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Abstract

We present a new technique to prove termination of term rewrite sys-
tems, or more precise, constructor systems (CSs). In earlier work we intro-
duced a transformation of well-moded logic programs into CSs, such that
termination of the logic program follows from termination of the obtained
CS. The technique to prove termination of CSs described in this paper
is in particular suitable for, but not limited to, CSs that are obtained
by this transformation of logic programs. Surprisingly, we need semantic
uni�cation in the technique. Thus, semantic uni�cation can be used for
giving termination proofs for logic programs. Parts of the technique can
be automated very easily. Other parts can be automated for subclasses of
CSs. An implementation is in progress that is able to prove termination
of some CSs that are not simply terminating.

1. Introduction

There are several approaches to prove termination of logic programs, for a
survey see [dSD93]. One of the approaches, introduced by M.R.K. Krishna
Rao et al. [KKS91], is to transform the logic program into a term rewrite sys-
tem (TRS) such that the termination property is preserved. More precisely,
if the TRS terminates, then the original well-moded logic program is left-
terminating. Other authors followed this approach and came up with transfor-
mations [GW92, CR93, AM93, AZ94, Mar94] suitable for proving termination
of more logic programs. Most transformation algorithms transform the logic
programs into constructor systems (CSs), a subclass of the TRSs. This paper
describes a technique that is able to prove termination of CSs. The technique is
in particular suitable for, but not limited to, those CSs that are obtained from
the transformation algorithm described in [AZ94]. Although the technique is
mainly developed for logic programs, it is not necessary to know anything about
logic programs or the transformations of logic programs into CSs, to understand
the technique presented in this paper.
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As a typical example, let the constructor system R1 be

f(x) ! g(h(x))
g(h0(x)) ! f(x)

and let R0 be a constructor system such that for some term t, h(t) can be
rewritten with R0 to a term h0(s) for some term s. We are interested in the
following typical kind of reductions

f(t)! g(h(t))!� g(h0(s))! f(s)

Reductions with this kind of cyclic behaviour only terminate whenever we can
derive in some way that t decreases, i.e., t > s for some well-founded order
>. Of course, termination of this kind of reductions and of the rewrite system
R1 [ R0 depends on the behaviour of R0. With our technique we formalize
this observation. We give a systematical approach to describe `in some way t

decreases' by introducing an interpretation for the rewrite system R0, and to
collect all the reductions with this kind of cyclic behaviour (in R1 as well as
in R0). From this collection we can infer a number of conditions that have to
be ful�lled by a suitable well-founded order on terms. Thus we translate the
termination problem into �nding a suitable order ful�lling some conditions. We
prove soundness of this transformation, i.e., termination of the CS follows from
the existence of the required order.

The following logic program is a typical example of a well-moded logic pro-
gram for which the technique is applicable.

1.1. Example.

append(nil; xs; xs)
append(cons(x; xs1); xs2; cons(x; ys))  append(xs1; xs2; ys)

split(xs; nil; xs)
split(cons(x; xs); cons(x; ys1); ys2)  split(xs; ys1; ys2)

perm(nil; nil)
perm(xs; cons(y; ys))  split(xs; ys1; cons(y; ys2));

append(ys1; ys2; zs);
perm(zs; ys)

By representing the lists by their length, a standard approach, termination of
this logic program can be proved completely automatically by the new tech-
nique. In [AZ94] we described an algorithm to transform well-moded logic
programs into constructor systems and proved that termination of the logic
program follows from termination of the obtained constructor system. There-
fore, we concentrate on techniques to prove termination of constructor systems.

After the preliminaries in Section 2 we introduce in Section 3 an example to
illustrate the technique. In Section 3.5 is proved that this technique is sound.
In Section 4 we shortly discuss the problems that arise by an implementation
of the technique.
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2. Preliminaries

2.1. Term rewrite systems

In this section we summarize some preliminaries from term rewriting that we
need in this paper.

2.1. Definition. A signature is a set F of function symbols. Associated with
every f 2 F is a natural number denoting its arity, i.e., the number of arguments
it is supposed to have. The function symbols of arity 0 are called constants.

Let F be a signature and V a set of variables disjoint from F . The set
T (F ;V) of terms built from F and V is the smallest set with the following two
properties:

(i) every variable is a term,
(ii) if f 2 F is an n-ary function symbol and t1; : : : ; tn are terms then

f(t1; : : : ; tn) is a term.
If c is a constant then we write c to denote the term c().

2.2. Definition. A rewrite rule or reduction rule is a pair (l; r) of terms satis-
fying the following two constrains:

(i) the left-hand side l is not a variable,
(ii) the variables that occur in the right-hand side r also occur in l.

Rewrite rules (l; r) will henceforth be written as l! r.

2.3. Definition. A term rewrite system (TRS) is a pair (F ;R) consisting of a
signature F and a set R of rewrite rules between terms in T (F ;V). A TRS is
called �nite if both F and R are �nite.

Constructor systems are a subclass of TRSs.

2.4. Definition (cf. [MT91], [Gra93]). A constructor system (CS for short) is
a TRS (F ;R) with the property that F can be partitioned into disjoint sets D
and C such that every left-hand side f(t1; : : : ; tn) of a rewrite rule of R satis�es
f 2 D and t1; : : : ; tn 2 T (C;V). Function symbols in D are called de�ned

symbols and these in C constructor symbols or constructors.

2.5. Definition. The rewrite rules of a TRS (F ;R) inductively de�ne a rewrite
relation !R on T (F ;V) by

(i) If l! r is a rewrite rule, then l� !R r� for every substitution �,
(ii) If f 2 F is a function symbol with arity n and t1; : : : ; tn and t

0

k are terms
such that tk !R t

0

k , then f(t1; : : : ; tk; : : : ; tn)!R f(t1; : : : ; t
0

k; : : : ; tn).
A TRS R is called terminating if there exists no in�nite reduction of the rewrite
relation !R.

2.6. Definition. For a set F of operation symbols Emb(F) is de�ned to be
the TRS consisting of all the rules f(x1; : : : ; xn) ! xi with f 2 F and i 2
f1; : : : ; ng. These rules are called the embedding rules.

A stronger notion of termination, called simple termination, can be de�ned.
This de�nition is motivated by [Zan94].
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2.7. Definition. A TRS R over a set F of function symbols is called simply

terminating if R [ Emb(F) is terminating.

A standard technique to prove termination of TRSs, of which several imple-
mentations exist, is called RPO (recursive path order). This technique is not
applicable to all TRSs. For example it is not applicable to terminating TRSs
that are not simply terminating. A direct consequence of the recursive path
order (among others in [Der87, FZ94]) is the following theorem

2.8. Proposition. Let . be a well-founded order on the signature of a TRS R.

If for every rule l! r in R we have that head(l) . f for all function symbols f

that occur in r, then R is terminating.

2.2. Semantic uni�cation

Syntactic uni�cation theory is concerned with the problem whether for two
given terms t1 and t2 the equation t1 = t2 can be solved `syntactically', i.e.,
�nd a uni�er � such that t�1 = t�2 ; this is a particular case of the problem to
solve equations `semantically', i.e., modulo some equational theory E (for this
reason semantical uni�cation is also called E-uni�cation). More precisely, in
the presence of an equational theory E, and given an equation t1 = t2, we want
to �nd uni�ers � such that t�1 =E t�2 . So syntactical uni�cation is semantical
uni�cation with empty E. Narrowing is a technique to solve equations t1 = t2
in the presence of an equational theory E. We will not discuss the technique,
but refer to [Hul80, Klo92] for the basic principles of narrowing, and to [Sie89,
H�89, Han94] for surveys in the area.

Let E be an equational theory and t1 = t2 an equation in the presence
of this theory. A substitution � is called an E-uni�er if t�1 =E t�2 . Just as
for syntactic uni�cation, there is also the notion of a most general uni�er for
semantical uni�cation. However, there is no unique most general uni�er in
general. Normally a set of most general uni�ers can be obtained.

What is important for this paper is that we need narrowing to �nd all pos-
sible uni�ers � that solve the equation, not just one solution, which is another
important question. The set of all uni�ers, or the complete set of E-uni�ers, is
recursively enumerable for any decidable theory E: just enumerate all substi-
tutions and check if each one uni�es the given terms, which is possible as E is
decidable.

3. Descending chains, a technique to prove termination

In this section we present a new technique to prove termination of constructor
systems. First we give a sketch of the technique and following a leading example,
we give the formal de�nitions.
Consider the following rewrite system

f(s(x)) ! k(x)
k(x) ! f(x)
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Analysing the reason why there is no in�nite reduction starting with a term of
the form f(s(t)), with t in normal form, we encounter that this term is reduced
by repeatedly using the two rewrite rules. Every time both rules have been
used, the argument has decreased. Eventually this has to come to an end. This
very informal observation is made formal in this section. As a leading example
we consider the constructor system Rperm,

append(nil; xs) ! appout(xs)
append(cons(x; xs1); xs2) ! k1(x; append(xs1; xs2))
k1(x; appout(ys)) ! appout(cons(x; ys))
split(xs) ! spout(nil; xs)
split(cons(x; xs)) ! k2(x; split(xs))
k2(x; spout(ys1; ys2)) ! spout(cons(x; ys1); ys2)

perm(nil) ! permout(nil)
perm(xs) ! k3(split(xs))
k3(spout(ys1; cons(y; ys2))) ! k4(y; append(ys1; ys2))
k4(y; appout(zs)) ! k5(y; perm(zs))
k5(y; permout(ys)) ! permout(cons(y; ys))

which is obtained by applying the transformation as described in [AZ94] on the
logic program of Example 1.1. The set of de�ned symbols of this constructor
system is fappend; k1; split; k2; perm; k3; k4; k5g; all other function symbols are
constructor symbols.

3.1. An equational theory

Consider the reduction of any term containing a subterm of the form perm(xs�).
This subterm allows the following reduction:

perm(xs�)! k3(split(xs�))

#�
k3(spout(ys�1 ;cons(y

� ;ys�
2
)))! k4(y�;append(ys�1 ;ys

�
2
))

#�
k4(y� ;appout(zs�))! k5(y� ;perm(zs�))

k
perm(ys�)! k3(split(ys�))

By the knowledge of the behaviour of the logic program, we expect ys� to be
less than xs�, in the sense that the list ys� is a list with one element less than
the list xs�. In other words, we observe that after every following application
of the rewrite rule perm(xs) ! k3(split(xs)), the length of the list-argument
has decreased.

The correctness of this observation depends on another implicit observation:
we assume append and split to behave as they ought to do, i.e., we assume that
splitting a list results in two lists of which the sum of the lengths is the length of
the original list. Thus, if split(s) reduces to spout(s1; s2), then jsj = js1j+ js2j.
There is an easy way to �nd out whether append and split do behave in the
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appropriate manner, just de�ne an equational theory that strokes with the
expected behaviour. In particular we would like to have

nil = 0
cons(x; xs) = s(xs)
append(xs1; xs2) = xs1 + xs2
appout(xs) = xs

split(ys) = ys

spout(ys1; ys2) = ys1 + ys2

Thereafter we have to check that the rewrite system is contained in this equa-

tional theory, more precise, for every rewrite rule of Rperm the left-hand side
and the right-hand side have to be equal in the equational theory. By adding
two more equations, viz. k1(x; xs) = s(xs) and k2(x; xs) = s(xs), this demand
is ful�lled. Now terms equal their reduct in the theory. In this particular
case, the length of the list is not changed by applying the rewrite rules. Thus,
by rewriting a term of the form append(t1; t2) we obtain a term t3 such that
append(t1; t2) and t3 are equal in the theory.

Since the eventual aim is to automate the technique, it should be stressed
that �nding these equational theories can not be done automatically in general.
Later on we show that for a small subclass of CSs a kind of standard theories
can be given.

In order to check whether R is contained in an equational theory E, one can
perform E-uni�cation. To perform as much as possible automatically, we want
to have an e�ective method for this E-uni�cation. Therefore, we demand that
the equational theory can be described by a complete TRSM, such that nar-
rowing [Sie89, Klo92] su�ces to check whether R is contained in the equational
theory. Note that, although many e�cient narrowing strategies exist, �nding
all E-uni�ers of a given equation is in general undecidable. In Section 4.3 we
shortly discuss this. We like to stress that we are only interested in normal
E-uni�ers (thus all terms are in normal form w.r.t. a rewrite system M that
represents the theory); in the following we will always assume the E-uni�ers
to be normal. In practice the rewrite system M will be very uncomplicated
and termination and con
uence of this rewrite system can therefore be checked
automatically. From now on we identify complete rewrite systems and the equa-
tional theory that is obtained by replacing the rewrite relations in the rewrite
system by equalities.

The TRS Rperm is contained in the following complete TRSM. Note that
we are not interested in the perm related function symbols and therefore just
require that these function symbols equal a constant.

nil ! 0 perm(xs) ! 0
cons(x; xs) ! s(xs) permout(xs) ! 0
append(xs1; xs2) ! xs1 + xs2 k3(xs) ! 0
appout(xs) ! xs k4(x; xs) ! 0
split(xs) ! xs k5(x; xs) ! 0
spout(xs1; xs2) ! xs1 + xs2 0 + y ! y

k1(x; xs) ! s(xs) s(x) + y ! s(x+ y)
k2(x; xs) ! s(xs)
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3.2. Dependency pairs

We now abstract from the rewriting itself and concentrate on the possible
rewrite rules that are concerned in the reduction of a term.

3.1. Definition. Let (D; C;R) be a constructor system. If f(t1; : : : ; tm) !
C[g(s1; : : : ; sn)] is a rewrite rule of R and f; g 2 D, then

hf(t1; : : : ; tm); g(s1; : : : ; sn)i

is called a dependency pair (of R).

We say that two dependency pairs hs1; t1i and hs2; t2i are equivalent, notation
hs1; t1i � hs2; t2i, if there exists a renaming � such that s�1 � s2 and t�1 � t2.
We are interested in dependency pairs up to equivalence and when useful, we
may assume, without loss of generality, that two dependency pairs have disjoint
sets of variables. For Rperm, we have the following dependency pairs:

(1) happend(cons(x; xs1); xs2); k1(x; append(xs1; xs2))i
(2) happend(cons(x; xs1); xs2); append(xs1; xs2)i
(3) hsplit(cons(x; xs)); k2(x; split(xs))i
(4) hsplit(cons(x; xs)); split(xs)i
(5) hperm(xs); k3(split(xs))i
(6) hperm(xs); split(xs)i
(7) hk3(spout(ys1; cons(y; ys2))); k4(y; append(ys1; ys2))i
(8) hk3(spout(ys1; cons(y; ys2))); append(ys1; ys2)i
(9) hk4(y; appout(zs)); k5(y; perm(zs))i
(10) hk4(y; appout(zs)); perm(zs)i

3.3. Descending chains

3.2. Definition. Let E be an equational theory, such that R is contained in
E. A sequence hs1; t1ihs2; t2i : : :hsn; tni (n > 1) of dependency pairs is called a
chain w.r.t. E if

1. hs1; t1i � hsn; tni, i.e., �rst and last dependency pair are equivalent, and

2. the root symbol of ti equals the root symbol of si+1 for all 1 � i < n

3. there exists a E-uni�er � such that for all 1 � i < n the arguments
of t�i equal in the equational theory the arguments of s�i+1; thus if ti =
fi(u1; : : : ; uk) and si+1 = fi(v1; : : : ; vk), then u�1 =E v�1 ; : : : ; u

�
k =E v�k

3.3. Definition. Let hs1; t1ihs2; t2i : : :hsn; tni be a chain with sn a renaming
of s1 and s1 = f(u1; : : : ; um) and sn = f(u1; : : : ; um). The chain is called
descending with respect to an order = if for all E-uni�ers � of this chain

u�1 #M= u�1 #M; : : : ; u�m #M= u�m #M
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Note that if the order = is closed under substitution, then it su�ces to check
the property for all most general E-uni�ers of this chain. Moreover, we do not
really need the E-uni�ers itself, but are satis�ed with a substitutions �1; �2; : : :
such that any E-uni�er � is an instance of a �i and for all �i we have s

�i
1 = s�in .

Most comfortable is ofcourse a �nit set of substitutions �1; : : : ; �m; checking is
than easily automated.

With Theorem 3.6 we prove that if there exists an equational theory E such
that R is contained in E, and a well-founded order =, such that all chains
w.r.t. E are descending w.r.t. =, then termination of the rewrite system is
guaranteed. Hence for proving termination of Rperm it remains to show that
all chains w.r.t. M, as given above, are descending. Referring to the above
numbering of dependency pairs, we obtain the following chains

1. (2)(2) is a chain,

2. (4)(4) is a chain,

3. (5)(7)(10)(5), (7)(10)(5)(7) and (10)(5)(7)(10) are chains.

4. any other chain is formed by taking a chain (n1)(n2) : : :(nk)(n1) and sub-
stitute the last dependency pair (n1) by one of the chains above starting
with (n1).

Note that the dependency pairs (1), (3), (6), (8) and (9) can not occur in a chain.
It is not hard to see that all chains are obtained as described above. Neither
is it hard to see that if the chains mentioned in 1, 2 and 3 are descending,
then all chains are descending. Thus, we try to prove that these �ve chains
are descending. If we are looking for a well-founded order = closed under
substitution, then not all, but only all most generalM-uni�ers of a chain have
to be checked. The chain

(2)(2) = happend(cons(x; xs1); xs2); append(xs1; xs2)i
happend(cons(y; ys1); ys2); append(ys1; ys2)i

has onlyM-uni�er that are instances of � = fxs1 = s(ys1); xs2 = ys2g. (Recall
that we only consider normal substitutions w.r.t.M). Thus, if there is an order
= closed under substitution, that satis�es

append(s(s(ys1)); ys2) = append(s(ys1); ys2);

then for allM-uni�ers the chain is descending. TheM-uni�ers of the chain

(5)(7)(10)(5) = hperm(xs); k3(split(xs))i
hk3(spout(ys1; cons(y; ys2))); k4(y; append(ys1; ys2))i
hk4(y; appout(zs)); perm(zs)i
hperm(zs); k3(split(zs))i

are all instances of � = fxs = s(zs)g. Thus, = has to ful�l

perm(s(zs)) = perm(zs):
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In the same way, the other three chains result in the following three demands
on the order =

split(s(s(ys))) = split(s(ys))
k3(ys1 + s(s(ys2))) = k3(ys1 + s(ys2))
k4(ys1 + s(ys2)) = k4(ys1 + ys2):

All demands can be ful�lled by choosing = as the the embedding order. There-
fore, all the chains are descending and by Theorem 3.6, the TRS Rperm is
terminating.

The technique as described above, following the example rewrite system
Rperm, can be summarized as follows

1. Find a complete term rewrite systemM such that R is contained inM.

2. Calculate all dependency pairs.

3. Form all chains, �nd all most generalM-uni�ers of these chains.

4. Every most general M-uni�er � for a chain hs1; t1i : : :hs1; t1i w.r.t. M
determines a requirement s�1 = s1

�. Form a list of these requirements on
the order =.

5. Find a well-founded order that is closed under substitution that satis�es
these requirements.

Termination of R then follows from Theorem 3.6. Before we present this the-
orem, we �rst introduce semantic labelling, as it is needed in the proof of the
theorem.

3.4. Semantic labelling

Semantic labelling [Zan93] is a technique to transform a TRS, of which termi-
nation has to be proved, into a TRS that might be easier to prove terminating.
The transformation is sound and complete with respect to termination, such
that termination of the TRS may be concluded from termination of the trans-
formed TRS.

A standard technique to prove termination of TRSs, of which several im-
plementations exist, is called RPO (recursive path order). This technique is
only applicable to a restricted class of TRSs. For example it is not applicable
to terminating TRSs that are not simply terminating. Semantic labelling is
able to overcome this de�ciency, by transforming a TRS that can not be proved
terminating by RPO into a TRS on which RPO is applicable. Since we are
mainly interested in constructor systems, we describe semantic labelling in this
section restricted to constructor systems. For a complete and more detailed
description of the technique we refer to [Zan93]. For the reader who is already
familiar with the technique, we can remark that we perform a self-labelling on
all de�ned symbols.

Let R = (D; C; R) be a CS, over a signature F = D [ C and a set V of
variable symbols, of which termination has to be proved. Let M be an F -
algebra consisting of a carrier set M and for every function symbol f 2 F of
arity n a function symbol fM :Mn !M .

9



3.4. Definition. For a valuation � : V ! M the term interpretation [[]]� :
T (F ;V)!M is de�ned inductively by

[[x]]� = �(x);

[[f(t1; : : : ; tn)]]� = fM([[t1]]�; : : : ; [[tn]]�)

for x 2 V ; f 2 F ; t1; : : : ; tn 2 T (F ;V).

Semantic labelling can be applied to transform the CS R into a CS R =
(D; C; R), whenever the following demand is ful�lled (recall that F = D [ C):

There exists an F -algebraM consisting of a carrier set M and for
every function symbol f 2 F of arity n a function symbol fM :
Mn !M , such thatM is a model for R, i.e., [[l]]� = [[r]]� for every
rewrite rule l! r of R and for all valuations �.

One of the main di�culties in the technique is to �nd such a model. If this
modelM is given, then the semantic labelling transformation 1 is �xed by

� For every de�ned symbol f 2 D of arity n we introduce a set of label sym-
bols Sf consisting of all terms of the form f(t1; : : : ; tn), where t1; : : : ; tn
are elements of M .

� A new set of de�ned symbols is de�ned by

D = ffsjf 2 D; s 2 Sfg

� A new signature F is de�ned by D [ C.

Note that F can be in�nite, even if F is �nite. We de�ne a labelling of terms
lab : T (F ;V)�MV ! T (F ;V) inductively by

lab(x; �) = x;

lab(f(t1; : : : ; tn); �) = ff([[t1]]�;:::;[[tn]]�)(lab(t1; �); : : : ; lab(tn; �))

for x 2 V ; � : V ! M; f 2 F ; t1; : : : ; tn 2 T (F ;V). We call f([[t1]]�; : : : ; [[tn]]�)
the label of the term f(t1; : : : ; tn). Now R is de�ned to be the TRS over F
consisting of the rules lab(l; �)! lab(r; �) for all � : V !M and all rules l! r

of R. It is not hard to see that R is indeed a constructor system with D as set of
de�ned symbols and C as set of constructor symbols. The following proposition
directly follows from the main result of semantic labelling (for a proof we refer
to [Zan93]).

3.5. Proposition. LetM be a model for a CS R and let R be de�ned as above.

Then R is terminating if and only if R is terminating.

1We consider a special kind of semantic labelling, the general transformation is more com-

plex and not �xed by a given model.
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3.5. Soundness of the technique

Now we are ready to present the main result of this paper. We prove that the
introduced technique is sound, i.e., whenever this technique enables us to prove
that all chains are descending, we may conclude that the constructor system is
terminating.

3.6. Theorem. Let (D; C;R) be a constructor system,M a complete TRS such

that R is contained inM, and = some well-founded order. If all chains w.r.t.

M are descending w.r.t. =, then R is terminating.

The proof is based on semantic labelling. We construct a labelling on R such
that the elements in the dependency pairs correspond to the labels of the de�ned
symbols of R. Thus, if append(cons(x; xs1); xs2) ! k1(x; append(xs1; xs2)) is
a rewrite rule of R and E as given in 3.1 de�nes the model, then this rewrite
rule is transformed by semantic labelling in all rewrite rules of the form

appendappend(s(m1);m2)(cons(x; xs1); xs2)!
k1;k1(m;m1+m2)(x; appendappend(m1;m2)(xs1; xs2))

with m;m1; m2 2M . The dependency pairs corresponding to the labels of this
rule

(1) happend(s(xs1); xs2); k1(x; xs1 + xs2)i
(2) happend(s(xs1); xs2); append(xs1; xs2)i

The main observation is that if a term of the form appendl(: : :), where l is a
label, has to be reduced, then it has to be reduced by a rewrite rule which
exactly matches this label, i.e., a rewrite rule of the form appendl(t) ! : : :. If
we can derive that the labels are descending, then the reduction can only be
�nite.

Proof. We de�ne an algebra A to consist of a carrier set T (F) and for every
f in D [ C the interpretation fA(x1; : : : ; xn) = f(x1; : : : ; xn) #M. Since M is
complete, this is well de�ned. By the semantic labelling, the transformed CS
R is hereby �xed. We will prove that the labelled constructor system R is
terminating. Hence by Proposition 3.5, R is terminating.

De�ne a relation ; on de�ned symbols, i.e., elements of D, of the labelled
CS R as follows: fl ; gm if fl(t1; : : : ; tn)! C[gm(s1; : : : ; sk)] is a rewrite rule
of the labelled CS. With this relation a precedence . is de�ned as the transitive
closure of; together with D . C (i.e., all constructor symbols are smaller than
a de�ned symbol). If the precedence . is well-founded, then termination of R
is proved by Proposition 2.8, since in that case the root symbol of the left-hand
side of a rule is always larger than all symbols in the right-hand side of that rule.
Hence, it su�ces to prove well-foundedness of .. Assume . is not well-founded,
then there is an in�nite sequence

d1;l1 ; d2;l2 ; d3;l3 ; : : :

of labelled de�ned symbols. Note that d1;l1 ; d2;l2 means that there is a rewrite
rule in R of the form d1;l1(~t1) ! C[d2;l2(~s1)] and a ground substitution � such
that l1 = d1([[~t1]]�) and l2 = d2([[~s1]]�). Thus,
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� for every di;li ; di+1;li+1 there is a rewrite rule in R of the form di(~ti)!

C[di+1(~si)] that de�nes a dependency pair hdi(~ti); di+1(~si)i, and

� there exist ground substitutions �i such that li = di([[~ti]]�i) and li+1 =
di+1([[~si]]�i).

Hence there exist an in�nite sequence of dependency pairs

hd1(~t1); d2(~s1)ihd2(~t2); d3(~s2)ihd3(~t3); d4(~s3)i : : :

together with an in�nite sequence of ground substitutions �1; �2; �3; : : :, such
that

l1 = d1([[~t1]]�1)

d2([[~s1]]�1) = l2 = d2([[~t2]]�2)
d3([[~s2]]�2) = l3 = d3([[~t3]]�3)

...

Note also that all dependency pairs can be chosen in such a way that the
variables of each pair are disjoint. Thus, there exists one in�nite substitution
� = �1 � �2 � �3 � : : :, which is a uni�er that uni�es all connected dependency
pairs, hence

~s1
� =M ~t2

�

~s2
� =M ~t3

�

...

Since for a CS R only �nitely many dependency pairs are de�ned, there is
a dependency pair that occurs in�nitely many times in the sequence. Every
sequence of dependency pairs between two pairs that are equivalent is a chain.
Since all chains are descending with respect to =, we obtain an in�nite sequence

di( ~u1
�) = di( ~u2

�) = di( ~u3
�) = : : :

which contradicts that = is well-founded.

4. Performing the technique automatically

There are three problems in performing the described technique automatically.
Firstly, the technique is such that normally in�nitely many chains are formed,
such that checking whether all chains are descending is not easy. Secondly,
we would like to construct automatically an equational theory E that can be
described by a complete TRSM, such that R is contained in M. And lastly,
we are interested in �nding a complete set of E-uni�ers of a given equation in
some equational theory E. Narrowing is a technique to achieve this. Thus,
narrowing has to result in a complete set of E-uni�ers. There is, however, no
algorithm that provides this task in general.
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4.1. Minimal chains

Every constructor system consists of �nitely many rules and every rewrite rule
corresponds to �nitely many dependency pairs. In general, in�nitely many
chains can be formed with this �nite set of dependency pairs. Since we can not
check whether in�nite chains are descending, we need a �nite criterion on which
we can decide that all chains are descending. The best thing that we might
achieve is a notion of minimal chain, such that there are only �nitely many
chains and if all minimal chains are descending, then all chains are descending.
Unfortunately we did not �nd such a notion yet. However, we did �nd a �nite
criterion that is very useful in practice.

4.1. Definition.

� A basic chain is a chain in which every dependency pair occurs at most
once (except for the �rst and last pair in the chain, these are always
equivalent).

� We say that a chain is a connection of chains if the �rst dependency pair
occurs within the chain (not as �rst or last dependency pair).

A dependency pair hni is called premated if there are two dependency pairs
hn1i and hn2i, not necessarily di�erent, such that if hni occurs in a chain, then
hn1i is the only dependency pair that may occur left of it and hn2i is the only
dependency pair that may occur right of it.

To check whether all dependency pairs are premated, in general complete sets
of most general E-uni�ers must be obtained, which is an undecidable prob-
lem. However, in practice, we are often able to decide by syntactic uni�cation
whether a dependency pair may occur next to another. The following lemma
is straightforward.

4.2. Lemma. A connection of descending chains is descending.

4.3. Lemma. If all dependency pairs are premated, then all chains are connec-

tions of basic chains.

Proof. Induction on the length of the chain. Assume a chain h1ih2i : : :hnih1i
is not a basic chain. Then one of the dependency pairs occurs more than once.
If this is h1i, then it trivially is a connection of two chains. By induction it is
a connection of basic chains. If another dependency pair occurs twice, say hki,
then the chain looks like

h1ih2i : : :hkihk+ 1i : : :hk +mihkihk+m+ 2i : : :h1i:

Without loss of generality we may assume that no hki occurs in the sequence
hk + m + 2i : : :h1i. Since all dependency pairs are premated, hk + 1i equals
hk + m + 2i etc. Hence in the sequence hk + 1i : : :hk + mi, there occurs a
dependency pair that equals h1i. Thus, the chain is a connection of two shorter
chains and therefore by induction a connection of basic chains.
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With the above two lemmas we have

4.4. Corollary. If all dependency pairs are premated and all basic chains are

descending, then all chains are descending.

Note that there are only �nitely many basic chains. The test whether a depen-
dency pair is premated is in practice carried out by excluding all dependency
pairs that can not be adjacent to it. In the leading example, all dependency
pairs are premated. Therefore, only the basic chains are taken into account.

4.2. Constructing an equational theory

By constructing an equational theory E, such that the CS Rperm is contained
in this theory, we were not interested in the rules that de�ne perm. We just
assigned a constant to all the root symbols in left- and right-hand side. In par-
ticular with CSs that are obtained by translating a logic program, this method
is very promising. These CSs can be seen as constructor systems with a special
subset of constructor symbols, the out-symbols, like appout, spout and permout.
The CSs are such that the root symbol of the right-hand side of a rule is either
a de�ned symbol or an out-symbol. If we have a hierarchical combination of
two CSs R0 and R1 like this such that also the sets of out-symbols are disjoint,
then constructing an equational theory can be done by assigning constants to
the de�ned symbols and out-symbols of R1 and �nding a satisfying theory for
R0. This latter theory can for example be obtained by R0 itself, if termination
and con
uence for that smaller CS can be proved. One can also try to complete
R0 by some completion algorithm and use the obtained TRS.

4.5. Example. The CS

h(x) ! s(x)
f(x; p(x)) ! g(h(x))
g(s(s(x))) ! f(x; x)
f(x; x) ! f(x; p(x))

is a hierarchical combination of a CS R0 consisting of the �rst rule and a CS R1

consisting of the other rules. Since R0 is con
uent and terminating, R0 [ R1

is contained in the following TRS

h(x) ! s(x)
f(x; y) ! C

g(x) ! C

Finding the dependency pairs is easy. All dependency pairs are premated. With
the embedding order we can show that all basic chains, and with Corollary 4.4
all chains, are descending. Hence, the constructor system is terminating.

4.3. Narrowing

E�cient methods based on narrowing strategies to solve systems of equations
have been devised [Klo92, Sie89]. For the purpose of our technique we may
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use any narrowing strategy. Although the equational theories that we consider
are of a very speci�c form, we know no strategy that will always succeed in
giving all most general E-uni�ers for any equational theory E. Although this
is a drawback, we still obtain that with this new technique some constructor
systems can be proved terminating automatically, which could not be done
automatically before.

5. Conclusion and further research

We presented a new technique for proving termination of constructor systems, in
particular for those constructor systems that are obtained from the translation
of logic programs. Since many parts of the technique can be automated, an
implementation is in progress. The three problems of Section 4 have to be
studied in more detail and better solutions have to be found. Although many
improvements can be carried out on the implementation part, we are now able to
prove termination automatically of constructor systems that can not be proved
terminating automatically with existing standard methods.
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