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Abstract

Although the usefulness of belief networks
for reasoning under uncertainty is widely
accepted, obtaining numerical probabilities
that they require is still perceived a major
obstacle. Often not enough statistical data
is available to allow for reliable probability
estimation. Available information may not
be directly amenable for encoding in the net-
work. Finally, domain experts may be reluc-
tant to provide numerical probabilities. In
this paper, we propose a method for elici-
tation of probabilities from a domain expert
that is non-invasive and accommodates what-
ever probabilistic information the expert is
willing to state. We express all available in-
formation, whether qualitative or quantita-
tive in nature, in a canonical form consisting
of (in)equalities expressing constraints on the
hyperspace of possible joint probability dis-
tributions. We then use this canonical form
to derive second-order probability distribu-
tions over the desired probabilities.

1 INTRODUCTION

As the increasing number of successful applications
demonstrate, belief networks [Pearl, 1988] have by now
established their position of valuable representations
of uncertainty in Artificial Intelligence (AI) research.
A belief network (also referred to as probabilistic net-
work or causal network) consists of a qualitative part,
encoding a domain’s variables and the probabilistic in-
fluences among them in a directed graph, and a quan-
titative part, encoding probabilities over these vari-
ables. Building the qualitative part of a belief network
has parallels to other AI approaches and, although it
may require significant effort, generally is not consid-
ered the hardest part in belief network construction.
In most cases this task is dominated by the task of
acquiring the quantification of the network.

Quantifying a belief network amounts to assessing
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probability distributions for each of the network’s vari-
ables conditional on their direct predecessors in the
directed graph. In most domains, at least some infor-
mation is available to this end, be it from literature or
from domain experts. However, this information often
is not directly amenable to encoding in a belief net-
work. For example, available information may not be
numerical in nature. An expert may be certain of the
fact that some values of a statistical variable A make
some values of a variable B more likely, and perhaps
have an idea of the lower and upper bounds on the
numerical strength of this influence, yet may not be
able to give exact numbers. Also, available probabil-
ities may not match the probabilities to be assessed.
Medical literature, for example, often reports proba-
bilities of symptoms given diseases but usually not the
probabilities of symptoms given no diseases and not
necessarily the specific probabilities required for the
intermediate disease states modeled in the network.
Moreover, experts may feel more confident providing
estimates of conditional probabilities in the diagnostic
direction than in the causal direction of probabilistic
influence.

Probabilistic information is available in many different
shapes. It ranges from numerical point and interval
probabilities, through order of magnitude estimates
and signs of influences and synergies, to purely qualita-
tive statements concerning independence of variables.
This range has inspired a variety of schemes for rea-
soning under uncertainty. Some of these schemes build
on quantitative information such as belief networks
[Pearl, 1988] and undirected graphical models [Whit-
taker, 1990]; others build on partial numerical specifi-
cations, allowing for interval rather than point prob-
abilities [Breese and Fertig, 1991; Coletti et al., 1991;
Coletti, 1994; van der Gaag, 1991] or for order of mag-
nitude estimates [Goldszmidt and Pearl, 1992]. Yet
other schemes are purely qualitative in nature, such
as qualitative probabilistic networks [Wellman, 1990].
Also non-probabilistic schemes have been proposed,
each addressing a specific type of uncertainty, such
as Dempster-Shafer theory [Shafer, 1976], possibility
theory {Zadeh, 1978], and non-monotonic logics [Pearl,
1989]. Each of these schemes typically allows for en-



coding only a few types of information. A unifying
principle that would allow combining the various types
of information has been lacking so far, making it hard
to utilize the variety of information available in prac-
tice.

With the purpose of quantifying belief networks in
mind, we propose a method for accommodating both
qualitative and quantitative probabilistic information
about a yet unknown joint probability distribution Pr
over a set of variables V. The basic idea of our method
is to consider the distribution hyperspace of all possible
joint probability distributions over V. The true, yet
unknown distribution Pr is a point in this hyperspace.
If no information is available about Pr, then the true
distribution can be any point in the distribution hy-
perspace. Information about Pr, whether qualitative
or quantitative, expresses a constraint on the hyper-
space since certain distributions become incompatible
with this information. Probability elicitation can now
be looked upon as constraining the distribution hyper-
space as much as possible. To this end, we express all
probabilistic information that is available about the
unknown distribution as constraints. Assuming that
all joint probability distributions that are compatible
with the available information are equally likely, we
then derive second-order probability distributions over
the probabilities to be assessed. These second-order
distributions may be used directly or may be a starting
point for further refinement. Note that our approach
provides a common denominator for various types of
probabilistic information. Also note that by interpret-
ing the qualitative and quantitative information that
a domain expert is willing to state, we effectively pro-
vide for non-invasive elicitation of probabilities. We
believe that our method is a valuable supplement to
the classical decision-analytic techniques of probability
elicitation.

The remainder of this paper is structured as follows.
Section 2 introduces a simple belief network that will
be used throughout the paper and gives examples of
probabilistic information that is typically available for
quantifying a network. Section 3 presents a canoni-
cal form for representing probabilistic information and
Section 4 describes interpretation of various types of
information within this canonical form. Section 5
demonstrates how information expressed in canonical
form can be used to derive second-order probability
distributions over probabilities of interest. We finish
with a discussion and an outline of directions for fur-
ther research in Section 6.

2 AN EXAMPLE

Consider building a highly simplified belief network
modeling causes of HIV virus infection. Our network
includes four variables: HIV infection (H), needle
sharing (N), sezxual intercourse (I), and use of a con-
dom (C). We assume, for the sake of simplicity, that
these variables are binary; for example H has two out-

comes, denoted h and h, representing “HIV infection
present” and “HIV infection absent,” respectively.

The first step in building a belief network is to design
its structure in terms of probabilistic influences among
its variables. Belief networks achieve clarity and large
savings in terms of storage of a joint probability dis-
tribution by explicit representation of the indepen-
dences holding among its variables. These indepen-
dences are encoded in a directed acyclic graph, where
each node represents a variable and each arc repre-
sents, informally speaking, a direct probabilistic influ-
ence between its incident nodes. Absence of an arc be-
tween two variables means that these variables do not
influence each other directly, and hence are (condition-
ally) independent. For orienting the arcs in the graph,
it is generally considered good practice to reflect the
causal mechanisms [Druzdzel and Simon, 1993 of the
domain. In our example, we may reasonably assume
that sharing needles and condom usage are indepen-
dent. Similarly, whether or not a person shares needles
may be assumed independent of whether this person
engages in sexual intercourse. One possible graph re-
flecting our beliefs concerning HIV infection is shown
in Figure 1.

Intercourse (1)

Needle (N) Condom (C)

HIV infection (H)

Figure 1: An example belief network for HIV infection.

Once the qualitative part of a network is considered
robust, the network is quantified. To this end, for
each variable the probabilities of its values conditional
on the values of its direct predecessors in the graph
have to be assessed. For the graph shown in Fig-
ure 1, numbers representing Pr(N), Pr(I), Pr(C|I),
and Pr(H|NIC) are required. Obtaining these num-
bers is considered to be far more difficult than con-
figuring the qualitative part of the network, mainly
because of difficulties in obtaining statistical data and
in eliciting probabilities from domain experts. In our
example, there are several sources of information that
can help in obtaining the required probabilities. Mor-
bidity tables may provide Pr(h), a point estimate of
the prevalence of HIV in the population of interest.
We may get ball-park estimates on frequencies of sex-
ual intercourse and condom usage in intercourse, that
is, Pr(i) and Pr(c|i). We further know that condoms
are used primarily during intercourse, so Pr(i|c) is
close to zero. In addition, various populations of in-
travenous drug users have been studied with respect
to their needle sharing habits. Findings from these
studies may help in assessing Pr(n). Also, statistics
may be obtained concerning the way of contracting



HIV from among the infected population, yielding es-
timates for Pr(n|h) and Pr(i|h), or perhaps even for
Pr(iclh) and Pr(i¢|h). There is also semi-numerical
information available. For example, the probability
of contracting HIV by needle sharing is higher than
the probability of contracting it in sexual intercourse,
that is, Pr(h|n) > Pr(hli). Also, the relatively small
number of intravenous drug users compared to the
size of the sexually active population suggests that
Pr(i) > Pr(n).

Besides (semi-)numerical information, we have a body
of qualitative information on the subject. We are
quite certain that both sharing a needle and a sex-
ual intercourse with an HIV carrier make infection
more likely. We know that using a condom during
an intercourse decreases the likelihood of contracting
HIV. These two pieces of information express quali-
tative influences between pairs of variables. A for-
mal interpretation of qualitative influences has been
proposed by [Wellman, 1990] in terms of statistical
dominance. This property is also useful in captur-
ing qualitative synergies between variables. A posi-
tive (negative) additive synergy [Wellman, 1990] cap-
tures the property that the joint influence of two
variables on a third variable is larger (smaller) than
the sum of their individual influences. In our exam-
ple, condom usage and sexual intercourse are nega-
tively additively synergistic: using a condom dimin-
ishes the influence of having intercourse on contracting
HIV. Product synergy [Druzdzel and Henrion, 1993;
Henrion and Druzdzel, 1991; Wellman and Henrion,
1993], on the other hand, captures intercausal interac-
tion. An example is the negative intercausal interac-
tion known as “explaining away” {Pearl, 1988] which
models negative influence of the presence of one cause
on the likelihood of another cause being present given
an observed common effect. In our example, needle
sharing and sexual intercourse are negatively product
synergistic: given HIV infection, factual knowledge
about needle sharing reduces the likelihood of inter-
course being the cause of the infection.

These examples demonstrate that practical domains
offer a wealth of probabilistic information which, al-
though not always in the shape of numbers that are
directly amenable to encoding in a belief network, may
facilitate assessing the required probabilities.

3 CANONICAL FORM

Our canonical form for interpreting probabilistic infor-
mation builds on the property that any joint probabil-
ity distribution on a set of variables V is uniquely de-
fined by the probabilities of all possible combinations
of values for all variables from V. If these probabilities
are known, then any (other) probability from the dis-
tribution can be computed from them by applying the
basic rules of marginalization and conditioning from
probability theory. We will call combinations of values
for all variables constituent assignments. The proba-

bilities of constituent assignments in a joint probability
distribution will be called its constituent probabilities.
The set of all possible joint probability distributions
on V now can be looked upon as spanning a hyper-
space whose dimensions correspond with constituent
probabilities.

Any information about the true, yet unknown prob-
ability distribution Pr can now be represented as a
system of (in)equalities involving this distribution’s
constituent probabilities as unknowns. Any solution
to this system of (in)equalities is a joint probability
distribution that is compatible with the available in-
formation. If the system has a unique solution, then
the information provided suffices for uniquely defin-
ing Pr [van der Gaag, 1991]. Note that in case the
system does not have any solution at all, the infor-
mation about the unknown distribution Pr is inconsis-
tent. This view of probability is largely based on the
early work by Boole [Boole, 1958] on the foundations
of probability theory.

We introduce some notational conventions. We take
V = {WV,...,Va}, n > 1, to be a set of variables,
where each variable V; can take one of k; values. We
will use v;; to denote V; taking the j-th value from its
domain, j = 1,...,k;. Note that the set of all con-
stituent assignments for V' comprises k = [],_, k;
elements.

ooyl

Now, consider an assignment b for an arbitrary subset
of variables from V' and its unknown probability Pr(b).
The assignment b can be written as a disjunction of
constituent assignments ¢; using basic logical laws. In
fact, here exists a unique set of indices I, C {1,...,k},
called the indez set for b, such that b = \/,, 1, Ci- Since
all constituent assignments are mutually exclusive, the
probability Pr(b) can be expressed as the sum of the
probabilities of the constituent assignments b is built
from. So, from Pr(b) = 3_,;, Pr(c;) we find that Pr(b)
can be expressed as

diz) +dozy + -+ - + dpzi (1)

where z; = Pr(c;),:=1,...,k,and d; = 1if i € I;
and d; = 0 otherwise.

Example: Consider the example belief network for
HIV infections from Section 2. There are sixteen con-
stituent assignments for the variables involved; an or-
dered list of these assignments is shown in Table 1.
Now consider the assignment expressing a person’s
having sexual intercourse without using a condom,
that is, the assignment i¢. This assignment can be
written as

ic hnig V hnic V hiiic V hiic

= ¢c5VegVep Vers

Note that the index set I;; equals Iz = {5,8,10,13}.
The probability Pr(i¢) can now be expressed as

Pr(ic) = Pr(cs) + Pr(cs) + Pr(ci0) + Pr(c1s)
= 5+ Tg+ T10 + Ti3



¢1 = hnic c¢s = hnic cy = hmiic ¢35 = hnic
co = hnic ¢ = hitic c¢19 = hmic €14 = hnic
C3 = hmic Cy = H’HEC Ci1 = h’I’LZE Ci5 = hﬁi@
ca = hnic cg = hnit ¢ = htic c16 = ATIC

Table 1: Constituent assignments for the HIV belief
network.

Note that in terms of expression (1), we have that ds =
dg = d10 = d13 =1 and d,; = 0 for all ¢ 75 5,8,10,13
0

Posterior probabilities are expressed in canonical form
in a similar way. Consider a posterior probability
Pr(b;|b2) where b;, by denote assignments for sets of

variables. From Pr(b;{b;) = %’E;—:?, we have that
Pr(b]b2) can be expressed as

d1,1:1,‘1 + d2,1.'132 + -+ dk,lzk

d1,2.’111 + d2,2$2 +---+ dkyz.’IIk
where z; = Pr(c;), and d;; = 1ifi € I;;p, and d;; =0

otherwise, and d;» = 1if i € I, and d; 2 = 0 other-
wise. Note that d; 3 = 1 whenever d;; = 1.

4 INTERPRETATION OF
PROBABILISTIC INFORMATION

In this section, we address expressing axiomatic infor-
mation, point estimates, probability intervals, compar-
isons, qualitative influences, and additive synergies in
our canonical form. We have designed similar expres-
sions for other types of information, such as indepen-
dences, order of magnitude estimates, product syner-
gies, and noisy-OR gates. A technical report providing
all interpretations is in preparation.

4.1 AXIOMATIC INFORMATION

Even if no specific information is available about an
unknown joint probability distribution, there still is
probabilistic information that holds for any distribu-
tion. This information concerns the basic axiomatic
properties of a joint probability distribution.

The unknown joint probability distribution Pr is
known to be normed, that is, Pr(¢true) = 1. This prop-
erty is expressed in canonical form by the equality

T1+ -tz =1 (2)
where z; = Pr(¢;), i =1,... k.

Also, the probability Pr(b) for any assignment b of a
set of variables from V' is known to be a non-negative
real number. More in specific, we have that for any
constituent probability Pr(c;), ¢ = 1,...,k, the prop-
erty Pr(c;) > 0 holds. This information is expressed
in canonical form in k inequalities of the form

for i = 1,...,k. Note that if all constituent proba-
bilities are non-negative, then all other probabilities
are non-negative as well. Hence, there is no need to
specify any additional constraints for this information.
Also, note that the constraints (2) and (3) imply that
Pr(b) < 1 for any assignment b.

4.2 POINT PROBABILITIES,
INTERVALS, AND COMPARISONS

A point estimate for a prior probability is a statement

of the form Pr(b) = p, 0 < p < 1, where b is an
assignment for an arbitrary subset of variables. Let
Iy be the index set for b. Then, the point estimate is
expressed in canonical form as

diziy+---+drzp=p

where z; = Pr(¢;), i =1,...,k,and d; = 1ifi € I,
and d; = 0 otherwise.

Example: Consider once more the HIV belief net-
work. The prevalence of HIV infection in the U.S. pop-
ulation is Pr{h) = 0.005 according to morbidity tables.
This information is expressed in canonical form as

Ty + T3+ T4 +T5 +Tg + T10 + x11 + 215 = 0.005
]

A point estimate for a posterior probability is a state-
ment of the form Pr(b;|bs) = p, 0 < p < 1, where
b1, bs denote assignments for sets of variables. From
Pr{b;]b,) = %9(%1, we have that Pr(byb,) = p-Pr(b,y),
and therefore Pr(b;b,) — p - Pr(bz) = 0. The probabil-
ities Pr(b1b2) and Pr(by) now are expressed in terms
of constituent probabilities as before. The point esti-
mate for Pr(b;|b;) further indicates that Pr(b;) > 0
and, therefore, gives rise to yet another inequality in
terms of constituent probabilities.

Similar expressions in canonical form are found for
probability intervals and comparisons of probabilities.
A probability interval is a statement expressing an up-
per and a lower bound on a prior or posterior prob-
ability. Such a statement may be of the form p, <
Pr(b) < py where b is an assignment for an arbitrary
subset of variables and p;,p, are real numbers such
that 0 < py < pa < 1. A comparison between two prior
probabilities can be of the form a; -Pr(b;) < ay-Pr(bs)
where by, by, are assignments for subsets of variables
from V and ai,a; are (non-negative) real numbers.
These statements are expressed in canonical form by
writing the probabilities Pr(b), Pr(b;), and Pr(b,) in
terms of constituent probabilities.

4.3 QUALITATIVE INFLUENCES

A qualitative influence is a symmetric property de-
scribing the sign of probabilistic interaction between
two variables V; and V4, and builds on an ordering of
these variables’ values. A positive qualitative influence



from Vi to Vp expresses that choosing a higher value
for Vi makes higher values of V more likely, regard-
less of the values of other variables. More formally
[Wellman, 1990), we say that the variable V; positively
influences the variable V;, denoted by St (Wi, Vo), iff
for all values vg,, of Vjy, for all pairs of distinct values
v1; > vy; of V4, and for all possible assignments b for
the set of V;’s direct predecessors other than Vi, we
have

PI‘(Vb > Vo, |U1‘b) > PI‘(V() > vo,, |v1j b)

Negative qualitative influence and zero qualitative in-
fluence are defined analogously.

The statement S*(V;,Vp) is expressed in canonical
form by expressing a set of inequalities in this form.
There is one inequality for each combination of one
value vy, of V;, one pair of values v1,,v1; of Vi, and
one assignment b of Vy’s other predecessors than Vi;
this inequality expresses that

ko ko
> Pr(vg,Jvi,b) > > Pr(vg, Juy, b)
l=m l=m

Note that there are lg ) -(ko — 1) - K such inequali-

ties, where K is the number of possible assignments for
the set of direct predecessors of V; other than Vi. As
these inequalities involve posterior probabilities, each
of them gives rise to two additional inequalities.

Example: For quantifying our HIV belief network,
the available information indicates that needle sharing
positively influences HIV infection, that is, St (N, H).
This statement translates into the four inequalities:

Pr(h|nic) > Pr(h|nic)
Pr(h|nic) > Pr(h|mic)
Pr(h|nic) > Pr(h|nic)
Pr(hinic) > Pr(h|nic)

and eight additional inequalities expressing that
Pr(nic) > 0,...,Pr(fic) > 0. Note that the statement
S*(N, H) gives rise to the total of twelve inequalities.
The first inequality mentioned above is expressed in
canonical form as

ToTz — T1Tg > 0

The other inequalities are expressed analogously. O

4.4 QUALITATIVE SYNERGIES

An additive synergy pertains to the joint influence of
two variables Vi and V; on a third variable Vp, and,
similarly to qualitative influence, builds on an ordering
of these variables’ values. A positive additive synergy
of V1 and V, with respect to V; expresses that the
joint influence of V; and V; is greater than the sum of
their individual influences. More formally [Wellman,

1990], we say that the variables V; and V, exhibit pos-
itive additive synergy with respect to Vjp, denoted by
Y+({W1,V2}, V), iff for all values vp,, of Vo, for all
pairs of values vy, > vy; of Vi and v, > v2,, of Vs,
and for all possible assignments b for the set of Vp’s
direct predecessors not including V; and V5, we have

Pr(Vp > v0,, "01‘.’02‘., b) + PI‘(VO > ’U()mfvlj va,, b)
> Pr(Vp > v, Ivl‘,vzj, b) + Pr(Vy > v, |vi;v2,,b)

Negative additive synergy and zero additive synergy
are defined analogously.

The statement Y+ ({V;, V,}, Vp) is expressed in canon-
ical form by a set of inequalities in the above form.
There is one inequality for each combination of one
value vp,, of Vj, one pair of values v, vy, of V1, one
pair of values v, , Vg, of V3, and one assignment b of

Vo'’s other direct predecessors than V; and V5; there are

ky ko

2 J°\ 2
K is the number of possible assignments for the set
of direct predecessors of V; other than V; and V,. As
these inequalities involve posterior probabilities, each

of them gives rise to additional inequalities as outlined
before.

- (ko — 1) - K such inequalities, where

Example: Consider once more our HIV belief net-
work under construction. The available information
indicates that there is a negative additive synergy be-
tween sexual intercourse and using a condom with re-
spect to HIV infection, that is, that Y~ ({I,C}, H).
This statement translates into the two inequalities:

Pr(h|nic) + Pr(hinic) < Pr(h|nic) + Pr(h|nic)
Pr(h|miic) + Pr(hnic) < Pr(h|mic) + Pr(hjmic)

and eight additional inequalities expressing that
Pr(nic) > 0,...,Pr(fic) > 0. Note that the statement
Y~({I,C}, N) gives rise to the total of ten inequali-
ties. The first inequality above leads to

—T1T4T5T14 — T2T4T5T11 — 2T2T4T5T14q

+T1T527T11 — T2T5T7T14 + T1T4TRT13

—T2T4T8T14 + 201 T7TT1] + T1T7TT14
+zox7rgr1; < 0

The other inequalities are expressed in canonical form
analogously. ]

Product synergy pertains to the interaction between
two variables V) and V, conditional on their common
descendant V; and expresses the sign of what is known
as intercausal influence between Vi and V3. The most
common type of product synergy is the negative prod-
uct synergy, capturing the notion of “explaining away.”
We say that the variables V; and V5 exhibit negative
product synergy with respect to a particular value vg,,
of variable V;, written X ({1, Va},w0,,), if for all
pairs of values vy, > vz; of Vo and for all possible



assignments b for the set of Vy’s direct predecessors
not including V; and V;, we have

PI‘(Vl Z vl‘.ivgivom b) S Pr(Vl Z U1_.|’U2j Uomb)

Positive product synergy and zero product synergy are
defined analogously. Note that, in contrast to addi-
tive synergy, product synergy is defined with respect
to separate values of the common effect V5. There are,
therefore, as many product synergies as there are val-
ues of Vp. A statement X~ ({V1,V2},vo,,) is expressed
in canonical form much in the same way as qualitative
influences and additive synergies.

It is worth noting that the above definition is con-
siderably less complex than the definition proposed in
[Druzdzel and Henrion, 1993). The latter definition
expresses product synergy in terms of the probability
of V4 conditional on V; and V; to allow for derivation
of the sign of product synergy from an existing condi-
tional distribution encoded in a network. In terms of
the canonical form proposed in this paper, we can af-
ford defining product synergy in terms of probability
of V1 conditional on V5 and V,. This does not have
any effect on the interpretation of statements regard-
ing product synergy yet simplifies the matters greatly.

5 ELICITATION OF
PROBABILITIES

Our method for elicitation of probabilities from a do-
main expert amounts to reasoning about the informa-
tion that is available about the unknown joint proba-
bility distribution. We have illustrated how various
types of information are expressed in the canonical
form as a system of (in)equalities with constituent
probabilities as unknowns. This section shows how
these (in)equalities can be used to derive second-order
probability distributions over any probability of inter-
est in the sense suggested by [Pearl, 1988].

5.1 DERIVATION OF SECOND-ORDER
DISTRIBUTIONS

From the system of (in)equalities resulting from
expression of available probabilistic information in
canonical form, we can compute upper and lower
bounds on any probability of interest. The length
of a computed interval then indicates the uncertainty
in the probability’s value and hence is a measure for
the incompleteness of the available information. This
method has been proposed before by Van der Gaag in
view of systems of linear (in)equalities [van der Gaag,
1991]. For probability elicitation, this method has the
disadvantage that upper and lower bounds on a prob-
ability give insufficient insight into how likely a value
from the interval is to be the actual probability. Nor
do these bounds provide an estimate of the expected
value of the probability. We would like to note that
for decision making in presence of uncertainty about a
probability p, knowing the expected value of p suffices,

even if the distribution over p is unknown [Howard,
1988].

To yield insight in the likelihood of values for the
true probability, and in particular to be able to de-
rive its expected value, we propose using sampling to
find second-order distributions for the probabilities to
be assessed. For computing these second-order distri-
butions, we randomly select points from the distribu-
tion hyperspace, assuming that all points in the hy-
perspace are equally likely to be the true distribution.
For each selected distribution, we verify its compati-
bility with all available information, that is, we verify
if it is a solution to the system of (in)equalities de-
rived from this information. All selected distributions
matching the available information are collected and
scored for the probabilities to be assessed; the result
is a second-order distribution over each such proba-
bility. We would like to note that computing second-
order distributions is computationally expensive as it
involves generating and investigating joint probability
distributions described by their constituent probabili-
ties and the number of these constituent probabilities
is exponential in the number of variables discerned.

Example: Consider once again the HIV infection ex-
ample belief network. We have expressed the following
probabilistic information about the four variables H,
N, I, and C in canonical form: Pr(i|c) = 1, Pr(z) >
Pr(n), Pr(h|n) > Pr(h|¢), and the information that
between 10% and 25% of HIV-infections are caused
by needle sharing, that is, 0.1 < Pr(nlh) < 0.25.
From this information, we derived second-order distri-
butions for the various probabilities to be assessed for
the network by selecting 10,000 matching joint prob-
ability distributions. The histograms of the samples
obtained for Pr(i) and Pr(h|ni¢) are shown in Fig-
ure 2. When normalized, these histograms express a
second order probability distribution over Pr(:) and
Pr(h|nic). Note that the information from which we
derived these distributions did not pertain directly to
these probabilities. Another point that we would like
to emphasize here is that knowledge of intervals would
be useless as the probability Pr(h|nic), for example,
spans over the entire interval between 0 and 1. m]

We have implemented our method for computing
second-order distributions in Allegro Common Lisp on
a Hewlett Packard workstation. Our implementation
is just a prototype and has been created to serve illus-
trative purposes. As the implementation is straight-
forward, it is rather slow and therefore leaves much
room for algorithmic improvement.

Especially when very restrictive information about the
joint probability distribution is available, randomly
selecting distributions from the hyperspace tends to
yield a huge number of samples that are not compat-
ible with the available information and therefore are
not useful. To improve on the ratio of useful samples,
we envision a pre-processing step prior to the selec-
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Figure 2: Histograms of the samples for Pr(:) (upper)
and Pr(h|nic) (lower).

tion of distributions. In this step, a part of the hy-
perspace in which the true joint probability distribu-
tion definitely lies is identified. To this end, all linear
(in)equalities from the system at hand are collected
and a standard linear-programming technique is ap-
plied to compute upper and lower bounds on all con-
stituent probabilities. The thus computed bounds are
guaranteed to be sound: no point in the hyperspace
outside these bounds can represent the unknown prob-
ability distribution. These bounds, however, may not
be tight as there may be other, yet unconsidered in-
formation. Selecting distributions is now performed
within the bounds yielded by the pre-processing step.

5.2 FOCUSING ELICITATION

Reasoning about probabilistic information is compu-
tationally expensive. This is not surprising given that
inference in belief networks is NP-hard [Cooper, 1990].
To allow for sidestepping the issue of complexity, we
divide the problem of reasoning about qualitative and
quantitative probabilistic information over all statis-
tical variables in the network under construction into
smaller subproblems and address these separately.

Division into subproblems is achieved by transforming
the directed graph of the network into an undirected
chordal graph that equally models independences from
the distribution at hand. A chordal graph has the use-
ful property that the joint probability distribution over
the represented variables factorizes into marginal dis-

tributions on the separate cliques of this graph. This
property allows for addressing the problem of elicita-
tion of probabilities per clique. For transforming the
directed graph of a belief network into a chordal graph,
we make use of the transformation scheme designed by
[Lauritzen and Spiegelhalter, 1988].

Computational complexity, however, is just one of the
reasons for focusing elicitation of probabilities on small
sets of variables. Focusing is also suggested by knowl-
edge acquisition experience both in decision analysis
and in expert systems design: human experts typi-
cally express information about short causal reasoning
chains and feel uncomfortable when forced to provide
more global information. An important property of
the applied transformation is that, as for any variable
and its direct predecessors a clique is yielded, causal
mechanisms are never split up over different cliques
and hence are never broken. We believe that the ob-
tained cliques form small entities suitable for elicita-
tion.

6 DISCUSSION

Although the usefulness of belief networks for repre-
senting and reasoning under uncertainty is widely ac-
cepted, eliciting probabilities for quantifying a network
is often perceived a problem. It often turns out, how-
ever, that it is the need to express probabilistic infor-
mation as ezact numbers that tends to make domain
experts feel uncomfortable: experts typically are able
to state probabilistic information of a semi-numerical
or qualitative nature with conviction and clarity, and
hence with little cognitive effort. In this paper, we
have proposed a method that allows for non-invasive
elicitation of probabilities by interpreting and com-
bining whatever an expert is willing to state. Our
method can be used iteratively in the sense of start-
ing the elicitation with only most robust and read-
ily available information, and then narrowing down
the focus of elicitation successively. As elicitation of
probabilities from domain experts generally is a time-
consuming and costly task, we expect this approach
to lead to considerable savings. We believe that our
method provides a valuable supplement to decision-
analytic methods of probability elicitation.

Even though a non-invasive method of collecting in-
formation from experts may be less prone to conflicts
than a method eliciting numerical probabilities, the
constraints elicited may turn out to be inconsistent.
Inconsistencies can arise from an expert’s internal in-
consistency or from disagreement among multiple ex-
perts and can occur either within a clique or between
cliques. Detection of inconsitencies is quite straightfor-
ward. In accord with the decision analytic approach,
we view inconsistencies as an additional opportunity
to refine the elicitation by confronting the expert with
conflicting statements. We believe that including both
qualitative and quantitative statements in elicitation
aids this refinement: qualitative information gener-



ally is more robust and cognitively reliable. We plan
to deal with inconsistencies by prioritizing the expert
statements according to their expected robustness and
suggesting the least robust constraints for revision. In
the near future, we envision making our method the
centerpiece of a general purpose computerized proba-
bility elicitation tool.
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