects �J then Q cannot destroy any of those intermediate
progress properties and hence p� q is also constructible in P []Q. So,� satis�es the Transparency
principle.

Theorem 6.6 : � Transparency

P �Q ^ (Q`�J) ^ (J P` p� q)

J P []Q` p� q

Proof:

By � Induction it su�ces for us to show that (�p; q: J P []Q` p� q) is transitive, left disjunctive
and includes ens:P:J . The �rst two are instances of� Transitivity and Disjunction. The third
is proven below:

J P []Q` p� q

( f (ensures,�) Introduction g

p; q 2 Pred:(w(P []Q)) ^ (P []Q`�J) ^ (P []Q` p ^ J ensures q)

( f wP � wP []Q; Con�nement is monotonic (Theorem 3.2) g

p; q 2 Pred:(wP ) ^ (P []Q`�J) ^ (P []Q` p ^ J ensures q)

= f �Compositionality (Corollary 4.8) g

p; q 2 Pred:(wP ) ^ (P`�J) ^ (Q`�J) ^ (P []Q` p ^ J ensures q)

( f ensures Compositionality (Theorem 4.9) and the de�nition of ens g

(Q`�J) ^ (Q` p ^ J unless q) ^ ens:P:J:p:q

( f unless Post-weakening (Theorem 4.13); de�nition of �; �Conjunction g

(Q`�J) ^ (Q`�p) ^ ens:P:J:p:q

( f (6.1) g

(Q`�J) ^ p 2 Pred:(wP ) ^ (P �Q) ^ ens:P:J:p:q

= f de�nition of ens g

(Q`�J) ^ (P �Q) ^ ens:P:J:p:q

�

An analogous law also holds for convergence.

Theorem 6.7 :  Transparency

P �Q ^ (Q` �J) ^ (J P` p q)

J P []Q` p q

The Transparency principle is fundamental for write-disjoint composition. Some well known
design techniques that we use in practice are corollaries of this principle. A progress or convergence
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Sender Receiver

wire

Ack

buffer

Sbit

Figure 11: A simple protocol.

( f unless Compositionality g

(P` p ^ J unless q) ^ (Q` p ^ J unless q)

( f unless Post-weakening; De�nition � g

(P` � (p ^ J)) ^ (Q` p ^ J unless q)

( f unless Simple Disjunction; De�nition unlessV g

(P` � (p ^ J)) ^ (Q` p ^ J unlessP ?!Q q)

( f � Stable Background g

(J ^ p P` true� q) ^ (Q` p ^ J unlessP ?!Q q)

�

As an example, let us consider a simple protocol as displayed in Figure 11. The task of the
protocol is to establish the progress (S is the sender and R is the receiver):

(8X :: J R[]S` (wire = X)� (bu�er = X))

for some invariant J . The sender tags each new message it puts on the wire by some sequence
number. The receiver acknowledges a message by returning its sequence number to the sender.
So, an acknowledged message can be identi�ed by seq = ack. The sender can be modelled by the
following program:

S: if seq=ack then wire, seq := produce new message, seq+

Where n+ produces a number, di�erent from n. So, S can only put something new on the wire if
the current message on the wire is already acknowledged. Consequently, for the system to make
progress, any message sent must eventually be acknowledged. This can be expressed as follows:

J R[]S` true� (seq = ack)

It seems reasonable to assign the task above to the receiver. Let us see now how this is formally
justi�ed using the Singh Law:

J R[]S` true� (seq = ack)

( f � Disjunction (Theorem 4.22) g

(8X :: J R[]S` (seq = X)� (seq = ack))

( f Corollary 6.5 g

(8X :: (S` (seq = X) ^ J unlessR?!S (seq = ack)) ^ (J ^ (seq = X) R` true� (seq = ack)))

Note that the resulting progress speci�cation states that making ack equal to seq is now R's
responsibility. One can also prove that the resulting unless speci�cation can be re�ned to S`
(seq 6= ack) unlessR?!S false, which states that S cannot send anything new as long as seq 6= ack.

The Singh Law describes how two arbitrary parallel programs can in
uence each other's
progress. It is a very general law. In many cases however, we know more about how the component
programs interact through their shared variables. That knowledge can be exploited to derive more
constructive compositionality properties.
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De�nition 6.1 : !?

P?!Q = rP \wQ

De�nition 6.2 : unlessV

Q` p unlessV q = (8X :: Q` p ^ (8v : v 2 V : v = X:v) unless q)

Note: the dummy X has the type Var!Val. Alternatively, by omitting some overloading we
can also write the formula above as:

Q` p unlessV q = (8X :: Q` p ^ (�s: (8v : v 2 V : s:v = X:v)) unless q)

So, P?!Q is the set of variables through which P reads updates made by Q. If P and Q

communicates through channels, then P?!Q are the channels from Q to P . Q ` p unlessV q

means that under condition p, every time Q modi�es any variable in V , it will mark the event
by establishing q. We are particularly interested in the case of V = P?!Q. For example, Q`
true unlessP?!Q q states thatQ cannot disturb P without 'raising the 
ag' q, and Q` p unlessP ?!Q false

states that Q cannot disturb P while p holds.
The Singh Law is given below. The proof [Pre93] is analogous to the (erronous) proof for the

7! version of the law given in [Sin89].

Theorem 6.3 : Singh Law

r; s 2 Pred:w(P []Q) ^ p1 2 Pred:(wP [ (P?!Q))
(P []Q` �J) ^ (Q` r ^ J unlessP ?!Q s) ^ (J ^ p1 P` p2� q)

J P []Q` p1 ^ p2 ^ r� q _ :p1 _ :r _ s

Some corollaries of the law are for example:

Corollary 6.4 : until Compositionality

(Q` �J) ^ (Q` p ^ J unlessP ?!Q q) ^ (P` p ^ J unless q) ^ (J P` p� q)
J P []Q` p� q

Corollary 6.5 :

p 2 Pred:(wP [ (P?!Q)) ^ (P []Q` �J) ^ (Q` p ^ J unlessP?!Q q) ^ (J ^ p P` true� q)
J P []Q` p� q

Corollary 6.4 states a su�cient condition for a progress property to be preserved by the parallel
composition. It is called untill Compositionality because (J^p unless q)^(J ` p� q) corresponds
with "J ^ p until q" in the linear temporal logic. Below we give the proof for Corollary 6.5. The
proof of Corollary 6.4 follows more or less the same line.
Proof:

J P []Q` p� q

( f � Substitution g

(J P []Q` p� (p ^ q) _ q) ^ q 2 Pred:(w(P []Q))

( f � PSP g

(J P []Q` p� q _ :p) ^ (P []Q` p ^ J unless q) ^ q 2 Pred:(w(P []Q))

q 2 Pred:(w(P []Q)) follows from P` true � q and � Confinement. The progress part follows
directly from the assumptions by the application of the Singh Law. As for the unless part:

P []Q` p ^ J unless q
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Corollary 5.2 : ( ,�) Conversion

P;J :
p q

p� q

Follows from the de�nition of  and
Theorem 4.29.

Corollary 5.3 :  Stable Background

P :
J ` p q

�J

Follows from Corollaries 5.2 and 4.27.

Corollary 5.4 :  Confinement

P;J :
p q

p; q 2 Pred:(wP )

Follows from Corllary 5.2 and Theorem 4.28.

Corollary 5.5 : (ensures, ) Introduction

P;J :

p; q 2 Pred:(wP ) ^ (�J) ^ (�(J ^ q))
p ^ J ensures q

p q

Follows from the de�nition of  and
Theorem 4.19.

Corollary 5.6 : (), ) Introduction

P;J :
[p ^ J ) q] ^ p; q 2 Pred:(wP ) ^ (�J) ^ (�(J ^ p))

p q

Follows from the de�nition of  and
Corollary 4.20.

Corollary 5.7 :  Substitution

P;J :

[J ^ p) q] ^ [J ^ r ) s]
p; s 2 Pred:(wP ) ^ (q  r)

p s

Follows from the de�nition of  and
Theorem 4.29.

Theorem 5.8 : Accumulation

P;J :
(p q) ^ (q  r)

p q ^ r

Theorem 5.9 :  Transitivity

P;J :
(p q) ^ (q  r)

p r

Follows from Theorem 5.8 and Corollaries 5.4
and 5.4.

Theorem 5.10 : Disjunction

P;J :
(p q) ^ (r  s)

p _ r  q _ s

Theorem 5.11 :  Conjunction
For all non-empty and �nite sets W :

P;J :
(8i : i 2W : p:i q:i)

(8i : i 2W : p:i) (8i : i 2W : q:i)

Theorem 5.12 :  Stable Shift

P :
p0 2 Pred:wP ^ (�J) ^ (J ^ p0 ` p q)

J ` p ^ p0  q

Figure 10: Some basic properties of  
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to be replaced by arbitrary predicates. This is in fact is the de�nition of convergence, introduced
by Arora and Gouda in [AG92]. Closely related concepts are the concepts of adaptiveness as in
[GH91] and leads-to-stabilization as in [LS93]. There are two reasons to make this generalization.
First, in some cases self-stabilization may be considered as a too strong requirement. For example
we may have a system that may only start in states bounded by a predicate p. Stabilization is still
possible as long as any state resulting from a sabotage by an adversary is still within p. Second,
the generalized notion of stabilization enjoys many interesting properties. Our formal de�nition
of convergence is given below.

De�nition 5.1 : Convergence

(J P` p q) = q 2 Pred:(wP ) ^ (9q0 :: (P` � (J ^ q
0 ^ q)) ^ (J P` p� q0 ^ q))

Bear in mind that p  q does not imply that q is a stable predicate. It only states that
eventually q will hold forever.

We have seen an example of a speci�cation, namely the speci�cation of the programMinDist

displayed by formula (2.1). Here are more examples. Consider a program sort whose goal is to
keep an array x[0; : : : ; n] sorted. Let ok:i mean that the initial segment x[0; : : : ; i] is properly
sorted, in ascending order, and that all elements in that initial segment are at most the remaining
elements of the array x. Here are two stabilizing properties of sort:

(x = permn:X) sort` true  ok:n (5.2)

(x = permn:X) ^ (m < n) ^ ok:m sort` true  ok:(m+ 1) (5.3)

The �rst states that eventually sort will stabilize to its goal. The second4 states that once
the initial segment [x:0; : : :; x:m] is ok it will remain ok and moreover the program will eventually
extend the ok initial segment by one step and maintain this new situation stable.

Figure 10 displays a number of basic properties of convergence. Notice that  is, in contrast
to �, not only _-junctive, but also ^-junctive. This makes  calculationally attractive. The
next section will present some useful compositionality properties of both operators.

6 Compositionality

The usefulness of compositionality has been motivated in Section 2. We will not repeat that
discussion. It su�ces here to say that a compositionality property enables us to decompose a
speci�cation of a program into speci�cations of its component programs. Such a property is
usually expressed by a law in the form as in (2.3). In Subsection 4.3 we have seen some examples
of such a property, namely the compositionality properties of unless, �, and ensures. This section
presents such properties for the progress operator � and the convergence operator  .

A general compositionality property of progress is given by the Singh law [Sin89]. Consider
two programs, P and Q. If we execute P and Q in parallel, then basically Q can destroy any
progress p� q in P by writing to a shared variable of P and Q. However, if we know that under
condition r, Q will always announce any modi�cation to the shared variables by establishing s,
then starting from p ^ r the program P []Q will either reach q (through the actions of P ), or Q
writes to some shared variables and spoils the progress, but in this case we know that s will hold.
This is an instance of the Singh Law. Before we give the formulation of the law, we will introduce
some de�nitions.

4In fact, (5.3) can be obtained by applying the Round Decomposition principle (Theorem 7.4) to (5.2).
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Theorem 4.25 : � Stable Shift

P :
r 2 Pred:(wP ) ^ (�J) ^ (J ^ r ` p� q)

J ` p ^ r� q

Can be proven using� Induction (4.7).

Theorem 4.26 : � Stable Strengthening

P :
(�K) ^ (J ` p� q)

J ^K ` p� q

Can be proven using� Induction.

Corollary 4.27 : � Stable Background

P :
J ` p� q

�J

Follows straightforwardly from the
(alternative) de�nition of � (4.6).

Theorem 4.28 : � Confinement

P;J :
p� q

p; q 2 Pred:(wP )

Can easily be proven using� Induction.

Theorem 4.29 : � Substitution

P;J :

[J ^ p) q] ^ [J ^ r ) s]
p; s 2 Pred:(wP ) ^ (q� r)

p� s

Follows from Corollaries 4.20 and 4.27 and
Theorems 4.21 and 4.28.

Figure 9: More properties of�

5 Stabilization

In talking about self-stabilization, we always have, perhaps implicit in our mind, besides a program
that does the actual self-stabilization also an environment, which can be unstable: it may produce
some transient errors, or undergo a spontaneous recon�guration, which a�ects the consistency
of the variables upon which the actual self-stabilization depends. Usually, this instability of the
environment is abstracted by an adversary whose goal is to sabotage the system. In a distributed
system there is also non-determinism in the order in which the actions in the system are executed.
Dijkstra uses the notion of central daemon [Dij74] to model this. It is basically a scheduler to
schedule the execution of the actions. If the schedule is non-deterministic then in a sense we can
regard the central daemon as an adversary. Tied to the notion of central daemon is the notion
of privilege [Dij74]. Only a privileged action can be elected to be executed next by the central
daemon. In UNITY, its model of execution already assumes a central daemon, which is fair, but
for the rest totally non-deterministic. Consequently, all actions are basically always privileged.
There is however no need for us to reason about this central daemon explicitly, as the logic of
UNITY already re
ects its behavior.

A program P is said to self-stabilize to q if P , regardless its initial state, will establish q and
maintain it. If an adversary sabotages an execution of such a program, we can regard it as if it is
re-started in a new initial state. Since P can reach and maintain q regardless of its initial state, it
will also do so in this new situation. So, if given enough time, such a program can always recover
from any sabotage by the adversary. Note that despite the damaging behavior of the adversary, P
can be designed in isolation. In Temporal Logic, if the reader is familiar with it, "P self-stabilizes

to q" can be expressed by P ` ��q. In UNITY this can be expressed by:

(9q0 :: (true P` true� q0 ^ q) ^ (P` � (q
0 ^ q))) (5.1)

The existential quanti�cation may seem strange at �rst sight, but notice that in P ` ��q the
situation �q does not have to hold on from the �rst time q holds but perhaps only after several
iterations. The predicate q0 is needed to express this possibility.

The above de�nition of self-stabilization can be generalized by letting the two true's in (5.1)
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Theorem 4.12 : unless Introduction

P :
[p) q]

p unless q

Theorem 4.13 : unless Post-weakening

P :
(p unless q) ^ [q ) r]

p unless r

Theorem 4.14 : Simple Conjunction

P :
(p unless q) ^ (r unless s)

(p ^ r) unless (q _ s)

Theorem 4.15 : Simple Disjunction

P :
(p unless q) ^ (r unless s)

(p _ r) unless (q _ s)

Corollary 4.16 : �Conjunction

P :
(�p) ^ (�q)

�(p ^ q)

Corollary 4.17 : �Disjunction

P :
(�p) ^ (�q)

�(p _ q)

Theorem 4.18 : ensures Progress Safety Progress (PSP)

P :
(p ensures q) ^ (r unless s)

p ^ r ensures (q ^ r) _ s

Figure 7: Some basic laws for unless , �, and ensures

Theorem 4.19 : (ensures,�) Introduction

P;J :
p; q 2 Pred:(wP ) ^ (�J) ^ (p ^ J ensures q)

p� q

Corollary 4.20 : (),�) Introduction

P;J :
p; q 2 Pred:(wP ) ^ [J ^ p) q] ^ (�J)

p� q

Follows from ensures Introduction

(analogous to Theorem 4.12) and Theorem
4.19

Theorem 4.21 : � Transitivity

P;J :
(p� q) ^ (q� r)

p� r

Theorem 4.22 : � Disjunction
For all non-empty sets W :

P;J :
(8i : i 2W : p:i� q:i)

(9i : i 2W : p:i)� (9i : i 2W : q:i)

Theorem 4.23 : Progress Safety Progress (PSP)

P;J :
r; s 2 Pred:(wP ) ^ (r ^ J unless s) ^ (p� q)

(p ^ r)� (q ^ r) _ s

Theorem 4.24 : Completion
For all �nite and non-empty sets W :

P;J :
r 2 Pred:(wP ) ^ (8i : i 2W : q:i ^ J unless r) ^ (8i : i 2W : p:i� q:i _ r)

(8i : i 2W : p:i)� (8i : i 2 W : q:i) _ r

Figure 8: Properties of� which are analogous to those of 7!
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De�nition 4.11 : reach

J P` p� q = (8R : ens:P:J � R ^ Trans:R ^ Ldisj:R : R:p:q)

Being the closure of ens, J P` p � q implies p; q 2 Pred:(wP ) and P` � J 3. The following
alternative de�nition shows the latter more clearly:

J P` p� q

=
(P` �J) ^

(8R : (�r; s: r; s 2 Pred:(wP )^ ( P` (r ^ J) ensures s)) � R ^ Trans:R ^ Ldisj:R : R:p:q)

(4.6)

The progress (expressed in terms of 7!) described by J P` p� q is P` J ^ p 7! q. However,
J P` p� q is not generally equal to p; q 2 Pred:(wP ) ^ (P`�J) ^ (P` J ^ p 7! q). Note that �
is not disjunctive in its J-argument. We can also de�ne � as follows (� Induction):

(�p; q: J P` p� q) � S = (9R : ens:P:J � R ^ Trans:R^ Ldisj:R : R � S) (4.7)

In analogy with 7! Induction, the above de�nition is also called� Induction. It can be used to
inductively prove that a relation S includes �.

As an example, consider a program bu�er with w(bu�er) = foutg and i(bu�er) = fing. The
formula:

(8X :: (in = X) bu�er` true� (out = X)) (4.8)

states that the program bu�er will eventually copy the value of in to out. However,

true bu�er` (in = X)� (out = X) (4.9)

is not a valid expression because the argument "in = X" is not a predicate con�ned by w(bu�er).
As a notational convention: if it is clear from the context which program P or which stable

predicate J are meant, we often omit them from an expression. For example we may write P`
p� q or even simply p� q to mean J P` p� q. Also, for laws we write, for example:

P; J :
: : : (p unless q) : : :

r� s
to abbreviate:

: : : (P` p unless q) : : :
J P` r� s

4.5 Basic Properties

Figure 7 displays a number of basic properties of unless, �, and ensures taken from [CM88].
Theorems analogous to unless Introduction, Post-weakening, and Simple Conjunction also
exist for ensures. There also exist stronger Conjunction and Disjunction theorems for unless. See
[CM88]. Corollaries 4.16 and 4.17 follow from Theorems 4.14 and 4.15.

Figures 8 displays some basic properties of�. The proofs of these properties follow the pattern
of the related proofs for 7! properties as found in [CM88]. Figures 9 displays the properties of
� which have no analogous 7! properties. Note that just as in [San91] we also have the �
Substitution law for free.

Now how about the compositionality �? Afterall, this was the reason why we introduced
it. It su�ces here to say that � satis�es the Transparency principle (2.4). The proof, and a
further discussion on this topic, will be given later in Section 6. First we would like to discuss
about how the notion of self-stabilization can be expressed and manipulated in UNITY. Afterall,
self-stabilization is the topic of this paper.

3The reader may notice that � resembles the subscripted 7! operator by Sanders [San91]. The di�erence is
that the 'subscript', that is, the J-part, of� only needs to be stable whereas Sanders requires it to be an invariant.
The latter results in a less compositional operator, as a parallel composition is more likely to destroy an invariant.
In addition, Sanders does not require con�nement by wP .
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4.3 Compositionality

Compositionality, as explained in Section 2, is a property (of a programming logic) which enables
us to split a speci�cation of a composite program into the speci�cations of its components. It
is usually expressed as a law in the form of (2.3). The usefulness of such a property has been
motivated in Section 2. This subsection presents several compositionality results of the UNITY
primitive operators.

The compositionality of safety properties follows a simple principle, which is interesting: the
safety of a program follows from the safety of its components.

Theorem 4.7 : unless Compositionality

(P` p unless q) ^ (Q` p unless q) = (P []Q` p unless q)

Corollary 4.8 : �Compositionality

(P` �p) ^ (Q` �p) = (P []Q` �p)
Follows from Theorem 4.7.

The compositionality of ensures is also simple: to ensure some progress in a program, it
su�ces to ensure it by a component program. The other components only need to maintain the
safety part of the ensured progress.

Theorem 4.9 : ensures Compositionality

(P` p ensures q) ^ (Q` p unless q)

P []Q` p ensures q

4.4 The Reach Operator

Unfortunately, compositionality does not directly extend from ensures to 7!. In Section 2 we
have hinted that a nice result can still be obtained if P and Q are write-disjoint <De�nition 2.1).
To refresh the reader's memory let J P` p 7! q describe progress p 7! q assuming that the values
of the variables not writable by P (wP )c) satisfy J . In addition, J fully describes the dependency
of p 7! q on these variables. This is crucial for the transparency principle (formula (2.4) in Section
2), which states that if Q is a program which is write-disjoint with P and Q maintains J then Q

cannot destroy J P` p 7! q. One way to make sure that J fully describes the dependency of p 7! q

to the variables in (wP )c is to insist that the described progress is constructed from primitive
progress properties which do not refer to these variables except through J . In the next subsection
a new progress operator satisfying this construction scheme will be de�ned.

To de�ne a progress operator that satis�es the transparency principle (2.4), �rst we de�ne a
variant of ensures :

De�nition 4.10 : ens

ens:P:J:p:q = p; q 2 Pred:(wP ) ^ (P`�J) ^ (P` p ^ J ensures q)

The requirement p; q 2 Pred:(wP ) restricts us to consider progress expressible only through
the writable part of P , which is the only part of P which will ever be a�ected by any action of P .
The intention of the stable predicate J is to capture the state of the non-writable part of P (which
is of course stable in P ). Note that by con�ning p and q by wP the predicate J fully describes
the dependency of the described progress on (wP )c.

The new progress operator is called reach, denoted by �. It is de�ned simply as the least
transitive and left-disjunctive closure of ens:

11



qp q qp q

(1) (2)

Figure 6: (1) is P ` p unless q and (2) is P ` p ensures q. The thick line means a guaranteed
transition.

De�nition 4.4 : Left Disjunctive Relation

A relation U over A! bool is called left-disjunctive, denoted Ldisj:U i� for all q 2 A! bool

and all sets W (of predicates over A):

(8p : p 2W : U:p:q) ) U:(9p : p 2W : p):q

Alternatively, if we write the formula without notational overloading (as warned in Section 3):

(8p : p 2W : U:p:q) ) U:(�s: (9p : p 2W : p:s)):q

De�nition 4.5 : Leads-to

P` p 7! q = (8R : (�r; s: P` r ensures s) � R ^ Trans:R ^ Ldisj:R : R:p:q)

Alternatively, we can write the de�nition of 7! as follows:

(�p; q: P` p 7! q) = \fR : (�r; s: P` r ensures s) � R ^Trans:R^ Ldisj:R : Rg (4.2)

which shows it more clearly that 7! is some least closure of ensures. Yet another way to de�ne 7!
is the following (7! Induction):

(�p; q: P` p 7! q) � S

=
(9R : (�r; s: P` r ensures s) � R ^ Trans:R ^ Ldisj:R : R � S)

(4.3)

In [CM88] the de�nition (4.3) is called 7! induction because it tells us how to inductively prove
that a relation S includes 7!.

Here are some examples of properties described using the UNITY primitive operators:

MinDist` true 7! (8a; b : a; b 2 V : d:a:b = �:a:b) (4.4)

MinDist` (8a; b : a; b 2 V : d:a:b = �:a:b) unless false (4.5)

The �rst states that eventually the value of all d:a:b's in the program MinDist will be equal to
the actual distance from a to b. The second states that once such a situation is achieved it will
remain so forever. Note that the conjunction of (4.4) and (4.5) implements the speci�cation in
(2.1). Property of the form p unless false is called stable. Because of its importance we will de�ne
a separate abbreviation for it.

De�nition 4.6 : Stable Predicate

P`�p = P` p unless false

Note: if P` �p and [iniP ) p] both hold then p is an invariant. An invariant holds throughout
any execution of P . Note also that (�p: P ` � p) is neither monotonic nor anti-monotonic with
respect to ).
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4.1 Parallel Composition

Since there is no ordering imposed on the execution sequence of the actions, an implementator
has the freedom to implement a UNITY program either as a sequential program or as a parallel
program (the implementation still has to meet the fairness condition of UNITY though). Another
consequence is that the parallel composition of two programs can be modelled by simply taking the
union of the variables and actions of both programs. In UNITY parallel composition is denoted
by []. In [CM88] the operator is also called program union.

De�nition 4.1 : Parallel Composition

r(P []Q) = rP [ rQ w(P []Q) = wP [wQ
ini(P []Q) = iniP ^ iniQ a(P []Q) = aP [ aQ

Parallel composition is re
exive, commutative, and associative.
As an example the program MinDist we gave earlier can also be written using parallel com-

position: MinDist = ([]a; b : a; b in V : MinDist:a:b) where each program MinDist:a:b consists of a
single action:

if a = b then d:a:b := 0 else d:a:b := minfb0 : b0 2 E:b : d:a:b0+ 1g) (4.1)

4.2 Primitive Operators

The UNITY logic contains three primitive operators to describe the behavior of a program. These
are unless, ensures, and 7!. The last was already mentioned in Section 2. It describes progress.
A progress property can be broken into elementary progress properties, each guaranteed to occur
by a single action. This kind of elementary progress is described by the operator ensures. The
operator unless describes the safety behavior of a program. A special case of unless, namely
stability, describes predicates that cannot be destroyed by a program. Just as progress, stability
is required to describe a self-stabilization.

In the sequel, P;Q; and R will range over UNITY programs; a; b; and c over actions; and
p; q; r; s; J and K over state-predicates.

De�nition 4.2 : Unless

P` p unless q = (8a : a 2 aP : fp ^ :qg a fp _ qg)

where fpg a fqg denotes a Hoare triple speci�cation with the usual meaninga.

De�nition 4.3 : Ensures

P` p ensures q = ( P` p unless q) ^ (9a : a 2 aP : fp ^ :qg a fqg)

aIt does not matter whether it means total or partial correctness since all actions in a UNITY program are
assumed to be terminating.

Intuitively, P ` p unless q means that once p holds during an execution of P , it remains to
hold at least until q holds. Figure 6 may be helpful. P` p ensures q encompasses p unless q except
that there also exists an action that can, and because of the fairness assumption of UNITY, will
establish q. So, unless describes safety behavior whereas ensures describes progress. As said before,
ensures only describes single action progress. A more general notion of progress is obtained by
taking a closure of ensures. This is the operator 7! (read: 'leads-to'). To be more precise it is the
least transitive and left-disjunctive closure of ensures. The notion of transitivity is well known;
we will write Trans:R to denote that a relation R is transitive. The notion of left-disjunctivity is
de�ned below. The de�nition of 7! follows.

9



prog MinDist

read fa; b : a; b 2 V : d:a:bg a

write fa; b : a; b 2 V : d:a:bg
init true

assign ([]a; b : a; b in V : if a=b then d:a:b := 0 else d:a:b := minfb0 : b0 2 E:b : d:a:b0+ 1g)

Figure 5: MinDist in UNITY

aAnother, more familiar, notation used to denote the above set of variables is: d : array V of array V of Val

can be simulated by a stable predicate (a predicate that cannot be destroyed by any action). The
absence of an explicit ordering in the execution of the actions may be a little confusing at �rst
sight, but this is simply how a parallel execution of the actions is modelled in UNITY. For the
fairness condition to make sense, it is assumed that all (atomic) actions of a UNITY program do

not abort and always terminate. Below is the syntax of a UNITY program.

hUnity Programi ::= prog hname of programi
read hset of variablesi
write hset of variablesi
init hpredicatei
assign hactionsi

actions is a list of action separated by []. An action is either a single action or a set of indexed
actions.

hactionsi ::= hactioni j hactionsi[]hactionsi
hactioni ::= hsingle actioni j ([]i : i 2 V : hactionsii)

A single action is either a simple assignment or a guarded assignment. A simple assignment
can simultaneously assign to several variables. Its meaning is as usual. A guarded assignment may
have multiple guards. If more than one guard is true then one is selected non-deterministically.
Because an action is not allowed to abort, a guarded assignment behaves like skip if none of its

guards is true.
In addition we have the following requirements regarding the well-formedness of a program:

(1) a UNITY program has at least one action; (2) actions in a program should only write to the
declared write variables and read from the declared read variables; and (3) the set of write variables
of a program is included in the set of its read variables. These are perfectly natural requirements
for a program. Most programs that we write will satisfy them. It should be emphasized that a
precise formulation of above requirement, which we will avoid in this paper, is crucial in proving
compositionality laws presented in this paper. See for example [Pra93a].

Note that we do not forbid a variable to be declared as a read (write) variable without the
program actually ever reading (writing) it. As an example, Figure 5 displays how the program
MinDist from Section 2 can be written in UNITY.

To access each component of a program we introduce the following destructors. Some of them
have already been used in Section 2.

Program Destructors:

For any UNITY program P : aP; rP;wP , and iniP denote respectively the set of all
actions, the set of read variables, the set of write variables, and the initial condition
of P . In addition, iP denotes the set of input variables of P , that is the variables
read by, but not written by P . So, iP = rP �wP .

8



Notation Meaninga

true (�s: true)
:p (�s: :p)
p ^ q (�s: p:s ^ q:s)

(8i : P:i : p:i) (�s: (8i : P:i : p:i:s))

Notation Meaning
false (�s: false)
p) q (�s: p:s) q:s)
p _ q (�s: p:s _ q:s)

(9i : P:i : p:i) (�s: (9i : P:i : p:i:s))

Table 1: Overloading of the boolean operators.

aThe dummy s ranges over program states.

De�nition 3.1 : Confinement

p 2 Pred:V = (8s; t :: (s�V = t�V )) (p:s = p:t))

For example, x + 1 < y is con�ned by fx; yg but not by fxg. true and false are con�ned
by any set. Con�nement is preserved by any predicate operator in Table 1. So, for example, if
p; q 2 Pred:V then p ^ q 2 Pred:V . As a rule of thumb, any predicate p is con�ned by free:p, that
is, the subset of Var containing the variables occurring free in p:

p 2 Pred:(free:p) (3.2)

Note however, that free:p is not necessarily the smallest set which con�nes p. For example, �
con�nes "0 = x _ 0 6= x". Another useful property is monotonicity:

Theorem 3.2 : Confinement Monotonicity

V �W ) Pred:V � Pred:W

3.2 Binding Power

Figure 4 shows the relative binding power of the operators used in this paper. � means "bind
stonger than" and j means "bind as strongly as".

":"� "w" j "r" j "ini" j "a" j "i"� "c" j "�" � "\" j "["� "2" j "�" � ":" � "^" j "_"�
")" � other operators � "=" j "6="

Figure 4: Binding power of the operators.

4 A Brief Review on UNITY

The programming logic that we are going to use in reasoning about self-stabilizing programs is
based on UNITY. UNITY is a programming logic for reasoning about safety and progress behavior
of distributed programs. UNITY has a very simple view on programs and program executions.
Indeed, simplicity has been the strength of UNITY. UNITY views a program as nothing more than
a collection of atomic actions and an execution of a UNITY program is an in�nite execution where
at each step an action is selected and executed. There is no ordering imposed on the execution
of the actions except that the implementation should guarantee fairness in the sense that every
action must be executed in�nitely often. There is no explicit notion of termination although it
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If P . Q holds, P []Q is called the layering of P and Q. P is here the lower layer and Q the
upper layer. If P t Q holds, P []Q is called the fork of P and Q. Similarly if PkQ holds then P []Q
is called the non-interfering parallel of P and Q.

It is obvious from the de�nitions that .;t, and k are all stronger than �.
We have mentioned several operators to express behavior of a program, in particular 7! to

express progress and to express self-stabilization. What we need now is a programming logic in
which these operators can be de�ned. We want to know the properties of these operators and how
to use them. We have mentioned induction as an important technique in proving the correctness
of self-stabilizing programs. There will be examples illustrating formal excersices of this technique.
We have mentioned compositionality which is an important property to support modular design.
Is self-stabilization a compositional property of a program? And if it is, what are the results?

3 Notation

The application of a function f to x is written as f:x. Sometimes we also treat a function like
an unary operator and hence there is no dot to separate it from its operand/argument like in the
application of w in w(P []Q).

The restriction of f 2 A!B with respect to a set S � A, denoted by f �S, is a function of
type A!B with the following property:

(f �S = g �S) = (8x : x 2 S : f:x = g:x) (3.1)

The set notation used is standard except perhaps the following. Set complement is denoted
by a superscript c like in Sc. The powerset of a set S |that is, the set of all subsets of S| is
denoted by P(S). Set abstraction is written as fx : P:x : f:xg instead of the usual ff:xjP:xg. We
write x; y 2 S to abbreviate x 2 S ^ y 2 S.

3.1 Predicates

A predicate over a set A is a function of type A!bool. For a predicate p 2 A!bool, p is said to
hold everywhere, denoted by [p], i� (8s : s 2 A : p:s) holds.

Predicates which are used to describe the states of a program are called state-predicates.
Throughout this paper we will assume a universe of all available program variables, denoted with

Var, and a universe of values, denoted by Val. A program-state is a function of type Var! Val.
In a state s, the value of a variable x is given by s:x. A state-predicate is a predicate over
program-states, so it has the type (Var!Val)!bool.

For example (�s: 0 < s:x) is a state-predicate describing those states in which the value of x
is greater than 0. It is a common practice that people write expressions like:

"0 < x", "p ^ q", or "(9i : P:i : x:i = 0)"

in program speci�cations |for example as in "f0 < xg x := x + 1 f1 < xg"| to actually mean
the corresponding state-predicates, which are, in the same order:

"(�s: 0 < s:x)", "(�s: p:s ^ q:s)", and "(�s: (9i : P:i : s:(x:i) = 0))"

This kind of symbols overloading causes usually no confusion. However, later there will be
occasions where a careful distinction is called for. It will be helpful if the reader is well aware
of this double meaning. To emphasize this, Table 1 shows the 'lifted' meaning of the boolean
operators. In this paper we also use this kind of overloading (introducing separate notations may
only confuse the reader). Whenever the meaning of a predicate expression is likely to confuse the
reader we will also give the expanded expression, using � notation.

A state-predicate p is said to be con�ned by a set of variables V , denoted by p 2 Pred:V , if p
is either false everywhere or it does not restrict the value of any variable outside V . Its de�nition
is as follows:
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Figure 3: Instances of write-disjoint composition: (1) non-interfering composition, (2) fork, and
(3) layering.

Let P []Q denote the parallel composition of the programsP andQ. By this we simplymean that
we put P and Q side by side and execute them concurrently. How the two programs communicate
is not relevant at this point. If P �Q holds, then P []Q is called the write-disjoint composition of
P and Q.

The transparency of progress properties mentioned earlier can be expressed by the following
law:

(J P` p 7! q) ^ 00Q cannot destroy J00

J P []Q` p 7! q
(2.4)

Note that the law has the form of (2.3). A formal treatment of this kind of laws will be given
in Section 6.

Composition of write-disjoint programs occurs frequently in practice (as in the programMinDist,
for example). Programs that communicate through channels are also write-disjoint. Several well
known constructs may be recognized as instances of write-disjoint composition. See Figure 3.

In a non-interfering parallel composition of two programs, all programs are independent from
each other. In a fork, programs based their computation on the same set of input variables. For
example if we have a program that computes the minimum of the values of the variables in V ,
and another program that computes the maximum, we can put the two programs in parallel by
forking.

In a layering one program is called the lower layer the other the upper layer. The computation
of the upper layer depends on the results of the lower layer. The converse is not necessary. For
example, the lower layer can be a program that constructs a spanning tree from a vertex a and the
upper layer is a program that broadcasts messages from a, using the constructed spanning tree.
Layering works like a higher level sequential composition. However, the two layers do not have to
be implemented sequentially, especially if they are non-terminating programs.

Let rP , and iP denote respectively the set of all read and the set of all input variables of P .
It is assumed that wP � rP . Note that iP = rP �wP . Let us de�ne ., t, and k as follows.

De�nition 2.2 : Layering

P . Q = (P �Q) ^ (wP � iQ)

De�nition 2.3 : Fork

P t Q = (P �Q) ^ (iP = iQ)

De�nition 2.4 : Non-Interfering (Parallel)

PkQ = (P �Q) ^ (rP \ rQ = �)

5



where P and Q are programs, 
 is some kind of program composition, and spec1 and spec2 are
speci�cations. Such properties are called compositional. It enables us to split the speci�cation of
P []Q into the speci�cations of P and Q. In particular, we are interested in the case where 
 is
the parallel composition [].

An important property of any program is its progress. Results on the compositionality (with
respect to the parallel composition) of progress properties were however scarce. It was not until
recently that signi�cant progress was made, which we wish to bring into the reader's attention
[Pra94, UHK94].

Let us now consider the following example. Let P ` p 7! q mean that if p holds during an
execution of the program P then eventually q will hold. So, 7! describes progress.

Let a; b, and c be boolean variables. Suppose now P` a 7! c holds. The property does not
refer to b, so we may expect that if we put P in parallel with Q de�ned below then the progress
will be preserved.

Q: do forever b := :b

However, even though the expression P ` a 7! c does not refer to b, it may happen that the
progress actually depends on b, for example if P is the following program:

P : do forever

begin

if a then b := true ;
if b then c := true

end

In this case, Q will destroy the progress a 7! c. Still, if we put P in parallel with Q0 which
does nothing to a and c and only writes to b under the condition, say, C then we can conclude
that the composite program will have the property a ^ C 7! c _ :C 2.

The examples suggests that recording the set of variables upon which a progress property
depends may enable us to draw useful compositionality results. See for example the work by
Udink, Herman, and Kok [UHK94]. In this paper we will take a simpler approach. We observe
that the only part of a program that is ever in
uenced by its own actions is its writable part.
Compositionality can be achieved by splitting a progress speci�cation in two parts: one to describe
progress made on the write variables (and those variables only) of a program and the other part
(the so-called J-part) to describe the state of the other variables. Especially interesting results
can be obtained for programs that are write-disjoint. In this case the J-part of a program P acts
as a speci�cation for the other programs which P is composed with.

Two programs are said to be write-disjoint if their sets of write variables are disjoint. For
example the programs MinDist:a:b in (2.2) are pair-wise write-disjoint.

Let J P` p 7! q mean: (1) p 7! q is a progress property of P , and (2) the predicate J describes
the state of the variables not writable by P and in addition J also fully describes the dependency
of p 7! q on these variables. Let P and Q be two write-disjoint programs. Furthermore, P satis�es
J P` p 7! q. Since P and Q are write-disjoint,Q cannot write to P 's write variables. Consequently,
J also fully describes the dependency of p 7! q on Q, and hence if Q cannot destroy J neither can
it destroy p 7! q. This property is called transparency. As we will see later, transparency turns
out to be an important property.

Let wP denote the set of all write variables of P . Let P �Q mean that P and Q are write-
disjoint:

De�nition 2.1 : Write-disjoint Programs

P �Q = (wP \wQ = �)

2In fact, this is an instantiation of the Singh Law [Sin89].
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program MinDist

init true

begin

do forever

for all a 2 V do

for all b 2 V do

if b = a then d:a:b := 0 else d:a:b := minfd:a:b0+ 1jb0 2 E:bg
end

Figure 2: Computing minimal distances in a network.

interferes with it and tampers with the values of d, we can pretend as if the program is re-started
in a new initial state. Since the program works correctly regardless its initial state, it will also do
so in this new situation. Such properties are clearly very useful, and they are called self-stabilizing

properties.
Let P` p q mean that if p holds somewhere during an execution of P then eventually q will

hold and remain to hold forever. Let �:a:b denote the actual minimal distance between a and b.
We can use  to express the self-stabilizing property of MinDist:

MinDist` true  (8a; b : a; b in V : d:a:b = �:a:b) (2.1)

The speci�cation states that the program MinDist must eventually establish (8a; b : a; b 2 V :
d:a:b = �:a:b). We cannot prove this dirtectly. We can however break the progress into smaller
progress-steps. Induction is usually required to combine these steps into the speci�ed progress.
This is not always easy. For example naively applying an induction to the values of d:a:b does
not work because these values can increase or decrease during an execution1. Look again at the
Figure 1. The number printed above a node i, i 2 fa; b; c; dg, denotes the initial value of d:a:i.
Note that the value of d:a:a will decrease whereas the value of d:a:b and d:a:c will increase. Even
an already correct value can be temporarily made incorrect. For example d:a:d initially contains
a correct value. However, if the process responsible for maintaining d:a:d is executed �rst it will
assign 1 to d:a:d, which is not the correct �nal value.

Indeed, induction is an important technique. In fact, many self-stabilizing programs require
complicated inductive proofs (for example as in [AB89b, CYH91, Len93]). We will return to above
example later in Section 7. There will also be other examples where we show how some intuitive
ideas about how to (inductively) decompose a speci�cation are translated to the formal level.

Another topic we want to address is compositionality. Consider again the program MinDist.
We can implement it as a distributed program consisting of processes MinDist:a for all a 2 V

where each MinDist:a maintains the variables d:a:b for all b 2 V . Even the process MinDist:a can
be implemented as a distributed program consisting of processes MinDist:a:b, for all b 2 V where
each process MinDist:a:b does:

do forever if b = a then d:a:b := 0 else d:a:b := minfd:a:b0+ 1jb0 2 E:bg (2.2)

It would be nice if we could decompose a global speci�cation into speci�cations of component
programs. This would enable us to design each component in isolation (thus supporting the so-
calledmodular design approach). In addition, this may also reduce the amount of proof obligations.
To be able to do this kind of decomposition we need laws of the form:

(P sat spec1) ^ (Q sat spec2)
P 
 Q sat (spec1 � spec2)

(2.3)

1Had we restricted d:a:b's to initially have the value of 1, it will be easier to prove (2.1).
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Figure 1: A simple network.

in providing solutions to the problems addressed in these examples |these are in fact well known
problems| but to present a formal proof that re
ects our intuitive ideas in a concise and natural
way.

Although in the examples we give here we only show re�nements of speci�cations to a certain
extend |this serves our purpose here| and not a complete re�nement down to the level of
implementation, we do, for the sake of completeness, give an implementation for each example. It
should be noted that the choice of the target architecture is a factor that cannot be ignored, even
when we are still in a design phase of a self-stabilizing program. The use of channels, for example,
adds extra complexity [DIM90] as the stability of the whole system in that case also depends on
the stability of the channels.

In addition, the UNITY logic has been mechanically veri�ed using a proof assistant HOL
[And92, Pra93b]. The extension proposed in this paper is also mechanically veri�ed. The proof
assistant HOL is a software system, developed by M. Gordon [GM93], to interactively write (and
check) a proof. The system is based on a higher order logic. The soundness of the system is
guaranteed in the sense that no false theorem can be generated. The system is extensible and
provides a whole range of highly programable proof-tools. All theorems we have veri�ed are
re-useable for further mechanical veri�cations. The package is available at request.

The rest of this paper is organized as follows. Section 2 provides an extensive informal mo-
tivation to the issues we wish to address in this paper. Section 3 explains the notation used in
this paper. Section 4 gives a brief introduction to the programming logic UNITY and the par-
ticular extension that we use. Included are various basic laws to manipulate safety and progress
speci�cations. Section 5 discusses how the notion self-stabilization can be formalized in UNITY
and provides a set of laws to deal with it. Section 7 provides some examples in which we demon-
strate the use of some of the laws. Section 8 brie
y discusses some implementation aspects of
self-stabilizing programs, and in Section 9 we give some conclusions.

2 An Informal Description of the Topics

This section brie
y and informally explains the issues addressed in this paper. This will be helpful
later when we proceed with a more rigid style of presentation as we explain the formal system
that we are going to use. To avoid a too technical discussion at this early stage, some notions will
be |in this section only| described less precisely. Any formal de�nition, either here or in any
other section, is on the other hand exact.

Let us start with an example. It is about computing the minimal distance between any two
vertices in a network. Imagine a network of vertices (a simple network is shown in Figure 1). The
network consists of a set of vertices V connected to each other. The connectivity is described by
a function E 2 V !P(V ) such that E:i describes the set of all neighboring vertices which are
connected to the vertex i. Figure 2 displays a program that computes the minimal distances (it
must be assumed that the network is connected).

Notice that the program has an initial condition true which means that it will work correctly
no matter in which states it is started. Consequently, if during its execution an external agent
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Abstract

Experience has shown that reasoning informally about distributed algorithms is extremely
dangerous and error-prone, although the underlying method of reasoning is appealing. On
the other hand, completely formal proofs of even simple algorithms are tedious to construct
and di�cult to follow. In this paper we propose a number of new operators for the UNITY
logic, which enable us to reason completely formal about self-stabilizing algorithms, while
maintaining the structures which play a role in the development of the algorithm. The paper
includes some examples in which we show how various laws are used, and how design strategies
can be represented in formal structures.

1 Introduction

The concept of self-stabilization was �rst conceived by E.W. Dijkstra [Dij74]. A self-stabilizing
program is a program that will reach and remain in a set of pre-de�ned states |the so-called legal

states| regardless of its initial state. For a distributed system such a property is very desirable
since it has the ability to eventually recover from any perturbation |such a perturbation may both
be a failure or an update sent by the system's environment| without any outside intervention,
assuming that the system is given enough time to do so. Since the work of Dijkstra many papers
addressing this topic have appeared, for example [Kru79, BP89, AG92], and many self-stabilizing
algorithms have been invented, for example [AB89a, AG90, CYH91, Len93].

Reasoning about self-stabilization is often complicated and it was not until recently that people
attempted to deal with it more formaly. Although people are usually aware of various standard
design methods, applying them formally can suddenly be an entirely di�erent experience. Without
a precise formulation one may overlook a better design course, or worse, we may reach a faulty
conclusion. The idea of stabilization is �rst formalized by Arora and Gouda [AG90], but their
reasoning about it is still done informally. A step forward is made by Herman [Her91] by proposing
a number composition laws of stabilization. A truly formal treatment of stabilization is later given
by Lenfert and Swierstra [LS93] who formalize the concept of stabilization in a programming
logic called UNITY |designed by Chandy and Misra [CM88]| and prove various calculational
properties of stabilization. In this paper we will develop the formalization in [LS93] further by
adding some still missing details to it and extending it with various calculational laws, some of
them, the reader may recognize, capture well-known design techniques. We also prove various
compositionality results of stabilization, including the layering principle, an important design
technique. Induction is another important technique. It is comparable with deriving the body
of a loop from the speci�cation of the loop in sequential programming. While loop re�nement
in sequential programming is a well formulated concept, things are less obvious in distributed
programming, and thus our e�ort to formalize it. We will give several examples that show how to
formally exercise induction to make a re�nement in the way we intuitively would expect. Indeed,
if a formalization is to re
ect our intuition then what is an intuitively simple step should also be
a simple formal step. The precision we strive for pays o� as our proofs, compared to the proofs in
[Len93], are much simpler and easier to follow. It should be stressed that our main concern is not
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