A Case-Based Filter for Diagnostic Belief Networks

N.B. Peek L.C. van der Gaag
Dept. of Law and Information Dept. of Computer Science
Technology Utrecht University
University of Leiden P.O. Box 80.089
P.O. Box 9521 3508 TB Utrecht
2300 RA Leiden The Netherlands

The Netherlands

Abstract

Special-case algorithms for Bayesian belief networks are designed to alleviate the
computational burden of problem solving. These algorithms provide a case base
for storing solutions for a small number of situations that are likely to be en-
countered during problem solving. This case base is employed as a filter for
belief-network inference: for a problem under consideration, the network at hand
is consulted only if the case base does not provide a solution for the problem. We
present a new algorithm that further extends on the basic idea of special-case al-
gorithms by exploiting knowledge about the way diagnostic problem solving with
a belief network is shaped.

1 Introduction

From the early days of artificial intelligence research, the computational complexity of
methods for automated problem solving is an issue of major concern: the quest for
efficient methods is prevalent in most fields of modern Al research. The field that is
concerned with automated reasoning in the presence of uncertain and incomplete infor-
mation is no exception. Halfway through the 1980s, research in this field resulted in the
framework of (Bayesian) belief networks [1]. This framework provides a powerful and
intuitively appealing formalism for representing probabilistic information and in addi-
tion provides a set of algorithms for sound probabilistic inference. The belief network
framework is suitable for various domains of application and for various types of task.
Yet, over the last few years, it is becoming especially popular for building diagnostic
knowledge-based systems [2, 3, 4]: experience with applying the belief network frame-
work for diagnostic problem solving indicates that the framework is tailored to the task
of diagnosis as it provides for reasoning with both causal and associative relationships
in a domain.

Unfortunately, the basic algorithms of the belief network framework have a worst-
case computational complexity that is exponential in the size of a network. In essence,
this problem cannot be remedied as general probabilistic inference with belief net-
works is N'P-hard [5]. One way of enhancing the average-case complexity of problem
solving with a belief network is the use of a special-case algorithm [6]. Special-case
algorithms are based on the idea of shifting part of the burden of runtime computation
to a pre-runtime computational phase: for a number of situations that are likely to be
encountered during problem solving, solutions are precomputed and stored in a case
base. At runtime, this case base is employed as a filter for belief-network inference:
problem solving commences with a search in the case base and only if no precomputed
solution is found is the belief network consulted. The use of a special-case algorithm
has been reported to yield substantial computational savings for belief networks where
a relatively small number of cases covers a large proportion of the likely uses of the
network.

In this paper, we present a new special-case algorithm for supporting diagnostic
problem solving. Our algorithm differs from other special-case algorithms for belief
networks in that it explicitly makes use of knowledge about the way problem solving is
shaped. The paper is organised as follows. In Section 2 the belief network framework
is briefly reviewed. In Section 3 we describe diagnostic problem solving with a belief
network; Section 4 then presents our special-case algorithm for supporting this type
of problem solving. Section 5 addresses the precomputation of a case base to be used
with our algorithm. The paper is rounded off with some conclusions and directions for
further research in Section 6.

2 Preliminaries

A (Bayesian) belief network is a concise representation of a joint probability distribution
on a set of variables. In a belief network, concision of representation is arrived at by
explicit separation of information about the independencies holding among the variables
in the distribution and the numerical quantities involved. A belief network therefore is
composed of two parts: a qualitative part modelling independencies and a quantitative
part specifying probabilities.

The qualitative part of a belief network takes the form of an acyclic directed graph.
In this digraph, each vertex represents a variable that can take one of a finite set of
values. The set of arcs of the digraph models the independencies among these variables.
Informally speaking, we take an arc V; — Vj in the digraph to represent a direct
‘influential’ or ‘causal’ relationship between the variables V; and Vj; the direction of
the arc designates V; as the ‘effect’ or ‘consequence’ of the cause V;. Absence of an arc
between two vertices means that the corresponding variables do not influence each other
directly and hence are (conditionally) independent. With each vertex of the digraph
is associated a set of (conditional) probabilities describing the influence of the values
of the vertex’ predecessors on the probabilities of the values of the vertex itself. These

probabilities with each other constitute the quantitative part of the belief network and,
with the qualitative part, suffice for describing the joint probability distribution [1].

In the sequel, we will use Pr to denote a joint probability distribution under con-
sideration. We will further restrict the discussion to binary variables taking one of the
truth values true and false; the generalisation to variables with more than two dis-
crete values, however, is straightforward. For abbreviation, we will use v; to denote the
proposition that the variable V; takes the value true; V; = false will be denoted as —wv;.
For any set of variables V', a conjunction ¢y of value assignments to the variables from
V is called a configuration of V. To avoid abundance of braces, we will write cy; instead
of cqy;y for singleton sets {V;}.

3 Diagnostic Problem Solving With Belief Networks

The objective of diagnostic problem solving is to identify a most likely explanation for a
problem under consideration — this explanation is called the diagnosis of the problem.
Establishing a diagnosis generally is supported by gathering information about the
manifestations of the problem at hand. This information typically is obtained from
applying tests to the problem. In most domains, it is not necessary to collect information
on all possible manifestations before an accurate diagnosis is reached: information from
only a few tests generally suffices. Moreover, it often is not desirable to apply all tests
available as testing may be costly or damaging. In diagnostic problem solving therefore,
tests should not be applied as a matter of course but selected carefully based on their
expected usefulness. In this section, we take a closer look at diagnostic problem solving
in the context of Bayesian belief networks.

3.1 Evidence Clusters

In most application domains, several tests are available for obtaining information about
a problem under consideration. Examples of tests in a medical domain are laboratory
tests and operative procedures. The information yielded upon applying a test typically
pertains to one or more variables modelled in the belief network; these variables will
be called evidence variables. With every available test T; we consider associated a set
®; of evidence variables for which applying the test will yield a value; this set ®; is
called the evidence cluster of test T;. The number of possible configurations that can
be observed for an evidence cluster ®; of size |®;| = m equals 2™; we will enumerate
these configurations as ¢;,...,¢7 . In the sequel, we will assume that ®; # ®; for all
i # j. We do not require, however, that ®; N ®; = &, i # j, that is, we allow for
evidence clusters to share some variables. The union of the evidence clusters for all
tests discerned constitutes the set of all evidence variables in the belief network and
will be denoted as F.

For the purpose of selecting tests during problem solving, we distinguish between
surface evidence and deep evidence. Surface evidence is evidence that in general is

readily available, that is, without considerable cost; in a medical domain, an example is
a patient’s medical history. We assume that all variables modelling surface evidence are
comprised in a single evidence cluster @, called the surface evidence cluster. The phrase
deep evidence is used to denote evidence that is hard or costly to obtain; in a medical
domain, an example of deep evidence is information from an operative procedure. This
type of evidence should only be sought after if strictly necessary for reaching a diagnosis.

3.2 Hypotheses

Most application domains involve various hypotheses that need be investigated during
problem solving. In a medical domain, these hypotheses typically correspond with
disorders. In the sequel, we will assume that each hypothesis is modelled as a separate
variable in the belief network. These variables will be called hypothesis variables; the
set, of all hypothesis variables in the network will be denoted as H.

Each hypothesis discerned has some prior probability of being the diagnosis for a
problem under consideration. The information that becomes available about the mani-
festations of the problem influences these probabilities: it may increase the probability
of some of these hypotheses and decrease the probability of others. Now, if the prob-
ability of a hypothesis has increased so as to surpass a pre-defined threshold value, it
becomes a likely candidate for the diagnosis; conversely, if the probability of a hypoth-
esis has dropped below a pre-set threshold value, it very likely is not an explanation
for the problem under consideration. More formally, we say that a hypothesis variable
H; is a confirmation candidate given available evidence c if Pr(h; | ¢) > =1, where &
is a confirmation threshold with 0 < ¢; < 1; H; is called a rejection candidate given
¢ if Pr(h; | ¢) < g4, where ¢, is a rejection threshold with 0 < =5 < £;. A hypothesis
variable is said to be pending given c if it is neither a confirmation candidate nor a
rejection candidate given c.

Now, consider a hypothesis whose probability after processing some evidence ¢ has
surpassed the confirmation threshold. Although this hypothesis’ variable is a confir-
mation candidate given ¢, it not necessarily will continue to be so as problem solving
progresses: observing further evidence may very well decrease the hypothesis’ probabil-
ity. A hypothesis therefore is considered confirmed only if there is some guarantee that
its probability will not decrease considerably in the future. More formally, we say that
a confirmation candidate H; is established given evidence c if for each configuration ¢¥
of every evidence cluster ®; with Pr(¢F | ¢) > §, we have that Pr(h; | ¢ A ¢F) > &4,
where § > 0 is a pre-defined guarantee threshold. A similar observation holds for a
hypothesis whose probability has dropped below the rejection threshold.

We would like to emphasize that the threshold values 1, 9, and ¢ are highly domain-
dependent and should be chosen with care.

3.3 Test Planning

Diagnostic problem solving involves careful planning of tests to apply to a problem to
minimise the cost of establishing a diagnosis. Test planning amounts to selecting the
best tests to apply to the problem, and evaluating whether enough information has
been obtained to establish a diagnosis with sufficient accuracy.

For selecting the best tests to apply to a problem, we make use of concepts from
Bayesian decision theory [7]. The basic idea is to measure for each available test T; the
expected usefulness of the information yielded upon application of the test. To this end,
we assess for each possible configuration ¢ of its associated evidence cluster ®;, the
desirability of obtaining this information in the context of formerly obtained evidence
c. This desirability is expressed as a numerical value u(¢¥, c), called the utility of ¢F
given c¢. A utility may be based on probabilistic information only and not contain any
other information about the domain at hand; a utility, however, may also involve non-
probabilistic aspects from the domain such as the cost of obtaining the information [8].
In this paper, we use a very simple type of utility that is based on the changes in the
probabilities of the various yet unestablished hypotheses incurred by the configuration
at hand, following [9] in essence: we take the utility of a configuration ¢¥ given c to be

u(@f,c) = Ygen Pr(hy [e) - |Pr(h; |) = Pr(hy [c A ¢})l

where H(c) is the set of hypothesis variables that are not yet established given ¢. Now
observe that before applying test 7T;, it is not known which configuration of its associated
evidence cluster will be found for the problem at hand: each configuration ¢¥ is observed
with some probability Pr(¢¥ | ¢). The expected utility @ (T;, c) of applying test T} in the
context of evidence ¢ therefore equals

ﬂ(TiaC) = kar(ﬁbf | C)u(i’cac)

The best test to apply now is the test with highest expected utility given ¢; in the
sequel, we will use T(c) to denote this test. Note that all probabilities required for cal-
culating expected utilities of tests can be computed from the belief network. Also note
that evidence variables to acquire information on are selected groupwise by employing
knowledge about the tests available in the domain; variables therefore are not selected
one by one as in a fully myopic approach to evidence gathering [10].

After a test has been applied to a problem under consideration and the evidence
yielded has been processed, it is evaluated whether a sufficiently accurate diagnosis
can be reached on the basis of the available information. To this end, several differ-
ent criteria can be used, depending on the domain at hand. In this paper, we assume
that gathering evidence is pursued until every hypothesis variable modelled in the be-
lief network is established; each confirmed hypothesis then is a likely explanation for
the problem. Note that the threshold values 1,29, and 0 introduced in Section 3.2
determine the persistence with which evidence gathering is pursued.

Figure 1 summarises the structure of diagnostic problem solving. Initially, all surface
evidence is acquired for a problem and processed. Based on the available evidence, the

best test to apply next is selected. The user is asked to apply this test to the problem
and enter the information yielded. This process is repeated until a sufficiently accurate
diagnosis has been reached. We would like to note that diagnostic problem solving as
outlined above may be computationally expensive: it is exponential in the number of
variables comprised in the separate evidence clusters. We expect, however, that this
number will be bounded by a (small) constant for most applications.

Figure 1: The Structure of Problem Solving.

4 A Case-Based Filter

Special-case algorithms for belief networks are designed to alleviate the computational
burden of problem solving by exploiting knowledge about the likely uses of a network.
These algorithms provide a case base for storing solutions for situations that are likely
to be encountered during problem solving and a retrieval algorithm for searching this

case base. In this section, we present a new special-case algorithm to support diagnostic
problem solving as outlined in the foregoing. In our algorithm, the case base is organised
as a tree closely resembling the structure of problem solving depicted in Figure 1; the
associated retrieval algorithm basically is a tree traversal algorithm.

4.1 The Case Base

To allow for exploiting knowledge about the likely uses of a belief network, a case
base for the network stores situations that can be encountered during problem solving
and their associated solutions. These situations typically are descriptions of problem
manifestations and will be referred to as cases.

In diagnostic problem solving as outlined before, the situations that can be encoun-
tered are fixed. Consider once more the problem-solving structure depicted in Figure 1.
Initially, there is no information available about a problem under consideration. The
case representing this situation is the configuration of the empty set, that is, the case
true; in the sequel, we will refer to this case as the null case. Diagnostic problem solving
commences with acquiring all surface evidence for the problem at hand. Every possible
configuration of the surface evidence cluster therefore is a case representing a situation
that can initially be encountered. As problem solving progresses, tests are selected and
applied, yielding further evidence concerning the manifestations of the problem. The
situations that can then be encountered reflect the selected tests and the cases rep-
resenting these situations are built from configurations of successive evidence clusters.
More formally, we have that a case ¢ is a configuration ¢ = ¢f11 Ao A ¢Z:j, m > 0,
such that either ¢ = true, or qﬁfll is a configuration of the surface evidence cluster ®
and, for all j = 1,...,m — 1, we have that T; ,, = T(d)fll ARREWAY ¢Z7); m is called the
order of case ¢, denoted ord(c) = m. Note that cases of equal order may differ in
length as different evidence clusters may have different sizes. In the sequel, we will use
ev(c) = ®; U---UD; to denote the set of evidence variables that are assigned a value
in case c.

Since cases are built from configurations of successive evidence clusters, we have
that each case is subsumed by one or more cases of lower order. We say that a case ¢ is
a subcase of a case ¢ if ev(c) C ev(c’) and ¢/ Ac = ¢, that is, ¢ and ¢ match with respect
to the configuration of ev(c); ¢ then is called a supercase of ¢/. The case ¢ is called a
primary subcase of ¢ if it is a subcase of ¢ and ord(c’) = ord(c) + 1; ¢ then is called the
primary supercase of ¢. Note that each case has at most one primary supercase and
may have various primary subcases. We say that a set of cases S is sound if for every
case ¢ € S, ¢ # true, we have that ¢’ € S where ¢ is the primary supercase of ¢; S is
called complete if for every case ¢ € S we have that ¢ € S for all subcases ¢’ of c.

We now organise a sound set of cases in a directed tree in which the nodes represent
cases and the arcs represent the primary subcase-relationship among the cases; this
directed tree is called a case tree and constitutes the case base for our special-case
algorithm. More formally, the case tree for a sound set of cases S is a directed tree

Ts = (V(Ts), A(Ts)) such that V(Ts) = S and (¢,) € A(Ts) if and only if ¢ is the
primary supercase of ¢’. If S is both sound and complete, the case tree T is called
a complete case tree; otherwise, Ty is called a partial case tree. Note that a complete
case tree represents all possible situations that might be encountered during problem
solving were evidence gathering pursued until all tests had been applied.

4.2 The Retrieval Algorithm

For searching a case base during problem solving with a belief network, a special-
case algorithm provides a retrieval algorithm. The retrieval algorithm provided by our
special-case algorithm basically is a tree traversal algorithm for traversing a partial case
tree Ts = (V(Ts), A(Ts)). For a problem under consideration, the retrieval algorithm
starts at the root of the case tree as it corresponds with the null case representing the
initial situation where no information is available as yet. Now, suppose that a vertex
c € V(Ts) is visited. Recall that this vertex models a situation that is encountered
during problem solving. In this situation, a test is selected and applied to the problem
at hand yielding a configuration of its associated evidence cluster. The newly arisen
situation is represented by a primary subcase ¢ of ¢. If this subcase ¢’ is comprised in
the set S, then (¢, ¢’) € A(Ts) and the retrieval algorithm traverses this arc; otherwise,
the traversal halts.

To fully exploit the presence of the case base, the retrieval algorithm should be
self-supporting and not rely on belief-network inference. To circumvent the need for
consulting the network during retrieval, additional information is stored with each case
c in the case tree:

o the test T(c) to be applied to the problem under consideration when the situation
described by the case is encountered;

e for each hypothesis variable H;, the probability Pr(h; | c);

e for each hypothesis variable Hj, its status given c, that is, whether or not it is an
established candidate given c.

The test T(c) stored with case c in the case tree allows for the tree traversal to be self-
supporting. When the traversal has halted, the information concerning the statuses of
the hypothesis variables stored with the case provides for deciding on the necessity of
further gathering of evidence. If every hypothesis variable is an established candidate
given ¢, then a sufficiently accurate diagnosis has been reached and no further infor-
mation is required; the diagnosis then is described by the probabilities for the various
hypothesis variables stored with the case. If, on the other hand, there is at least one hy-
pothesis variable that is not yet established, the case corresponds with a situation that
needs further refining: all evidence observed so far is entered into the belief network
and problem solving proceeds with belief-network inference.

5 The Precomputation Algorithm

In general, a case base to be used with a special-case algorithm is generated from a
belief network by means of a precomputation algorithm. For our special-case algorithm,
precomputation amounts to computing cases and building a partial case tree of suitable
size. Before detailing our precomputation algorithm, we observe that for precomputing
a case base several probabilities are required. Our precomputation algorithm makes use
of a stmulation algorithm for estimating these probabilities from the network at hand
[11].

The basic idea of a simulation algorithm for a belief network is to generate a finite
multiset of configurations of all variables involved, reflecting the joint probability dis-
tribution defined by the network; the separate elements from this multiset are called
samples. From the generated multiset of samples, (conditional) probabilities of interest
are estimated based on occurrence frequencies. Accuracy of these estimates can be
obtained by generating a sufficiently large number of samples. More formally, if for the
number of samples N in a properly generated multiset 2 we have that

2 1
N > 5 In —
oy (SE
then a probability estimate from € is within (absolute) error bound &5 with probability
1 — 0p [12]; conversely, a probability estimate from € is within the error bound

< 2 1 !
5 —In —
F N " 6g
with probability 1 — dz. In the sequel, we assume that for the purpose of precomputing

a case base a multiset Q2 of N samples has been generated.

5.1 Precomputing Cases

Precomputing a case for inclusion in the case base essentially boils down to computing
the information to be stored with the case. We recall from Section 4.3 that with each
case we store a test to be applied, the conditional probabilities of the various hypotheses
discerned, and the statuses of all hypothesis variables. For a case ¢, this information is
computed from the multiset Q(c) = {w | w A ¢ = ¢,w € Q} of samples that match the
case ¢; in the sequel, we will use N(¢) to denote the number of samples in Q(c).

For each hypothesis variable H; in the network, the probability Pr(h; | ¢) to be
stored with case ¢ is estimated directly from the multiset of samples Q(c): we take

n

N(e)

Pr(h | ¢) =

where n is the number of samples w € Q(¢) with wAh; = hj. The test T(c) to be applied
to a problem under consideration in the context of available evidence ¢ is determined as
outlined in Section 3.3. The probabilities required for computing the expected utilities

of the various tests in the domain are estimated directly from appropriate multisets of
samples from Q(c), as before.

Now recall that we have defined a hypothesis variable H; to be a confirmation
candidate given c if the probability Pr(h; | ¢) surpasses the pre-defined confirmation
threshold 1. Since for the purpose of precomputation of cases we make use of estimates
for probabilities of interest, confirmation candidacy cannot be determined with absolute
certainty for a variable. We therefore allow for a small error to be made in assigning
the status of confirmation candidate. Suppose that the probability Pr(h; | ¢) for a

hypothesis variable H; has been estimated to be #C) For this estimate, we have that

n 2 1 n 2 1
N(c)_1,N(c)1nE<Pr(hj|C)<W+ N(c)lng

with probability 1 — 0. We now take H; to be a confirmation candidate given c if

n 2 1
- In— >

N(e) N(e) ™ g

Note that by this inequality the hypothesis variable H; is assigned the status of confir-
mation candidate erroneously with a probability smaller than ér. Also note that the
inequality provides a conservative lower bound for confirmation candidacy. Similar ob-
servations apply for determining rejection candidacy for a variable and for determining
whether or not a candidate is established; for further details, we refer to [13].

5.2 Building the Case Tree

Our precomputation algorithm builds a partial case tree for a belief network: the basic
idea is that only cases with a high probability of being encountered during problem
solving are included. Building the case tree therefore amounts to deciding for each case
whether inclusion is justified by the expected frequency of its use.

A partial case tree for a belief network is generated in a breadth-first fashion, that
is, a case of order k + 1 is considered for inclusion in the case tree only after all cases of
order £ have been considered. Now suppose that inclusion of subcases of a case ¢ that
is already present in the case tree in the making, is considered. We recall that with
case ¢ information is stored about the statuses of the various hypothesis variables. If
this information reveals that every hypothesis variable is an established candidate, then
case c describes a situation for which a sufficiently accurate diagnosis can be established
without further evidence gathering. During problem solving, therefore, never a situation
corresponding with a subcase of ¢ is encountered. In the case tree, no subcases of case
¢ are included, rendering case ¢ a leaf of the tree. If, on the other hand, the statuses of
the hypothesis variables stored with case c reveal that the case needs further refining,
then each of the primary subcases of ¢ is investigated separately. A primary subcase is
included in the case tree only if the probability of encountering the situation represented
by this subcase surpasses a pre-defined probability threshold.

10

To conclude, we would like to note that precomputation is computationally expen-
sive. Our precomputation algorithm, however, has been designed to have an anytime
property: precomputation will always yield a case tree, but the more time is given
to the precomputation, the better its quality. We would further like to stress that
the precomputation needs to be performed only once, prior to any problem solving; it
therefore is best done at an off-peak moment, when considerable computing resources
are available.

6 Conclusions

Belief networks by now have established their position of valuable representations of
domain knowledge, as the increasing number of applications of the belief network frame-
work demonstrate. Yet, as applications are growing more and more complex it becomes
evident that the computational complexity of the basic algorithms associated with the
framework resists efficient problem solving. The quest for efficient problem-solving
methods for use with a belief network therefore is prevalent in modern belief-network
research. The special-case algorithms that have emerged from this research enhance
problem solving by exploiting knowledge about the likely uses of a network.

We have presented a new special-case algorithm for belief networks that exploits
not only knowledge about the likely uses of a network but also knowledge about how
problem solving with the network is shaped. In particular, our algorithm builds on the
observation that the situations encountered during problem solving are fixed as a result
of the evidence gathering strategy employed. We would like to note that although our
algorithm has been designed to support diagnostic problem solving, it can be customised
to other problem-solving tasks as well.

Our special-case algorithm has not been tested as yet on real-life belief-network
applications. We feel, however, that our algorithm has potential for substantial speedup
of problem solving as it further extends on the basic idea of special-case algorithms
which have been reported to yield impressive results [6]. As for special-case algorithms
in general we expect the best results for belief networks where a relatively small number
of cases covers a large proportion of the likely uses of the network. Besides insight in
the potential of our algorithm, other interesting issues such as the optimal size of the
case base to be used and the effects of the various threshold values employed remain to
be addressed. Another challenging issue is the use of learning methods for automated
construction or adaptation of the case base. We plan to test our algorithm on real-life
belief networks and hope to report on the results obtained in the future.

References

[1] J. Pearl (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference, Morgan Kaufmann Publishers.

11

2]

3]

[4]

[7]
8]

[9]

[10]

[11]

[12]

[13]

S. Andreassen, M. Woldbye, B. Falck, and S.K. Andersen (1987). MUNIN - A
causal probabilistic network for interpretation of electromyographic findings, Pro-

ceedings of the Tenth International Joint Conference on Artificial Intelligence, pp.
366 — 372.

M.A. Shwe, B. Middleton, D.E. Heckerman, M. Henrion, E.J. Horvitz, H.P.
Lehmann, and G.F. Cooper (1991). Probabilistic diagnosis using a reformulation
of the Internist-1/QMR knowledge base, Methods of Information in Medicine, vol.
30, pp. 241-255.

D.E. Heckerman, E.J. Horvitz, and B. Nathwani (1992). Towards normative expert
systems: part I, the Pathfinder project, Methods of Information in Medicine, vol.
31, pp. 90-105.

G.F. Cooper (1990). The computational complexity of probabilistic inference using
Bayesian belief networks, Artificial Intelligence, vol. 42, pp. 393-405.

E.H. Herskovitz and G.F. Cooper (1991). Algorithms for Bayesian belief-network
precomputation, Methods of Information in Medicine, vol. 30, pp. 81-89.

J.Q. Smith (1989). Decision Analysis: a Bayesian Approach, Chapman and Hall.

P. Glasziou and J. Hilden (1989). Test selection measures, Medical Decision Mak-
ing, vol. 9, pp. 133 — 141.

L.C. van der Gaag and M.L. Wessels (1994). Selective evidence gathering for diag-
nostic belief networks, AISB Quarterly, No. 86, pp. 23-34.

G.A. Gorry and G.O. Barnett (1968). Experience with a model of sequential diag-
nosis, Computers and Biomedical Research, vol. 1, pp. 490 — 507.

S.B. Cousins, W. Chen, and M.E. Frisse (1993). A tutorial to stochastic simulation
algorithms for belief networks, Artificial Intelligence in Medicine, vol. 5, pp. 315-
340.

R. Karp, M. Luby, and N. Madras (1989). Monte-Carlo approximation algorithms
for enumeration problems, Journal of Algorithms, vol. 10, pp. 429-448.

N.B. Peek (1994). A Filter for Belief Networks, M.Sc. thesis INF/SCR-94-20,
Utrecht University.

12

