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Abstract

The problem to determine whether a given k-colored graph is a subgraph of a
properly colored interval graph has an application in DNA physical mapping. In
this paper, we study the problem for the case that the number of colors k is �xed.
For k = 2, we give a simple linear time algorithm, for k = 3, we give an O(n2)
algorithm for biconnected graphs with n vertices, and for k = 4, we show that the
problem is NP-complete.

1 Introduction

In this paper, we consider the following graph problem.

Intervalizing Colored Graphs [ICG]
Instance: A graph G = (V;E), a coloring c : V ! f1;:::; kg
Question: Is there a properly colored supergraph G0 = (V;E0) of G which

is an interval graph?

This problem models a problem arising in sequence reconstruction, which appears
in some investigations in molecular biology (such as protein sequencing, nucleotide
sequencing and gene sequencing, see [FHW93]). A sequence X (usually a large piece
of DNA) is fragmented (or k copies of the sequence X are fragmented) such that the
fragments can be further analyzed. The information about the order of the fragments
in the original sequence is lost during the fragmentation process. The objective of DNA
physical mapping is to reconstruct this order. To this end, a set of characteristics is
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determined for each fragment (its `�ngerprint' or `signature'), and based on respective
�ngerprints, an `overlap' measure is computed. Using this overlap information, the
fragments are assembled into islands of contiguous fragments (contigs).

Instances of ICG model the situation where k copies of X are fragmented, and some
fragments (clones) are known to overlap. Fragments of the same copy of X will not
overlap. Now each vertex in V represents one fragment; the color of a vertex represents
to which copy of X the fragment belongs. It can be seen that ICG (and especially
the constructive version of ICG, which also outputs an interval model of the interval
graph G0) helps here to predict other overlaps and to work towards reconstruction of
the sequence X.

It has been known that ICG for an arbitrary number of colors is NP-complete
[FHW93]. However, from the application it appears that the cases where the number
of colors k (= the number of copies of X that are fragmented) is some small given
constant are of interest. In this paper, we resolve the complexity of this problem for
all constant values k. We observe that the case k = 2 is easy to resolve in linear
time. Then, we give an O(n2) algorithm, that solves ICG for biconnected three-colored
graphs. We also show how the algorithm can be made constructive. ICG can also
be solved in O(n2) time for arbitrary three-colored graphs [BdF95], but an expose of
this algorithm, while extending the methods used in this paper for biconnected graphs,
would take too much space here. Finally, we show that ICG is NP-complete for four
colors (and hence, for any �xed number of colors � 4.)

In [FHW93], Fellows et al. consider ICG with a bounded number of colors. They
show that, although for �xed k � 3, yes-instances have bounded pathwidth (and hence
bounded treewidth), standard methods for graphs with bounded treewidth will be
insu�cient to solve ICG, as the problem is `not �nite state'. Also, they show ICG to
be hard for the complexity classW [1], (which was strengthened in [BFH94] to hardness
for all classes W [t], t 2 N). This result implies that it is unlikely that there exists a C,
such that for any �xed number of colors k, ICG is solvable in time O(f(k)nC). Clearly,
our NP-completeness result implies the �xed parameter intractability results, but is
much stronger.

ICG is closely related to Triangulating Colored Graphs (TCG) where we
look for a properly colored triangulated supergraph G0 of a k-colored input graph G
(i.e., G0 does not contain a chordless cycle of length at least four). This problem is
known to be NP-complete [BFW92], solvable in O(nk+1) time for �xed k [MWW94],
and solvable in linear time for the cases k = 2 and k = 3 [BK93, IS93, KW92, NON94].
Despite the close relationship between ICG and TCG, it appears that ICG poses some
additional di�culties which require more complex and time consuming algorithms. For
instance, while there is an easy characterization which assures that three-colored simple
cycles can be triangulated without adding edges between vertices of the same color, for
ICG on three-colored simple cycles, such a simple characterization does not exist, and
even this case seems to require an O(n2) algorithm, based on dynamic programming.
Additionally, TCG with three colors is `�nite state', while ICG with three colors is not
(see [BFW92, FHW93]).
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A generalization of ICG is Intervalizing Sandwich Graphs (ISG). In this prob-
lem, the input is a sandwich graph S = (V;E1; E2), where V is a set of vertices, and
E1 and E2 are sets of edges between vertices of V , E1 � E2. The question is whether
there is a graph G = (V;E) such that G is an interval graph, and E1 � E � E2, i.e.
E is `sandwiched' between E1 and E2. This problem is NP-complete [GKS94], which
also follows from NP-completeness of ICG. Our NP-completeness result for ICG with
four colors also implies NP-completeness for ISG in which the clique size of the interval
graph may be at most four.

Another closely related problem is Unit-Intervalizing Sandwich Graphs,
which asks whether, for a given sandwich graph S = (V;E1; E2), there is a graph
G = (V;E) such that G is a unit interval graph and E1 � E � E2. In [KS93, KST94],
it is shown that this problem is NP-complete, polynomial for a �xed maximum clique
size of G, hard for W [1], but solvable in O(nk�1) time if k is the maximum clique size
of G.

This paper is organized as follows. In Section 2, necessary preliminary de�nitions
and results are given, and the linear time algorithm for ICG on two-colored graphs
is shown. A necessary condition for a three-colored graph G to be `intervalizable' is
that the pathwidth of G is at most two, or in other words, that G is a partial two-
path [FHW93]. Hence, in Section 3, we analyze the structure of biconnected partial
two-paths. In Section 4, we give our main algorithm, which is based on the analysis of
Section 3 and dynamic programming, and in Section 5, we discuss our NP-completeness
result.

2 Preliminaries

A graph G is a pair (V;E), where V is the set of vertices, and E is the set of edges.
An edge is a set of two distinct vertices. The vertices and edges of a graph G are also
denoted by V (G) and E(G), respectively.

Let G be a graph, V 0 � V (G). The subgraph of G induced by V 0 is denoted by
G[V 0] and is de�ned as follows. V (G[V 0]) = V 0 and E(G[V 0]) = f e 2 E(G) j e � V 0 g.

A path P in G is a sequence (v1;:::; vs) of distinct vertices of G, such that there
exists an edge between each pair of consecutive vertices.

A cycle is a graph C which consists of a path P containing all vertices of C, and
an edge between the �rst and the last vertex of the path.

A chordless cycle C in G is a subgraph of G which is a cycle in which each two
vertices which are not adjacent in C are also not adjacent in G.

A biconnected graph is a graph which remains connected if an arbitrary vertex is
removed. A biconnected component B of a graph G is an induced subgraph of G which
is biconnected and which is not a proper subgraph of another induced subgraph of G for
which this holds. We only consider biconnected graphs and biconnected components
which are non-trivial, i.e. which have at least three vertices.

A tree is a connected graph which contains no cycles. We usually denote trees by
H instead of G.
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An interval graph is a graph G = (V;E) for which there is a function � : V ! I,
where I is the set of all intervals on the real line, such that for each pair v; w 2 V ,
�(v) \ �(w) 6= ; , fv; wg 2 E. A k-coloring of a graph G = (V;E) is a surjection
c : V ! f1;:::; kg. A proper k-coloring is a k-coloring c such that for each edge
fv; wg 2 E, c(v) 6= c(w). An intervalization of a graph G = (V;E) with a k-coloring c,
is a supergraph G0 = (V;E0) of G (E � E0) which is an interval graph and is properly
colored by c.

A path decomposition PD of a graph G = (V;E) is a sequence (V1;:::; Vt), in which
for all i, Vi � V and Vi is non-empty, and the following conditions are satis�ed:

1. For each v 2 V , there is an i such that v 2 Vi.

2. For each e 2 E, there is an i such that e � Vi.

3. For each i � j � l, Vi \ Vl � Vj .

The sets Vi are called the nodes of the path decomposition. The width of PD is
maxi jVij � 1. A graph G has pathwidth k if there is path decomposition of width k of
G, but there is no path decomposition of width k� 1 or less of G. A graph G is called
a partial k-path if it has pathwidth at most k.

Let G be a graph, PD = (V1;:::; Vt) a path decomposition of G. Let G0 be a
subgraph of G. The occurrence of G0 in PD is a subsequence (Vj ;:::; Vj0) of PD in
which Vj and Vj0 contain an edge of G0, and no node Vi, with i < j or i > j0 contains
an edge of G0, i.e. (Vj ;:::; Vj0) is the shortest subsequence of PD that contains all nodes
of PD which contain an edge of G0. We say that G0 occurs in (Vj ;:::; Vj0). The vertices
of G0 occur in (Vl;:::; Vl0) if these are the only nodes in PD containing vertices of G0.
An edge e is an end edge of G0 if in each path decomposition of width two of G, e
occurs in the left or right end node of the occurrence of G0. An edge e 2 E0 is a middle

edge of G0 if in each path decomposition PD = (V1;:::; Vt) of width two of G in which
G0 occurs in (Vj ;:::; Vj0), either e � Vj or e � Vj0 or there is an i, j � i � j0, such that
either Vi \ V (G

0) = e or PD0 = (V1;:::; Vi; Vi0 ; Vi+1;:::; Vt) is a path decomposition of G
and Vi0 \ V (G

0) = e.
Let G be a graph, PD = (V1;:::; Vt) a path decomposition of G. Let 1 � j � t. We

say that a node Vi is on the left side of Vj if i < j, and on the right side of Vj if i > j.
Let G0 be a connected subgraph of G, suppose G0 occurs in (Vl;:::; Vl0). We say that G0

occurs on the left side of Vj if l
0 < j, and on the right side of Vj if l > j. In the same

way, we speak about the left and right sides of a sequence (Vj ;:::; Vj0), i.e. a node is on
the left side of (Vj ;:::; Vj0) if it is on the left side of Vj, and a node is on the right side
of (Vj;:::; Vj0) if it is on the right side of Vj0 .

Let G be a graph, PD = (V1;:::; Vt) a path decomposition of G, V 0 � V and
suppose G[V 0] occurs in (Vj ;:::; Vj0), 1 � j � j0 � t. The path decomposition of G[V 0]
induced by PD is denoted by PD[V 0] and is obtained from the sequence PD[V 0] =
(Vj \ V

0;:::; Vj0 \ V
0) by deleting all empty nodes and all nodes Vi \ V

0, j � i < j0, for
which Vi \ V

0 = Vi+1 \ V
0.
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Let PD0 = (W1;:::;Wt0) be another path decomposition. The concatenation of PD
and PD0 is denoted by PD++PD0 and is de�ned as follows.

PD++PD0 = (V1;:::; Vt;W1;:::;Wt0)

Lemma 2.1. Let G = (V;E) be a graph, PD = (V1;:::; Vt) a path decomposition of

G. Let G0 = (V;E0) be a supergraph of G with

E0 = f fv; v0g j 91�i�t v; v
0 2 Vi g:

The graph G0 is an interval graph.

Proof. Let � : V ! f1;:::; ng be de�ned as follows. For each v 2 V , if v occurs in
nodes (Vj ;:::; Vl), then take �(v) = [j; l]. Then fv; v0g 2 E0 if and only if �(v) and
�(v0) overlap. 2

The graph G0 is called the interval completion of G for PD.
A path decomposition PD = (V1;:::; Vt) of a graph G which is k-colored is called a

proper path decomposition if for each node Vi and each pair v; w 2 Vi, if v 6= w then
c(v) 6= c(w).

Lemma 2.2. Let G = (V;E) be a graph, c : V ! f1;:::; kg a k-coloring of G. G has

an intervalization if and only if there is a proper path decomposition of G, which has

width at most k � 1.

Proof. (See also [FHW93].) For the `if' part, suppose PD = (V1;:::; Vt) is a proper
path decomposition of G. Note that PD has width k�1. Then the interval completion
of G for PD is a properly k-colored interval graph.

For the `only if' part, supposeG0 = (V;E0) is an intervalization of G. Let � : V ! I
be a function for G0 such that for each v; w 2 V , v 6= w, fv; wg 2 E , �(v)\�(w) 6= ;.
Suppose w.l.o.g. that for each v 2 V , �(v) is a closed interval. For each v 2 V , let l(v)
denote the leftmost element in �(v). Let (u1;:::; un), n = jV j, be an ordering of V such
that for each i < j, l(ui) � l(uj). For each i let Vi = f v 2 V j l(ui) 2 �(v) g. Then
PD = (V1;:::; Vn) is a proper path decomposition of G0 and hence of G. Furthermore,
each node contains at most k vertices, since there are at most k vertices with di�erent
colors. Hence PD has pathwidth at most k � 1. 2

Thus, the following problem is equivalent to ICG.

Proper Path Decomposition [PPD]
Instance: A graph G = (V;E), a k-coloring c : V ! f1;:::; kg
Question: Is there a proper path decomposition of G?

In this paper, we use both ICG and PPD. Note that the proof of Lemma 2.2 also
gives an easy way to transform a solution for one problem into a solution for the other
problem.
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For the case that k = 2, the question whether there is a proper path decomposition
of G is equal to the question whether G is a properly colored partial one-path (see
also [FHW93]). This is because if G is properly colored, then we can transform each
path decomposition of width one of G into a proper path decomposition of width one
by simply deleting all nodes which contain no edge, and then adding a node at the
right side of the path decomposition for each isolated vertex containing this vertex
only. Checking whether a graph has pathwidth one can be done in linear time, and
checking whether it is properly colored also.

Theorem 2.1. For k = 2, ICG can be solved in linear time.

We now give some lemmas, which are frequently used in the remainder of this
report.

The following two lemmas are well-known.

Lemma 2.3. Let (V1;:::; Vr) be a path decomposition of G = (V;E). Suppose i < j < k,
and suppose P is a path from v 2 V to w 2 V , v 2 Vi, w 2 Vk. Then Vj contains at

least one vertex from P .

Proof. Follows from the de�nition of path decompositions by induction on the length
of the path. 2

The following Lemma is proved in e.g. [BM93].

Lemma 2.4. (Clique Containment) Let G = (V;E) be a graph, PD = (V1;:::; Vt), a
path decomposition of G, suppose V 0 � V forms a clique in G. There is an i, 1 � i � t,
such that V 0 � Vi.

Proof. We prove this by induction on jV 0j. If jV 0j = 2, then there is a Vi containing V
0

by de�nition. Suppose jV 0j > 2. Let v 2 V 0. There is a node Vi, such that V
0�fvg � Vi.

Suppose v occurs in (Vj ;:::; Vj0). Suppose w.l.o.g. that i � j0. If i � j, then clearly
V 0 � Vi. If i < j, then for each w 2 V 0, there is an l, j � l � j0, such that w 2 Vl.
Hence V 0 � Vj, which gives a contradiction. 2

3 The Structure of Biconnected Partial Two-Paths

In this section, we give a characterization of biconnected partial two-paths.
Given a graph G = (V;E), the graph �G which is obtained from G by adding all

edges fv; wg 62 E such that there are three disjoint paths from v to w in G is called the
cell completion of G. (Two paths from v to w are disjoint if they only have vertices v
and w in common.) The following lemma has been proved in [BK93] in the setting of
partial two-trees.

Lemma 3.1. Let G be a partial two-path. The cell completion �G of G is a subgraph

of any intervalization of G of pathwidth at most two.
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In terms of path decomposition, the lemma states that each path decomposition of
width two of a partial two-path G is a path decomposition of the cell completion �G.
The cell completion of a partial two-path can be found in linear time [BK93]. In the
cell completion of a graph, each two distinct chordless cycles have at most one edge
in common. In [BK93], it has been shown that the cell completion of a biconnected
partial two-tree is a tree of chordless cycles. We show that the cell completion of a
biconnected partial two-path is a path of chordless cycles. Before we prove this, we
�rst give de�nitions and prove a number of lemmas.

Definition 3.1. (Path of Chordless Cycles). A path of chordless cycles is a pair
(C;S), where C is a sequence (C1;:::; Cp) of chordless cycles, p � 1, and S is a sequence

(e1;:::; ep�1) of edges, such that for each i and j, 1 � i < j � p, V (Ci) \ V (Cj) =
ei \ ej�1, E(Ci) \ E(Cj) = feig \ fej�1g, and for each i, 1 � i < p� 1, if ei = ei+1,
then jV (Ci+1)j = 3.

In Figure 1, an example of a path of chordless cycles is given with six chordless
cycles.

C1 C2 C3 C4 C5 C6

e1 = e2 = e3 e4 e5

Figure 1: A path of chordless cycles (C;S) with C = (C1;:::; C6), S = (e1;:::; e5).
V (C1) = f1; 2; 3; 4; 16; 17; 18g, V (C2) = f4; 16; 19g, V (C3) = f4; 16; 20g, V (C4) =
f4; 5; 6; 13; 14; 15; 16g, V (C5) = f6; 7; 8; 13g and V (C6) = f8; 9; 10; 11; 12; 13g. Further-
more, e1 = e2 = e3 = f4; 16g, e4 = f6; 13g and e5 = f8; 13g.

Definition 3.2. Let G be a biconnected graph, (C;S) a path of chordless cycles, where

C = (C1;:::; Cp), S = (e1;:::; ep�1), p � 1. (C;S) is a path of chordless cycles for G if

V (G) =
Sp
i=1 V (Ci) and E(G) =

Sp
i=1 E(Ci).

Lemma 3.2. Let G be a biconnected partial two-path, C a cycle of �G, and PD =
(V1;:::; Vt) a path decomposition of G of width two. Suppose C occurs in (Vj;:::; Vj0),
and fx; yg is an edge of C occurring in Vj, fx

0; y0g an edge occurring in Vj0. The

following holds.

1. If jV (C)j > 3, then fx; yg 6= fx0; y0g.

2. For each i, j � i � j0, jVi \ V (C)j � 2 and for each edge e 2 E(C) there is an i,
j � i � j0, such that e � Vi and jVi \ V (C)j = 3.

Proof. 1. Suppose x = x0, y = y0. Because jV (C)j > 3, there is an edge fv; wg
in C with fv; wg \ fx; yg = ;. Because of the de�nition of path decomposition and
Lemma 2.3, there must be a Vi, j � i � j0, with v; w; x; y 2 Vi, hence jVij � 4.
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2. Suppose w.l.o.g. that x and x0 are connected by a path in C which does not contain
y or y0. Denote this path by P1. Denote the path between y and y0 not containing x or
x0 by P2. See also Figure 2. According to Lemma 2.3, each Vi, j � i � j0, contains a
vertex of P1. Analogously, each Vi contains a vertex of P2. Since P1 and P2 are vertex
disjoint, jVi \ V (C)j � 2 for each i, j � i � j0. Suppose P1 contains at least one edge.
Let e be an edge of P1. Let Vl, j � l � j0 such that e � Vl. This Vl also contains a
vertex of P2, hence there is an i such that e � Vi and jVi\V (C)j � 3 for each edge e on
P1 and P2. Now consider edge fx; yg � Vj . If there is another vertex of C in Vj , then
the lemma holds for fx; yg. If Vj \ V (C) = fx; yg, then there must be an i, j � i � j0,
such that fx; yg � Vi and Vi contains a neighbor of x or y. Hence jVi \ V (C)j = 3.
Similar for edge fx0; y0g. 2

x

y

x0

y0

P1

P2

e

Vl Vj0Vj Vi

Figure 2: The occurrence of chordless cycle C as in part 2 of the proof of Lemma 3.2.

Let G be a biconnected partial two-path. Lemma 3.2 implies that the occurrences
of two chordless cycles of �G which do not have a vertex in common can not overlap in
any path decomposition of width two of G. If two chordless cycles have one edge in
common, then the occurrences of these two cycles can only overlap in their common
edge, as we show in the next lemma.

Lemma 3.3. Let G be a biconnected partial two-path with cycles C and C 0 which

have one edge fx; yg and no other vertices in common. Let PD = (V1;:::; Vt) be a path

decomposition of G of pathwidth two. Suppose C occurs in (Vj ;:::; Vj0), C
0 occurs in

(Vl;:::; Vl0). Then the following holds.

1. j � l and j0 � l0 or j � l and j0 � l0. If j = l and j0 = l0, then jV (C)j =
jV (C 0)j = 3.

2. If j � l, j0 � l0, then j0 � l, fx; yg is an end edge of C and of C 0 and it occurs in

Vj0 and in Vl, and there is an i, l � i < j0, such that V (C)\(Vi+1[:::[Vt) = fx; yg
and V (C 0) \ (V1 [::: [ Vi) = fx; yg (or possibly vice versa, if j = l and j0 = l0),
so fx; yg is a middle edge of C [ C 0.

Proof. 1. Suppose j < l and j0 > l0, then jV (C 0)j = 3, say V (C 0) = fx; y; zg, since
each of Vj;:::; Vj0 contains two vertices of C. Let j < i < j0, such that Vi = fx; y; zg.
Suppose fa; bg; fc; dg 2 E(C) and fa; bg � Vj, fc; dg � Vj0 , such that there is a path
from a to c not containing b or d. Let P1 denote this path, and P2 denote the path
from b to d not containing a and c. fa; bg 6= fx; yg and fc; dg 6= fx; yg, so suppose
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fx; yg 2 E(P1). Vi contains a vertex of P2, which is not x, y or z. Hence jVij � 4,
which is a contradiction. So either j � l and j0 � l0 or j � l and j0 � l0. If j = l and
j0 = l0, then jV (C)j = jV (C 0)j = 3, since each Vi, j � i � j0, contains two vertices of C
and two vertices of C 0.

2. It is clear that j0 � l, since fx; yg is an edge of both C and C 0. There are nodes Vm
and Vm0 such that Vm = fx; y; zg for some z 2 V (C) with z 6= x; y, and Vm0 = fx; y; z0g
for some z0 2 V (C 0) with z0 6= x; y. Note that l � m;m0 � j0. Suppose �rst that
l � m < m0 � j0. We show that all vertices of V (C) � fx; yg occur only on the left
side of Vm0 . Suppose there is a vertex v 2 V (C)�fx; yg which occurs on the right side
of Vm0 . There is a path from v to z in C which does not contain x and y. Node Vm0

contains a vertex of this path. Hence jVm0 j � 4. This is a contradiction. Since each Vi,
m � i � m0, contains x and y, this means that there is an i, m � i < m0, such that all
vertices of V (C) � fx; yg occur only in (V1;:::; Vi), and the vertices of V (C 0) � fx; yg
occur only in (Vi+1;:::; Vt). Furthermore, since i < j0 and Vj0 contains an edge of C, Vj0

contains x and y. Similarly, Vl contains x and y.
Now suppose l � m0 < m � j0. In the same way as before, we can show that

the vertices of V (C) � fx; yg occur only on the right side of Vm0 , and the vertices of
V (C 0) � fx; yg occur only on the left side of Vm. Hence there is an i, m0 � i < m,
such that all vertices of V (C) � fx; yg occur only in (Vi+1;:::; Vt) and all vertices of
V (C 0) � fx; yg occur only in (V1;:::; Vi). Furthermore, Vl is the leftmost node which
contains an edge of C 0, which means that j = l. In the same way, we can prove that
j0 = l0, and Vl and Vj0 both contain x and y. 2

Note that in part 2 of the lemma, the part (Vj;:::; Vi) of PD restricted to V (C) is a
path decomposition of C, and (Vi+1;:::; Vl) restricted to V (C 0) is a path decomposition
of C 0. We say that C occurs on the left side of C 0. In other words, Lemma 3.3
says that, if there are two cycles which have one edge in common, then in each path
decomposition, one occurs on the left side of the other one.

Lemma 3.4. Let G be a biconnected partial two-path, C a chordless cycle of �G which

has edges e1 and e2, e1 6= e2, in common with chordless cycles C1 and C2, respectively.

If C1 and C2 have a vertex v in common, then v 2 e1 \ e2.

Proof. Suppose C1 and C2 have vertex v in common, and v =2 e1\ e2. It can be shown
that for each pair of vertices u; u0 2 e1 [ e2 [ fvg, u 6= u0, there are three or more
disjoint paths between u and u0 in G. Hence there is an edge between u and u0 in �G,
so the vertices of e1 [ e2 [fvg form a clique in �G. But je1 [ e2 [fvgj � 4, which means
that, according to Lemma 2.4, �G has pathwidth three or more. 2

Lemma 3.5. Let G be a biconnected partial two-path, C a chordless cycle in �G. If

C has two distinct edges in common with two other chordless cycles C1 and C2 of �G,
then C1 and C2 can not both occur on the same side of the occurrence of C.

Proof. Let PD = (V1;:::; Vt) be a path decomposition of width two of G, suppose
C occurs in (Vj ;:::; Vj0). Suppose e1 = fx1; y1g and e2 = fx2; y2g are the edges that

9



C has in common with C1 and C2, respectively, and C1 and C2 occur on the left side
of C. Then e1 and e2 occur in Vj. e1 and e2 must have a common vertex, otherwise
jVj j � 4, say y1 = x2. All vertices of C1 and C2 other than x1, x2 and y2 occur only on
the left side of Vj , since Vj contains x1, x2 and y2 (see proof of Lemma 3.3). Suppose
the leftmost edge of C1 occurs in Vl, the leftmost edge of C2 occurs in Vl0 , and l � l0.
Then each Vi, l

0 � i � j, contains at least two vertices of C1 and there is a Vi which
contains three vertices of C2. Because of Lemma 3.4, C1 and C2 have only one vertex
in common, which means that jVij � 4. 2

The following corollary follows directly from Lemma 3.5.

Corollary 3.1. Let G be a biconnected partial two-path, C a chordless cycle in �G. C
has at most two edges in common with two other chordless cycles.

We have now shown that the chordless cycles of the cell completion of a biconnected
partial two-path form a sequence, such that each chordless cycle has exactly one edge
in common with the following chordless cycle in the sequence.

Lemma 3.6. Let G be a partial two-path, let e 2 E(G) such that e is an edge of three

or more chordless cycles of �G. There are at most two chordless cycles which contain

e and have four or more vertices, and in each path decomposition of width two of �G,
these chordless cycles occur leftmost or rightmost of all chordless cycles containing e.

Proof. Suppose e is an edge of s � 3 chordless cycles Ci, 3 � i � s. Let PD be a
path decomposition of width two of G, and suppose w.l.o.g. that Ci occurs on the left
side of Cj for all i and j with i < j. Since C1 and Cs have x and y in common, x and
y occur in the �rst and the last Vj containing an edge of all Ci with 1 < i < s. Hence
jV (Ci)j = 3 for all i, 1 < i < s, so only C1 and Cs may have four or more vertices. 2

We can now prove the main result of this section.

Theorem 3.1. Let G be a biconnected graph. G is a partial two-path if and only if

there is a path of chordless cycles for �G.

Proof. Suppose (C;S) is a path of chordless cycles for �G, with C = (C1;:::; Cp)
S = (e1;:::; ep�1), p � 1. Then we can make a path decomposition of width two of G
as follows. Let e0 be an arbitrary edge in C1 with e0 6= e1, and let ep be an arbitrary
edge in Cp with ep 6= ep�1. For each i, 1 � i � s, we make a path decomposition PDi

of Ci as follows. If jV (Ci)j = 3, let PDi = (V (Ci)). Otherwise, do the following. Let
ei�1 = fx; yg and ei = fx

0; y0g such that there is a path from x to x0 which does not
contain y or y0, Let P1 = (u1;:::; uq) denote the path in Ci from x to x0 which does
not contain y or y0, and let P2 = (v1;:::; vr) denote the path in Ci from y to y0 not
containing x or x0. For each j, 1 � j < q, let Vj = fuj; uj+1; v1g, and for each j,
1 � j < r, let Vj+q�1 = fuq; vj ; vj+1g. Let PDi = (V1;:::; Vq+r�2). Note that ei�1 � V1
and ei � Vq+r�2. PD = PD1++PD2++ � � � ++PDp is a path decomposition of width
two of G.

10



In Figure 3, an example of a path decomposition of width two is given for the graph
of Figure 1.

If G is a partial two-path, then Lemmas 3.1 up to 3.6 show that �G can be written
as a path of chordless cycles. 2

2
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Figure 3: A path decomposition of width two for the graph of Figure 1 and its corre-
sponding interval completion. The path decomposition is constructed as in the proof
of Theorem 3.1, with e0 = f1; 18g and ep = f9; 10g. The dashed edges in the graph are
the edges that are added for the interval completion.

In the same way as in [BK93], we can check whether �G is a tree of chordless cycles,
and make a list of all chordless cycles in linear time. After that, we can check in linear
time whether the tree of chordless cycles is a path of chordless cycles.

4 Intervalizing Biconnected Three-Colored Graphs

In this section, we give an algorithm for determining whether there is an intervalization
of a given biconnected, three-colored graph. The main algorithm has the following form:
�rst, a path of chordless cycles for �G is constructed if it exists (see Section 3). Then
this path of chordless cycles is used to check if there is a proper path decomposition of
G.

The following lemma follows directly from the lemmas and theorem of Section 3.

Lemma 4.1. Let G be a biconnected partial two-path, (C;S) a path of chordless

cycles of �G with C = (C1;:::; Cp) and S = (e1;:::; ep�1). There is a nice proper path

decomposition of �G if and only if the following holds:
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1. there is a proper path decomposition of C1 with edge e1 in the rightmost node,

2. there is a proper path decomposition of Cp with edge ep�1 in the leftmost node,

and

3. for all i, 1 < i < p, there is a proper path decomposition of Ci with edge ei�1 in

the leftmost node and edge ei in the rightmost node.

Hence to check whether there is a proper path decomposition of G, the algorithm
can check for each chordless cycle Ci, 1 � i � p, whether there is a proper path
decomposition of Ci with the appropriate edges in the leftmost and the rightmost node.
The proper path decompositions of the chordless cycles can then be concatenated in
the order in which they occur in the path of chordless cycles of G, and this gives a
proper path decomposition of G.

Hence we concentrate now on checking whether there exists a proper path de-
composition of a chordless cycle C. Let C be a properly three-colored chordless
cycle. We denote the vertices and edges of C by V (C) = fv0; v1;:::; vn�1g, and
E(C) = f fvi; vi+1g j 0 � i < n g (for each i, let vi denote vimodn). For each j
and l, 1 � l < n, let I(j; l) denote the set of vertices of V (C) between vj and vj+l,
when going from vj to vj+l in positive direction, i.e.,

I(j; l) = f vi j j � i � j + l g:

Furthermore, let C(j; l) denote the cycle with

V (C(j; l)) = I(j; l)

E(C(j; l)) = ffvj; vj+lgg [ f fvi; vi+1g j vi 2 I(j; l) � fvj+lg g

Note that C(j; n� 1) = C for all j. The following lemma is used to obtain a dynamic
programming algorithm for our problem.

Lemma 4.2. Let C be a properly three-colored cycle. Let i, j and l be integers,

2 � l < n. There is a proper path decomposition PD = (V1;:::; Vt) of C(j; l) such that

fvi; vi+1g � V1 and fvj; vj+lg � Vt if and only if c(vj) 6= c(vj+l) and either one of the

following conditions holds:

1. jV (C)j = 3,

2. there is a proper path decomposition PD0 = (V 0
1 ;:::; V

0
r ) of C(j; l � 1) such that

fvi; vi+1g � V 0
1 and fvj; vj+l�1g � V 0

r , or

3. there is a proper path decomposition PD00 = (V 00
1 ;:::; V

00
s ) of C(j + 1; l � 1) such

that fvi; vi+1g � V 00
1 and fvj+1; vj+lg � V 00

s .

Proof. For the `if' part, suppose c(vj) 6= c(vj+l). If jV (C)j = 3, then C(j; l) = C,
and hence (V (C)) is a proper path decomposition of C, since C is properly colored.
Suppose there is a proper path decomposition PD0 = (V 0

1 ;:::; V
0
r ) of C(j; l � 1) with
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fvi; vi+1g � V 0
1 and fvj; vj+l�1g � V 0

r . Then PD = PD0++(fvj ; vj+l�1; vj+lg) is a
proper path decomposition of C(j; l) which satis�es the appropriate conditions. The
other case is similar.

For the `only if' part, suppose there is a proper path decomposition PD = (V1;:::; Vt)
of C such that fvi; vi+1g � V1 and fvj; vj+lg � Vt. Clearly, c(vj) 6= c(vj+l), since
vj ; vj+l 2 Vt. Suppose jV (C)j > 3. If fvi; vi+1g = fvj ; vj+lg, then jC(j; l)j = jV (C)j >
3, and Lemma 3.2 shows that the leftmost and the rightmost node of PD can not
contain the same edge, contradiction. So fvi; vi+1g 6= fvj; vj+lg. Let Vm and Vm0 ,
1 � m;m0 � t, be the rightmost nodes containing edge fvj+1; vjg and fvj+l�1; vj+lg,
respectively.

First suppose m0 < m. Then Vm = fvj+1; vj ; vj+lg. Furthermore, for each k,
m < k � t, Vk = fvj; vj+lg, since if there is a Vk, m < k � t, such that v 2 Vk for some
v 2 V (C)� fvj; vj+lg, then v 2 Vm, which gives a contradiction. Note that vj =2 Vm0 ,
since Vm0 contains vj+l, vj+l�1, and a vertex of the path from vj+1 to vj+l�1 which
does not contain vj. Hence vj =2 V1. Let PD

0 be the path decomposition obtained from
(V1;:::; Vm) by deleting vj from all nodes containing it. Then PD0 is a proper path
decomposition of C(j +1; l� 1) with edge fvj+1; vj+lg in the rightmost node and edge
fvi; vi+1g in the leftmost node.

For the case thatm < m0, a proper path decomposition for C(j; l�1) with fvi; vi+1g
in the leftmost node and fvj; vj+l�1g in the rightmost node can be constructed in the
same way.

If m = m0, then vj+1 = vj+l�1, hence jV (C(j; l))j = 3. Since fvi; vi+1g 6= fvj; vj+lg,
this means that fvi; vi+1g = fvj; vj+1g or fvi; vi+1g = fvj+l�1; vj+lg. In the �rst
case, (fvi; vi+1g) is a proper path decomposition of C(j; l � 1) with edge fvi; vi+1g
in the leftmost node and edge fvj; vj+l�1g in the rightmost node. In the latter case,
(fvi; vi+1g) is a proper path decomposition of C(j+1; l� 1) with edge fvi; vi+1g in the
leftmost node and edge fvj+1; vj+lg in the rightmost node. 2

Let C be a chordless cycle of a properly three-colored path of chordless cycles.
The set of edges of which one must occur in the leftmost end node of the proper path
decomposition of C is called the set of starting edges, and is denoted by ES. In the
same way, the set of ending edges EE is de�ned to be the set of edges of which one
must occur in the rightmost end node of the proper path decomposition of Ci.

We de�ne PPW2 as follows. Let ES � E(C) be a set of starting edges, and let j
and l be integers, 1 � l < n.

PPW2(C;ES; j; l) =8><
>:

true if 9PD=(V1;:::;Vt) PD is a proper path decomposition

of C(j; l) ^ vj; vj+l 2 Vt ^ 9e2ES
e � V1

false otherwise

There is a proper path decomposition of C with an edge from ES in the leftmost
node and an edge from EE in the rightmost node if and only if PPW2(C;ES; j; n� 1)
holds for some j for which fvj�1; vjg 2 EE.
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If jV (C)j = 3, then there is a proper path decomposition with an edge from ES
in the leftmost node and an edge from EE in the rightmost node if and only if C is
properly colored. This path decomposition can consist of one node, which contains
V (C).

Suppose jV (C)j > 3. We use Lemma 4.2 to describe PPW2 recursively. LetES �
E(C), and let j and l be integers, 1 � l < n.

PPW2(C;ES; j; l) =8><
>:

fvj; vj+lg 2 ES if l = 1
c(vj) 6= c(vj+l) ^
(PPW2(C;ES; j + 1; l � 1) _ PPW2(C;ES; j; l � 1) ) if l > 1

It can be seen from the de�nition of PPW2 that PPW2(C;ES; j; 1) holds if and only
if fvj; vj+1g 2 ES.

For a given properly three-colored cycle C, jV (C)j = n, and set of starting edges
ES � E(C), and ending edges EE � E(C), we can compute whether there is a proper
path decomposition of C with these starting and ending edges in O(n2) time using
dynamic programming with the following procedure.

Algorithm 1

Procedure COMP PPW2(n;C; c; ES; EE)
Input:

Integer n � 3
Cycle C with n vertices v0;:::; vn�1, edges f fvi; vi+1g j 0 � i < n g
Proper three-coloring c : V ! f1; 2; 3g
Set of starting edges ES � E(C)
Set of ending edges EE � E(C)

Output: 90�j<n fvj�1; vjg 2 EE ^ PPW2(C;ES; j; n� 1)
1. if n = 3 return true
2. for j  0 to n� 1
3. do P (j; 1) false
4. for all fvj; vj+1g 2 ES
5. do P (j; 1) true
6. (� 80�j<n P (j; 1) � PPW2(C;ES; j; 1) �)
7. for l 2 to n� 1
8. do for j  0 to n� 1
9. do P (j; l) (c(vj) 6= c(vj+l)) ^ (P ((j + 1) mod n; l� 1)_ P (j; l � 1))
10. (� 80�j<n P (j; n� 1) � PPW2(C;ES; j; n� 1) �)
11. for all fvj; vj�1g 2 EE
12. do if P (j; n� 1)
13. then return true
14. return false

Let G be a three-colored biconnected partial two-path, (C;S) a path of chordless
cycles for G with C = (C1;:::; Cp). There is a proper path decomposition of G if and
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only if for each i, 1 � i � p, there is a proper path decomposition of Ci with set of
starting edges fei�1g if i > 1, E(Ci) otherwise, and set of ending edges feig if i < p,
E(Ci) otherwise.

For a given three-colored biconnected graph G, the algorithm is now as follows.

Algorithm 2

1. Find the cell completion �G of G and check if �G is a tree of chordless cycles, and is
properly three-colored. If not, stop, the answer is no.

2. Check if there is a path of chordless cycles for �G. If so, construct such a path
(C;S) with C = (C1;:::; Cp) and S = (e1;:::; ep�1). If not, stop, the answer is no.

3. For each chordless cycle Ci in the path, let m = jV (Ci)j, let ES = fei�1g if i > 1,
otherwise ES = E(Ci), and let EE = fei+1g if i < p, EE = E(Ci) otherwise.
Compute COMP PPW2(m;Ci; c; ES; EE). If the computed value is true for each
Ci, the answer is yes, otherwise it is no.

Step 1 and 2 can be made to run in O(n) time (see Section 3 and [BK93]). Step 3
runs in O(n2) time (n = jV (G)j) if procedure COMP PPW2 is used. Hence, we have
proved our main result here:

Theorem 4.1. There exists an O(n2) time algorithm, that solves ICG for biconnected

three-colored graphs.

The algorithm can be made constructive, in the sense that if there exists an inter-
valization, then the algorithm outputs one, as follows. In procedure COMP PPW2,
construct an array PP of pointers, such that for each j and l, 0 � j < n and 1 � l < n,
PP (j; l) contains the nil pointer if l = 1 or if P (j; l) is false. If P (j; l) is true and
l > 1, then let PP (j; l) contain a pointer to PP (j; l � 1) if P (j; l � 1) is true, and
to PP ((j � 1) mod n; l � 1) otherwise. The computation of PP can be done during
the computation of P . Afterwards, if there is an intervalization, then one can be con-
structed as follows. Start with a j, 0 � j < n for which fvj; vj�1g 2 EE and P (j; n�1)
is true. Then follow the pointers from PP (j; n � 1) until the nil pointer is reached,
and add edge fvi; vi+lg for each i and l for which PP (i; l) is passed. Note that the
nil pointer is reached if the previous pointer pointed to PP (i; 1) for some i such that
fvi; vi+1g 2 ES.

5 Intervalizing Four-Colored Graphs

For some time, it has been an open problem whether there exist polynomial time
algorithms for ICG for some constant number of colors, k � 4. Older results showed
�xed parameter intractability [FHW93, BFH94], but did not resolve the question. Our
NP-completeness result resolves the open problem in a negative way (assuming P 6=
NP).

Theorem 5.1. ICG is NP-complete for four-colored graphs.
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Proof. Clearly, ICG 2 NP.
To prove NP-hardness, we transform from three-partition, which is strongly NP-

complete [GJ79].

Three-Partition

Instance: Integers m 2 N and Q 2 N, a sequence s1;:::; s3m 2 N such
that

P3m
i=1 si = mQ, and 81�i�3m

1
4Q < si <

1
2Q.

Question: Can the set f1;:::; 3mg be partitioned into m disjoint sets
S1;:::; Sm such that 81�j�m

P
i2Sj

si = Q?

Suppose input m;Q; s1; s2;:::; s3m 2 N is given. Now, we de�ne a graph G = (V;E),
which consists of the following parts (see Figure 4).

d1;1 d1;2 d1;3 d1;24Q�1 d1;24Q d2;1 dm;1 dm;24Qdm�1;24Q

= a1

a2

a3

a4
= b3

b2

b4

b1

c1;3
=

c1;2

cm�1;3 cm�1;1

cm�1;2

f

=
c1;1

= =

e1;1 e1;2 e1;24s1�2

e2;1 e2;2 e2;24s2�2

e3m;1 e3m;2 e3m;24s3m�2vertex of color 1

vertex of color 2

vertex of color 3

vertex of color 4

Figure 4: The constructed graph G = (V;E).

Start clique. Take vertices A = fa1; a2; a3; a4g. Color vertex ai with color i (i =
1; 2; 3; 4). Add edges between every two vertices in A.

End clique. Take vertices B = fb1; b2; b3; b4g. Color vertex bi with color i (i =
1; 2; 3; 4). Add edges between every two vertices in B.

Middle cliques. Take vertices C = fci;j j 1 � i � m � 1; 1 � j � 3g. Color each
vertex ci;j 2 C with color j. Make each set Ci = fci;1; ci;2; ci;3g into a clique.

Tracks. Take vertices D = fdi;j j 1 � i � m; 1 � j � 24Qg. Color each vertex
di;j 2 D with color 1 if j mod 3 = 1, with 2 if j mod 3 = 2 and with 3 if j mod 3 = 0.
Identify vertex a1 with d1;1, vertex b3 with dm;24Q, and, for all i, 1 � i � m�1, identify
di;24Q with ci;3, and di+1;1 with ci;1. These track vertices form m paths: take edges
fdi;j; di;j+1g for all i, j, 1 � i � m, 1 � j � 24Q� 1.
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Number representing paths. Take vertices E = fel;j j 1 � l � 3m; 1 � j � 24sl�
2g. Color each vertex el;j 2 E with color 2 if j mod 3 = 1, with color 3 if j mod 3 = 2,
and with color 1 if j mod 3 = 0. For each l, the vertices El = fel;j j 1 � j � 24sl � 2g
form a path: add edges fel;j; el;j+1g for all l, j, 1 � l � 3m, 1 � j � 24sl � 3.

Attachment vertex. Take one vertex f . Color f with color 4. Take edges ff; a1g
ff; b3g, and for all l, 1 � l � 3m, edge ff; el;1g.

The four-colored graph, resulting from this construction, is the graph G = (V;E).
Note that the transformation can be done in polynomial time in Q and m.

Claim 5.1. There exists a partition of the set f1;:::; 3mg into sets S1;:::; Sm such thatP
i2Sj

si = Q for each j if and only if there is an intervalization of G.

Proof. Suppose that G is a subgraph of a properly colored interval graph. So, we
have a proper path decomposition (V1;:::; Vr) of G. We may assume that there are no
Vi; Vi+1 with Vi � Vi+1 or Vi+1 � Vi. (Otherwise, we may omit the smaller of these two
sets from the path decomposition and still have a path decomposition of G.)

Note that, by the clique containment lemma (Lemma 2.4), there exist i0 with
Vi0 = A, and i1 with Vi1 = B. Without loss of generality suppose i0 < i1. If i0 6= 1,
then there exists a v 2 Vi0�1 with v 62 A. Note that such a vertex v has a path to a
vertex in B that avoids A. It follows that Vi0 must contain a vertex from this path, but
this will yield a color con
ict with a vertex in A, contradiction. So, i0 = 1. A similar
argument shows that i1 = r.

Also, from the clique containment lemma it follows that for each i, 1 � i � m� 1,
there is a ji, 2 � ji � r � 1 with Ci � Vji . We must have j1 < j2 < j3 < � � � < jm�1,
otherwise a color con
ict will arise between a track vertex and a vertex in a set Ci.
Write j0 = 1, jm = r. As there is a path from d1;1 to dm;24Q in G that does not contain
vertices with color 4 or vertices in E, it follows that each set Vi contains at least one
vertex in C [D with color 1, 2 or 3.

For each i, 1 � i � m, call the interval [ji�1 + 1; ji � 1] the ith valley. Each vertex
di;j must be in one or more successive nodes V� with � in the ith valley. It can not
be in another valley, since that gives a color con
ict. Note that there are exactly 8Q
vertices di;j (for �xed i) with color 2. For a two-colored vertex di;j, we call the interval
f� j di;j 2 V�g a 2-range. Note that all 2-ranges are disjoint, otherwise we have a color
con
ict. So, in each valley, we have exactly 8Q 2-ranges.

For each l, 1 � l � 3m, look at the vertices El. Note that all vertices in El must be
contained in nodes V� with all �'s in the same valley. Otherwise, the path induced by
El will cross a middle clique, and we have a color con
ict between a vertex in El and a
vertex in C. Write Si = fl j vertices in El are in sets V� with � in the ith valleyg. We
show that S1;:::; Sm is a partition of f1;:::; 3mg such that for each j,

P
i2Sj

si = Q.
For each edge fel;j; el;j+1g with el;j of color 3 (and hence, el;j+1 has color 1), there

must be a node � with fel;j; el;j+1g � V�. � must be in a 2-range, as otherwise V�
contains a one-colored or three-colored vertex from C[D, and we have a color con
ict.
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If there exists an � with fel;j; el;j+1; di;j0g � V�, with di;j0 of color 2, then we say that
the 2-range of di;j0 contains the 1-3-E-edge fel;j; el;j+1g.

Claim 5.2. No 2-range contains two or more 1-3-E-edges.

Proof. Suppose fel1;j1 ; el1;j1+1g and fel2;j2 ; el2;j2+1g are distinct 1-3-E-edges, and
there is a di;j0 such that fel1;j1 ; el1;j1+1; di;j0g � V�, fel2;j2 ; el2 ;j2+1; di;j0g � V�. Suppose
w.l.o.g. that � < �. Note that both v = el1;j1 and w = el1;j1+1 are adjacent to a
two-colored vertex. Let [
; �] be the 2-range of di;j0 . Note that 
 � � < � � �. If
V
�1 contains a one-colored vertex from C [D, then consider the 1-colored vertex w.
It can not belong to V
�1 and it cannot belong to V�. So, if w 2 V�, then 
 � � � �.
Hence, there cannot be a set V� that contains w and its two-colored neighbor el1;j1+2,
contradiction. If V
�1 does not contain a one-colored vertex fromC[D, then it contains
a three-colored vertex from C [D, and by considering v and using a similar argument,
also a contradiction arises. 2

Let 1 � i � m. Suppose Si = fl1; l2;:::; ltg. Note that El1 [ � � � [ Elt induces
8sl1 � 1+ 8sl2 � 1+ � � �+8slt � 1 1-3-E-edges. As there are 8Q 2-ranges in a valley, we
must have

8(sl1 + sl2 + � � � slt)� t � 8Q

By noting that each sl � Q=4 + 1=4, it follows that 8(Q=4 + 1=4)t� t � 8Q, so t � 3,
and that hence also, by integrality,

8(sl1 + sl2 + � � � slt) � 8Q

So, we have a partition of f1;:::; 3mg into sets S1;:::; Sm, such that for all j; 1 � j � m,P
i2Sj

si � Q. As
Pm

j=1

P
i2Sj

si = mQ, it follows that for all j, 1 � j � m,
P

i2Sj
si =

Q.

Now, suppose S1; S2;:::; Sm is a partition of f1;:::; 3mg, such that for all j, 1 �
j � m,

P
i2Sj

si = Q. We will give a path decomposition (V1;:::; Vr) of G = (V;E),
such that no Vi contains two vertices of the same color. We leave most of the easy
veri�cation that the given path decomposition ful�lls the requirements to the reader.

Take t = 48Q, r = mt+ 1.
Take V1 = A, Vr = B.
For each vertex ci;j 2 C, put ci;j in set Vti+1.
For each vertex di;j 2 D, put di;j in sets Vt(i�1)+2j�1, Vt(i�1)+2j , and Vt(i�1)+2j+1.

(Identi�ed vertices are just put in every set, indicated by their `di�erent names'; one
easily observes that these are consecutive sets.)

For each i, 1 � i � m, suppose Si = fl1; l2; l3g. Put vertex el1;1 in set Vt(i�1)+2.
For all j, 2 � j � 24sl1 � 2, put vertex el1;j in sets Vt(i�1)+2j�2, Vt(i�1)+2j�1,
Vt(i�1)+2j . For all j, 1 � j � 24sl2 � 2, put vertex el2;j in sets Vt(i�1)+48sl1+2j�2,
Vt(i�1)+48sl1+2j�1, Vt(i�1)+48sl1+2j. For all j, 1 � j � 24sl3 � 2, put vertex el3;j in sets
Vt(i�1)+48sl1+48sl2+2j�2

, Vt(i�1)+48sl1+48sl2+2j�1
, Vt(i�1)+48sl1+48sl2+2j

.
Finally, put f in all sets V2;:::; Vr�1.
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A straightforward, but somewhat tedious veri�cation shows that the resulting path
decomposition is indeed a path decomposition of G, and that no set Vi contains two
di�erent vertices with the same color.

2

As three-partition is strongly NP-complete and our transformation is polynomial in Q
and m, the claimed theorem now follows. 2

Note that we even proved a slightly stronger result.

Corollary 5.1. ICG is NP-complete for four-colored graphs G, with the property that
there is one color that is only given to three vertices of G.

Note furthermore that the constructed graph is connected, hence ICG is NP-
complete for connected four-colored graphs. With this result, we can prove the fol-
lowing theorem.

Theorem 5.2. ICG is NP-complete for biconnected �ve-colored graphs.

Proof. Clearly, ICG for biconnected �ve-colored graphs is in NP.
To prove NP-hardness, we transform from ICG for connected four-colored graphs.

Let G = (V;E) be a connected graph, c : V ! f1; 2; 3; 4g a four-coloring. Then we
construct a graph G0 = (V 0; E0) with �ve-coloring c0 : V 0 ! f1; 2; 3; 4; 5g as follows.
Let V 0 = V [fxg, where x is a new vertex which is not in V , and let E0 = E[f fv; xg j
v 2 V g. Furthermore, for all v 2 V , let c0(v) = c(v), and let c0(x) = 5. Note that G0 is
biconnected, and that the transformation can be done in polynomial time.

It is easy to show that there is a proper path decomposition of G if and only if
there is a proper path decomposition of G0. 2

6 Conclusions and Remarks

In this paper, we have given an O(n2) time algorithm to determine whether we can add
edges to a given biconnected three-colored graph such that it becomes a properly colored
interval graph. The algorithm can be modi�ed such that it outputs an intervalization,
if existing, and still uses quadratic time.

To get a faster algorithm for the problem considered in this paper might well be a
hard problem. It seems that even the simplest cases, e.g., when G is a simple cycle,
need O(n2) time to resolve, and might well already capture the main di�culties for
speed-up.

We have used the algorithm for biconnected three-colored graphs to obtain an
O(n2) algorithm for general three-colored graphs ([BdF95]). This algorithm consists of
an extensive case analysis. In each of the cases, a modi�ed version of our algorithm for
biconnected graphs is used. It seems that if a faster algorithm for ICG on biconnected
three-colored graphs is found, then this algorithm can be used to construct an equally
fast algorithm for general three-colored graphs.
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We have shown that ICG is NP-complete for four or more colors. We feel however
that the graphs, arising in the reduction of this proof, will not be typical for the type
of colored graphs, arising in the sequence reconstruction application. It may well be
that special cases of ICG, which capture characteristics of the application data, have
e�cient algorithms. Further research could perhaps give new meaningful results here.

The problem Intervalizing Sandwich Graphs is a generalization of ICG. We
surmise that our algorithm for ICG can be modi�ed such that it solves the problem of
intervalizing sandwich graphs with clique size at most three in O(n2) time, where n is
the number of vertices of the sandwich graph.

A special case of Unit-Intervalizing Sandwich Graphs (UISG) is the problem
Unit-Intervalizing Colored Graph (USCG), which asks whether there exists a
supergraphG0 of a given graph G, such that G0 is a unit interval graph, and is properly
colored by a given coloring c for G. The O(nk�1) algorithm of [KS93, KST94] for UISG
with maximum clique size k can also be used for UICG with k colors. For k = 3, this
gives an O(n2) time algorithm. We expect that our algorithm for ICG can be used to
obtain a linear time algorithm for this problem with k = 3.
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