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ABSTRACT

In this paper we review ways of representing incoherent ‘knowledge’ in a consistent way,
where the use of modal logic and Kripke-style semantics is put central. Starting with a
presentation of the basic modal framework, we discuss the basic modal systems K, KD (with
an excursion to the representation of conflicting norms in deontic logic) and Chellas’ minimal
modal logic D. Next we look at the epistemic logics KD4S5, S4 and S5, including the logical
omniscience problem and several non-standard modal logics to overcome this problem. After
this we turn to the issue of reasoning by default, where a conflict of defaults (or default beliefs)
may arise. We give an epistemic treatment of default reasoning, and treat the way conflicts of
defaults can be solved viewed from the more general perspective of resolving conflicts in meta-
level reasoning. Furthermore, special attention is paid to specificity in default reasoning as a
principle to solve these conflicts, for which we develop an extension of Halpern & Moses’
theory of honest formulas. Finally, we discuss several numerical modal logics in their capacity
of ways of representation of incoherent information.

INTRODUCTION

In everyday-life situations we often have to deal with incoherent information. From one source
we learn a certain piece of information, while from another one we get some information that
contradicts this. Examples range from human conversion in groups to electronic agents with
multiple sensors and computer systems with multiple (communicating) intelligent (artificial)
agents (so-called “multi-agent systems’). In order to cope with this incoherent information we
need to be able to represent and reason with this in a non-trivial way. Representing
incoherences cannot be done non-trivially in classical logic, since here when an inconsistency

arises one may derive anything using (properties of the) material implication and modus
ponens.

In the literature several non-classical logics have been proposed to overcome this problem. One
class of logics in which one can represent inconsistent information as a local inconsistency,
e.g., p A —p, without being able to draw an arbitrary conclusion q, are the so-called
paraconsistent logics. This is the subject of another chapter in this handbook. Here, we will
consider modal logic and show that these, too, can be used to represent incoherent information

1This work is partiaily supported by ESPRIT IIl BRA project No. 6156 “DRUMS?2”, ESPRIT III BR Working
Group No. 8319 "MODELAGE", and the Free University Amsterdam.

2This author is also partially supported by Nijmegen University.



by employing some suitable modalities. Furthermore, we restrict ourselves to propositional
logics. That is, we assume a given set P of atomic propositions, also called primitive

propositions or just atoms. The propositional language induced by P and the usual classical
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connectives ‘A’, ‘v’, ‘=’, etc. is then enlarged by the possibility to use the (primary) modal
operator ‘01°, generally pronounced “necessarily”. We let ‘1’ stand for the constant denoting
falsehood, ‘T’ for ‘—L’ (truth) and we sometimes use the (secondary) modal operator 0’ as an
abbreviation of ‘—0—". Qis pronounced as “possibly”.

1. BASIC MODAL LOGIC AND INCOHERENCY

1.1. The systems K and KD
The system K consists of the following axioms and rules: (O stands for the primary modality)

(K)  DO@—->y) - 0Oe—0vy)

(Taut) the tautologies of propositional logic (or just enough of them)
MP) ¢, 0—-vy/y

(Nec) o@/0¢

System K is the smallest modal logic that admits so-called Kripke-semantics (also called
possible world semantics). This type of semantics is based on Kripke models, i.e., models of
the kind (S, &, R), where S is a non-empty set of possible worlds, 7t is a truth assignment
function to the atoms (in P) for every possible world in S, and R is an accessibility relation.
R(s, t) means that the world t is accessible (or held possible, in whatever sense the
interpretation of the modality dictates) from the world s. Propositions are interpreted in such a
model M = (S, &, R) and a state s € S. All clauses except for the modal one follow the usual
pattern of propositional logic. The primary modal operator ‘O’ is then given a formal
interpretation by (M, s) = O iff (M, t) = ¢ for all t with R(s, t). That is, in a possible world s
it holds that “necessarily ¢” iff ¢ holds in all worlds t that are accessible (held possible) from
world s. It is easily verified that this implies that (M, s) & Q@ iff (M, t) = ¢ for some t with
R(s, t), that is, in world s formula ¢ is possible if there is a world t that is held possible from s
and that satisfies ¢. A formula is valid in a Kripke model if it holds in all states of the model,
and it is called valid (period) if it is valid in all Kripke models. A formula is satisfiable if it is
true in some world of some Kripke model. One can now show that validity corresponds to
derivability in the system K above (see e.g. [Che80], [MH95]).

Modal logics that are based on Kripke models are called normal modal logics.

In system K we have as a theorem:
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However, we do not have that —0(¢ A —@) is a theorem. This means that, for instance, O(¢ A
=) (or, equivalently, 0@ A O—@) is satisfiable: it is true in any world (of any model) in which
no world t is possible. Of course, @ A —@ is not satisfiable in K. This implies that we can
safeguard the incoherence @ A —@ against a true inconsistency in the logic by shielding it by the
modal operator O. If we would interpret this modality as knowledge or belief, we would indeed

be able to represent incoherent knowledge or belief(s) in a consistent way. However, this is not

customary: knowledge is generally assumed to have the property that ¢ — ¢, rendering O(¢ A

—() inconsistent immediately, while for belief mostly (at least) the principle (D) is assumed:
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The system K, augmented with (D), is called KD. Semantically, principle (D) amounts to
considering Kripke models M = (S, &, R), in which the relation R is serial, that is to say, for
every s there is a t with R(s, t). More precisely, one can prove that the system KD is sound and
complete with respect to these “serial models” (cf. e.g. [Che80], [MH95]).

Principle (D) is equivalent with =0(¢ A =), so that both O(¢ A —¢) and 0@ A O—¢ are not
satisfiable in KD. In other words, in KD both the principles (D) and

(D*)  —(0¢ A0-9)

are valid. This then implies that for epistemic notions such as knowledge and belief we have to
look for another solution to the problem of representing incoherences. However, we can say
more in the present context about moral dilemmas, since the logic of (moral) obligations is
generally taken to be KD. We discuss this in the next section.

1.2. Moral dilemmas: deontic logic and norm conflicts

In deontic logic one is concerned with reasoning about norms, or rather normative versus non-
normative situations or behaviour of agents. In this branch of modal logic the primary modal
operator O is generally interpreted as obligation and written as O. O¢ means that “@ is
obligatory”, or “it ought to be that ¢”, or, again alternatively, “ideally, ¢ ought to hold”. In the
literature there is a bit of controversy whether in O@, the argument ¢ denotes a desired state-of-
affairs or rather an action to be performed. In the former case one speaks of ought-to-be, in the
latter of ought-to-do. For our discussion we only consider the former interpretation, since this
is closer to the issues we will discuss in the sequel with respect to other modal logics.



However, in order to find nice common-sense examples we will be a bit sloppy with this
distinction.

Standard deontic logic (SDL) is generally taken to be the modal logic KD. In fact, the principle
(D) derives its name from deontics. In the context of deontic logic this principle, 0L, states
that an impossible state is not obliged. As we have seen before, in KD this principle is
equivalent with —O(¢ A —=¢) and (D*) —(O¢ A O—@), the latter stating that one cannot be both
obliged to be in a state where @ holds and one where ¢ does not hold.

This presents a problem in the case that we are faced with moral dilemmas, or norm conflicts.
Classical examples are like “one ought to kill the enemy to defend one’s country, while, on the
other hand, religious principles command us not to kill”. Here, on the one hand we have
something like O@ A O—@, which in KD is inconsistent. Of course, one easy way out to be
able to represent this example is just to drop the principle (D) and consider the logic K. In K,
O A O—@ is consistent. However, for most deontic logicians it is not enough to just represent
a moral dilemma in a consistent way; one wants to offer a solution to it: what should the agent
in question do when faced with such a moral dilemma. This aspect appeared so important that
one usually is not even interested in representing the dilemma consistently. One just uses KD
(or some logic based on this) and finds oneself in a situation where there appears a real
inconsistency in the representation, which should be solved. Interestingly, in deontic logic
literature this gave rise to some of the first work on defeasibility (e.g. [AM81]), so popular in
Al research nowadays. Here we will not pursue this route, but rather look at another direction:
Chellas proposed a logic in which one can represent norm conflicts without abandoning the
principle (D), which was held by him “relatively uncontroversial” ([Che80], p. 201).

1.3. The minimal modal logic D (Chellas)

Chellas ([Che80]) proposes a logic, which he called D, in which one can deny validity of (D*)
while still retaining that of (D). Obviously, as we have seen in Section 1.1, this means that D
cannot be a normal modal logic in the sense that it admits the usual Kripke semantics. The
reason, of course, being that in such a normal modal logic (D*) inevitably follows from (D) via
principle (OA). In fact, as Chellas shows, the logic D has a different kind of semantics based

on so-called minimal models.

A minimal model is a structure M = (S, &, A), where S is a set of possible worlds again, 7 is
the usual truth assignment function on the possible worlds, and N:S— 225 is a function from
S to sets of subsets of S. Intuitively, A{s) gives us the set of propositions (regarded as sets of
possible worlds, which we shall refer to as clusters) that are “standards of obligation” to s, that



ideally should (but actually need not) be true in s. Furthermore, the function A satisfies the
following properties:

(m) for all s € S and all clusters X and Y: if X NY € A[s) then X € A{s) and Y € A[s).
(p) forallse S: @ ¢ A(s).

Note that (m) is equivalent with
(m') for all clusters X and Y: if X € N(s) and X c Y then Y € A(s),
expressing closure under supersets.

The truth condition for Oc¢ is now given by: (M, s) F Oco iff ll@lIM e A(s), where the truth
set l@lIMis defined by ll@liIM= {te S| (M, t) = @}. Under the assumption (m), the condition
leliIM e Afs) is equivalent with the condition: for some X € As) forallte X: (M, t) F @.
The condition (p) now guarantees that (D) is valid, while (m)—stating the closure of N(s)
under supersets—ensures the validity of

@Or-) Oc(¢ A ) = (Oce A Ocy)

which is one half of (OA). Moreover, the other half of (OA),

One) (Oc® A OcVy) = Oc(e AVY)

and thus also (O A) itself, as well as

(D*) —(Oc® A Oc—0), and

(O-1) Oc—4

are no validities in the logic D. The logic D is axiomatized by:

D) —=Ocl

(Taut) the tautologies of propositional logic (or just enough of them)
MP) @, 0> y/vy

OM) ¢ - y/Oce — Ocy

(cf. [Che80]).



Thus the logic D provides us with a means to consistently represent moral dilemmas, i.e.
incoherent norms, without giving up the principle (D). (Here we will not pursue the long and
troublesome history of deontic logic in which the adequacy of systems like D and KD is
challenged as a logic of moral / deontic reasoning which goes way beyond the question whether
principle (D) is a desirable property for such a logic. See e.g. [MW93].)

In fact, we shall see below in Section 2.4, that Chellas’ logic D, in the semantics of which a set
of clusters rather than just a set of worlds is associated with a world s, is very close to recent
proposals to overcome the problem of representing incoherent knowledge in epistemic logic.

2. KNOWLEDGE AND BELIEF

2.1. The systems KD45, S4 and S5

Since the seminal work by Halpern et al. (e.g. [HM85]) modal epistemic logic has become a
popular approach to representing and reasoning about knowledge and belief in Al applications.
(Modal) epistemic logic dates back to the work of the philosopher J. Hintikka ([Hin62]). In this
logic the primary modal operator O is interpreted as a knowledge or belief operator, and then
written as K or B, respectively. In Al the logic of knowledge is generally taken to be the system
S5 (but in philosophical logic mostly the weaker system S4 is taken), while belief is mostly
axiomatized by the system KD45. These systems are extensions of the basic normal modal
logic K of Section 1.1: S4 is obtained by taking K together with

(T 0O¢—-9¢
(4) DOe—0O0¢,

while SS5 is obtained by adding
(5) -0¢ — O0-009

on top of S4. Finally, KD4S5 is obtained by augmenting the system KD by (4) and (5). The
interpretation of (T) when applied for the knowledge modality is that knowledge is true. Note
that (T) is strictly stronger than (D). (4) is called the positive introspection axiom: it says that if
something is known (believed) then it is also known (believed) that it is known (believed). On
the other hand, (5) is called the negative introspection axiom: if something is not known
(believed), then it is known (believed) that it is not known (believed). Obviously, negative
introspection is far more controversial for knowledge than belief, and this is the reason why
most philosophers prefer S4 rather than SS as the logic of knowledge.



Semantically, one obtains (Kripke) models for these logics by putting restrictions on the
accessibility relations again:

for $4, one considers models in which these relations are reflexive and transitive;

for S5, one considers models in which these relations are equivalence relations, or,
alternatively, (simple) models in which the relations are universal, i.e., R=S x S; and

for KD4S5, one considers models in which these relations are serial, transitive and euclidean.
(A binary relation R is euclidean if the following holds: for all s, t and u: R(s, t) and R(s, u)
implies R(t, u).)

As stated above, in Al usually the logic S§ is adopted as the logic of knowledge. S5-models
are very simple (or at least they can be viewed in this way): they are just a set of classical
valuation functions, viewed as possible worlds which are all connected by the accessibility
relation. The set of formulas true in such a model (the theory of an S5-model) enjoys some very
nice properties: they are so-called stable sets, satisfying:

(St1) all instances of propositional tautologies are elements of X;
(St2) ifope Zandg > ye Ztheny e Z;

(St 3) peXl & KpeZX

(St4) peX & —KpeX

(St5) X is propositional consistent.

Stable sets are uniquely determined by the objective (viz. non-modal) formulas they contain.
Furthermore, stable sets are not properly contained in each other. Stable sets are representations
of the knowledge of rational, introspective agents: their knowledge is closed under
propositional calculus and under (positive and negative) introspection: both knowledge and
ignorance of formulas is known by the agent. In particular, if @ is a consistent objective
formula, there exists a stable set Z? such that this set contains ¢ and is “informationally
minimal” under this requirement (so that it contains the least possible objective knowledge to
accommodate to the presence of ¢ as well as the closure under propositional logic and the
introspective properties) (cf. [HM84], [MH95]). Thus X represents the knowledge (or
epistemic state) of a rational, introspective agent “when s/he only knows ¢@”. ¢ can be
characterized alternatively by the theory of the “largest S5-model of ¢”: I is the set of
formulas that are valid in the S5-model M(p = {M is (simple) S5-model | M F ¢}. Halpern
& Moses ([HM84]) also give an algorithm to determine the set X9 for an objective formula ¢.
This algorithm is given by:

Ve Z? & Fgs (Ko axey) =,



where kg5 denotes S5-validity, and X,(y) is the conjunction of all subformulas Ky' of y for
which y' € X¢ and formulas —Ky" for all subformulas Ky" of y for which y" ¢ X® (where
Y is considered to be a subformula of itself). This algorithm decides for any formula y in the
language whether or not it is an element of £¢: we need only employ the algorithm for all strict
subformulas of y, and then use the decision procedure for S5. (Actually, Halpern & Moses
considered the more general case of so-called honest formulas ¢, which includes the class of
objective formulas, defined as exactly that class of epistemic formulas for which there exists a
stable set 9 such that this set contains ¢ and is minimal under this requirement , cf. [HM84]
and [MH95]. We will return to this in Section 3.3, where we shall use a refinement of this
notion of honesty.) |

2.2. The logical omniscience problem

Although the logics KD45, S4 and S5 have very appealing properties, they contain a couple
of validities which are sometimes viewed as troublesome when reasoning in actual cases about
knowledge and, particularly, belief. These validities are called the paradoxes of logical
omniscience, since they state that the agent’s knowledge (belief) satisfies (too) idealized
principles. They include the following set:

(LO1) OpAO(e—vy)—> 0Oy (Closure under implication).
(LO2) E o= k00 (Belief of valid formulas).

(LO3) EQ—-y=FO¢p—0y (Closure under valid implication).
(LO4) Foeoy=kFIOpeoOy (Belief of equivalent formulas).
LO5) OoADy) > 0@ AY) (Closure under conjunction).
(LO6) Op ->0O(pvVy) (Weakening of belief).

LO7N O¢ — =0-¢ (Consistency of beliefs).

(LOB) O@e — o) (Belief of having no false beliefs).
(LO9) O-L (Believing truth).

(In the brief statement following these principles above we have used the notion of belief rather
than knowledge, since they are particularly salient and controversial with respect to belief.
Moreover, in this paper we are concerned with the representation of incoherences. Strictly
speaking, this cannot be incoherent knowledge, since knowledge is true by definition—the (T)-
axiom, and we do not admit incoherent facts to be true in the actual world. So, also from this
perspective it is better to look at belief rather than knowledge, as beliefs need not to be true in
the actual world, so that the problem of representing incoherent belief(s) is less hopeless than
that of incoherent knowledge, which cannot exist by our very notion of knowledge!)



Of these principles we recognize some as being the very core of (normal) modal logic, notably
(LO1), which is equivalent with axiom (K); (LO2), which is the necessitation rule (Nec); and
(LO9) which follows directly from (Nec). On the other hand, we even recognize some
essentials from the minimal logic D, viz. (LO3), which is nothing else than (OM), and which
has (LO4) as its immediate consequence. (LOS5), of course, reminds us of the discussion in
Section 1.3, where we argued that avoiding its validity (as it appears in the logic K, and so also
in all logics KD, S4, S5 and KD45) was one of the very reasons why the logic D was
proposed. In fact, validity of (LOS5), together with the principle (D), which is present (or
derivable) in all of these logics, is responsible for the fact that one cannot represent incoherent
knowledge, precisely as in the discussion about incoherent norms in the system KD. So,
changing to (an epistemic variant of the) minimal logic D would solve this problem here as
well. In fact, this is exactly what Fagin & Halpern do in [FH88], which we shall see below in
Section 2.4. However, some authors try to keep normal modal logic (in the sense that ordinary
Kripke semantics is employed) as their basis, necessarily “polluted” by some non-standard
features like “non-modal” operators. Still others use even more radical methods than going to a
non-normal (i.e., minimal) modal logic to avoid the paradoxes of logical omniscience and to
include the possibility to represent incoherent belief in their logic in a consistent way. We shall
see this in the sequel, where we shall concentrate on the latter issue rather than the former. (In
[MHO51 it is shown to what extent these approaches succeed to overcome the other problems of
logical omniscience with regard to belief.)

2.3. A syntactic solution: principles (Van der Hoek & Meyer)

One of the most naive solutions to representing incoherent belief, while sticking to normal
Kripke semantics as a basis, is the introduction of a special operator P (separate from the basic
(normal) modal operator B for belief), which simply states that its argument is a belief that is
not subject to any doubt, viz. a kind of principle or, interpreted more negatively, a kind of
prejudice. Belief is then based on the old (normal) KD45-notion of belief as well as these
principles. Although, of course, the old KD45 notion does still not admit incoherent beliefs,
these can be then just put in by the P-notion of belief. (In fact, this notion was inspired by work
by Fagin & Halpern [FH88] where they used a similar operator to keep things out of the belief
set, whereas here we use to do just the opposite.)

So, formally we define a new notion Byp of belief:
(Bum) ByM® ©der B Vv Po,

where B is the old KD45-notion from Section 2.1. Semantically, we just add a function Pto
the usual KD45-models, so that we consider models of the form M = (S, &, R, P), where S
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and T are as usual, R is serial, transitive and euclidean, and P is a function mapping each world

to a set of formulas (which denote the principles / prejudices in that world). Interpretation of the
language is as usual (including the B-operator as based on the relation R), and the P-operator is
now interpreted as: (M, s) = P iff ¢ € P(s). So, we see that although we stick to normal
Kripke semantics as much as possible, we have the function as a non-standard element. But, as
we have seen, this is inevitable: we have to “pollute” clean normal Kripke-semantics with some
other elements to enable the representation of incoherent belief.

If we define validity and satisfiability in the usual way, we can now state that the formulas
—(BgmP A Byym—p) and —Bypm(p A —p) are not valid, so that their negations (D*) as well as
(D) become satisfiable. (E.g. to satisfy Bypy(p A —p) in a world s, simply choose p A —p €
P(s).) This means that we can indeed represent incoherent belief(s) in a consistent way in this
logic.

2.4. The logic of local reasoning (Fagin & Halpern)
Fagin & Halpern [FH88] proposed a logic of “local reasoning” to cater for incoherent beliefs

which, in retrospect, may be viewed as based on Chellas’ minimal logic D, but adjusted for
belief. They use “cluster” models of the kind (S, 7, C), where S and & are as usual, and C is a

function from worlds to sets of subsets of S: for every s, (s) is a non-empty collection of non-
empty subsets (clusters) of S. (In fact, again they gave a multi-agent logic, but here we
concentrate on the single agent case.) Then they distinguish between a weak (Bgy) and a strong
(Bpy™) notion of belief, which they provide with the following formal semantics:

(M, s) = Bgyo iff there is some cluster T € ((s) such that forallte T: (M, t) F ¢, and
(M, s) E Begto iff for all clusters T € ((s) and forallte T: (M, t) E o.

For our present purposes the notion of weak belief Bgy is the most interesting. Here we
recognize Chellas’ minimal modal logic. In fact, the way Fagin & Halpern gave their definition
of the interpretation of the Bgyy-modality corresponds exactly to that of the O-operator in the
logic D (if we assume condition (m)), as we have seen. We also recognize Chellas’ requirement
(p) in the condition above that @ ¢ ((s). (Note furthermore that by the direct definition of the
semantics of Bgy, Fagin & Halpern directly by-pass the requirement (m) that Chellas has to put
on his function /\; so that this requirement is not necessary for the function C. In some sense,
by the definition above, this requirement is built-in implicitly here.)

Of course, the logic of local reasoning concerns the notion of belief, so that one would like to
have the properties of belief. As to the principle (D), this is obviously valid (since it was
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already in the minimal modal logic D). But we need also to consider the introspective properties
(4) and (5). To this end, Fagin and Halpern put the following restrictions on the function C:

(4) foralls,s'e S:s'e Te ((s) implies T € ((s')
(5)forallse S, Te (As),te T: At) < ((s)

One may verify that (4) validates (4), while (5) becomes valid by imposing (5) (cf. [FH88]), so
that the logic of local reasoning is a true epistemic (or rather doxastic, since it involves belief
rather than knowledge) variant of the minimal modal logic D.

If validity and satisfiability are defined as usual, one may check that—exactly as in Chellas’
logic D—the principle (D*) =(Bgyp A Bgg—p) is not valid while the principle (D) =Bgy(p A
—p) is, so that Beyp A Bgy—p is satisfiable in the logic of local reasoning, while Bgy(p A —p)

1S not.

Interestingly, the logic of local reasoning can also be linked with the work of Rescher &
Brandom ([RB80]) on reasoning with inconsistencies. Rescher & Brandom consider what they
call “non-standard possible worlds” to represent inconsistencies. These non-standard possible
worlds are in some sense “macro-worlds” consisting of a number of standard (“micro”-)
worlds that are “fused together” in two possible ways, viz. “world-conjunction” (or
“schematization”) and “world-disjunction” (or ‘“superposition”). In the former method, a
formula is true in the macro-world if it is true in all micro-worlds it contains; in the latter it is
true if it is true in some micro-world. Now, Fagin & Halpern’s logic of local reasoning may be
viewed as a logic based on Rescher & Brandom’s macro-worlds that are fused together by
world-conjunction. Later we shall see that the other method of using macro-worlds as proposed
by Rescher & Brandom is also present in the epistemic logic literature (cf. Section 2.6).

2.5. The logic SSP (Meyer & Van der Hoek)

The logic SSP was introduced in [MH91,92] and developed further in [MH93] to model the
monotonic part of (epistemic) default reasoning that deals with plausible assumptions. The logic
consists of an S5-based logic of (certain) knowledge K combined with a number of K45-
based modalities P; to denote some plausible working beliefs (in view of available defaults).
S5P-models are models of the kind (S, &, R, Si,..., Sp), where S and & are as usual, R is
universal, and the S; C S denote preferred subsets of S, which we call (sub)frames (of
reference) or contexts. These subsets S; are allowed to be empty. The SSP-model (S, &, R,
S1,..., Sp) is called an S5P-extension of the included simple S5-model (S, &, R). In these
models formulas are interpreted as follows: (M, s) E Ko iff (M, t) = @ for all (t with R(s, t),
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i.e., all) t € S, as is usual in epistemic logic and (M, s) F Pi@ iff (M, t) = ¢ for all t € S;.
Validity and satisfiability are defined as usual.

This then yields an S5-logic with respect to the modality K and a K45-logic for each of the
modalities P;. Note that, although of course it is not possible to represent inconsistent
knowledge in an S5-setting, it is possible to represent incoherent beliefs by means of the P;-
modalities (even with the use of only one such operator P;!). In fact, this results by nothing
more than the observation from Section 1.1, where we discussed the possibility in the logic K
to represent incoherent information (just by not imposing the principle (D) as an axiom!).
Moreover, of course, incoherency represented in this way is rather trivial and impractical in
use, since the following validity holds in S5P:  P;L — P;¢, for arbitrary formula @: thus,
although P;.L is representable (satisfiable) it immediately yields an ‘explosion’ of beliefs (Pj@).

In S5P, however, one can do more than just represent incoherency in this trivial manner, viz.
by using distinct P;-operators! The intuition behind the P;-operators is that they refer to
(plausible) beliefs within certain contexts (frames of reference), represented by the sets S;. For
instance, in the example SSP was designed for, default reasoning, it might be the case that
some default leads us to believe that @ is plausible, while some other (in a different context)
might lead us to believe —¢ (see [MH91, 92, 93] for examples of this kind). A common-sense
example in a robot world may be that the robot has—in case condition p holds—a rule of thumb
that q holds, while, for the situation that r holds, it has a rule of thumb that —q holds. Of
course, the robot is in some kind of dilemma, if he encounters a situation in which p A q holds.
In this situation it has really incoherent information arising from two different contexts. In SSP
one may represent this as Pyq A Pp—q. Such a representation does not give rise to a belief
‘explosion’ as above.

Thus the logic of S5P is an amalgam of the modal logics S5 (for K) and K45 (for P;), forged

by the following connecting axioms:

(K—-P) K¢ — Pjo

(KP) KPi¢ & Pip

(PP) =Pil — (P;Pjo & Pjo)
(PK) —-Pil = (PiK¢ & Ko)

Here (K—P) expresses that knowledge implies belief within any context. (KP), (PP) and (PK)
are generalized introspection properties with respect to K and the P;. Note the conditions —P; L
in (PP) and (PK), which say that P;-belief is not inconsistent (i.e., semantically S; # @). One
can show that this provides a sound and complete axiomatization of validity in S5P-models.
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The P;-modalities do not satisfy (D) nor (D*). Both P;p A P;—p and P;(p A —p) are satisfiable
(by an S5P-model in which the frame S; is @) expressing an incoherent belief within frame i.

Note that, as already remarked in Section 1.1, the incoherency that we can express in this way

is a limited one: it gives a signal that there is some inconsistency in belief, but one can not really

use it to reason with this in a useful manner, since in this setting the usual property of material

implication is inherited from classical logic: (P;p A P;—p) — P;¢ is a validity, so that one also
immediately obtains P, for an arbitrary formula ¢, once one has derived P;p A P,—p. Note,
however, that we might also use different contexts to represent incoherent information, like e.g.

Pip A Pj—p (for i#j), as we saw above in the robot example. The intuition here is a natural one:

the incoherency arises from different sources (in different contexts). If one uses this

representation of incoherence, one does not suffer from a collapse of information since clearly

(Pip A Pj=p) — Py.L is not valid in SSP (for no k).

We mention here some related work by Huang & Van Emde Boas ([Hua91], [HE90]), where
modal operators L;j¢ are used to express that agent i believes @ on the basis of agent j’s belief
in ¢@. Although is not really exploited in the work mentioned, one can easily imagine the
representation of incoherent belief on the basis of different agents (with different beliefs): L;o
A Lijx—o is satisfiable. However, Huang addresses the issue with respect to incoherence with
respect to a clash of internal (‘incorporated’) belief (denoted by the L; operator) and external
dependency-based belief denoted by the L;; operator (he calls this ‘compartmentalized’ belief),
and discusses how incorporated belief might / should be revised in case these conflict on the
basis of of the credibility / authority of the agent j on whom i is dependent. For instance, in the
case Lip A L;;—, the belief L;¢ will persist if i is an expert on ¢ and j is not; it will be revised
in some way if the roles of i and j are reversed or if both i and j are experts (in the latter case
Huang proposes that the belief in ¢ is contracted without replacing it with a belief in —).3
Interestingly, Huang proposes to express the roles of agents (with respect to authority), such as
expert or learner, by means of an additional operator D;;¢, meaning that i is dependent on j with
respect to @, which also links the L;; operator to the L; operator in a way that should be obvious
from the above: Lij¢ & Dy A L;o. E.g., the fact that i is an expert on @ is expressed as Dy A
Jj#i: Dj;¢. (In words: an expert on ¢ is an agent that is dependent on itself regarding ¢ and
there is no other agent on which it is dependent regarding ¢.)

The logic SSP has an obvious similarity to the logic of local reasoning of Fagin & Halpern
(Section 2.4). One may view the frames S; as the clusters in that approach. There is a

3Speaking about belief revision. Of course, this is an important area in Al (cf. [Gir88]). However, we know of
very few modal logic approaches to this, and we shall not treat this topic in this paper. A modal approach based
on dynamic logic, where belief revision is viewed as an action to be performed by the agent and is embedded in a
logic in which one can reason about agents’ actions and capabilities can be found in [LHM94]. Something
similar holds for the related problem of updates in databases. A reference to the use of dynamic logic (again) for
reasoning about updates is [SWM95].
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difference, though. In the logic of local reasoning one cannot address a particular cluster by a
reference by a modal operator. It is only possible to say something about truth in some
(unspecified) cluster or in all clusters by the modalities of weak and strong belief, respectively.
On the other hand, in S5P one has the expressibility to refer to particular frames by the
appropriate P;-operator, whereas here there is no possibility to quantify over these frames by
some modality. Another interesting link is that the logic S5P restricted to one P-modality (one
frame of reference) is very close to the integrated logic of knowledge and belief as proposed by
Kraus & Lehmann ([KL86]). (The one P-modality corresponds to their belief operator B, the
only difference being that they impose the property (D) on B, disallowing incoherent beliefs.)

2.6. Fusion logic (Jaspars)

Fusion logic, proposed by Jaspars [Jas91, Jas93], is very much related to the logic of local
reasoning as discussed in Section 2.4. As Jaspars himself says, he was directly inspired by
Rescher & Brandom’s “logic of inconsistency” [RB80]. In fact, he uses also macro-worlds,
but now viewed as fused by the method of “world-disjunction” (cf. Section 2.4). So, a formula
is true in a macro-world if it is true in some of the micro-worlds it contains. Jaspars considers
models of the form (S, &, R), where S and = are as usual, but R is now a relation between

worlds and possible “macro-worlds”, represented by a (non-empty) “fused” set of (standard)
possible worlds: Rc S X (#(S) \ {@)).

Now Jaspars interpreted his notion of “confused belief” by the clause: (M, s) = Bypiffforall T
< S with R(s, T) it holds that there exists t € T such that (M, t) = ¢. In Rescher & Brandom’s
terms, we consider all macro-worlds T that are considered possible from s and check whether ¢

holds there “world-disjunctively”.

Again, of course, some further restrictions must be made on the accessibility relation in order to
get a genuine logic of confused belief, called CB. First we need some additional not(at)ions:

The relations R, R and R are given by:

xRTY iff xRY" for some Y cY;
XRY iff for all x € X: xRTY;
XRY iff for some x € X: xRTY.

Now in order to let By satisfy the axioms (D), (4) and (5), Jaspars imposes the following
restrictions on R:

(F-seriality) for all x there is a Y with xRY,
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(F-transitivity) for all x, Y, Z: xRTY & YRZ = xR"Z, and
(F-euclidicity) for all x, Y, Z: xRTY & xRTZ = YRZ,

respectively (see [Jas93]). In CB (D) is valid (by the condition of F-seriality on the models),
but (D*) is not. Thus Byp A By—p is satisfiable in CB, while By(p A —p) is not.

2.7. Implicit knowledge (Levesque)

Levesque ([Lev84]) has also proposed a solution to representing incoherent belief in a
nonstandard modal logic approach, but completely different from the approaches discussed so
far. In fact, his proposal comes down to a mixture of many-valued logic and modal logic.
Possible worlds, or situations, as Levesque calls them admit assertions to be true, false, none
of these, as well as both. Formally, this idea is implemented by defining both a truth support
function and a falsehood support function which, in principle, are independent from each other.

Thus, models a la Levesque are of the kind (S, B, nr, Tg) where S is a nonempty set of
situations, B< S is a set of situations on which we will base the semantics of belief (or explicit
belief, as Levesque calls it), and mp and ntg are the truth and falsehood support functions,

respectively, which assign truth and falsehood, respectively, to the atoms per situation.

Now we consider both a truth assignment =1 and a falsehood assignment = of a formula
given a model and a situation. The truth assignment 1 is defined as usual for atoms
(depending on 1), conjunctions and disjunctions; as for the negation, we have that (M, s) E
—@ iff (M, s) Eg @, and with respect to the modal belief operator we have (M, s) =1 By @ iff
M, s") =1 o for all s' € B. The set B represents the set of situations that are considered
possible. One might also phrase this clause in (the usual) terms of an accessibility relation R by
defining R(s, t) iff t € B, for all s, t € S. The definition of =g is dual to that of =: for atoms it
depends on tg; (M, s) Ep (@ v ) iff (M, s) Ep @ and (M, s) Fg ; (M, s) Eg (@ A W) iff (M,
s) Erp@or (M, s) Fgy; and (M, s) g —0@ iff (M, s) =1 ¢@. However, with respect to belief we
have: (M, s) Fg By ¢ iff (M, s) 1 B¢, expressing that when we evaluate “meta-assertions”
about belief we reason classically: something is believed or it is not, and not both. But, of
course, within the scope of a belief operator we may encounter incoherences, to which we shall
focus our attention shortly.

We call a situation classical if it only admits formulas to be true or false, exclusively: for every
atom p € P, either ntp(s)(p) = t or Tg(s)(p) = t, but not both. Validity of a formula ¢ (denoted
F1 @) is now defined as ¢ having truth support (i.e., (M, s) F @) in all situations of S that are
classical. A formula is satisfiable if there is a structure M and a classical situation s € S with
M, s) FT @
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In Levesque’s logic neither (D) nor (D*) are valid, so that both By p A B; —p and By (p A —p)
are satisfiable. To see this, just take a model with a situation s € B in which np(s)(p) = t and
Tr(s)(p) = t. Neither does the operator By satisfy the (K) axiom. On the other hand, the logic
does satisfy the introspection axioms (4) and (5) (where the implications involved are just
defined as material implication), so that it is a genuine logic of belief.

Finally we remark that Levesque’s logic for explicit belief has an interesting connection to a
paraconsistent logic with an non-material implication, viz. (first-degree) relevance logic (cf.
[Dun86]). In relevance logic the assertion ¢ A —¢ —» y is not valid (where — stands for
relevant implication), and it takes its name from the fact that in a valid implication the premise is
relevant in some precise sense for the conclusion (for more about this, consult [Dun86]). More
precisely, one can prove that (using k= for validity in relevance logic.)

FL(BLo—=BrYy) & F o> V.

2.8. Impossible world semantics (Rantala)

Rantala ([Ran82]) probably proposed the most radical way to enable the representation of
incoherent knowledge. In this approach “anything goes”: it solves all paradoxes of logical
omniscience as well as the incoherence representation problem in one fell swoop. It does so by
introducing “very” non-standard possible worlds, called impossible worlds, in which truly the
impossible may be true.

Formally we consider so-called Rantala-models: models of the kind (S, S*, &, T*, R), where S
is a non-empty set of possible worlds, S* is a set of impossible worlds, & is a truth assignment
function to the atoms on S, * is a valuation function of arbitrary (!) formulas on S*, and R is
an accessibility relation of type R < (S w S*) X (S U S*), thus associating with a (possible or
impossible) world a set of accessible (possible or impossible) worlds. All clauses for the
interpretation of the language in possible worlds of these models are standard (including those
for the modal belief operator Bg); the truth condition for impossible worlds (in which one may
have to evaluate formulas when considering modal formulas), however, is completely free.
Validity (and satisfiability) of a formula in a model (S, S*, t, R) is now defined as the truth of
that formula in all (some) possible world(s) s € S. And, as usual, validity (satisfiability) of a
formula is defined as validity (satisfiability) of that formula in all Rantala models of the above
form.

Due to the freedom in the interpretation of formulas in impossible worlds one can avoid all

imaginable forms of logical omniscience as well as represent incoherent beliefs: neither the
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principle (D) nor (D*) is valid. For instance, the formula Bg(p A —p) is satisfied in a Rantala-
model with an impossible world where p A —p is just stipulated to hold.

3. RESOLVING CONFLICTS IN DEFAULT REASONING

3.1. Modal approaches of default reasoning

A form of reasoning in Al where incoherency plays a prominent role is that of reasoning by
default. Default reasoning is the form of commonsense reasoning that is used to infer what
usually, typically or normally is the case. The in the literature ubiquitous example is that of
“birds normally can fly”. So, if we are given a bird of which nothing else is known, we infer
that it can fly by default. Quite naturally, default reasoning gives rise to incoherency: if we are
given two defaults “normally, p implies r” and “normally, q implies —r”, given both p and q,
we might use either default to infer r and —r, respectively. Of course, using both defaults
together would result in a direct and hard inconsistency (r A —r), or at least in incoherent
beliefs, when one is more careful and gives the outcomes of default applications the weaker
status of beliefs. However, in some cases of conflicting defaults one might have a preference as
to which default should be applied, so that the incoherency of default beliefs is avoided. This
is, for instance, the case when one default is more specific than another one. Suppose that we
have the defaults “normally, birds can fly” and “normally, birds that are wing-clipped cannot
fly”. Given the situation of a wing-clipped bird, in principle one might use both defaults to
derive that this bird can fly and cannot fly, respectively. However, commonsense tells us that
the second default obtains in the more specific situation, and should overrule the first one, so
that one should only be able to infer that this bird cannot fly by defaulit.

Reasoning by default has been the object of study in many papers in the last 15 years, starting
with the seminal work by Reiter on “Default Logic” ([Rei80]), often embedded in the more
general context of defeasible or nonmonotonic reasoning ([Rei87]). As we are interested in
modal approaches we mention especially here the related logics of Moore’s auto-epistemic logic
(AEL, [Moo84, 85]) and, especially, Lin & Shoham ([LS90]) and Schwind & Siegel
([SS92]). Here we shall focus in the first instance on our own approach based on the logic
SSP of Section 2.5, which we have dubbed Epistemic Default Logic (EDL) in [MH93,
MH95].

In this section we shall briefly show how one may express default reasoning in EDL, and
discuss how conflicts might be dealt with. We also pay special attention to the specificity
problem that we discussed above.
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In the language of SSP we may express defaults “normally, if ¢ then y” by K¢ A My — Py.
(This kind of defaults is what is usually called normal., cf. [Rei80]). Here @ and y are
supposed to be objective formulas. The literal reading of such a formula is “if ¢ is known to be
true and v is (considered) possible, then v is preferred”. Multiple defaults are represented by
sets of formulas K@; A My — Piy;, where the ¢; and y; are again objective formulas.

A default theory © is a pair (W, A), where W is a finite set of objective formulas describing
(necessary) facts about the world, and A is a finite set of defaults {K@; A My; = Pjyjli=1,
..., n}, where some of the P;j-operators may be the same. The sets W and A are to be

considered as sets of axioms representing (background) knowledge, and we may apply
necessitation to the formulas in them.

Given a default theory © = (W, A), we define the nonmonotonic inference relation A as
follows. In the sequel we let, for a finite set ® of EDL-formulas, ®* stand for the conjunction
of the formulas in ®. Note that W is a finite set, and moreover that W only consists of
objective formulas. Furthermore, let ¢ be an objective formula such that ¢ and W* are mutually
consistent. Then X®AW* is well-defined (cf. Section 2.1). Then we define the default
entailment relation g w.r.t. default theory © as follows:

3.1. DEFINITION. ¢ kg Y &4er W€ Thgpp(EPAW* U A).

Instead of T kg v, we simply write ke V. Furthermore, if " is a finite set of objective
formulas, and y an EDL-formula, then we define I kg y as IT'* i~ . Below we will show a

number of examples of default entailments.

We can also give a semantic characterization of the default entailment kg . Since this is the

easiest for the case that the set P of primitive propositions is finite, we consider only this case
here. (For a semantical characterization in the general case we refer to [MH92b].)

3.2. THEOREM. Consider a default theory © = (W, A), where A is finite, and let ¢ be an
objective formula such that ¢ and W* are mutually consistent. Moreover, let P be finite. Then
we have that:

ooy & M F KA* — vy for all SS5P-extensions M of Mgaw=.

This theorem essentially says that the default consequences of knowing only ¢ are the
consequences of knowing the defaults concerned within the context of knowing only ¢

together with the background information W. Speaking somewhat more technically, to
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determine whether v is a default consequence of ¢, we consider the S5-model representing
that precisely ¢ and W is known, and then check whether y follows from KA* in all S5P-

models extending this S5-model.

We illustrate reasoning in EDL by a few examples, starting with the inevitable “Tweety
example”.

3.3. EXAMPLE (Tweety). Consider the following default theory © = (W, A) with W= {p —
—f} and A = {Kb A Mf — Pf}, representing that penguins do not fly, and that by default birds
fly. Now consider the following inferences (To stress the application of A we denote such a
step by F4.):

(i). bk Kb A —=K~f Fgpy, Kb A Mf I, Pf, i, blg Pf,

meaning that from the mere fact that Tweety is a bird, we conclude that Tweety is assumed to
fly; which must be contrasted to the inference:

(ii). bAa P (o Kp |_EDL K—f I—EDL —-Mf V‘A Pf, i.e, not b A P }"'9 Pf,

meaning that in case Tweety is a penguin, we cannot infer that Tweety is assumed to fly, but
instead we can derive to know for certain that Tweety does not fly.

A somewhat more interesting example below shows that our framework allows for a kind of
partial normality in the sense that in a particular case some defaults are applicable while some
other ones are not. So it possible to express a kind of “graded normality” in our framework: the
object at hand is (assumed) normal in certain respects but abnormal in other ones.

3.4. EXAMPLE (Graded Normality). Consider the following sentences:

(1) Lions are normally dangerous.
(i1) Lions are normally brown.
(iii) Leo is a cub lion.

(iv) Cubs are not dangerous.

Of course we expect to be able to infer that Leo is not dangerous. However, we do still expect
to infer that Leo is brown. This phenomenon is called “graded” normality in the literature:
although Leo is explicitly stated to be not normal with respect to being dangerous, we still
expect him to be normal with respect to being brown, since nothing is said about that to the
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contrary. In our approach this works out fine, as follows. Letting ‘I’ denote “being a lion”, ‘d’
“being dangerous”, ‘b’ “being brown”, and ‘c’ “being a cub”, we consider the default theory ©
= ({T}, A), with A given by the set of defaults:

¢y KlAMd—Pd
(it KiAMb-Pb
(i) cal

@iv) c—>-—d

Now we can infer: ¢ Fgpy, Kc Fgpy, K—d Fgpp, —Md. Thus i 5 Pd. But, on the other hand,
1~g Kl A —mK—b Fgpy, KI A Mb 4 Pb. Thus it is a preferred belief that Leo is brown, as
desired.

The following example shows the use of multiple distinct P-operators associated with multiple
distinct frames of reference.

3.5. EXAMPLE (Multiple ‘extensions’). Consider the following defaults:

“Normally, if p then q”,
“Normally, if p then r”’

These default rules, which have two extensions, can be formulated in our language as A =

{Kp AMq—-Pq,
Kp A Mr — Pyr}.

Considering the default theory © = ({p}, A), we get T g Mq A Mr 4 P1q A P,r. Hence we
obtain two preferred frameworks. Of course, in this case, the default theory ®' which is as ©
but where the two defaults are represented using the same P-modality, say P;, would also have
a useful conclusion, viz. P1q A Pr which is EDL-equivalent with P(q A r), expressing that
there is one preferred frame in which both q and r hold. However, note that in our approach the
default theories © and ©' are different: it is up to the knowledge engineer which one he wants

to consider.

The use of different P-modalities, referring to distinct frames, becomes especially pregnant in
the case of the infamous Nixon Diamond, which is of particular importance viewed from the
perspective of handling incoherent (default) beliefs.
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3.6. EXAMPLE (Nixon Diamond, ([RC81]). Let r stand for being a republican, p for being a
pacifist, and q for being a quaker. Now we consider the default theory © = ({T}, A) with A
given by:

(1) Kr AM—p — P;=p (republicans are non-pacifists by default)
(2) KgaMp—Pyp (quakers are pacifists by default)

We are now given that Nixon is both a republican and a quaker, and we want to draw some
conclusion about his being a pacifist or not. We now inferr Aq g Mp A M=p b P—p A
P,p. That is to say, we have two subframes S and S; of S: in the one —p holds, in the other

p. This is intuitively correct since there is in this particular case no preference of the one over
the other whatsoever.

Note the need for different modalities P; and P, (or frames S; and S;) in this case: the use of
only one such modality, say Py, results in an inconsistency within the frame S, associated with
that modality: P;—p A P;p, which is equivalent with P,(=p A p), i.e., P|L. Although this
formula is not inconsistent in itself, the resulting (empty) frame is probably not what we intend
to have as a preferred frame. The use of multiple P-modalities enables us to represent the
outcome in a more sensible and useful way, viz. two consistent frames each representing a
reasonable conclusion. In a very analogous way the use of multiple frames enables us to
represent the Lottery Paradox in a consistent and intuitively correct way (see [MH92],
[MH95], and later in Section 4).

Although the use of various distinct P-operators provides us with (a) means to represent
conflicting information in a consistent and sensible manner by keeping the conflicts apart in
separate frames of reference, it is obvious that the moment one is willing (forced) to act upon
ones’ default beliefs, choices will have to be made in the case of these inherently conflicting
pieces of information. In meta-level reasoning jargon the point where these choices will have to
be made is “downward reflection”. This will be discussed in the next section, but first a few
words about autoepistemic logic (AEL, [Moo84, 85]) and related work by Lin & Shoham
(fLS90]) and Schwind & Siegel ([SS92]).

First of all, Moore’s AEL is very close to EDL with respect to the representation of defaults:
instead of K¢ A My — Py, essentially the same form is used (although instead of ‘K’ the

operator is usually denoted ‘L’), but the crucial difference is that in the conclusion no P-
modality is used, and the default thus essentially is represented by means of one modal
operator: Lo A My — y. To get conclusions from a autoepistemic theory, so-called AE-

extensions are used which are (again) stable sets that are grounded (i.e., in some technical
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sense rooted) in the set of objective formulas that are known to be true (cf. [Moo84, 85],
[Kon94}, [MH95)).

Lin & Shoham also use two modalities, like in EDL, but in a different way: besides the
K(nowledge)-operator they also employ an A(ssumption)-operator, which both have a standard
modal (KD45) interpretation, and are a priori unrelated. (Normal) defaults are now
represented as K¢ A —A—y — Ky. (Note the different use / place of the modalities as
compared to EDL.) Consequences of default theories are obtained by considering (only)
preferred models in which given the set of true A-facts (formulas of the form A, where @ is
an objective formulas) the set of K-facts (formulas of the form K¢, where @ is an objective
formula) is minimal and additionally the condition holds that the set of K-facts is equal to the
set of A-facts (thus in a sense the known facts must be rooted in the assumed facts). (cf.
[LS90], [Kon94], [Poo94]). This is very much related to the topic of modal nonmonotonic
logics, which we shall not pursue in this paper. (See [Kon94], [MT93]).

Finally, Schwind & Siegel propose yet another representation of a default theory using two
modal operators. (They call their approach Hypothesis Theory.) They employ a modal operator
L (with intended meaning something like “knowledge”) satisfying the axiom (T) (cf. Section
2.1) together with an operator [H] which is a normal (system K-like necessity) operator, of
which the dual Hp = —~[H]—¢ is intended to mean that ¢ is a hypothesis. The only interaction
between L and [H] is given by the axiom L¢ — [H]e®, or equivalently, Hp — —L—q: if
something is an hypothesis it cannot be known to be false. A hypothesis theory consists of a
set F of formulas (facts) and a set HY of hypotheses. A default theory (W, D) is represented as
a hypothesis theory (F, HY) with F=LW U LD u {L¢ — [H]o}, where LW = {Lw | we W}
and LD = {Lo A Hy — Ly | “normally, if ¢ then y” € D}, and HY the set of hypotheses
occurring in D. Thus (normal) defaults of the form “normally, if ¢ then y” are represented in
Hypothesis Theory as formulas of the form Lo A Hy — Ly. In this respect Hypothesis
Theory resembles the approach of Lin & Shoham, although Schwind and Siegel do impose an
a priori relation between the accessibility relation Ry associated with the operator L and the one
(Ryyy) associated with [H]: Riy) € RL. Extensions of a default theory are now defined as
maximal sets F U HY' with HY' ¢ HY such that F U HY" is consistent. It is shown in [SS92]
that this completely characterizes Reiter’s Default Logic in this modal setting. What is
interesting about this approach is that it assumes very weak requirements on the epistemic
modalities L and [H] (e.g., introspection properties are assumed for neither L nor [H]!), while
still the full power of default logic is obtained.
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3.2. Resolving conflicts in downward reflection of meta-level information

In Section 2.5 we discussed the logic S5P as a logic to reason about knowledge as well as
plausible working beliefs that are, for instance, caused by (applying) defaults as exemplified in
the previous section. As we noticed already in these sections, we might end up in situations
where we have an incoherent set of such beliefs, represented by formulas like P;¢ A Pj—¢ (for
possibly different i and j). This is all fine when we just want to represent incoherent beliefs.
But what do we do with them if we really want to use them and act upon them?

We may view this as more generally as a problem of reflection in meta-level reasoning. In meta-
level reasoning architectures (e.g. [MN88]) one may “reflect” information from one level to
another: for instance, one may reflect meta-level information of the provability of some
assertion to the information that that assertion is true on the object level. Thus we may see the
above problem with defaults with conflicting outcomes in this way: how can we reflect these
outcomes from the meta-level to the object level (this is usually called “downward reflection™)
such that consistency is maintained (cf. e.g. [TT91, TT92]). Downward reflection maps meta-
level information such as default beliefs into the object level as what we will call “quasi-facts”.
This is a risky business since this turns uncertain beliefs into something where its modality of
being a mere defeasible belief is forgotten/ deleted/ignored.

Of course, when on the meta-level it is derived that both ¢ and —¢ are plausible beliefs,
reflecting both these beliefs are reflected downwards to the object level, we get a genuine
inconsistency on this level, containing both ¢ and —¢.

To be more precise: let us denote the downward reflection operator by B. Thus  is a function
from a set ® of EDL-formulas to a set ¥ of non-modal formulas, intended to capture the
reflection of meta-knowledge as represented by @ to a set of quasi-facts on the object level
represented by the outcome V.

Naturally, it is sometimes quite unproblematic to define f. For instance, in the case that @ =
{P;p A Py—q}, where p and q are different atoms, it is clear that  should just delete the P-
modalities, just letting us forget what the exact epistemic status is of the assertions p and —q.
So in this case we would define B(®) = {p A —q}. This can be done so easily in this case,
since the resulting set ¥ = {p A —q} is consistent.

However, just deleting the P-modalities does not always work: e.g. in the case that @ = {P;p A
P,—p}, we would obtain the inconsistent set ¥ = {p A —p}. This is obviously undesirable. On
the other hand, if we would consider ® = {P;p A P;—p}, or just plainly ® = {P;(p A —p)}, it
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is less clear that downward reflection should not lead to inconsistency: B(®) = {p A —p} seems

to be the only sensible choice.

Inconsistency may, by the way, also arise using the above naive strategy in case the set ®
contains knowledge, e.g., ® = {Kp A P;—p}. Just deleting modalities would yield to B(®P) =
{p A —p} again. However, intuitively the P;-belief —p should be ignored in the context of the
certain knowledge that p.

Thus we have to find mechanisms to cope with this situation without running in real
inconsistencies on the object level. There are several ways to do this, which we explored in
[MH93b]:

1. Put explicit priority orderings < on frames, S1< S; meaning that S, is ‘better’ in the sense

of more preferred or relevant than the frame S). The ordering < is now taken into account to

resolve possible conflicts: it should be the case that when P-formulas (that is, formulas

involving P-modalities) that become inconsistent after the removal of the P-operators, only the

P-formulas pertaining to the more preferred frame are downward reflected. So for example, if

S| < S, we get that P;p A Py—p on the meta-level results in —p on the object level. Of course,
if this is to work in all cases we need a total ordering on frames, which is not always a very

reasonable property to have, since the ordering will reflect priority principles such as specificity

or legal principles like lex superior (i.e., “according to the highest authority”). Since these

principles may leave preferences undecided, conflicts cannot always be solved.

2. Define implicit priorities into the semantics of defaults (without changing their syntactic

representation). The option of trying to resolve conflicts as mentioned under 1 above is one in

which it is presumed that one (the user of the system) has a priori intuitions about the priority

of the contexts of concern. This may be realistic a presumption in some applications, but not

always. For instance, let us consider the issue of specificity in default reasoning. Here we have

rules of thumb (resulting in working beliefs) but some rules apply in a more specific case than

other ones. E.g. one rule is applicable in case that p holds to infer the plausible belief that q

holds. But, on the other hand we may have a rule that says that in situation p A r it is plausible

that —q holds. Now we can derive both the working beliefs (say) P1q and P,—q by the
respective rules, but many would agree that, given p A 1, (P5)—q should take precedence when
we reflect downwards. The typical example is: if we have a bird, it is plausible that it can fly,

while if we have a bird that is an ostrich, it is plausible (if not certain) that it does not.

Many authors consider the case of specificity as a special case which in their opinion should be
treated by the logic itself without intervention from the user (cf. e.g. [Vel91]). This is rather a
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controversial issue, since some other authors claim that in this way specificity is privileged
over other principles of preference like the above-mentioned lex superior, which makes it de
facto even harder to incorporate various different such principles in one system (cf. e.g.
[Pra93]). Also capturing specificity in isolation is by no means trivial, since one may encounter
difficult situations with cascaded specificities that contradict each other, where intuitions begin
to fade (cf. [Tou86], [MH95]), as in a case like: Adults tend to be employed; University
students tend to be unemployed; University students tend to be adults; Adults under 22 tend to
be university students; Tom is an adult under 22; Is he employed?

3. Use modalities to directly indicate the relative strength / weakness of plausible working
beliefs. In this approach the conflict between a belief P@ and a belief P'—¢ can be solved by
considering the strength of the modality P versus that of P'. One way of doing this is to
represent clauses concerning working beliefs in such a way that their relative priority is
programmed into the representation where the mutual strength of the concerned modalities are
used to solve conflicts (see the next section, where we will do this explicitly with respect to the
specificity problem in default reasoning). But one might also, for instance, use numerical
modalities such as graded P-modalities (cf. [HM92]), to indicate directly the degree of trust in
the working beliefs. These graded P-operators can be either absolute or relative. In the absolute
case we may use operators P; ;, with intended meaning: P; ;¢ iff ¢ holds in frame S; modulo
(precisely) n exceptions (i.e. exceptional worlds, where —¢ holds). In this case the downward
reflection should take this degree of trustworthiness into account. For example, Py sp A
P5 1¢—p should result in p on the object level. In the relative case we may use operators P; 3
with 1 < A < 1, with intended meaning: P; ; ¢ iff ¢ holds in frame S; for the fraction (of
possible worlds within S;) A. So, e.g., P; 2p A P 9 5—p on the meta-level should result in
—p on the object level. This is of course very much related to other quantitative or numerical
approaches, such as graded modal logic and probability-based modal logic, to which we shall
turn in Section 4.

Downward reflection, as described above, is not really part of our logic. It is more a kind of
procedure or algorithm that can be applied on the set of working beliefs that are obtained by
means of our logic EDL. By using a dynamic logic one may include downward reflection into
the logic. By the use of dynamic logic it becomes even possible to be explicit in the logic and
indicate which of the possibilities of downward reflection that we gave above, is adopted. So
in this way we can view the whole process of calculating defaults as a procedure or action Yy =
o ; FgpL ; B, where “;” stands for sequential composition, B is the downward reflection
procedure of our choice, -gpy, is the procedure of calculating the EDL-theory, and o is the so
called “upward reflection” procedure yielding the set ZPAW* when given the premise @ together

with the background information W. (cf. Def. 3.1. This is in fact Halpern & Moses’
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nonmonotonic operator  from [HM84]). Thus 7 is the result of first performing upward
reflection, then deducing the EDL-consequences of this, and then reflect the results downward
by means of 3. Now, we may employ dynamic logic to express the result: for instance, the
formula @ — [y]y expresses that if ¢ holds before performing <y then y will hold after
performance of . Since Y=o ; Fgpg ; B, this is equivalent with ¢ — [a][+gpL 1[B]v. So
e.g. in the Tweety example we may state that b — [0]-K—f, and so b — [a][Fgpr]Mf, and
hence b — [a][+gpr ]Pf. Thus, b — [a][Fgp, 1[B]f, for any simple downward reflection 3
that deletes P-modalities. On the other hand, we have that b A p — [a]Kp, and thus that b A p
— [o][Fgpp JK—f, and b A p — [a][+gpL ]-f- So, we only have to require that the
downward reflection B does nothing in this case, as is to be expected from any well-behaved
downward reflection operator, and obtain b A p — [0][+gpr, 1[B]—f. Research along similar
lines is reported by Sierra, Godo & Lopez de Mantaras [SGL95].

One may also abstract away from the precise procedure and use temporal logic to describe
downward reflection as a process over time. Then we may say simply something like b — Xf
and b A p = X—f, where X is a next-time operator. This possibility of dealing with downward
reflection is explored in [HMT94a,b], where we have provided a temporal semantics to this
kind of reasoning. In this approach, downward reflection is modelled by taking a time step:
(some) plausible beliefs are made true at the next instance of time. In the papers mentioned
branching time temporal logic is employed to give a systematic treatment of all possibilities of
reflecting (combinations of) plausible beliefs downwards to the object-level.

3.3. Programming priorities into default representations

In the previous section we discussed inconsistency handling as a problem of downward
reflection in meta-level reasoning: how to reflect incoherent information down to the object-
level such that consistency is maintained? In this section we will investigate the approach
mentioned already as a possibility in the last section, viz. representing a default theory in such a
way that priorities are enforced automatically when considering its consequences. In fact, this
approach amounts to resolving possible conflicts already at a stage before the downward
reflection of the working beliefs to quasi-facts. We hinted already to this approach in [MH92a]
when we treated the example of multiple defaults with specificity. Here we elaborate on how a
priority can be “programmed” into the representations of defaults in order to indicate which
default takes precedence. So rather than to solve the conflict afterwards, this method amounts
to resolving it before it really becomes a conflict of incoherent default beliefs. To illustrate the
method we look at the example of specificity as a priority principle, but the method extends to
other principles. This approach is inspired by work done in the settings of other nonmonotonic
formalisms such as (prioritized) circumscription and default logic ([McC80], [MT93], [Lif94],
[P0o094]) and the idea of stratification from logic programming ([ABW88]), but it is shown
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here within the context of our modal approach to default reasoning, viz. EDL. In fact, in this
section we shall develop an extension of Halpern & Moses’ theory of honest formulas (as well
as the notion of stable sets and the consequence relation based on these) in order to cater for a
‘stratified’ default theory the consequences of which are constructed “stratum by stratum”.

First we recall from [MH92] the following example, where we consider a situation in which
we have multiple defaults where some defaults apply to a more general case and some other
ones apply to a more specific case.

3.7. EXAMPLE (Multiple defaults with specificity). Consider the defaults “ravens are generally
black” and “albino ravens are generally not black”, represented by:

(1) KraAMb—-Pb (normally, ravens are black)
(2) K@ Aa)AM-b—P,-b (normally, albino ravens are not black)

Note that if we know that we have an albino raven (K(r A a)), and that both b and —b are
possible (Mb A M—b), we can infer both P;b and P,—b.

First we note that the above outcome creates exactly the problem with downward reflection that
we discussed before: when we reflect downward we have to resolve an inconsistency that
stems from the deletion of the P-operators. This conflict may be resolved along the lines we
have discussed in Section 3.2, e.g. by using an ordering on the frames.

However, we moreover have the intuition that the above outcome is not the best one may get,
since the result does not seem to use directly the information that (2) is more specific than (1).
(Of course, by imposing an ordering on the frames such that the frame S, has a higher priority
than S; does incorporate this information, but in a rather indirect way.) We may wonder
whether there is not a direct way to do justice to the fact that (2) is more specific than (1), and
thus should get priority. In fact we suggested such a solution already in [MH92], where we
discussed a more refined representation of defaults in which it is possible to ‘program priority
into the representation’ in a logic programming-like fashion.

In this approach we represent defaults by means of formulas not only of the form K¢ A My —
Py, but also of the form K¢ A —P;—y — P;y, thus allowing P-modalities in the antecedents
as well! (Here ¢ and y are objective formulas again.) This is really an extension of the (power
of the) formalism in the sense that instead of allowing only formulas of the form My in the
antecedent to check “overall consistency”, which is interpreted as the formula y being

satisfiable in the whole set S of a priori possible worlds, it is now also allowed to check
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whether a formula y is “consistent with the frame S;”, that is satisfiable within the subset S; of

S. We will call default theories where all defaults have either the “old” form or this more
general form generalized default theories.

Now the representation of our example becomes:

(1*) Kr A =P,—b — P;b.
(2) K@ aa)aM-b—-P,-b

Now we may infer from K(r A a), given M—b, that P,—b, which blocks the application of (1*)

and the possible conflict that results when we reflect downward is resolved on beforehand.

So this is a way to specify or ‘program’ priorities in multiple defaults explicitly. When we first
proposed this in [MH92a], we did not really elaborate on how calculations should proceed
exactly in this more general setting, since obviously we now need to infer formulas of the form
—Py to enable us to apply defaults of the form of (1*)! Although we then thought of a kind of
Negation-as-Failure-like approach, we now can be much more specific about this, using the
ideas of Halpern & Moses of deriving ignorance from knowledge in an iterated kind of way.
Moreover, as is clear from the example above, there also seems to be an issue of order of
applying defaults: in the example we have to try and apply (2) first, after which (1*) can be
possibly applied. Of course, this has to do with the fact that to be able to apply (1*) in the
intended manner, we need to know whether something about the P,-modality can be derived in
the rest of default theory. This aspect, too, can be made much more explicit in our present
approach, as we shall see later on.

The general idea is to focus on frames S;, and consider them as S5-models in themselves.

(This can be done if the frames are non-trivial in the sense of non-empty.) Now the whole
apparatus of stable sets, honest formulas and the entailment relation ~ becomes available again.

To be able to do this properly we need our default theories to be stratified.:

3.8. DEFINITION. A generalized default theory © = (W, A) is stratified if there is a (finite)
partition {A;};<j<;, Of the set of (generalized) defaults A (each A, is called a stratum) which is
partially ordered by a strict partial order <1, where each stratum A, consists of all defaults with
conclusions of the form P;x and every generalized default from a stratum A, of the form K@; A
—1Pj—1\|li — Pjy; is such that Aj dA;.
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Intuitively, stratification of a default theory means that every default in a stratum A;, which
refers to a frame S;, is dependent only on outcomes of defaults in lower strata (which refer to
frames Sj such that Aj < A;). (Here the order of defaults comes into the picture!) Note that the
definition allows “old” defaults of the form K¢; A My; — Pyy; to occur in any stratum A;.
The reason for this, of course, is that the old notion of a default in its antecedent refers to the
set S as a whole (by means of the operator M) and not to subsets S; at all. In fact, one may
view the (certain) facts in W as a O-th stratum Ay for which it holds that Ay < A, for all 1<i<n.

3.9. EXAMPLE. The default theory © = (W, A) givenby W={p—>b,b—a}and A=

{  KpAM—f— Pj—f,
Kb A —P;—f — P,f,
Kb A —P;—w — Pow,
Ka A —Pof = P3—f )

is stratified. Take the partition A = A; U Ay U Az, where

Ay = {Kp A M—f - P;—f},

Ay = {Kb A =P{—f — Pyf,
Kb A —P{—w — P,w},

Az = {Ka A =Pof = P3—f},

and the ordering on default strata simply given by A; < A;iff i <j.

In order to cater for stratified default theories we need to express epistemic states relatively to a
frame S;. We first assume the set P of primitive propositions to be finite. In order to speak
about epistemic states relative to a subframe S;, we consider the sublanguage &£;, consisting of
the set of all EDL-formulas closed under containing the set P, the classical propositional
connectives and the operator P;. So in £; one can only express properties of belief with respect
to frame S; and no other frames Sj, nor the whole set S. Note that £ ; contains all objective

formulas. We now define the notion of an i-stable set:

3.10. DEFINITION. A set £ c L, is i-stable if it is either the inconsistent set &; or it is

propositionally consistent and satisfies the following:

(Sy;1) all instances of propositional tautologies are elements of X;
(St2) ifgpe Zandgp - ye Ztheny e Z;
S43) ¢e X & PopelX
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St4) o ¢ 2 & —-Poe z

i-Stable sets, of course, enjoy the same nice properties of stable sets; in fact when consistent
they are also theories of (simple) S5-models, viz. sets S;. The only difference now is that they
may be inconsistent (when the set S; is empty). (This, by the way, is also allowed for Moore’s
notion of a stable set [Moo84, Moo85].) Moreover, the whole apparatus of Halpern & Moses’
entailment relation including the notion of honesty can be defined analogously with respect to i-
stability. We need only extend the definition for the inconsistent case, which is trivial.

3.11. DEFINITION. A formula ¢ is i-honest if there is an i-stable set X;® that contains ¢ and
such that for all i-stable sets X containing ¢ it holds that Prop(Z;®) < Prop(Z).

Note that an inconsistent formula ¢ now is i-honest, since in that case the set ;¢ = Z;1 = L; is
i-stable and satisfies the requirement in the definition. So in contrast with the case of honesty

we do not exclude inconsistent formulas regarding i-honesty, which reflects the difference
between S, which is always non-empty and the S;, which may be empty.

To profit maximally from Halpern & Moses’ theory we indicate how truth in a subframe of an
S5P-model corresponds to truth in an S5-model, thus reducing the problem of characterizing
epistemic states associated with a subframe to the old problem of the characterization of an
epistemic state as usual. In fact, the connection is quite obvious, but has to be established
formally to be able to employ the “old” theory.

Let M = (S, &, R, Sy,..., Sy) be an S5P-model. Define Mj; to be the (simple) S5-submodel of
M with M; =(S;, @, R). Then it holds that:

3.12. PROPOSITION. For formulas ¢ € L; we have that M E P & Mk @
PROOF: Directly from the definitions.

M, is either an empty model or a (simple) SS5-model. In the latter case we can use the whole
machinery of Halpern & Moses to derive (non)beliefs with respect to frame i. For instance, we
know immediately that the theory P;(M;) = {9 € £;IM; = @} (= {9 € L; I M, E P;p}) of the
(simple) S5-model M is an i-stable set. (Note that the principle epistemic modality in frame 1 is
P; instead of K.) Moreover, by our definition of i-stability, also in the case that M} is empty,
P,M;)) = {9 € L; M ¢} =L, is i-stable.
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So now, analogously to the case for knowledge, we can also employ Halpern & Moses’
approach to default beliefs and define an entailment relation kj associated with the default

beliefs with respect to frame S;, as follows.
QhiVY Sgef Ve Z®fori-honestoe L;.

Note the special case if @ is inconsistent: ¢ j y for every y, since then Z;? = LgpL- As
before for i we will employ the entailment k; for objective premises @. These are certainly i-

honest.

3.13. EXAMPLES. Let p and q be two distinct primitive propositions. Then e.g.:
phiPp;pki—PgpA(@ - PriPigpvakiPip va) A Pip A —Pig;p A g i Pip A
Pi‘l-

We now have the following property (which is completely analogous to the one that holds for
Halpern & Moses’ original notions of honesty and nonmonotonic inference operator ((HM84],
[MHO95}):

3.14. PROPOSITION. Let ¢ be i-honest. Then @ b~ \y implies that ¢ A is i-honest.

The last proposition implies that P;-conclusions may be added to the P;-facts already derived

without loosing a unique description of an i-epistemic state.

We are aiming to define an entailment relation with respect to a stratified default theory. We
need the following auxiliary notions:

3.15. DEFINITION.

(a) Given a set @ of EDL-formulas, IT;(®) = {¢ | ¢ objective and P;p € ®@}.

(b) Given a set ® of objective formulas, DNF(®) yields a canonical formula in disjunctive
form that is (semantically) equivalent with the set ®@. (Note DNF(®) exists by the finiteness of
the set P of primitive propositions.)

(c) Given an i-honest formula ¢, we use the function G to yield the i-epistemic state associated
with @: o;(p) = Z;9.

(d) Given a set ® of EDL-formulas, P;® = {P;o | ¢ € ®}.

Now we are ready to define the entailment relation kg for a stratified default theory ©. For
convenience of notation we define the modal operator Py = K. Furthermore we use the above
definition also for the case i = 0, referring to knowledge and the set S. E.g. 6o(¢) = Z?. Note
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that we have that, for any (0-)stable set @, ITo(P) = {¢ | ¢ objective and Pgp € @} ={opl ¢
objective and K € @} = {¢ | ¢ objective and ¢ € P} = Prop(P).

3.16. DEFINITION. Let © = (W, A) be a stratified default theory with stratification {A;}; <<, Of
A and order < on the A;. For notational convenience we take the order given by A; < A;iff i <

j- Then @ g Yy iff y € @, where ® = U i<, P;, and

@) = Gp(p A W*) (= Z0AW5),
(Di = ThEDL(UOSj<i P_] GJ(DNF(HJ((DJ))) U 4y, for1<i<n.

We appreciate that this is a rather elaborate formula. Basically what it says is the following. In
order to obtain the conclusions of the i-th stratum of defaults we consider the sets @; of
conclusions of the lower strata, of which we take the conclusions of the form P;x pertaining to
what is true within frame S;; this set of conclusions is represented as a set of objective
formulas—or rather as an objective (and thus j-honest) formula in disjunctive normal form that
is equivalent with this set—which determines a unique j-epistemic state, of which the formulas
—prefixed with a Pj-operator to indicate that they pertain to the frame S; (cf. Proposition
8.6)—are input to the stratum Aj of defaults, after which the EDL-closure is taken. This
procedure is illustrated by reconsidering Example 8.3:

3.17. EXAMPLE. Consider again the theory ® = (W, A) given by W = {p = b, b — a},

penguins are birds, and birds are animals, and A =

{ Kp A M—f — P;—f, penguins normally do not fly
Kb A —Pj—f = P,f, birds normally fly
Kb A =Pj—w — Pyw, birds normally have wings
Ka A —P,f — P3—f animals normally do not fly '}

and the stratification {A;};=1 7 3 and the ordering < on strata as given earlier. We now obtain:
o= UOSiS?)q)i with

®( = 0o(p A (p = b) A (b — a)) (= ZPrbray;
@, = Thgpp (P So(DNF(IIy(@0))) U A}) =
ThepL(K 6o(DNF(Prop(ZpAbA2))) U {Kp A M—f — Py—f}) =
ThgpL(KZPAbA2 U {Kp A M—f — Py—f}) =
Thgpp(KZPAbA2 U {P)—f});
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@, = Thgpy (Po So(DNF(II(@p))) U Py 61(DNFIT;(®)))) U Ay) =
Thgpp (KEPADA U P E,~f U {Kb A —=P{—f = P,f, Kb A —Pj—w — P,w}) =
Thgpp(KEPAbA2 U PiZ~f U {Pyw));

®; = Thgpp(PeSo(ONF(II)(@))) L P10 (DNF(IT;(®1))) U P,0,(DNFITy(®,))) U Ag) =
Thgpr(KEPAbA2 U P12~ U PoZyW U {Ka A —Pof — Py—f}) =
Thgpp (KEPAbAR U PyZ,~f U PyZyW U {Pa—f));

So we have that p ~g Kp A Kb A Ka A Pj—f A =P1=w A —=P,f A P;w A P3—f; analogously,
b kg Kb A Ka A =P{—f A =P;—=W A Pof A Pyw A —P3—f and

akgKa A =Py—=f A =P{=w A —Pof A —Pow A P3—f;

in natural language: penguins are expected to not-fly (P;—f A P3—f); birds are expected to fly
(P,f); and animals are expected to not-fly again (P3—f), as desired.

4. NUMERICAL MODAL APPROACHES TO INCOHERENCES

In previous sections, we have repeatedly addressed a situation in which one has to act on the
basis of possibly conflicting information. A natural context for such a situation is that in which
an agent receives his inputs from several sources, which we may assume to be each internally
consistent. As examples of such sources one may think of defaults (the agent’s ‘rules of
thumb’) but also of a collection of independent units, like sensors, or even other agents. We
already discussed several strategies to be followed by the agent who discovers that his sources
are mutually inconsistent: in the case of defaults, specificity or some other priority criterion on
the default rules may govern the agent’s decision on how to end up with a consistent belief set.
And, in the case of receiving this contradicting information from different sources from outside,
the agent may act on the basis of some other priority relation, for instance based on reliability of
the sources. However, in some situations it is not possible or not natural to impose such a
relation on the set of sources. Therefore, in this section, we will first briefly a describe way to
specify the amount of sources that agree on the same information as a measure of the reliability
of that piece of information rather than its sources.

Let us for a moment identify ourselves with a robot who is equipped with, say, n 2 4 fallible
sensors. Each sensor provides the robot with information about three atomic formulas, p, q
and r. For the sake of argument, let us assume that sensor s indicates that (p A q A1), s yields
(p A —q A —r), 83 gives us (p A —q A 1) and all other sensors s4, ..., sp give the information (p
A q A —r). Thus, we may conceive a sensor as a world in a Kripke model: by assuming a
universal accessibility relation on it, this model as a whole represents some kind of epistemic
state of the agent (see Figure 1). In our example, the agent may conclude that he believes p,
i.e., we have Bp (note that it is too bold to conclude that he knows p: the sensors may all be
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wrong, after all!). Thus, it is reasonable to assume that the agent acts ‘as if p’: if the sensors

constitute his only source for p, and they all agree that p is true, there seems no other way than
to accept p.

p.a.r pd\ p&r pagk  pak D, g,
o ® ™) P @ 0 seeteecscsecsccescasasas °
Sl S§2 S3 S4 SS Sn

Figure 1

How about the agent’s belief concerning other objective formulas? As far as the other atoms are
concerned, we have (—=Bq A —B—q) A (—=Br A —~B—r) expressing that the agent is ignorant
about the truth of both q and r. However, if n is sufficiently large, we would like to have a way
to express that the agent chooses as a working belief that q is true, and that r is false: even that
(q A —r) holds! For, if, e.g., 97 out of 100 (= n) sensors tell a traffic-controlling robot that
there is a queue in front of him (q), but no traffic from the right (r), he should adjust the traffic
lights according to this information. This example shows that one sometimes has a need to base
decisions, or, rather, one’s beliefs, on some kind of democratic principle: the number of
sources for a given formulas is then relevant. Such a decision need not always be based on a
majority of sources, though:

However, we demonstrated in [HM91] that the (standard) modal language is too weak to
express those quantitative observations. To be more precise, we showed that in the model as
given above, we have the following equivalence: Bg <> B["/4lo, that is, if the agent believes
any statement, he also believes that statement in which occurrences of q are replaced by r.
Phrased differently, in his beliefs, the agent cannot distinguish between q and r, while on the
basis of a quantitative intuition there is a huge difference!

Now, if we associate the modal operator ‘0” with the quantifier ‘there exists’ and ‘O’ with ‘for
all’ (which is a very natural thing to do, especially in S5, cf. [GP90]), a natural way to proceed
is to add numerical operators ‘O’ as counterparts of the quantifiers ‘there exist more than n’ to
the modal language. In fact, this was done by Fine in the seventies ([Fi72]; in the eighties,
these languages of graded modal logic were re-discovered and investigated in [FC85] and
[Ho92a]. The graded operators receive their interpretation on ordinary Kripke models: by now,
complete axiomatisations are known for this interpretation on several classes of models, thus
inducing a natural characterisation of graded modal logics, from Gr(K) (which is, so to speak,
graded version of system K) to Gr(S5), the graded analogue of S5, which is complete with
respect to models with equivalence relations. Instead of considering all these (sub-)systems, let
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us here restrict ourselves to a presentation of the graded logic that is most interesting from an
epistemic point of view, viz. Gr(SS) (cf. [HR93]).

Let us, for this epistemic interpretation, instead of Op¢, write M@ for ‘@ is true in more than n
alternatives’:

(M,w) = Mp@ iff {w'e€ W | Rww' and (M,w") £ ¢}|>n,ne N.

Dually, we write Kn@ = —M—@; thus, K@ is true iff at most n accessible worlds refute . In
terms of epistemic operators, note that Koo boils down to K@, so that we may interpret Kg as
our (certain) knowledge operator. Generally, K¢ means that the agent reckons with at most n
exceptions for ¢. Apart from Kp, we introduce the abbreviation M!,@, where M!g@ = Kg—o,
Mo = Mp-19 A =Mp0), if n > 0. From the definitions above, it is clear that M!, means
‘exactly n’.

The system Gr(SS5) is defined as follows (cf. [HR93a]). It has inference rules Modus Ponens
and Necessitation:

MP) o, 0> vy/y
(Nec) @ /Koo

Furthermore, it has the following axioms (for each n € IN):

(Taut) all propositional tautologies

(Kp) Ko(¢ — y) = (Kn¢ = Kny)

(Weak) Kn® = Kp+10

(Add) Ko=(9 A ) = (M@ A M) = Mlpim( v W)
(5n) —Kn¢® = Ko—Kn¢

(T) Kop — ¢

The system with rules (MP) and (Nec), axioms (Taut), (K,), (Weak) and (Add) is the graded
modal analogue of system K, the basic normal modal system—so let us refer to it by Gr(K).
In Gr(K), (K,) is a kind of ‘generalized K-axiom’ (cf. Section 1.1), (Weak) is a way to
‘increase uncertainty (weakening) by going to ‘higher grades’. (Add) expresses that if ¢ and y
are known to be mutually exclusive (so no world will satisfy them both), the number of worlds
where the disjunction ¢ v y holds, is just the addition of the number of worlds where ¢ holds
and those where y holds.
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From the semantics we see that K ¢ means something like ‘the agent reckons with at most n
exceptional situations for @’, or ‘the agent “knows-modulo-n-exceptions” ¢’. Thus, the greater
n is in K@, the less confidence in ¢ is uttered by that sentence. Of course, this observation has
to do with the weakening axiom (Weak) K ¢ — Kp419: if the agent foresees at most n
exceptions to ¢, he also does so with at most n+1 exceptions. Of course, the generalisation of
(T), for n > 0: (T,,) Kn® — @ is not valid: if the agent does not know ¢ for sure, i.e., if he
allows for exceptions on ¢, he cannot conclude that ¢ is the case. Thus K¢ expresses a form
of “uncertain knowledge”. This may give us a clue how to represent incoherent information in
graded modalities. The natural candidates are the formulas K,(¢ A —¢) and K¢ A K,—¢.

First we note that although the formula K (¢ A =), or equivalently K, 1, is satisfiable, it
states more about the number of worlds than about incoherent information: KL is true (in a
world) iff there are at most n worlds where T holds, i.e., KL is true (in a world) iff there are
at most n worlds!

So to be able to truly represent incoherent information using graded modalities we have to look
at different formulas. Consider the formula K¢ A K,—¢. This formula is also satisfiable: it is
true in a model where we have exactly n + m worlds: n worlds where —¢ holds and m worlds
where @ holds. (Of course, since we always require our models to have at least one world, this
means that K@ A K,—¢ is only satisfiable forn + m > 0.)

Returning to the viewpoint of meta-level reasoning of Section 3.2: when we use formulas like
K,¢ A K,—® on the meta-level (perhaps using graded versions of the P-operators of the logic
S5P like P,¢ A P,—¢), we now can base guide-lines for downward reflection on the
“gradedness” as follows: in line with the interpretation as described above, P,¢ A P ,—¢
should be reflected down to @, if m > n, and to —¢ if m < n, while for m = n it remains
undecided how to reflect the meta-knowledge P, A P,,—¢ down to the object level.

Although in principle graded modalities consider absolute numbers of worlds where some
formula is supposed to hold rather than relative numbers, we see that in the case of representing
incoherent knowledge by means of the formula K¢ A K ,—¢ we in fact have that we also
know the relative strength due to the fact that by the mutual inconsistency of ¢ and —¢, this
formula can only be true in a model with n + m states where the numbers of ¢ vs —¢ worlds is

known. Thus for this application, the number of worlds (sources) is fixed (viz. n+m).

This gives rise to considering Gri(S5), with fixed k € IN, which is obtained from Gr(S5) by
adding MkT to it. Let k* = min{m € N | m > 0.5 k}. Using a preference modality (use belief in
the sense of Perlis [Pe86]) expressed by operator P as in [MH91], we may express a
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democratic principle in Grg(S5), as P¢ & Kia@, that is, ¢ is preferred (is a
practical/working/use belief) iff it is true in more than the half of all sources. This amounts to
just a reformulation of the above.

Of course, other thresholds (than 0.5) might as well be taken. This depends on the example at
hand, and in particular how critical mistakes are. If we reconsider figure 1, where now the r
stands for a symptom of a life-threatening disease, it might be wise to take already two (out of
n) sensors reporting this symptom seriously, and reflect this information down to the object
level.

Before moving on to more sophisticated ways to express quantitative relations, let us look at a
numerical example in the situation that we are not dealing with sources of information, but with
a number of defaults, also known as the lottery paradox.

The following example is well-known in the literature on probabilistic reasoning ([Kyb61],
[Pea88]) and on non-monotonic reasoning ([Gin87]), where it is called the lottery paradox. It
deals with the situation of a lottery with n tickets, numbered 1 ... n. Let w; denote ‘ticket i will
be the winning ticket’ (1 <i < n). Clearly, if n is sufficiently large, one is tempted to assume
that a specific ticket k will not be the winning one. As a default, such a rule of thumb could be
formalized as a set of (so-called prerequisite-free) normal defaults (i < n)

“normally, ticket i does not win” *)

Moreover, assuming an honest lottery, we have on the other hand that one of the tickets will
win: i.e., the formula

Wi VWV ...VW, **)

is true. Now, many default theories (cf. [Gin87]) allow one to obtain the defeasible conclusion
—wj for each i < n, using a default rule expressing “if you can assume that —wj, conclude
—wj;”. In particular, one derives (—wj A ... A —Wy), yielding a inconsistency with (¥*).

In the EDL formalism of Section 3.1 we would formalize the defaults (*) as M—w; — Pi—w; (i
<n). It is clear how in this way an inconsistency is avoided: we end up with n different beliefs
(most likely of different ticket owners), each expressing that a specific ticket will not win,
which is perfectly consistent with the background knowledge (**). These different beliefs
cannot be combined into a single belief that no ticket will win. Of course, any mechanism that
would reflect down these multiple beliefs should be careful not to run into inconsistencies by
just reflecting every belief Pi—wj down to —wj, so that we obtain —wj A ... A =W, again,
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contradicting (**). On the other hand, when reflecting down it should also be appreciated that
there is no reason to prefer a belief Pi—wj over another Pj—w;j. In particular, there is no reason
to assume a least preferred belief Pi—w¢, because this would lead to the conclusion that the
ticket wy will be the winning one. Of course, this should not be derivable from the statement of
a lottery in general as described above. So it seems that downward reflection in this particular

case either yield undesirable or even inconsistent results or is not able to give any results at all!

The lesson that we may learn from this is that downward reflection from meta-level information
(expressed in a rich meta-level language) to an object language that is too “poor” in the sense
that it has too little expressive power (such as a classical (nonmodal) propositional language /
logic) may yield undesirable (including no) results. This is due not so much to the probabilistic
flavour of the example; also in the Nixon diamond (Example 3.6) we encounter the same
problem: if there is really no preference of one of the two default beliefs, obtained there, over
the other, we cannot consistently reflect down in an intuitively sound way doing justice to the
equality of preference regarding these beliefs. It only says us that sometimes working beliefs
really cannot be reflected to a (nonmodal) object language statements without running into
difficulties. In this particular case, we should really have the possibility to express working
beliefs (as beliefs with special modalities), and, of course, if we really want to have (additional)
information about relative frequencies, we should have modalities that express these explicitly,
such as in our graded modal logic.

In our graded language, we would model the situation as follows, if we assume that exactly one
of the tickets will win (now that we can count in our logic, we must be more specific about
this):

Pl Ko—~(wiAawj) (#]) no two tickets will win simultaneously
P2 M!,TAM!Iwi(i<n) of all n possibilities, there is one in which ticket i wins

From these premises, one safely deduces that Ko(wi v w2 v ... v wy), and even Kg(wp V wo
V ... V wy) (with V standing for exclusive or) Moreover, one deduces K;—wj, expressing,
that, except for (at most one) possibility, ticket i will not win. This again yield a consistent
representation of the situation of a lottery, as before in EDL, but now we can express much
more specific information about the number of winning possibilities for a particular ticket (viz.
1), which was not expressible in ordinary (ungraded) modal logic as e.g. EDL (for more
details we refer to [HM91]).

Let us go back to figure 1 once more. Now we interpret the picture in the case of a robot
participating in traffic. We again interpret the s; as situations that are held possible on the basis

of sensor readings, let’s assume that these sensors receive traffic information from (different)
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radio stations. This time, his sensors are not equally reliable. Let us assume that he has n radio
stations at his proposal, which inform him about the traffic-density along three alternative
routes he can take (‘p’ denoting that there is a traffic-jam along route p). Suppose that, by
experience, he knows that the (sensors picking up signals from) stations s and s3 are very
reliable. Then, not on the basis of counting the sources, but by assigning weights to those
sources, the robot may conclude that there is a jam at the route r: Br holds.

Indeed, there have been several proposals to enrich the modal language with modal operators,
like PF, P%, Pf and Pt (r ranging over some subset of [0,1]), denoting that its argument has a
probability less than, greater than, at most, or exactly a value r, respectively. Obviously, this is
a generalisation of graded modalities. For instance, in our example model in figure 1, we have
that the formula M!, T A M!y—q is true, expressing that exactly in two of the n alternatives, q is
false. The probabilistic counterpart of this would be Pr—q, where r = 2/n. However,
probabilistic operators are more general: instead of just relative frequencies, we can express
weights that are attached to alternatives to them (as in the above example).

We will not address the technical problems one encounters when adding those operators to the
language (more (literature) on this can be found in [Ho92b]). Instead, let us indicate how a
fine- tuned tool they provide to represent incoherences. First, observe that in a reasonable
system for such a language, the formula Prq A Py—q is satisfiable if and only if s = 1 —r. It is
obvious what the candidates are when reflecting the objective formulas down: it should be q if r
> s, and —q if s > 1, (and it is not clear what should be done in the case of r = s = ). One may
thus alternatively define a belief operator B¢ = Pys¢ on the meta-level, which is a good
candidate for reflecting down (although again the problem of the lottery paradox is lurking,
which one should be aware of: if there are e.g. 100 lots, we would certainly have (P(fs—-wi =)
B—w; for all 1 <i < 100, which gives our old problem again when reflecting all these beliefs
down to the object level). It is interesting to note that in such a case one gets rid of the logical

omniscience problem (LO1, LOS, LO8). (In fact, this belief operator is very close to the belief
operator By = PO%(p as suggested by Lenzen in [Len80].)

But there is much more granularity in the full language of probabilistic operators. For any n
mutually exclusive formulas @i, ..., ¢n, one may exactly represent one’s confidence in each of
them: Pr21<p1 A A Przntpn. The lottery paradox is a good example of this. So having these
operators on the meta-level gives us an enormous expressibility. Moreover, if we really would
need to reflect this information down to the object level where there are no such refined
modalities available, we can use the strategy as discussed in Section 3.2, choosing the most
reliable pieces of information for object level representation (being aware of situations like the
lottery paradox).
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However, the nature of these refined operators may also be subject to criticism, summarized in
the following question: Where do the numbers come from? In many real-life situations, even
experts make their decisions without knowing the exact probability of all possibilities. Indeed,
in many situations, qualitative statements of the form “given that today is Thursday, it is more
plausible that there is a traffic jam near p than one near q”. To model such more qualitative
judgements, let us add a binary operator 2 to the modal language, with intended meaning of ¢ =
y: @ is at least as possible / plausible / probable as y. One way to give this operator a formal
interpretation on Kripke models is as follows (let us assume that those models are finite: in
[Ho91] it is shown that interpreting the operator on truly probabilistic Kripke models (like in
e.g. [Seg71]) essentially gives the same properties)

M, w)E o2 yiff {vIR(W, V) & (M, V) E ¢} 2 {ulR(w, u) & (M, u) E gy}l

(Here IXI stands for the cardinality of set X, and the second ‘2’ is just the usual order on the
natural numbers.) We can define @ > y as (¢ = W) A =(y 2 ¢): then we regain Lenzen’s notion
of belief (in the probabilistic language: Po?s(p) in the form @ > —¢. Furthermore, instead of
representing one’s confidence in one’s beliefs directly, one may consider the qualitative
operator as a means to formalize a preference order between one’s beliefs. (In fact, although the
truth definition of > as given above precisely determines its properties, one may abstract away
from the given truth definition, and use some other kind of preference relation using 2, cf.
[HMP95].)
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