
A Complete Equational Axiomatization

for BPA�� with Pre�x Iteration

Wan Fokkink & Hans Zantema

Utrecht University
Departments of Philosophy and of Computer Science

Utrecht, The Netherlands
fokkink@phil.ruu.nl hansz@cs.ruu.nl

Abstract

Pre�x iteration �
�
x is added to Basic Process Algebra with deadlock and

empty process. We present a �nite equational axiomatization for this process
algebra, and we prove that this axiomatization is complete with respect to
strong bisimulation equivalence. This result is a mild generalization of a similar
result in the setting of basic CCS in Fokkink (1994b).

To obtain this completeness result, we set up a rewrite system, based on
the axioms. In order to prove that this rewrite system is terminating modulo
AC of the +, we generalize a termination theorem from Zantema and Geser
(1994) to the setting of rewriting modulo equations. Finally, we show that
bisimilar normal forms are syntactically equal modulo AC of the +.

1 Introduction

Kleene (1956) de�ned a binary operator � in the context of �nite automata,
called Kleene star or iteration. Intuitively, the expression p�q yields a solution for
the recursive equation X = p � X + q. In other words, p�q can choose to execute
either p, after which it evolves into p�q again, or q, after which it terminates.

In this paper, we study the pre�x variant of iteration in bisimulation equivalence,
in the setting of Basic Process Algebra (BPA) together with the deadlock � from
Bergstra and Klop (1984) and the empty process � from Koymans and Vrancken
(1985).

Milner (1984) proposed an axiomatization for the Kleene star in a process algebra
equivalent to BPA��, including a conditional axiom for iteration from Salomaa
(1966), and he raised the question whether his axiomatization is complete with
respect to bisimulation equivalence. This question is, to our knowledge, still open.

Bergstra, Bethke and Ponse (1994) considered the Kleene star in BPA, and they
suggested a �nite equational axiomatization for this algebra. Fokkink and Zan-
tema (1994) proved that this axiomatization is complete with respect to strong
bisimulation equivalence.

Sewell (1994) proved that there does not exist a complete �nite equational ax-
iomatization for the Kleene star in BPA� modulo bisimulation, due to equivalences

1

such as (xn)��$ x�� for n � 1.1 In order to obtain a complete �nite equational ax-
iomatization nevertheless, we replace the binary iteration operator x�y by its unary
pre�x version ��x, where the argument at the left is restricted to atomic actions
and deadlock and empty process. The resulting algebra is denoted by BPAp�

�� .
We propose �ve equational axioms for pre�x iteration. Three of these axioms

are actually instantiations of the three axioms for the Kleene star. We prove
that these �ve axioms, together with the nine standard axioms of BPA��, are a
complete axiomatization for BPAp�

�� with respect to bisimulation. This result has
been inspired by the need for a complete axiomatization for pre�x iteration in an
extension of BPA� with discrete time, in a revision of Baeten and Bergstra (1992).
Our result is a mild generalization of a similar completeness result for basic CCS

extended with pre�x iteration in Fokkink (1994b), where multiplication is restricted
to its pre�x counterpart a � x, and the empty process and single atomic actions in
A are not used in the construction of the syntax. Besides the �ve extra axioms for
BPA��, compared with basic CCS, and two extra axioms to deal with terms of the
form ��p and ��p, we only need one extra axiom for pre�x iteration, namely

(a�x)y = a�(xy):

The strategy of the completeness proof that is presented here is fully di�erent
from the one in Fokkink (1994b). Process terms are modi�ed by means of a rewrite
system, and we show that bisimilar normal forms of this rewrite system are provably
equal.
Proving termination of the rewrite system, which implies that each process term

has at least one normal form, is an involved matter. We will apply an abstract
commutation technique from Zantema and Geser (1994). This technique is closely
related to the earlier technique of Bellegarde and Lescanne (1990). In order to ap-
ply this technique, �rst we have to generalize it to the setting of rewriting modulo
equations. This generalization is presented in the Sections 3.2 and 3.3. It can be
considered as a general applicable technique for proving termination of rewriting
modulo equations. This is of interest itself, independent from the �eld of pro-
cess algebra. Basically, termination of a rewrite system R is proved by means of
termination of a simpli�ed rewrite system S and an auxiliary rewrite system A
connecting R and S. Surprisingly for extending this framework to the setting of
rewriting modulo a set of equations E, no cooperation between R and E is required,
only between A and E.
Aceto and Ing�olfsd�ottir (1995) study basic CCS with pre�x iteration together

with the silent step, modulo observation congruence. They extend the axiomatiza-
tion from Fokkink (1994b) with two well-known equational axioms for abstraction,
and with three new equational axioms which describe the interplay between ab-
straction and pre�x iteration. They prove that their axiomatization for basic CCS
with abstraction and pre�x iteration is complete.
Fokkink (1995) studies BPAp�

�� together with the silent step, modulo branching
bisimulation. It turns out that two equational axioms su�ce to describe the relation
between the silent step and pre�x iteration in that setting.

1Conjecture: neither does there exist a complete �nite equational axiomatization for the Kleene
star in BPA� modulo bisimulation, due to equivalences such as ((x+ �)n)�y $ x

�

y for n � 1.

2

Acknowledgements. Jos Baeten initiated this research, and Luca Aceto and
Alfons Geser provided helpful comments.

2 BPA�� with Pre�x Iteration

We assume an alphabet A of atomic actions, and two special constants � and �,
which represents deadlock and empty process respectively. We use a to range over
A and � to range over A [f�; �g. The signature of the process algebra BPAp�

�� is
built from the constants in A [f�; �g, alternative composition x + y, sequential
composition x � y, and pre�x iteration ��x.
Table 1 presents an operational semantics for BPAp�

�� in the style of Plotkin (1981).
Pre�x iteration a�x can choose to execute either a, after which it evolves into a�x
again, or x. The expression x # denotes successful termination of x.

� # a
a
�! �

x #

(x+ y) # (y + x) #

x
a
�! x0

x+ y
a
�! x0 y + x

a
�! x0

x # y #

(x � y) #

x # y
a
�! y0

x � y
a
�! y0

x
a
�! x0

x � y
a
�! x0 � y

x #

(��x) #

x
a
�! x0

��x
a
�! x0

a�x
a
�! a�x

Table 1: Action rules for BPAp�
��

Our model for BPAp�
�� consists of all the closed terms that can be constructed

from the constants in A [f�; �g together with the three operators. That is, the
BNF grammar for the collection of process terms is as follows:

p ::= � j p+ p j p � p j ��p:

As binding convention, � binds stronger than �, which binds stronger than +. Often,
p � q will be abbreviated to pq.

Process terms are considered modulo (strong) bisimulation equivalence from Park
(1981). Intuitively, two process terms are bisimilar if they have the same branching
structure.

De�nition 2.1 Two processes p and q are bisimilar, denoted by p $ q, if there
exists a symmetric binary relation B on processes, which relates p and q, such that

1. if r
a
�! r0 and rBs, then there is a transition s

a
�! s0 with r0Bs0,

3

2. if r # and rBs, then s #.

The action rules in Table 1 are in the `path' format of Baeten and Verhoef (1993).
Hence, bisimulation equivalence is a congruence with respect to all the operators,
i.e. if p$ p0 and q $ q0, then p+q $ p0+q0 and p �q $ p0 �q0 and ��p$ ��p0. See
Baeten and Verhoef (1993) for the de�nition of the path format, and for a proof of
this congruence result. (This proof uses the extra assumption that the action rules
are `well-founded'. In Fokkink (1994a) it has been shown that this requirement can
be dropped.)
Furthermore, the action rules for BPA�� are `pure', which is a syntactic criterion

from Groote and Vaandrager (1992), and the three action rules for pre�x iteration
incorporate the Kleene star in the left-hand side of their conclusions. Hence, BPAp�

��

is an operationally conservative extension of BPA��, i.e. the action rules for pre�x
iteration do not in
uence the transition systems of BPA�� terms. See Verhoef
(1994) for a proof of this conservativity result.
Table 2 contains an axiom system for BPAp�

�� , which consists of the nine axioms
from BPA�� together with �ve axioms for pre�x iteration. The axioms MI1,3 al-
ready appeared in Hennessy (1981), as axioms (in CCS) for the delay operator,
which is an instance of pre�x iteration.

A1 x+ y = y + x
A2 (x+ y) + z = x+ (y + z)
A3 x+ x = x
A4 (x+ y)z = xz + yz
A5 (xy)z = x(yz)

A6 x+ � = x
A7 �x = �

A8 x� = x
A9 �x = x

MI1 a � a�x+ x = a�x
MI2 (a�x)y = a�(xy)
MI3 a�(a�x) = a�x

MI4 ��x = x
MI5 ��x = x

Table 2: Axioms for BPAp�
��

In the sequel, p = q will mean that this equality can be derived from the axioms.
The axiomatization A1-9+MI1-5 is sound with respect to bisimulation equivalence,
i.e. if p = q then p $ q. Since bisimulation is a congruence, this can be veri�ed by
checking soundness for each axiom separately, which is left to the reader. In this

4

paper it is proved that the axiomatization is complete with respect to bisimulation,
i.e. if p $ q then p = q.

3 Construction of Normal Forms

3.1 A rewrite system

From now on, process terms are considered modulo AC of the +, that is, modulo
associativity and commutativity of the +. In the sequel, p =AC q denotes that p
and q are equal modulo AC of the +, and we say that p and q are of the same form.

1: (x+ y)z �! xz + yz
2: (xy)z �! x(yz)
3: �x �! �
4: �x �! x
5: (a�x)y �! a�(xy)
6: ��x �! x
7: ��x �! x
8: a�x+ y �! a � a�x+ x+ y
9: a�(b�x) �! a�(b � b�x+ x)

Table 3: The rewrite system R0

Table 3 contains a rewrite system R0, which reduces sequential composition to
its pre�x counterpart (rules 1-5), and which eliminates expressions of the form ��x
and ��x (rules 6 and 7), and which reduces occurrences of pre�x iteration in the
context of alternative composition and of pre�x iteration (rules 8 and 9). The
rewrite rules are to be interpreted modulo AC of the +.

In the completeness proof it will be shown that bisimilar normal forms of R0 are
provably equal. Hence, in order to obtain completeness for the full class of process
terms, we desire to know that R0 reduces each process term to a normal form,
which does not reduce any further. We shall prove a stronger fact, namely that
R0 is terminating modulo AC of the +, which means that R0 does not allow any
in�nite reductions.

The rewrite rules 8 and 9 are self-embedding: their left-hand sides can be em-
bedded in the corresponding right-hand sides. Hence, it is not possible to prove
termination of R0 by means of a weight function in the natural numbers, see e.g.
Zantema (1994). Termination of rules 8 and 9 alone can be proved elegantly by
means of the technique of dummy elimination from Ferreira and Zantema (1994),
because sequential composition occurs only at the right-hand side of these two
rewrite rules. However, this technique cannot be applied to the full rewrite system
R0.

In order to prove termination of R0 modulo AC of the +, we apply a technique
from Zantema and Geser (1994), based on an abstract commutation criterion. Since

5

we will need that result in a more general setting, namely rewriting modulo equa-
tions, in Section 3.2 we generalize the abstract commutation criterion accordingly.
Next, in Section 3.3 we describe how this applies in rewriting. Finally, in Section
3.4 we use this technique to prove termination of R0 modulo AC of the +.

3.2 Abstract termination

The proof that the rewrite system R0 is terminating modulo AC of the +, which is
presented in Section 3.4, is based on a theorem that can be given in a very general
abstract setting. This theorem, which is a generalization of a result from Zantema
and Geser (1994) to the setting of rewriting modulo equations, will be presented
and proved in this section.

Let R;S; T;E denote binary relations on a �xed set V. We write a dot symbol for
relational composition, i.e. one has t(R:S)t0 if and only if there exists t00 such that
tRt00 and t00St0. We write R+ for the transitive closure of R and R� for the re
exive
transitive closure of R. Further we write R � S if tRt0 implies tSt0. Clearly, if
R � S then R:T � S:T and T:R � T:S.

We write 1(t; R) if there exists an in�nite sequence t1; t2; t3; : : : such that t = t1
and tiRti+1 for all i = 1; 2; 3; : : :. A relation R is called terminating if there does
not exist any term t satisfying 1(t; R).

In the following lemma we collect some standard properties for relations, which
are easy to check.

Lemma 3.1

1. If R:S � S�:R, then R:S� � S�:R.

2. If R:S � S:R�, then R�:S � S:R�.

3. If R:S � T+:R and t0Rt and 1(t; S), then 1(t0; T).

For relations R;E we write R=E for E�:R:E�. The intuition here is that the re-
duction relation R is taken modulo equations E. However, we do not need that E
is symmetric, hence our theorem is even on relative termination which is more gen-
eral than modulo an equivalence. Now we state and prove our abstract termination
theorem.

Theorem 3.2 Let R;S; T;E be binary relations satisfying

1. S=E is terminating,

2. R � S+:T �,

3. T:R � R+:T �,

4. T:E � E�:T .

Then R=E is terminating.

6

Proof. From condition 4 and the �rst item of Lemma 3.1 we conclude T:E� � E�:T .
From this and condition 3 we conclude:

(T=E):(R=E) = E�:T:E�:R:E�

� E�:E�:T:R:E�

= E�:T:R:E�

� E�:R+:T �:E�

� E�:R+:(R [T)�:E�

= E�:R:(R [T)�:E�

� (R=E):((R [T)=E)�:

Since also (R=E):(R=E) � (R=E):((R [T)=E)�, we obtain

((R [T)=E):(R=E) = (R=E):(R=E) [(T=E):(R=E) � (R=E):((R [T)=E)�:

From the second item of Lemma 3.1 and condition 2 we conclude

((R [T)=E)�:(R=E) � (R=E):((R [T)=E)�

= E�:R:E�:((R [T)=E)�

� E�:S+:T �:E�:((R [T)=E)�

= E�:S+:((R [T)=E)�

� (S=E)+:((R [T)=E)�

Assume that R=E does not terminate. Then there exists an element t with
1(t; R=E). Clearly t((R [T)=E)�t, hence the third item of Lemma 3.1 yields
1(t; S=E). This contradicts condition 1. 2

To stress the subtlety of this theorem, we show that condition 4 may not be
weakened to T:E � E�:T+.

Example 3.3 Let V = f1; 2; 3; 4g and

1R3;
1S4;
4T3 3T2 1T1 2T2 3T3;
1E2 2E1 2E3 3E2:

S=E is terminating, because S consists only of 1S4, and 4 cannot be reduced by

S nor by E. The relation inclusions in conditions 2 and 3 in Theorem 3.2 and

T:E � E�:T+ are easily checked.

R � S+:T � : 1R3 1S4T3:

T:R � R+:T � : 1T1R3 1R3:

T:E � E�:T+ : 4T3E2 4T3T2
3T2E1 3E2E1T1
3T2E3 3T3
1T1E2 1E2T2
2T2E1 2E1T1
2T2E3 2E3T3
3T3E2 3T2:

However, R=E is not terminating: 1R3E2E1R3 � � �.

7

3.3 Application to rewrite systems

Before applying Theorem 3.2 to rewrite systems, �rst we recall some standard
terminology from term rewriting. See e.g. Klop (1992) for an overview of the �eld
of term rewriting.

De�nition 3.4

� A rewrite rule l �! r is called left-linear if each variable occurs at most once

in l.

� A rewrite rule l �! r is called non-erasing if each variable in l also occurs

in r.

A rewrite system is called left-linear or non-erasing, respectively, if all its rules are
so.

An equation l = r is called linear if both l �! r and r �! l are left-linear. An

equation l = r is called non-erasing if both l �! r and r �! l are so. A system of
equations is called linear or non-erasing, respectively, if all its equations are so.

In particular, both commutativity and associativity are linear and non-erasing.
Theorem 3.2 can be applied to prove termination of rewrite systems modulo

equations. Then for R one chooses the rewrite relation of a rewrite system (also
called R) for which termination has to be proved modulo some equations. For E
one chooses the `one-step equalities' corresponding to these equations. For S one
chooses an adaptation of R for which termination modulo the equations can be
proved. Then condition 1 of Theorem 3.2 is ful�lled. For each rule l ! r of R
there is to be a rule l ! r0 in S such that r !�

A r0 for some auxiliary rewrite
system A. For the relation T one chooses the inverse of the rewrite relation of A,
so that condition 2 of Theorem 3.2 is also ful�lled. Now condition 3 reads:

if t !A t0 and t !R t00, then there exists a u for which t0 !+
R u and

t00 !�
A u.

If A is left-linear and non-erasing, and if R is left-linear, then this requirement is
always ful�lled for non-overlapping redexes. Hence, this condition can be veri�ed
by a �nite analysis of overlapping redexes. In the typical case, in the �rst attempt
for A the condition does not hold, and A has to be extended a number of times
to obtain condition 3. This is a kind of completion, similar to what is done in
Bellegarde and Lescanne (1990). In the application of Theorem 3.2 in this paper,
the rewrite systems R and S are also extended during this completion, and the
�nal auxiliary rewrite system A has in�nitely many rules.
Finally, for the system E of equations, condition 4 of Theorem 3.2 reads:

if t !A t0 and t $E t00, then there exists a u for which t0 =E u and
t00 !A u.

Here $E denotes `one-step equalities' corresponding to E, while =E denotes $�
E ,

being the generated congruence. If E is linear and non-erasing, and if A is left-
linear, then this condition can be veri�ed by a �nite analysis of overlapping redexes,
similar as for condition 3.

8

3.4 Termination of the rewrite system R0

The intuition behind the termination proof of R0 is that the expansion from a
pattern a�p to a � a�p + p, as is done by rules 8 and 9, can occur at most only
once for every occurrence of a pre�x iteration symbol. We formalize this as follows.
Extend the signature with unary function symbols a# for a 2 A. Intuitively,
these new function symbols will be used to register that the expansion from a�p to
a � a�p+ p has been done. In a �rst attempt to apply Theorem 3.2, we choose R to
be R0, and S to be the simpli�ed variant of R in which the patterns a �a�p+p in the
right-hand sides of rules 8 and 9 have been replaced by a �a#p+p. Furthermore, we
choose E to be the AC rules for +. It is not di�cult to see that S=E is terminating.
As a �rst obvious try, we choose A to consist of the rule

a(a�x) �! a(a#x):

Now condition 2 is easily checked, but condition 3 does not yet hold. Therefore
we extend the systems A, R and S with some new rules, triggered by the desired
validity of condition 3. This process of completion ends in the following choices for
the systems A, R and S.

For the rewrite system R we choose the original system R0 extended by the
following two new rules:

10: (a#x)y �! a#(xy)
11: a#(b�x) �! a#(b � b�x+ x):

Since rewrite rules are applied modulo AC of the +, we take E = fx + y =
y+x; (x+ y)+ z = x+(y+ z)g. We shall apply Theorem 3.2 yielding termination
of R=E, which immediately implies termination of R0 modulo AC of the +.

The rewrite system S is obtained by a slight modi�cation of R in which the
patterns a � a�p+ p as they appear in the right-hand sides of rules 8, 9 and 11 have
been replaced by a � a#p+ p. That is, S consists of the rules 1-7, 10 and

80: a�x+ y �! a � a#x+ x+ y
90: a�(b�x) �! a�(b � b#x+ x)
110: a#(b�x) �! a#(b � b#x+ x):

Finally, we de�ne the rewrite system A to be the following in�nite collection of
rewrite rules:

r0 a(a�x) �! a(a#x)
r1 a((a�x)y0) �! a((a#x)y0)
r2 a(((a�x)y0)y1) �! a(((a#x)y0)y1)

...

More precisely, A consists of rewrite rules ri of the form a �Ci[a
�x] �! a �Ci[a

#x]
for i � 0, where the contexts Ci[] are de�ned inductively by

C0[] = []; Ci+1[] = Ci[] � yi;

9

with yi a fresh variable. Equivalently, one can say that ri is of the form a �
Di[a

�x] �! a �Di[a
#x], where the contexts Di[] are de�ned inductively by

D0[] = []; Di+1[] = Di[[] � zi];

with zi a fresh variable. We will need both representations of ri later on.
Now we verify the four conditions of Theorem 3.2.

1. S=E is terminating.

De�ne the following weight function on terms.

w(�) = 2
w(p+ q) = w(p) + w(q)

w(pq) = w(p)2w(q)
w(a�p) = 5w(p) + 5
w(a#p) = w(p) + 1

Note that terms which are equal modulo AC of the + have the same weight.
It is easy to see that the weight of terms strictly decreases under application
of rules in S. Hence, S=E is terminating.

2. For each rule l ! r of R there is a rule l! r0 in S such that r !�
A r0.

Only rules 8, 9 and 11 in R have been adapted in S. For these three rules
in R, the rule r0 in A, a(a�x) �! a(a#x) can be applied to obtain the
corresponding right-hand sides in S.

The other rules in R and S coincide, so for those rules we can take r for r0.

3. If t!A t0 and t!R t00, then there exists a u for which t0 !+
R u and t00 !�

A u.

Note that A is left-linear and non-erasing, and that R is left-linear.

A straightforward analysis of overlapping redexes learns that there are three
types of overlaps between a left-hand side of A and a left-hand side of R,
which involve rules 2, 5 and 9 in R respectively. We treat these three cases
separately.

(a) A term (a � Ci[a
�x]) � yi can be reduced by rule ri in A and by rule 2 in

R. This overlapping redex is convergent, owing to rule ri+1 in A.

�
�

�
�

��	

@
@
@
@
@@R

�
�
�
�
��	

@
@
@
@
@@R

(a � Ci[a
�x]) � yi

(a � Ci[a
#x]) � yi a � (Ci[a

�x] � yi) = a � Ci+1[a
�x]

a � (Ci[a
#x] � yi) = a � Ci+1[a

#x]

ri 2

2 ri+1

10

(b) A term a �Di[(a
�x) � zi] can be reduced by rule ri+1 in A and by rule 5

in R. This overlapping redex is convergent, owing to rule 10 in R.

�
�
�

�
��	

@
@
@
@
@@R

�
�
�
�
��	

@
@
@
@
@@R

a �Di[(a
�x)zi]

a �Di[(a
#x)zi] a � Di[a

�(xzi)]

a �Di[a
#(xzi)]

ri+1 5

10 ri

(c) A term a � Ci[a
�(b�x)] can be reduced by rule ri in A and by rule 9 in

R. This overlapping redex is convergent, owing to rule 11 in R.

�
�
�

�
��	

@
@
@
@
@@R

�
�
�
�
��	

@
@
@
@
@@R

a � Ci[a
�(b�x)]

a �Ci[a
#(b�x)] a � Ci[a

�(b � b�x + x)]

a �Ci[a
#(b � b�x + x)]

ri 9

11 ri

4. If t!A t0 and t$E t00, then there exists a u for which t0 =E u and t00 !A u.

Since E is linear and non-erasing and A is left-linear, this holds for all non-
overlapping redexes. Since all left-hand and right-hand sides of E contain no
other symbols than +, and the left-hand sides of A contain no + symbols, no
overlapping redexes are possible.

So according to Theorem 3.2, we may conclude that R=E is terminating. Hence,
the rewrite system R0 in Table 3 is terminating modulo AC of the +.

4 Completeness of the Axioms

In this section we present the proof of the completeness theorem for the axioms of
BPAp�

�� , with respect to bisimulation equivalence.

11

4.1 Basic terms

For convenience, we adapt normal forms a bit further to basic terms. In the com-
pleteness proof it will be shown that bisimilar basic terms are provably equal.
In the sequel, � ranges over the set f�; �g.

De�nition 4.1 A basic term is of the form either
Pn

i=1 aipi+ � or a�(
Pn

i=1 aipi+
�), where the terms pi are basic.

Lemma 4.2 Each process term is provably equal to a basic term.

Proof. R0 is terminating modulo AC of the +, so each process term has at least
one normal form of R0. Since each of the rewrite rules can be deduced from the
axioms, each process term is provably equal to its normal forms.
Assume a normal form q. It follows from the rewrite rules in R0 that q is a sum

of terms of the form � or aq0 or a�q0, with q0 a normal form, where a�q0 does not
occur as an argument of alternative composition nor of pre�x iteration. In other
words, q is of the form either

Pk
i=1 aiqi+

Pl
j=1 �j or a

�(
Pk

i=1 aiqi+
Pl

j=1 �j), where
the terms qi are normal forms. By induction on size, i.e. on the number of function
symbols in q, we may assume that the normal forms qi are provably equal to basic
terms.
The normal form q can be adapted to a basic term, by means of the axioms,

as follows. Remove all occurrences of summands � (axiom A6), remove double
occurrences of summands � (axiom A3), add one summand � if there is no summand
� present (axiom A6), and replace summands a by a� (axiom A8).
Hence, each normal form of R0 is provably equal to a basic term. Since each

process terms is provably equal to a normal form, it follows that each process term
is provably equal to a basic term. 2

4.2 The completeness theorem

The following lemma stems from Aceto and Ing�olfsd�ottir (in the setting of CCS).

Lemma 4.3 If a�p $ b�q, then a = b.

Proof sketch. If a�p $ b�q, then it follows that a�p exhibits the in�nite trace of
actions (ab)!. Thus, this lemma is an immediate consequence of the following fact.

� If pn
an�! pn+1 for n = 0; 1; 2; :::, then there is an N such that an = aN for

n > N .

The proof of this fact is an easy exercise by structural induction on terms, which
is left to the reader. 2

Theorem 4.4 The axiomatization A1-9 + MI1-5 for BPAp�
�� is complete with re-

spect to bisimulation equivalence.

Proof. Since each process term is provably equal to a basic term, it is su�cient
to show that bisimilar basic terms are provably equal. We deduce the following
statement In by induction on n.

12

In If p and q are bisimilar basic terms with size(p) + size(q) = n, then p = q.

Suppose that we have already proved In for n < N , and let p and q are bisimilar
basic terms with size(p) + size(q) = N . We prove that p = q, in three distinct
cases, which distinguish the possible forms of p and q.

1. p =AC a�(
P

i aipi + �) and q =AC

P
j bjqj + �0.

p $ q, so p # if and only if q #. Hence, � represents � if and only if �0

represents �, so � = �0.

Since p
a
�! p, and since p $ q, there is a transition q

a
�! q0 where p $ q0.

Thus, bk = a and p $ qk for some k. Since size(qk) < size(q), the induction
base IN�1 yields p = qk. Hence, ap = bkqk.

Since p
ai�! pi, and since p $ q, there is a transition q

ai�! q0 where pi $ q0.
Hence, bk = ai and pi $ qk for some k. By induction pi = qk, so aipi = bkqk.

Thus, each summand of ap+
P

i aipi + � is provably equal to a summand of
q. By the symmetric argument, we �nd that each summand of q is provably

equal to a summand of ap+
P

i aipi + �. Hence, p
MI1
= ap+

P
i aipi + � = q.

2. p =AC

P
i aipi + � and q =AC

P
j bjqj + �0.

In this case, we can repeat the argument of the previous case to �nd that each
summand of p is provably equal to a summand of q, and vice versa. Hence,
p = q.

3. p =AC a�(
P

i2I aipi + �) and q =AC b�(
P

j2J bjqj + �0).

By symmetry, we may assume that size(p) � size(q). Since p $ q, Lemma
4.3 yields a = b.

p $ q, so p # if and only if q #. Hence, � represents � if and only if �0

represents �, so � = �0.

We distinguish three cases.

� qj $ p for some j 2 J .

Induction yields qj = p. Moreover, qj $ p $ q and size(q) � size(p),
so induction yields qj = q. Hence, p = qj = q.

� For each i 2 I, ai 6= a or pi $= q, and for each j 2 J , qj $= p.

In this case, each transition p
ai�! pi of p, for i 2 I, can only be mimicked

by a transition q
bj
�! qj of q for some j 2 J , and vice versa. So by

induction each summand aipi for i 2 I is provably equal to a summand
bjqj for j 2 J , and vice versa. Hence, p =AC a�(

P
i2I aipi + �) =

a�(
P

j2J bjqj + �0) =AC q.

� pi $ q and ai = a for some i 2 I, and for each j 2 J , qj $= p.

Abbreviate
P

j2J bjqj + �0 to q0.

Let I0 be the non-empty subset of elements i 2 I for which pi $ q and
ai = a. For i 2 I0, induction yields pi = q, so aipi = aq =AC a � a�q0.
Hence,

P
i2I aipi = a � a�q0 +

P
i2InI0 pi.

13

Each transition p
ai�! pi of p for i 2 InI0 can only be mimicked by a

transition q
bj
�! qj of q for some j 2 J , and vice versa. So by induction

each summand aipi for i 2 InI0 is provably equal to a summand bjqj for
j 2 J , and vice versa. Hence, p =AC a�(

P
i2I0 aipi +

P
i2InI0 aipi + �) =

a�(a � a�q0 + q0)
MI1
= a�(a�q0)

MI4
= a�q0 =AC q. 2

4.3 Complete axiomatizations for subalgebras

With a similar proof scheme as has been used for the completeness proof for BPAp�
�� ,

with the cases for � and/or � omitted, we obtained the following results.

Theorem 4.5 The axiomatization A1-5 + MI1-3 for BPAp� is complete with re-

spect to bisimulation equivalence.

Theorem 4.6 The axiomatization A1-7 + MI1-4 for BPAp�
� is complete with re-

spect to bisimulation equivalence.

Theorem 4.7 The axiomatization A1-5,8,9 + MI1-3,5 for BPAp�
� is complete with

respect to bisimulation equivalence.

References

[1] Aceto, L., and Ing�olfsd�ottir, A. (1995), A complete equational axiom-
atization for pre�x iteration with silent steps, Report RS-95-5, University of
Aarhus.

[2] Baeten, J. C. M., and Bergstra, J. A. (1992), Discrete time process al-
gebra, Report P9208, University of Amsterdam. [To appear in Formal Aspects

of Computing.]

[3] Baeten, J. C. M., and Verhoef, C. (1993), A congruence theorem for
structured operational semantics with predicates, in \Proceedings, 4th Con-
ference on Concurrency Theory (CONCUR'93), Hildesheim," (E. Best, ed.),
pp. 477{492, Lecture Notes in Computer Science, Vol. 715, Springer-Verlag.

[4] Bellegarde, F., and Lescanne, P. (1990), Termination by completion,
Applicable Algebra in Engineering, Communication and Computation, 1:79{
96.

[5] Bergstra, J. A., Bethke, I., and Ponse, A. (1994), Process algebra with
iteration and nesting, The Computer Journal, 37(4):243{258.

[6] Bergstra, J. A., and Klop, J. W. (1984), Process algebra for synchronous
communication. Information and Control, 60(1/3):109{137.

[7] Ferreira, M. C. F., and Zantema, H. (1994), Dummy elimination: mak-
ing termination easier, Report UU-CS-1994-47, Utrecht University.

14

[8] Fokkink, W. J. (1994a), The tyft/tyxt format reduces to tree rules, in
\Proceedings, 2nd Symposium on Theoretical Aspects of Computer Software
(TACS'94), Sendai, Japan," (M. Hagiya and J.C. Mitchell, eds.), pp. 440{453,
Lecture Notes in Computer Science, Vol. 789, Springer-Verlag.

[9] Fokkink, W. J. (1994b), A complete equational axiomatization for pre�x
iteration, Information Processing Letters, 52(6):333{337.

[10] Fokkink, W. J. (1995), A complete axiomatization for pre�x iteration in
branching bisimulation, Logic Group Preprint Series 126, Utrecht University.

[11] Fokkink, W. J., and Zantema, H. (1994), Basic process algebra with
iteration: completeness of its equational axioms, The Computer Journal,
37(4):259{267.

[12] Groote, J. F., and Vaandrager, F. W. (1992), Structured operational
semantics and bisimulation as a congruence, Information and Computation,
100(2):202{260.

[13] Hennessy, M. (1981), A term model for synchronous processes, Information
and Control, 51(1):58{75.

[14] Kleene, S. C. (1956), Representation of events in nerve nets and �nite au-
tomata, in \Automata Studies," pp. 3{41, Princeton University Press.

[15] Klop, J. W. (1992), Term rewriting systems, in \Handbook of Logic in Com-
puter Science, Volume I, Background: Computational Structures," (S. Abram-
sky, D.M. Gabbay, and T.S.E. Maibaum, eds.), pp. 1{116, Oxford University
Press.

[16] Koymans, C. J. P., and Vrancken, J. L. M. (1985), Extending process
algebra with the empty process �, Logic Group Preprint Series 1, University
of Utrecht.

[17] Milner, R. (1984), A complete inference system for a class of regular be-
haviours, Journal of Computer and System Sciences, 28:439{466.

[18] Park, D. M. R. (1981), Concurrency and automata on in�nite sequences,
in \Proceedings, 5th GI Conference," (P. Deussen, ed.), pp. 167{183, Lecture
Notes in Computer Science, Vol. 104, Springer-Verlag.

[19] Plotkin, G. D. (1981), A structural approach to operational semantics, Re-
port DAIMI FN-19, Aarhus University.

[20] Salomaa, A. (1966), Two complete axiom systems for the algebra of regular
events, Journal of the ACM, 13(1):158{169.

[21] Sewell, P. (1994), Bisimulation is not �nitely (�rst order) equationally ax-
iomatisable, in \Proceedings, 9th IEEE Symposium on Logic in Computer
Science (LICS'94), Paris," pp. 62{70, IEEE Computer Society Press.

15

[22] Verhoef, C. (1994), A general conservative extension theorem in process
algebra, in \Proceedings, IFIP Conference on Programming Concepts, Meth-
ods and Calculi (PROCOMET'94), San Miniato," (E.-R. Olderog, ed.), pp.
149{168, IFIP Transactions A-56, Elsevier.

[23] Zantema, H. (1994), Termination of term rewriting: interpretation and type
elimination, Journal of Symbolic Computation, 17(1):23{50.

[24] Zantema, H., and Geser, A. (1994), A complete characterization of ter-
mination of 0p1q ! 1r0s, Report UU-CS-1994-44, Utrecht University. [To ap-
pear in Proceedings 6th Conference on Rewriting Techniques and Applications
(RTA'95), Kaiserslautern, April 1995.]

16

