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Abstract

In artificial intelligence, the belief network framework for reasoning with uncertainty in
knowledge-based systems is becoming increasingly popular. The framework merges prob-
ability theory and expert system technology, to arrive at a powerful formalism that is
both intuitively appealing and theoretically well-founded. Since its introduction, more
and more knowledge-based systems are being developed using this framework, most no-
tably in the area of diagnosis. In this paper, we survey the state-of-the-art in the field
of diagnostic belief network applications. The work of Poole and Provan [14] on various
concepts of diagnosis serves as a guideline. We review how these concepts are effectuated
within the belief network framework in real-world applications.

1 Introduction

In the area of artificial intelligence, the interest for knowledge-based systems or expert sys-
tems has been growing rapidly during the past few decades. As more and more experience in
building and using expert systems was gained, it became apparent that the early expert sys-
tems lacked facilities for dealing with uncertain or incomplete information. This observation
has led to the development of a new research area in artificial intelligence called reasoning
with uncertainty or plausible reasoning [1].

Probability theory provides the mathematical principles for rational inference under un-
certainty. However, when probability theory is applied straightforwardly to reasoning with
uncertainty, serious complexity problems are encountered: for example, explicitly represent-
ing a joint probability distribution requires exponential space in the number of variables
discerned, and computing probabilities from the joint probability distribution takes expo-
nential time. Throughout the 1960s and early 1970s, some medical systems were developed
using a Bayesian model, in which simplifying assumptions were made to overcome the com-
putational problems [2; 3; 4]. However, the expressiveness of these models was shown to be
too limited when applied to larger domains, since the simplifying assumptions are not easily
satisfied anymore. In response to these problems, in the 1970s various modifications of proba-
bility theory were designed for incorporation in mostly rule-based expert systems, an example
of which is the certainty factor model [5]. Although these modifications were popular due
to their computational simplicity, they were criticized because of their incorrectness from a
mathematical point of view.



Halfway through the 1980s, the theory of Bayesian belief networks was introduced for
reasoning with uncertainty in knowledge-based systems. The belief network framework merges
probability theory and expert system technology, to obtain a powerful formalism that is both
intuitively appealing and theoretically well-founded. The formalism provides for a concise
representation of knowledge concerning a joint probability distribution on a set of variables
discerned in a domain. In addition, it provides a set of algorithms for efficient reasoning
with knowledge represented in the formalism. Since its introduction, substantial progress
has been made in belief network research, and more and more knowledge-based systems are
being developed using this framework, most notably in the area of diagnosis. By now, the
belief network framework has made its entrance into a diversity of domains, for example, in
therapy monitoring [6; 7; 8], robot monitoring [9], computer vision [10; 11], forecasting [12],
and information retrieval [13].

From way back, diagnostic problem solving has been a focus of attention in artificial in-
telligence research. Within diagnostic problem solving, various different concepts of diagnosis
are in use. The concept of diagnosis employed determines to a large extent a system’s be-
haviour. Poole and Provan [14] have analyzed six concepts of diagnosis that are frequently
used in diagnostic problem solving. The earliest applications of the belief network frame-
work were also built for diagnostic problem solving, and still a major part of its application
concerns diagnosis. This has motivated us to investigate the state-of-the-art in the field of
diagnostic belief network applications. In our overview, we have built on the work of Poole
and Provan. We discuss which of the concepts of diagnosis have been employed in diagnostic
belief network applications and why others have not been used.

The paper is organized as follows. In Section 2 we provide an introduction into the
belief network framework. Section 3 discusses the various concepts of diagnosis discerned by
Poole and Provan, and examines them in the context of a belief network. Section 4 reviews
some well-known practical applications of the belief network framework and classifies them
according to the concept of diagnosis they use. The paper ends with some concluding remarks
in Section 5.

2 The Belief Network Framework

In this section we review the belief network framework. We first explain how uncertain
information is modelled in a belief network. Then we briefly review some of the algorithms
that are in use for probabilistic inference with a belief network. To conclude, we describe how
the belief network framework can be extended to arrive at an adequate problem solver.

2.1 Knowledge Representation

The belief network framework offers a knowledge representation formalism that allows for
modelling uncertain or incomplete information in the form of a joint probability distribution
on a set of variables discerned in the domain at hand. The formalism provides for a concise
representation of a joint probability distribution by separating the knowledge concerning inde-
pendencies between variables of the domain at hand and the numerical probabilities involved
explicitly. The independencies between the variables discerned are represented by an acyclic
digraph. Each node in the digraph represents a variable that can adopt one of a set of values.
The set of arcs of the digraph models an independency relation between the variables: absence
of an arc between two variables means that these variables are (conditionally) independent.



Associated with each node of the digraph of a belief network is a table of (conditional)
probabilities describing the influence of the values of the predecessors of the node on the
probabilities of the values of the node itself. These tables provide all information necessary
for uniquely defining a joint probability distribution that respects the independency relation
portrayed by the digraph of the network [15].

elicobacter
pylori

Figure 1: A diagnostic belief network

Figure 1 illustrates the belief network formalism for some medical knowledge concerning
malignant gastric diseases. Although the domain is of a serious nature, the example should
not be taken too seriously. Two malignant gastrical diseases are distinguished: primary
gastric lymphoma and gastric adenocarcinoma. Both diseases can be caused by peptic ulcer.
Recent research has shown that a bacterial infection by the helicobacter pylori may be one of
the causes of peptic ulcer. The presence of B-cells is often seen in combination with gastric
lymphoma. Gastric lymphoma and gastric adenocarcinoma can both cause blood loss. The
conditional probability tables associated with the nodes have been omitted in this example.
It should be noted that the information modelled is incomplete. For example, peptic ulcer
may have other causes not modelled by the example belief network.

2.2 Probabilistic Inference

The digraph of a belief network and its associated conditional probability tables uniquely
define a joint probability distribution on the set of variables discerned. From the probabil-
ity distribution defined by the belief network, any probability of interest can be computed.
Also, when the value of a specific variable becomes known, the revised probability of each of
the values of the other variables can be computed from the belief network. However, com-
puting probabilities by simply applying the basic rules of marginalization and conditioning
would require exponential time complexity. Many algorithms have been developed to reduce
the computational complexity of probabilistic inference. Although these algorithms differ in
implementational details, they all gain their efficiency by exploiting the independencies por-
trayed by the digraph of the belief network. The algorithms view the digraph of the belief
network more or less directly as an “object-oriented” computational architecture. Each node
is provided with a local memory in which associated probabilistic information is stored and
a local processor that is able to perform simple probabilistic computations; the arcs serve



as bidirectional communication channels. The idea now is that each node of the network
is able to compute its probabilities by performing local computations only, employing the
information stored in its local memory and the information it receives from its neighbouring
nodes. The algorithms tend to behave polynomially under certain topological restrictions.
However, the restrictions under which they achieve their polynomial behaviour are different.
It should be noted that exact probabilistic inference with belief networks without any topo-
logical restrictions is NP-hard [16]. We now discuss two algorithms that are frequently used
in applications of the belief network framework.

In Pearl’s algorithm [15], each node in a belief network receives messages on marginal
probabilities from its predecessors and on likelihoods from its successors. The information
contained in the messages and the information from the probability table stored in the lo-
cal memory enables a node to compute the probabilities for its values. Initially, the belief
network is in equilibrium. When the value of a certain node becomes known, the messages
that the node sends to its neighbours are updated to reflect the obtained information. The
neighbouring nodes in turn update their probabilities and compute new messages to send to
their neighbours. In this message passing process each node is visited only once. The belief
network therefore reaches a new equilibrium after all nodes has been visited. For multiply
connected belief networks, the algorithm described above cannot be applied straightforwardly,
since the computational architecture now contains loops that may cause the messages to cycle
infinitely. The method of loop cutset conditioning offers a solution to this problem [17]. It
is based on a form of human reasoning called reasoning by assumption. The idea is that the
loops in the digraph are cut by a subset of nodes, called the loop cutset, by instantiating these
nodes. For each possible combination of values of the loop cutset nodes updated probabilities
for a variable of interest are computed. The variable’s probabilities then are computed by
weighing these updated probabilities.

The algorithm of Lauritzen and Spiegelhalter [18] does not use the belief network directly
as a computational architecture. A special computational architecture is constructed by
translating the original digraph of the belief network into a decomposable graph, consisting
of cliques and clique intersections. The original conditional probabilities are transformed into
a set of marginal probability distributions associated with the cliques of the graph. The so-
obtained decomposable belief network still represents the same joint probability distribution
as the original belief network. The cliques of the decomposable belief network serve as the
nodes of the computational architecture, with the marginal probability distributions stored in
its local memories; the clique intersections serve as the communication channels. The message
passing is performed much in the same way as in Pearl’s algorithm. To prevent messages from
cycling, the architecture is organized as a tree. The algorithm is therefore often called the
clique tree propagation (CTP) algorithm.

Since it is not expected that a probabilistic inference algorithm can be designed that pro-
vides an exact answer for all belief network topologies in polynomial time, it is not surprising
that approximate algorithms are an area of active research interest. Approximation algo-
rithms for belief networks use simulation as a method for estimating probabilities of network
nodes. The idea of such algorithms is to generate a large number of samples specifying a
value for each node of the belief network; these samples are generated so as to reflect the
probability distribution defined by the belief network. The algorithm subsequently performs
a frequency count on the sampled values. The normalized results provide estimates for the
probabilities of the values of the nodes in the belief network. Currently, several different
simulation algorithms are in use for probabilistic inference with belief networks. They differ



primarily in the method they use for selecting samples and for counting frequencies. The
simulation algorithms generally have an ‘anytime’ property in the sense that they give an
approximate answer at any time; given more time, their estimates improve. For details on
simulation algorithms, we refer to Cousins et al. [19].

Simulation algorithms seem to accommodate a wider range of belief network topologies
than exact algorithms. However, they do not give accurate answers for all belief networks in
polynomial time either; this task has been proven to be NP-hard as well [20].

2.3 The Belief Network as Problem Solver

Problem solvers, whether human or computerized, typically apply reasoning strategies to solve
the problems they are used for in the best way. For this purpose, a problem solver is provided
with means for exerting control over reasoning. We distinguish between two types of control.
The first type concerns the interaction between user and problem solver. This type of control
strongly depends on the domain of application. It involves for example strategies for acquiring
information about the problem at hand, and for suggesting actions that can be undertaken
to solve the problem. The second type of control is aimed at reducing the computational cost
of the reasoning activities themselves. This type of control may be domain-dependent as well
as domain-independent. It involves for example focusing reasoning activities on a restricted
part of the domain.

The belief network framework comprises algorithms for computing probabilities of interest
efficiently, and for processing pieces of evidence. However, the framework lacks with regard
to intelligent control over probabilistic reasoning. To enable the belief network framework
to perform as an adequate diagnostic problem solver, several extensions to the framework
have been proposed in literature. First, the belief network formalism has been enhanced to
the formalism of influence diagrams [21]. An influence diagram allows for making decisions
based on methods from decision theory. The influence diagram in itself, however, does not
provide for controlling the complexity of probabilistic inference. Secondly, the belief network
framework can be extended with a control layer [22]. The control layer offers algorithms
for decision making and for complexity control from which a strategy for problem solving is
built. Note that the control layer allows for the incorporation of a wide variety of controlling
mechanisms, dependent or independent of the domain of application.

3 The Most Likely Diagnosis

For shaping diagnostic reasoning various definitions of the concept of diagnosis have been pro-
posed. Poole and Provan have analysed several well-known definitions in their paper “What
is the most likely diagnosis?” [14]. They have shown that different definitions of diagnosis
have different qualitative meaning and as a consequence yield different system behaviour.
Since we feel that Poole and Provan can be considered authorative in the field of diagnosis,
we have chosen their analysis as a point of departure for investigating how different concepts
of diagnosis are modelled in belief network applications. In this section, we provide a concise
overview of the definitions of the most likely diagnosis given by Poole and Provan and discuss
which of these definitions are used in the context of the belief network framework.



3.1 Definitions of Diagnosis

The various definitions of diagnosis distinguished by Poole and Provan are expressed in terms
of hypotheses. A hypothesis may be looked upon as a proposition. The first definition
departs from a single-fault assumption. Under this assumption a diagnosis is one from a set
of mutually exclusive hypotheses. The most likely diagnosis is defined as the single hypothesis
that has highest probability given all available evidence. It is referred to as the most likely
single-fault hypothesis. In a medical context, where it seems appropriate to assume that every
hypothesis models a single disease, this definition of diagnosis may be used only if a patient
cannot suffer from more than one disease at a time.

The single-fault assumption is relaxed in the second definition of diagnosis. The most
likely diagnosis again is defined as the hypothesis with highest probability given the evidence,
but now the hypotheses considered need no longer be mutual exclusive. This diagnosis is
referred to as the most likely posterior hypothesis. In a medical context, where we assume
once more that every hypothesis models a single disease, the most likely diagnosis is the
disease with highest posterior probability. Since the hypotheses considered need no longer be
mutually exclusive, a patient may suffer from more than one disease at a time, but this is not
expressed in the diagnosis that is yielded.

For the next definition of diagnosis, truth assignments are given to all hypotheses dis-
cerned. The conjunction of truth assignments having highest posterior probability is taken as
the most likely diagnosis, and is called the most likely interpretation. While the most likely
diagnoses of the previous definitions are single hypotheses, the most likely interpretation is
a conjunction of hypotheses. Thus, in a medical context where a hypothesis models a single
disease, the most likely interpretation may involve multiple diseases.

The following definitions build on a logical axiomatisation in addition to a probabilistic
model of the problem domain. In these definitions, a diagnosis is a conjunction of truth
assignments to a subset of hypotheses discerned in the domain. In the definition referred
to as probability of provability, the logical model is used to prove conjunctions of hypotheses
from the observed evidence. The probabilistic model is used to compute probabilities for the
deduced conjunctions. The most likely diagnosis is then defined as the conjunction that has
highest probability. In the other definition building on a logical axiomatization, the logical
model is used to compose conjunctions of hypotheses that ezplain the observed evidence.
As in the probability of provability definition, the probability model is used to compute the
probability of each of the abducted conjunctions. The most likely diagnosis, called covering
explanation, is defined as the conjunction that has highest posterior probability. The diagnoses
computed by the provability and covering approaches have been shown to be identical under
certain conditions [23].

The last definition of the most likely diagnosis discussed by Poole and Provan is referred
to as a wutility-based explanation. While the previous definitions consider a diagnosis with
respect to collected evidence only, this definition also takes into account the purpose for which
a diagnosis is required. The utility-based explanation is the hypothesis that is most useful for
reaching this purpose. In a medical context, making a distinction between two diseases that
require the same medical treatment is considered useless if diagnostic reasoning is aimed at
restoring a patient to health. Poole and Provan argue that a definition of diagnosis should
depend on what the diagnosis is used for, and therefore they recommend the utility-based
explanation as the most appropriate definition of diagnosis. The utility-based explanation
should not be viewed as a separate definition of diagnosis: each of the previous definitions



can be supplemented with a utility-based component, since extra knowledge is added to reach
this kind of diagnosis.

3.2 Belief Networks and Diagnosis

We now consider to what extent the various definitions of diagnosis are reflected in applications
of the belief network framework. Before doing so, we have to introduce the different roles
the nodes of a belief network play in diagnostic reasoning. A hypothesis node represents a
variable whose values are hypotheses; an evidence node represents a variable whose value can
be obtained by observation; and an intermediate node represents a variable not classified in
either of the former two groups.

In a belief network, the definition of the most likely single-fault hypothesis is supported
by a restriction of the number of hypothesis nodes. This number is restricted to one, forcing
the hypotheses, corresponding to the values of the hypothesis node, to be mutually exclusive.
The belief network computes the most likely single-fault hypothesis by processing all available
evidence, and then computing the posterior probabilities of each of the values of the hypothesis
node. The value responsible for the highest probability is taken as the most likely diagnosis.

For computing the most likely posterior hypothesis, the hypotheses considered in the
domain need not be mutually exclusive. To support this definition of diagnosis, more than
one hypothesis node is admitted in the belief network. The belief network computes the most
likely posterior hypothesis by processing all available evidence, and computing the posterior
probabilities of each of the values of each of the hypothesis nodes. The hypothesis node
responsible for the highest probability yields the most likely diagnosis.

For computing a most likely interpretation a value is assigned to all hypothesis nodes of
the belief network, in such way that the resulting conjunction of values has highest probabil-
ity. The number of value assignments is exponential in the number of nodes of the network;
however, it is not necessary to enumerate all assignments in order to find the most likely
interpretation [15]. This definition of diagnosis does not let us be ignorant about the value of
any of the hypothesis nodes of the belief network. In diagnostic belief network applications,
however, value assignments to hypothesis nodes that are hardly related to the observed ev-
idence may only be disturbing for the outcome of the most likely diagnosis [14]. This may
explain why the most likely interpretation is almost never used in diagnostic belief network
applications. For belief network applications outside the field of diagnosis this definition has
turned out to be useful [25], and is known as the most probable ezplanation (MPE) [15] or
mazimum a posteriori probability (MAP) [24].

For computing probability of provability and covering explanations, a logical axiomati-
sation of a domain is required. Since the belief network framework has its foundation in
probability theory, it does not provide in itself for a logical axiomatization. However, the in-
dependencies portrayed by the digraph of the belief network can be exploited for constructing
a diagnosis that is a conjunction of values of a subset of hypothesis nodes [26] and hence the
resulting diagnosis to some extent looks like the diagnosis yielded by the logical approaches.
If the belief network is supplemented with a control layer, this layer could easily incorpo-
rate a logical axiomatisation of the problem at hand. The belief network could serve as the
probabilistic model needed to compute probabilities of deduced or abducted conjunctions of
hypotheses.



4 Diagnostic Belief Networks

From the various definitions of diagnosis discerned by Poole and Provan only two are com-
monly used in diagnostic belief networks: the most likely single-fault hypothesis and the most
likely posterior hypothesis. Both definitions sometimes are supplemented with a utility-based
component. In this section we illustrate how these definitions are effectuated in some well-
known diagnostic belief networks. In each section we discuss one application at length, and
briefly review other applications.

4.1 Most likely single-fault hypothesis

As we have argued in the previous section, the most likely single-fault hypothesis is supported
in a diagnostic belief network by restricting the number of hypothesis nodes to one. Although
the single-fault assumption may at first sight seem rather restrictive, there are several diag-
nostic belief network applications that successfully adopt this assumption.

PATHFINDER is a knowledge-based system based on the belief network framework that
assists surgical pathologists with the diagnosis of lymph-node diseases. Surgical pathol-
ogists examine sections of lymph-node tissue microscopically for reaching a diagnosis. It
is important to discriminate between malignant and benign diseases as a malignant dis-
ease requires immediate treatment. Therefore, a timely as well as accurate diagnosis is
required. The specialist field of lymph-node diseases, however, is one of the most difficult
areas in surgical pathology. General pathologists often need to refer to subspecialists, in-
curring delay and extra costs. The PATHFINDER system has been built to close the gap
between the quality of diagnoses made by general pathologists and those made by subspe-
cialists. The PATHFINDER project began in 1984 as a rule-based expert system. The most
recent version of PATHFINDER is a knowledge-based system employing a belief network [27;
28]. The system has been made commercially available as INTELLIPATH for practicing pathol-
ogists and pathologists in training.

The PATHFINDER system incorporates the largest belief network built on the single-fault
assumption. It comprises over 140 nodes. The hypothesis node of PATHFINDER represents
63 mutually exclusive disorders. The builders of PATHFINDER argue that in the domain of
lymph-node pathology the assumption that diseases are mutually exclusive is appropriate,
because co-occurring diseases almost always appear in different lymph nodes or in different
regions of a lymph node [27]. Besides the hypothesis node, the belief network contains only
evidence nodes. Their number of values range from 2 to 10. The hypothesis node itself has
no predecessors, yet is predecessor of all but two evidence nodes. This topological feature has
inspired a more efficient algorithm for exact probabilistic inference called aggregation after
decomposition that combines loop cutset conditioning and CTP [17].

In a dialogue with the user, PATHFINDER passes through a diagnostic cycle. To this
end, the belief network of PATHFINDER is embedded in a problem solving architecture. The
user enters observed evidence as values for the appropriate evidence nodes. After processing
theses values in the belief network, PATHFINDER displays a list of node-value pairs, and the
differential diagnosis being a list of diseases ranked according to their posterior probabilities.
On request, PATHFINDER recommends additional tests to perform and explains why a test
is recommended. The builders of PATHFINDER have experimented with utility-based expla-
nations for the most likely diagnosis. However, to be satisfactory patient-dependent utility
assessments would be required. In an application where delay in diagnosis may be fatal,



patient-dependent utility assessments are thought to be infeasible.

The other belief network applications in which a single-fault assumption is adopted are
considerably smaller than PATHFINDER. QUALICON (QUALIty CONtrol) is a knowledge-
based system for quality control in nerve conduction studies [29]. Nerve conduction studies
are performed to investigate action potentials in muscles and nerves. Abnormal potentials
can point to a nerve disease. Yet, they sometimes are caused by misplacement of electrodes.
QUALICON checks the acceptability of a potential. In case of an unacceptable potential, it
investigates whether the electrodes are placed incorrectly and provides the user with recom-
mendations for replacement. The intended users of QUALICON are residents, fellows, and
technologists in a hospital EMG laboratory. Given the intended user level, the builders of
QUALICON argue that it is unlikely that two or more errors will occur simultaneously, making
the single-fault assumption appropriate. The QUALICON belief network is small (less than 10
nodes) and singly connected. Probabilistic inference is performed with Pearl’s algorithm.

DaAcs (Dump Analysis And Consulting System) is an example diagnostic system for a
non-medical domain [30]. The system analyzes errors that have caused an assembler language
program to terminate execution abnormally. In DAACS, the diagnosis is computed in two
phases: the prediagnosis phase and the actual diagnosis. In the prediagnosis phase data from
a minidump are extracted and the symptoms which caused the dump to occur are identified.
These symptoms are entered as evidence into the belief network. In the diagnosis phase, the
belief network is used to compute the underlying cause of the error by collecting and processing
additional evidence. The belief network of DAACS has been kept small intentionally by using
separate belief networks for major classes of mutually exclusive symptoms. The separate
networks are singly-connected and use Pearl’s algorithm for probabilistic inference.

4.2 Most likely posterior hypothesis

A belief network for which the most likely posterior hypothesis definition of diagnosis is
adopted typically comprises more than one hypothesis node in its digraph. Many belief
network applications build on this definition.

MUNIN (MUscle and Nerve Inference Network) is an intelligent assistant for the diagnosis
of muscle and nerve diseases or, more in specific, for the interpretation of electromyographic
findings to this end [31]. The interpretation of an electromyography (EMG) requires consid-
erable expertise that takes years to acquire. The knowledge-based system MUNIN has been
developed to aid in EMG-interpretation. Although the MUNIN and QUALICON systems both
are applications in the EMG field, they differ with respect to their focus of attention: MUNIN
addresses diseases, while QUALICON addresses electrode misplacement. The MUNIN system
is the earliest application of the belief network framework: its first prototype dates from as
early as 1987 [32; 33; 34]. The MUNIN system presently consists of a diagnoser and a test
planner. The diagnoser queries the posterior probabilities of the diseases computed by the
belief network. From these probabilities the most likely posterior hypothesis is computed.
However, in the future the diagnoser is also capable to yield a utility-based explanation. To
this end, the system is supplemented with utilities reflecting severity and treatability of a
specific disease, and the possible side effects of treatment. Since EMG examination takes
time and is uncomfortable for a patient, it is desirable to restrict the examination to a limited
number of tests. To this end, the test planner computes the expected benefit for each test
and decides on the outcomes which test is to be performed.

The current version of the MUNIN network comprises about 1100 nodes and 2500 arcs; the



number of values represented by one node can be up to 27. About 20 disorders are modelled
in the network, including general muscle and nerve disorders, and local nerve disorders. Each
disorder is described by a number of nodes, typically three. The number of nodes modelling
evidence is about 150. The size of the belief network and the complexity of its probabilistic
inference have inspired a modelling technique called divorcing multiple parents. The aim of
divorcing multiple parents is to reduce the number of predecessors of a node by introducing
intermediate nodes. Hence, the conditional probability tables reduce in size resulting in faster
inference. Probabilistic inference in MUNIN is performed with the CTP algorithm.

Rather than attempting to cover the full range of neuromuscular disorders as does MUNIN,
the PAINULIM (PAINful or impaired Upper LIMb) expert system focuses on diseases of the
spinal cord or the peripheral nervous system giving rise to painful or impaired upper limbs [35;
36). The PAINULIM belief network comprises 14 hypothesis nodes and 69 evidence nodes;
it has 271 arcs. The belief network is decomposed into natural subnetworks according to
the three major information sources for diagnostic recommendations: clinical examination,
EMG, and nerve conduction. The network is said to be multiply sectioned. In a dialogue with
the system, the user focuses on a subnetwork of interest. The computation of probabilities
and the propagation of evidence is restricted to the subnetwork focused on. Through this
restriction, the computational costs are reduced approximately by half. PAINULIM uses the
CTP algorithm for probabilistic inference.

The QMR-BN (Quick Medical Reference-Belief Network) system is one of the largest di-
agnostic applications of the belief network framework [37; 38; 39]. QMR-BN is a probabilistic
interpretation of the INTERNIST-1 system, that was developed in the early 1980s as a decision-
support tool for general internal medicine.

As the domain of internal medicine is very complex, several simplifying assumptions have
been made to model the complex knowledge of this domain and to burden the computa-
tional complexity of inference. These simplifications have led to a so-called two-layered belief
network. In a two-layered belief network the nodes are either hypothesis nodes or evidence
nodes, and the arcs are directed from hypothesis to evidence nodes only. This topological
property of the network reflects the assumptions of marginal independence of the diseases
and conditional independence of findings. The influence of multiple disorders on a single
finding further is taken to equal the “sum” of their individual influences. This assumption
considerably reduces the number of conditional probabilities needed. The QMR belief network
has more than 4500 nodes and 40,700 arcs. The number of hypothesis nodes is 534. For a
belief network of this size, exact probabilistic inference is not feasible; QMR-BN therefore uses
a simulation algorithm called likelthood weighting. The QMR-BN system has been extended
to an influence diagram, called QMR-DT (Decision Theoretic), in which test and treatment
decisions based on utility models are provided for.

The ALARM (A Logical Alarm Reduction Mechanism) monitoring system is a prototype
knowledge-based system for diagnosing abnormalities measured by an anesthesia monitor. It
models a small subset of variables that anesthesiologists encounter in the operating room [40;
41). ALARM refers to A Logical Alarm Reduction Mechanism. The ALARM system accepts
measurements as values for the evidence nodes and provides warnings when measurements
are outside their normal range. Furthermore, it displays the differential diagnosis being a
list of possible causes of the abnormalities measured, ranked according to their posterior
probabilities. The ALARM belief network has 37 nodes and 46 arcs. There are 8 hypothesis
nodes, 16 evidence nodes and 13 intermediate nodes. A node has at most 5 values. The CTP
algorithm is used for probabilistic inference. In the domain of anesthesiology it is important
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that a diagnosis is reached quickly when abnormalities are measured. To this end, a small
subset of belief network instantiations, based on the likelihood that the user will enter certain
evidence values or based on situations that require a rapid diagnosis, are stored in a cache
associated with the belief network. These cases need not be recomputed by the belief network
when these evidence values are actually obtained [41].

In general, the sizes of the belief networks supporting the most likely posterior hypoth-
esis definition of diagnosis are larger than those adopting the single-fault assumption. The
digraphs of these belief networks are all multiply connected. They generally use the CTP algo-
rithm or an approximation algorithm for probabilistic inference, where the networks adopting
the single-fault assumption use Pearl’s algorithm. The complexity of the domains of applica-
tion could be an explanation for these observations. The hypothesis nodes are mainly located
at the top of the digraphs, that is, they have no predecessors. The evidence nodes tend to be
located at the lower part of the digraph, that is, they have no or only few descendants. This
is explained by the fact that the direction of the arcs in the digraph of a belief network to
some extent expresses causality.

5 Conclusions

In this paper, we have reviewed the state-of-the-art in diagnostic belief network applications
by describing how different concepts of diagnosis are effectuated within the belief network
framework. To this end, we have built on the work by Poole and Provan [14] who have
distinguished between six different concepts of diagnosis. In diagnostic applications of the
belief network framework, the most likely single-fault hypothesis and the most likely posterior
hypothesis are frequently encountered. The most likely single-fault hypothesis is based on
the assumption that the hypotheses considered in the domain are mutually exclusive. In
a belief network, this assumption is reflected in a restriction of the number of hypothesis
nodes to one. The most likely posterior hypothesis allows for more than one hypothesis node.
We have reviewed typical examples of diagnostic belief network applications built on these
concepts of diagnosis. The belief network applications in which the single-fault assumption
is adopted tend to be smaller than the applications using the concept of the most likely
posterior hypothesis. The limited scope of the problem domains that allow for the single-
fault assumption is an explanation for this observation.

The most likely interpretation, where values are assigned to all hypothesis nodes of the
network, is almost never used in diagnostic belief network applications, because of the disturb-
ing effect that value assignments to hypothesis nodes that are hardly related to the observed
evidence could have on the diagnosis yielded. This concept of diagnosis is used more often in
belief network applications outside the field of diagnosis.

The probability of provability diagnoses and covering explanations have not been found in
belief network applications until now. These diagnoses, based on a logical axiomatization of
the problem domain, generally are multiple-disorder diagnoses. The belief network framework
in essence provides for multiple-disorder diagnosis. However, the two concepts of diagnosis
do not provide a method to construct such diagnosis in the context of a belief network.
The method of multiple-disorder diagnosis proposed in [26] could be seen as a first step
towards such a method. It would be interesting to investigate how the diagnosis obtained by
this method differs from the most likely posterior hypothesis, the probability of provability
hypothesis, and the covering explanation.
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The use of the utility-based explanation seems to be increasingly popular in diagnostic
belief network applications. In the medical domain, utilities are often difficult to assess, since
they differ strongly from patient to patient. However, an increasing number of belief network
applications are used for diagnosis in technical domains, where a utility-based explanation
could be easier to incorporate.

More and more belief networks are supplemented with a control layer or extended to an
influence diagram to enable them to perform as adequate problem solvers. Most of the present
belief network applications provide for selective evidence gathering and sometimes even treat-
ment selection. Also, special-purpose methods for control over computational complexity are
frequently seen. These methods include focusing strategies, caching, and combined inference
algorithms.

The belief network has gained in popularity as is demonstrated by the increasing number
of applications in a wide variety of domains [42]. Yet, control over reasoning still needs our
attention to arrive at even more competent problem-solving behaviour.
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