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The problem of augmenting a graph to reach a certain connectivity requirement
by adding edges has important applications in network reliability [6, 22] and
fault tolerant computing. The general version of the augmentation problem is
to augment the input graph to reach a given connectivity requirement by adding
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a smallest set of edges. Recent papers present linear time augmentation algo-
rithms to admit the 2-connectivity constraint [5, 21, 12], and the 3-connectivity
constraint [11]. With respect to 4-connectivity Kanevsky et al. [13] presented an
O(n - a(m,n) + m) time algorithm for testing 4-connectivity, and Hsu presented
an O(n - a(m,n) + m) time algorithm to compute the minimal set of edges to
augment a 3-connected graph to a 4-connected graph [10] (here a(m,n) is the
functional inverse of Ackermann’s function). Kant described several algorithms
for the augmentation problem with the additional constraint of planarity [15].
This problem has important applications in planar network design and graph
drawing algorithms.

In this paper we consider the problem of triangulating a planar graph while
achieving 4-connectivity. Notice that this differs significantly from the papers
mentioned above, where the objective is to find a minimum set of augmenting
edges to reach a certain connectivity constraint. During the last years 4-connected
planar graphs received new attention due to their important characteristics: every
4-connected planar graph is hamiltonian, it can be drawn as a visibility repre-
sentation in a very compact way [17], and if it is triangular it can be represented
by a rectangular dual [1, 18]. Visibility representations and rectangular duals
are widely used drawing representations, e.g. in industrial environments where
rectangular duals are used in floor-planning problems [19].

Unfortunately, not every planar graph can be triangulated with the additional
constraint of 4-connectivity. If a planar graph contains a cycle of length 3 which
is not a face this is called a separating triangle. No graph containing a separating
triangle can be made 4-connected while maintaining planarity. Also the star
graph (the graph consisting of an n — 1-cycle and one more vertex connected
to all other vertices) does not contain a separating triangle, but for n > 5 any
triangulation of it does. So this graph again cannot be made 4-connected.

We present a linear time and space algorithm that, given an embedded planar
graph G which does not contain a star graph in some sense, triangulates G without
introducing new separating triangles. If the initial graph does not contain a
separating triangle the output graph is a 4-connected triangular planar graph.

If the initial planar graph is not embedded the number of initial separating
triangles depends on the chosen embedding. We show that it is NP-complete
to decide whether a biconnected planar graph can be embedded such that the
number of separating triangles is at most k. On the positive side, we present
a linear time algorithm that embeds a planar graph such that the number of
separating triangles is at most twice the optimum. In particular, it can be found
in linear time whether a biconnected planar graph can be embedded without
separating triangles at all, and whether it can be made 4-connected.

If this is the case we can make the graph 4-connected and then apply the
rectangular dual algorithm of [1, 18]. Another application are straight-line draw-
ings: Very recently, Xin He [9] presented a linear-time algorithm to draw tri-
angulated 4-connected planar graphs with straight lines on a grid of size at
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most 1(n + 3) x 2(n — 1), thereby considerably improving the general bound
of (n —2) x (n — 2). Our algorithm can be used to extend this results to all
biconnected graphs that can be made 4-connected.

If our algorithm gives an embedding of G with s separating triangles then a
visibility representation of G' can be drawn on a grid of size at most (n+s—1) x
(n—1). For small s this improves the general bound of (|3n| —3) x (n—1) [14].

The paper is organized as follows. In Section 2 we give some necessary def-
initions. In Section 3 we present the linear time algorithm for triangulating an
embedded planar graph without introducing separating triangles. In Section 4
we consider the problem of embedding planar graphs such that the number of
separating triangles is minimum, and in Section 5 we give an approximation for
this minimization problem. Section 6 shortly deals with the problem of testing
4-connectivity of planar graphs, and gives some concluding remarks.

2 Definitions

In this paper all graphs are assumed to be simple, i.e. without loops and multiple
edges. A graph is called planar if it can be drawn in the plane with edges
intersecting only at vertices, i.e. without edge crossing. A planar embedding is a
representation of a planar graph in which the edges incident to a vertex are given
in clockwise order with respect to a planar drawing. The embedding divides the
plane into faces. The unbounded face is the exterior face or outerface. A cycle
of length 3 is a triangle. A planar graph is triangular if every face is a triangle.
A triangular planar graph has 3n — 6 edges and adding any other edge destroys
planarity.

Let G = (V, E) be a planar graph with n vertices. A cycle C of G divides the
plane into its interior and exterior region. If C contains at least one vertex in its
interior and at least one vertex in its exterior, it is called a separating cycle. A
graph G is called k-connected, if deleting any k — 1 vertices does not disconnect
G. A 2-connected graph is also called biconnected, a 3-connected graphs is also
called triconnected. A “disconnecting” set of k vertices is called a separating k-
set. Separating 1-sets and 2-sets of vertices are called cutvertices and separation
pairs, respectively. It is well-known that a planar graph is at most 5-connected
and every triangular planar graph is at least triconnected.

A graph is said to contain a star with central verter w at face F if all vertices
v incident to F' we have v = w or (v, w) € E; and there are at least four vertices
other than w incident to F. Note that only if w belongs to F we can add
an edge in F' without producing a separating triangle. But even then F is not a
triangle afterwards, and we cannot triangulate it without introducing a separating
triangle. So any graph that contains a star cannot be made 4-connected.



3 'Triangulating Embedded Planar Graphs

Assume that G is an embedded biconnected planar graph. We will show that
unless G contains a star it can be triangulated without adding separating trian-
gles. The idea is to take a vertex v with maximum degree and to add edges in an
incident non-triangulated face. We will show later that while triangulating a face
we do not create separating triangles and stars. For the algorithm we assume
that a fixed embedding of G is given by the adjacency lists and that G does not
contain a separating triangle.

TRIANGULATE
Input: An embedded planar biconnected graph G without separating triangle
Output: A triangulation of G without separating triangle if possible

(1)

(2) do

(3)  choose v € V such that v has maximum degree among all vertices

(4) which are part of a nontriangular face

(6)  let F be a nontriangular face with vertices v, uy, ug, ..., Up, Ups1 = ¥
(6) (in clockwise or counterclockwise order so that deg(u;) > deg(u,))
(7)  if u; and u, have no common neighbor but v

(8) or if p = 3 and u; and u, have no common neighbor but v and u,
(9)  then add (u1,u,)

(10) else let w be a common neighbor of u; and u,

(11) determine minimal j > 1 such that ; is not adjacent to w

(12) if such j does not exist

(13) then STOP, G contains a star with central vertex w at face F
(14) if U; =v

(15) then add edges from v to uy,...,up—1

(16) else add edges from u; to uy,...,uj_o

(17) if j =p—1or (uj,u,) € E then add (v, u;)

(18) else determine maximal k < p such that u, is not adjacent to w;
(19) if k=7 then set k = j + 1.

(20) add the edge (ug,u;)

(21) add the edges from v to ug, ..., up—1

(22) od

In the remaining part of this section we will evaluate the running time of the
algorithm, and then prove its correctness.

Lemma 3.1 j can be found in O(j) time.

Proof: Assume we have a procedure j-FIND(!) that returns the minimum
index j > [ such that w is not adjacent to u; (so in line (11) we make a call to



Figure 1: Two cases of the algorithm (line (15) resp. line (16),(18)-(21)). Nonex-
istent edges are dotted, added edges are dashed.

J-FIND(1)). Furthermore, we assume that when calling this procedure we know
the edge (u;, w) and its position in the adjacency list N(w) of w.

If (w, w;41) is an edge, it must be the next element after (w, ;) in the counter-
clockwise order of N(w). Otherwise {w, u;, u;11} is a separating triangle, and we
assumed G to be without separating triangles. So if this element is not (w, u;41),
we can return the value [ + 1 and are done. Otherwise, we return the value of
J-FIND({+1). Each call of j-FIND() needs only O(1) time, completing the proof.

v O

Testing whether (u;,u,) exists can be done by checking the adjacency list of
up, Which requires O(deg(u,)) time. This also gives us the starting point in the
adjacency list of u; to find the maximum index k& < p such that u; is not adjacent
to u;. Similarly, ux can be found in O(p — k) time.

Lemma 3.2 Finding the next v can be done in overall linear time.

Proof: Throughout the algorithm we will keep a doubly linked list L of vertices
which are possible candidates for the next v. The entries of L are sorted by
descending degree. We also keep an array A where A[:] indicates the first vertex
in L of degree i. We initialize L and A by performing bucket sort on the degree
of the vertices which requires O(n) time. During the algorithm the degrees of
vertices will change. We will show how to update L and A in O(1) time when
increasing one degree by 1. Hence we need O(#{added edges}) = O(n) time.
Assume vertex z has its degree increased from 4 to 7 + 1. The new position of
z in L is before A[i]. We delete = from its old position and insert it before A[i]
(note that if z = A[4] then L remains unchanged). If A[i+1] is defined, it remains
unchanged. Otherwise, set At + 1] = z. If A[{] # z, A[¢] remains unchanged.
Otherwise, let Afi] be the successor of z in L if this successor has degree ¢ and
leave it undefined otherwise. Our next candidate v is the first element of L.
When deleting v, we set A[deg(v)] to be v’s successor in L if its degree equals
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deg(v) and to be undefined otherwise. These operations each need O(1) time, so
we need O(n) time overall. O

Lemma 3.3 The above algorithm works in linear time and space.

Proof: Let v and F be fixed, and consider the steps (7)-(21). We have to search
for the vertex w adjacent to both u; and u, and can do so in deg(u;) + deg(u,) <
2 - deg(uy) time. So all steps need O(deg(u1) + j + (p — k)) time. We added
Q@ + (p — k)) edges. By definition of v we know deg(u;) < deg(v). So we can
consider deg(u;) as the minimum degree among the endpoints of the edge (v, u).

After these steps the edge (v,u;) is contained in a triangular face which was
not a triangular face before. This can happen at most twice to every edge. Also
the degree of a vertex never decreases and therefore we have a running time of

(’)(#{added edges}+ ) min{deg(v), deg(w)}) = O(n),
(v,w)EE*

where E* is the set of edges in the final graph and the last equality is due to
Chiba and Nishizeki [2]. @

Now, we prove the correctness of the algorithm:

Lemma 3.4 The graph stays simple.

Proof: Notice that the edge (u;,u,) does not exist. Assume it did. Then v
must have degree 2, otherwise we had a separating triangle. But u; has degree
at least 3, which contradicts the choice of v. So we know that in line (9) of the
algorithm we do not produce a double edge. In all other cases the introduced
edges cannot have existed previously by planarity. a

Lemma 3.5 No separating triangles are introduced.

Proof: Separating triangles can be introduced only when we add an edge where
the two endpoints have a common neighbor. We will show that in all cases this
either does not happen, or that the new edge gives a triangle that is a face.
e Line (9): By definition »; and u, have no common neighbor except those
that form a face when adding the edge (ui, up).

e Line (15): By definition v is the only vertex on F' not adjacent to w. By

planarity u; for 2 < ! < p—1 has no common neighbor with v. u; and u,_;
do have a common neighbor with v, but the introduced triangles are faces.

e Line (16): Remember that the edge (u1,u,) does not exist. Sofor 1 <! <
J — 2, the only possible common neighbor of u; and v; is w, but w is not
adjacent to u;. For | = j — 2, the vertices u; and u; have the common
neighbor w;_;, but {u;, u;_1,u;} forms a face afterwards.

e Line (17): Possible common neighbors of v and u; are w,u, and w; (if
j = 2). But u; is not adjacent to w. It is not adjacent to u, if j < p—1
and otherwise {v, up, up_;} forms a face. If j = 2 then {v,u;, u;} is a face.
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e Line (20): Because of the edge (u;,u,) and the fact that 1 < j < k < p,
the only possible common neighbors of u; and u; are u; and u,. But u; is
not connected to u,, and, by definition, u; is not connected to u;, unless
k = j+ 1. In the last case, {uk,u;,u1} forms a face afterwards.

e Line (21): Consider the face containing v that we get after all edges up
to line (20) have been added. Rename it g, z1,...,Z, such that zo = ug,
z,_; = v and z, = u;. Now z; and z, have a common neighbor, u;, and
r — 1 is the smallest index j’ such that x; is not connected to this common
neighbor. The argument now is a repetition of that for line (16) and (17).

a

Lemma 3.6 The added edges do not create a star if n > 6.

Proof: Assume that our algorithm creates a star. Consider the step when we
add for the first time a star, i.e. we have a face F; and a vertex w such that after
the step we have a star with central vertex w at Fy. Therefore, all vertices on F;
but one, say u, are either w or are adjacent to it and Fj contains at least four
vertices that are not w. Furthermore, the algorithm chose a face F' that contains
both » and w and adds the edge (u,w) in this step.

Let u,z1,. .., Z, be the vertices on F} in clockwise order (note that w # z1, z,).
So u and w have the common neighbors z; and z,. Remember that our algorithm
never adds a separating triangle. So adding the edge (u,w) means that the
resulting triangles {u,z;,w} and {u,z,, w} are faces afterwards. So the face F’
must have consisted of the four vertices u, z,,w, z,. In particular, F' # F}, since
F} had at least four vertices that were not w.

Note that the three vertices zi,u,z, belonged to two faces, F' and Fj, and
therefore deg(u) = 2 and » has no other neighbor. Can z, have a neighbor other
than u,w,z,_1? Since (z,,w),(z,,«) both belong to F and (z,,u), (z,, ,-1)
both belong to Fi, such a neighbor would have to be between z,_; and w in the
adjacency list of z,. But then {z., 25, w} is a separating triangle, a contradiction.
Similarly no other z; can have a neighbor other than {w,z;_1,z;1+1}. Therefore,
by biconnectivity, G consists only of the vertices {w,u,z;, ...,z }.

So w is adjacent to all vertices but u and therefore deg(w) = n—2 > 4. Every
vertex # w on F' has at most three neighbors, therefore w was chosen to be v in
the algorithm. But z; and z, have no common neighbor (since n > 6 we have
r > 4), and therefore the edge (z1,z,) will be added, and not edge (u,w). O

For a graph to contain a star, it must have at least five vertices. So we have to
include into our algorithm the special case of n = 5 which falls into a few easily
handled cases. This concludes the correctness proof.

Theorem 3.7 Let G be a planar graph with a fired embedding. TRIANGULATE
triangulates G without introducing separating triangles if and only if G does not
contain a star. It does this in linear time and space.
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Proof: Nothing needs to be shown for biconnected graphs without separating
triangles. So assume first that we have a biconnected graph G with separating
triangles. Split G at its separating triangles (i.e., if {u, v, w} forms a separating
triangle we split G at the three edges (u,v),(v,w) and (w,u) and add these
edges to both components). We repeat this process until there are no separating
triangles left and then apply TRIANGULATE to the subgraphs.

This can be achieved in linear time and space, using an initial list with pointers
to the separating triangles in the graph (see also [14] for some details). This does
not introduce a separating triangle iff none of the subgraphs contains a star. But
this is the case iff G does not contain a star. Our algorithm never adds a star, so
G is never made to contain a star throughout the algorithm.

If G is not biconnected, we add edges without adding separating triangles
with the algorithm of Read [20] which we sketch here: Let v be a cutvertex and
let © and w be two consecutive neighbors of v, belonging to different biconnected
components. Add the edge (u,w) to G. Since u and w only share v among their
neighbors, and {u, v, w} is a face afterwards, this does not introduce a separating
triangle. G now has one biconnected component less and is still planar. Repeating
this procedure yields a biconnected planar graph in linear time. For this graph
the claim has been shown. O

4 Embedding Graphs for Triangulation

In the next two sections we consider the problem of triangulating a planar graph
G when no embedding is given in advance. If G is triconnected, the embedding
is unique. Otherwise changing the embedding can vary the number of separating
triangles. More precisely we have the following theorem.

Theorem 4.1 Given a biconnected planar graph G, it is NP-complete to decide
whether G can be embedded such that the number of separating triangles of G 1is
at most k.

Proof: The problem is in NP. Given a planar embedding of G we can count the
number of separating triangles in the embedding in polynomial time (see [2]).

Let G be an arbitrary triangular planar graph. For every edge (a,b) € G, we
add a vertex r with edges to a and to b. Let G’ be the resulting graph. Clearly
G is biconnected and planar. Let F and F' be the two faces incident to (a,b) in
G. If we place z inside F then F is a separating triangle in G'. However, x must
be embedded in either F or F”, i.e. either F' or F’ must be a separating triangle
in G'.

Let S be a minimum set of faces in G such that for every edge (a,b) € G,
at least one incident face belongs to S. S corresponds precisely to the minimum
number of triangles in G’ which are separating (place z in the face which belongs



to S). The set S is a vertex cover in the dual graph G* of G. Since G* is a cubic
triconnected planar graph and deciding whether there exists a vertex cover of
size at most k is NP-hard for cubic triconnected planar graphs (cf. the following
theorem), the problem of deciding whether a biconnected planar graph G can be
embedded with at most k separating triangles is NP-complete. O

Theorem 4.2 Vertexr cover in cubic triconnected planar graphs is NP-hard.

Proof: In the papers [7] and [8] it has already been shown that “vertex cover
in planar graphs with maximum degree 3” is NP-hard. In the following, we show
how we can make such a graph cubic and increase the connectivity until it is
3-connected while maintaining an equivalent vertex cover problem.

Operation 1 Let v be a vertex of degree 1 with neighbor w. Delete v and replace
it by a 4-cycle {v1,v2,vs,v4} where vo is also connected with vs. Add the edge
(vla ’l.U) .

Figure 2: Removing a degree 1-vertex.

Lemma 4.3 Let G have a vertex v of degree 1 and let G' be the graph resulting
after applying Operation 1 to v. Then G has a vertex cover of size k iff G' has a
vertex cover of size k + 2.

Proof: Let V* be a vertex cover for G of size k. If v € V* we set V*' = (V* —
{v}) U {v1, v3,v3}. Otherwise we must have w € V* and set V* = V* U {vs, v4}.
The size of V* is k + 2 and it is a vertex cover for G'.

Conversely let V* be a vertex cover of size k. We consider the vertices
vy, Vg, U3, V4 Which have been added. If those four vertices contain at most two
vertices in V* then these must be v, and vy, and also w must be in V*. Conse-
quently V* = V* — {vy,v4} is a vertex cover for G of size k' — 2. If those four
vertices contain at least three vertices then let V* be v plus the vertices of V*
not in {v,vs,vs,vsa}. Then V* is a vertex cover for G and has at most k' — 2
vertices. O

Operation 2 Let v be a vertex of degree 2 with neighbors wy,wy. Delete v and

replace it by a 4-cycle {v1,va,vs,v4} where vy is also connected with vs. Add the
edges (vi, wy) and (v3, ws).



v
>—-—< — >_@”A—<
v4
Figure 3: Removing a degree 2-vertex.

For Operation 2, an analogous lemma holds:

Lemma 4.4 Let G have a vertez v of degree 2 and let G’ be the graph resulting
after applying Operation 2 to v. Then G has a vertex cover of size k iff G' has a
vertex cover of size k + 2.

Now we show how to make the graph for the reduction triconnected.

Operation 3 Let G be 3-regular. Replace every vertex by a cluster of 7 vertices
and every edge by two edges, as shown in Figure 4.

Yo
—_—
a
Figure 4: Increase the connectivity.

Lemma 4.5 Let G be 3-reqular with n vertices and let G' be the graph resulting
after Operation 3. Then G has a vertex cover of size k iff G' has a vertex cover
of size 3n + k.

Proof: Let V* be a vertex cover for G of size k. We construct a vertex cover
V* of G’ in the following way: If v € V* we include into V* the vertices marked
“a” of the cluster replacing v. If v € V* we include the vertices marked “b” into
V*. The size of V* is 3n + k and this set is obviously a cover set for G'.
Conversely let V* be a cover set of size k' for G’. We constuct a vertex cover
V* of G by considering each cluster that replaced v € G. If V¥ contains only
three vertices out of the seven, they must be the vertices marked “b”. In this
case v will not be included into V*. If V* contains more than three vertices from
the seven, include v into V*. Let (u,v) be an edge of G. In one of the clusters of
u and v in G' an “a’-vertex must have been included in V*. This cluster then
contained at least four vertices of V* and its vertex was in included in V*. So
the obtained set is a vertex cover, and its size is at most k' — 3n. O

Lemma 4.6 Let G be 3-regular and let G' be the graph resulting after Opera-

tion 3. If G was connected then G' is biconnected. If G was biconnected then G’
is triconnected.
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Proof: Assume we had a path P in G between two vertices v and w. Let z
be any vertex of the cluster replacing v, and let y be any vertex of the cluster
replacing w. Path P now gives two disjoint paths connecting z and y in G'. This
shows that G’ is biconnected, provided that G was connected. For if we have two
vertices within one cluster they are on a cycle. If we have two vertices in different
clusters their corresponding vertices in G were connected by a path, and hence
they are connected by two disjoint paths in G'.

Now let G be biconnected. Pick any two vertices z and y in G'. Assume first
that they are in the same cluster, coming from the vertex v in G. There was a
cycle in G containing v and it now gives two paths connecting = with y. A third
disjoint path can be found within the cluster. Assume next that x and y are in
different clusters. In G there were two disjoint paths connecting them. This two
paths give four paths in G’ which are disjoint, except at the clusters containing
z and y. Using these four paths we can now find three disjoint paths between x
and y. » O

The resulting graph now has vertices of degree 4. In the following we will
show how those vertices can be removed while maintaining an equivalent vertex
cover problem.

Operation 4 Let G have a verter v of degree 4. Delete v and replace it by a
cluster of ten vertices as shown in Figure 5.

Figure 5: Removing vertices of degree 4.

Lemma 4.7 Let G have a vertex v of degree 4 and let G' be the resulting graph
after applying Operation 4 to v. Then G has a vertez cover of size k iff G' has a
vertex cover of size k + 5.

Proof: Let V* be a vertex cover for G of size k. We construct a vertex cover
V* of G' of size k + 5 in the following way: If v € V* we include the vertices
marked “a” and both vertices marked “c” into V*. If v ¢ V* we include the
vertices marked “b” and one of the vertices marked “c” into V*. Obviously the
size of V* is k + 5 and it is easy to see that this set is a cover set for G'.
Conversely let V*' be a cover set of size k' for G'. We consider the cluster that
replaced v. The 8-cycle formed by the “a”- and “b”-vertices must contain at least
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four vertices of V*. Moreover, at least one of the vertices marked “c” must be in
the cover. So at least five vertices of the cluster must be in V*. One sees easily
that the only way to cover all edges with five vertices is to take the “b”-vertices
and one “c”-vertex. In this case all neighbors of the “a”-vertices must have been
in V* and v will not be included in the cover set V* for G. If V* contains more
than five vertices of the cluster we include v in V*. Now V* contains at most
k' — 5 vertices and obviously is a vertex cover for G. O

To conclude the proof of the theorem we give the whole construction of the
reduction: We start with the graph by Garey and Johnson [7] with maximum
degree 3. We transform it to a cubic planar graph by applying Operations 1
and 2. If it is not triconnected we increase the connectivity by one with Opera-
tion 3. Then we make the graph cubic again with Operation 4. If G is still not
triconnected we apply Operations 3 and 4 once more. After that a cubic planar
triconnected graph is obtained. We have reduced the problem “Find a vertex
cover of prescribed size for a planar graph with maximum degree 3” to “Solve
the same problem for a cubic planar triconnected graph”. The first problem has
been shown to be reducible to the 3-satisfiability problem [7], and hence the latter
problem is NP-hard as well. a

5 An Approximation

In this section, we present a linear time algorithm to construct an embedding of
a planar graph G with at most twice the optimal number of separating triangles.
After the embedding is computed, we can use the algorithm of Section 3 to get a
triangulation of G without new separating triangles.

We use the SPQR-tree, a data structure that represents the decomposition
of a biconnected graph into its triconnected components [3]. The triconnected
components of a biconnected graph G are defined as follows. If G is triconnected
itself is the unique triconnected component. Otherwise let {u, v} be a separation
pair of G. We partition G into two connected subgraphs G; and G2 which
have only the vertices © and v in common. We continue the decomposition
process recursively on G§ = Gy + (u,v) and Gy = G2 + (u,v) until no further
decomposition is possible. The added edges are called virtual edges. The resulting
graphs are each either triconnected simple graphs with at least four vertices, or
sets of three multiple edges, or triangles. The triconnected components of G
are obtained from such graphs by merging the triple bonds into maximal sets of
multiple edges (bonds), and the triangles into maximal simple cycles (polygons).

The SPQR-tree T is defined as follows: for every triconnected component we
create a node in 7. Namely, for every polygon an S-node, for every bond a P-
node, and for every triconnected graph an R-node. Moreover, we add a Q-node
for every edge. Note that every edge, whether virtual or in G, belongs to exactly
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Figure 6: Example of a biconnected graph and its SPQR-tree (from [3]). Q-nodes
are represented by boxes. Virtual edges are dashed in the parent-node and dotted
in the child-node. Deleting dotted edges gives skeleton(b) for every node b.

two nodes in 7. Two nodes in T are now adjacent if and only if they have either
a non-virtual edge or a virtual edge added in the same step in common.

Let T be the SPQR-tree of a given biconnected planar graph G, rooted at an
arbitrary Q-node. We visit the nodes of T in a bottom-up order and handle the
corresponding components in this order. Assume we visit node b in T. Let b’ be
the parent-node of b. Denote by skeleton(b) the associated subgraph of G, but
leaving out the virtual edge that defines the arc from b to . (Notice that this
differs from the definition in [3], but it makes our description easier.) The two
common vertices of skeleton(b) and skeleton(b'), i.e. the endpoints of the common
edge, are called the poles of b. Note that the poles are always on the outerface of
skeleton(b). pertinent(b) is defined by taking skeleton(b) and replacing all virtual
edges e; by pertinent(b;) of the corresponding child-node b;.

Note that for pertinent(b) no embedding is fixed. We will find an embedding
for it and call it pertinent (b). We will explain the algorithm with respect to the
type of b in T. We need the following notation: Whenever we have calculated
pertinent’ (b;) for some node b; we have two distinguished paths between its poles
u, v;, namely, the two paths on the outerface of pertinent’(b;). We denote these
paths by P;; and P, and assume that P;; has not more edges than P,,, ie., if
we denote by |P| the length of a path P, measured by the number of edges, then
|P; 1| < |Pigl.
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5.1 b is a P-node

Denote by u and v the two poles of skeleton(b), and the set of multiple edges
between u and v by ey,...,ex. If e; is virtual then assume the corresponding
child-node to be b;. We want to arrange the edges in an order e;,,...,e;, from
left to right such that when replacing all virtual edges e;, with pertinent'(b;) we
get no more than the necessary number of separating triangles. So if the edge
(u,v) exists and we have a path P;; of length 2, we want to place it next to (u, v).

Assume (u,v) € E and in particular (u,v) = e;. Let ji,..., i be the indices
for which |Pj,1|=2. If L <2wesetiy =1andiy=j (if L=1)andif L > 2 we
set i; = 71, 19 = 1 and i3 = j,. In this case we rename the paths on the outerface
of b;, and bj, in such a way that |Pj, 5| = |Pj,1| = 2. All other i; are assigned
arbitrarily.

If (u, v) was not an edge we set 7, = k for all k. We replace e;, by pertinent (b;,)
such that P;, ; is placed left from P;, 5. Thereby we avoid introducing separating
triangles at b;, and b;,. See Figure 7.

5.2 b is an S-node

If b is an S-node with poles u and v, then skeleton(b) is a path on the edges
e1,...,ex. We replace any virtual e; by pertinent' (b;), where b; is its correspond-
ing child-node, such that all paths P,; are placed on one side of the path.

v

Figure 7: How to handle a P-node (2 cases) and an S-node.

5.3 b is an R-node

If b is an R-node, then skeleton(b) plus the virtual edge between its poles u
and v is triconnected and it has a unique embedding. We fix the embedding
of skeleton(b) accordingly. Notice that this is the only possible embedding of
skeleton(b) with both u and v on the outerface. Let e;,...,ex be the virtual
edges of skeleton(b) and assume the corresponding child-nodes to be by,...,bk.
For all e; with |P;;| > 1 we replace e; by pertinent'(b;) immediately. Call the
resulting graph G’ = (V', E'). If there are virtual edges left in G' we compute a
“dual” graph H of G’ in the following way: For every triangular face F' in G’ we
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add a vertex vp in H. An edge is added between v and vg in H if and only if F
and F’ share a virtual edge e; in G'. Note that for a virtual edge e; in G’ we have
|P;1] = 1, i.e. P; is the edge e;. Merging pertinent’(b;) such that P;; belongs to
F makes F’ a separating triangle, and vice versa. To decide whether P;; should
be embedded in F' or F’ we compute a vertex cover S in H. At least one endpoint
of (vp,vp), say vr, will be part of S, and this will become the separating face.

We replace every virtual edge e; remaining in G’ by pertinent' (b;). Let e,
belong to the faces F' and F'. Assume both of F and F’ are not in H. If one of
them is the outerface then we place P;; in the outerface, otherwise we place P,
arbitrarily. If one of F and F', say F, is not in H then we place P;; in F”. If both
are in H then e; induces an edge between them in H, and one of its endpoints,
say F, must be in S. We then place P;; in F'. See Figure 8 for an example.

Figure 8: The embedding algorithm when b is an R-node

For the following proofs assume that when dealing with a node b we denote by
P the shorter of the paths between the poles of b on the outerface of pertinent’(b).
To prove that this algorithm gives indeed a good embedding we show the invari-
ant that for any b this path P is as short as possible. Here for something “to
be unavoidable” means that we can avoid it only by increasing the number of
separating triangles.

Lemma 5.1 Let b be a P-node with poles u and v. If (u,v) € pertinent(b) then
|P| = 1 unless unavoidable.

Proof: If (u,v) € F it is placed at the outerface, unless there were two child-
nodes b;, and b;, of b which both had |P;,:| = 2. But in this case placing
(u,v) on the outerface would give one more separating triangle, so |P| > 1 was
unavoidable. o

Lemma 5.2 Let b be an S-node or an R-node with poles u and v. If there exists a
path of length 2 on the outerface of some embedding of pertinent(b) then |P| =2
unless unavoidable.

Proof: Note first that the edge (u,v) does not exist in skeleton(b). For assume
it did. Then the triconnected component that defined b would have a double
edge, and therefore b would be a P-node.

We know that there exists an embedding of pertinent(b) with a path of length 2
on the outerface. Then we already must have a path P’ = {u,w, v} of length 2
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on the outerface of some embedding of skeleton(b), since replacing virtual edges
never shortens a path. But for both an S-node and an R-node the embedding of
skeleton(b) is unique, at least if we demand that both « and v be on the outerface.
So we know that P’ is on the outerface of skeleton(b), and we only have to show
that it stays there in pertinent’(b) unless unavoidable. If either of the edges of P’
is non-virtual it stays on the outerface of pertinent’(b).

So we have to deal only with the virtual edges on path P’. Consider the edge
(u,w), and assume it is virtual and belongs to the child-node b;. Then b; is a
P-node. We may assume that (u, w) is on the outerface of pertinent'(b;) since oth-
erwise the extension of the path on the outerface of pertinent'(b) was unavoidable
(Lemma 5.1). For an S-node if (u,w) is on the outerface of pertinent (b;) it is also
on the outerface of pertinent’'(h). Moreover, the same is true for the edge (w,v)
and both edges are placed on one side, so one side of pertinent'(b) is exactly the
path, unless it was unavoidable.

For an R-node note that the outerface of skeleton(b) is never a triangle, since
the edge (u, v) does not exist. So we know that there is no vertex corresponding to
the outerface in H. By the algorithm pertinent (b;) is placed such that (u, w) is on
the outerface, unless the face in G’ on the other side of (u, w) is a triangle. In this
case placing (u,w) on the outerface of pertinent (b) would create a new separating
triangle. In Figure 8 this would happen if v = z; and w = z5. So (u,w) is placed
on the outerface of pertinent (b) unless unavoidable. The argument for (w,v) is
the same, so the path remains on the outerface unless unavoidable. O

Lemma 5.3 Handling P-nodes and S-nodes does not increase the number of sep-
arating triangles by more than the necessary number.

Proof: Let us first deal with the easy case of an S-node b. Since skeleton(b) is a
simple path, any triangle in pertinent(b) is also a triangle in some pertinent(d;),
so we do not create new triangles at all.

Now for P-nodes. Assume that we did produce a new separating triangle
which has to consist of u and v and a third vertex, w. The path P' = {u,w,v}
belongs to some child-node b;, which is an S-node or an R-node. P’ was placed
on the outerface of pertinent(b;) unless unavoidable (Lemma 5.2). So if P’ is
not on the outerface then the new triangle can be avoided only at the expense
of creating another separating triangle in b;. See e.g. the vertices {u,v,w} in
Figure 7(a).

If P' was on the outerface of pertinent’(b;), but not placed next to (u,v), then
either P’ = P, and P, ; was placed next to (u,v). See {u, v, w} in Figure 7(b). Or
there were two other indices j; and j, with |Pj, 1| = 2. See {u, v, z} in Figure 7(b).
Either way, placing P’ next to (u,v) means that some other path of length 2 will
be taken away from (u,v), so we get another separating triangle in exchange. O
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Lemma 5.4 Assume we use a vertex cover heuristic that is within a factor c of
optimality. Then the number of separating triangles produced when handling an
R-node b is within a factor c of optimality. -

Proof: Assume we produced a separating triangle {u;,v;,w;}. There are two
cases: The first case is that not all of {u;,v;, w;} are in skeleton(b). Since the
separating triangle did not exist in any subgraph, it must be that two of the
vertices, say u; and v;, belong to skeleton(b). In Figure 8 this happens with
u; = T3,v; = Tg and w; = y. So (u;, v;) is a virtual edge in skeleton(b) that belongs
to some P-node b;. Furthermore, w; must be on the outerface of pertinent (b;)
(otherwise the triangle was separating in b;). Also, there must be at least one
more vertex in pertinent(b;) (otherwise the triangle is not separating afterwards).
So when handling b the path P’ = {u;, w;,v;} was not placed next to the edge
(ui,v;). Since (u;,v;) is on the outerface there is only one possible explanation
why this happened. Namely, P’ belonged to some subgraph b; of b; and both
P;; and P;, had three vertices. In this case one of those paths has to form a
separating triangle with (u,v) in pertinent'(b), so a separating triangle could not
be avoided.

The second case is that all of {u;,v;, w;} belong to skeleton(b), where they
form a triangle. This triangle is either separating in skeleton(b) already (in which
case it cannot be avoided since the embedding is unique), or it forms a face F' of
skeleton(b). Since the triangle is separating afterwards, at least one of the edges
of it must be virtual. Assume it is (u,v) and it belongs to the child-node b;. Now
if (u,v) is not on the outerface of pertinent'(b;) then by Lemma 5.1 the separating
triangle {u;,v;, w;} can only be avoided by increasing the number of separating
triangles in pertinent(b;). So the overall number of separating triangles cannot
be reduced (see e.g. the vertices u; = x3,v; = Tg, W; = o).

So we may assume that for all of (u;, v;), (vi, w;) and (u;, w;) the edge is either
non-virtual or it is on the outerface of pertinent'(...) of the corresponding child-
node of b. In this case we have vp € H. In fact, we must have vp € S since
otherwise the separating triangle would have been avoided. So out of this last case
we get at most |S| separating triangles and at least as many separating triangles
as in a minimal vertex cover of H. So the factor between the total number of
produced separating triangles and the minimal number of separating triangles is
at least as good as the size of S in relation to the minimal vertex cover. 0O

Theorem 5.5 There is a linear time and space algorithm for computing an em-
bedding of G which has at most twice the minimal number of separating triangles.

Proof: For the computation of the vertex cover we use a standard linear time
algorithm, achieving a vertex cover of at most twice the optimal size. We compute
an arbitrary maximal (i.e., non-extendable) matching M in H and for every edge
e € M we add both endpoints to S. This is a vertex cover since for any maximal
matching M all edges have at least one endpoint that belongs to an edge in M.
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Since in every vertex cover at least one endpoint of every edge in M must be part
of the cover it follows directly that S is at most twice times optimal. With the
above lemmas it therefore follows directly that the computed embedding has at
most twice the minimal number of separating triangles.

Next we show the linear time complexity. Di Battista and Tamassia [3] showed
that the SPQR-tree T can be computed in linear time and that the sum of the
vertices and edges of skeleton(b)’s over all b € T is O(n). Let b be an R-node, and
let G’ = (V', E') be the corresponding graph. Computing the dual graph H of G’
and its vertex cover requires O(|V’|) time which might be too big. But in reality
we need not replace the suitable virtual edges e; by b; to be able to calculate H.
We only need to know whether the length of P;; is 1 or not. So if we store this
information with e; we can calculate H and S in O(|skeleton(b)|) time.

For any node b we need to know only whether the length of P;; is 1, 2, or
more for each child-node b; to calculate pertinent’(b) in O(|skeleton(b)|) time.
After this is done we can check in constant time whether the shorther path on
the outerface of pertinent’(b) has length 1,2, or more. So handling a node b can
be done in O(|skeleton(b)|) time which yields a total running time of O(n). O

Theorem 5.6 Let G be planar and biconnected. Then we can test in linear time
whether G can be made 4-connected while maintaining planarity.

Proof: We first test in linear time whether G can be embedded without any
separating triangles by applying the above algorithm. We claim that if that is
the case the resulting embedding does not contain a star, unless unavoidable.
Assume we did get a star with central vertex w and the vertices zy,...,z,
on the face F. Let G’ be the graph induced by w, zy,...,z, and note that there
is only one embedding of G’ without separating triangles. In this embedding all
faces but F are a triangle. Since F' is also a face in G and since G was embedded
without separating triangles we must have G = G’. But then G contains in every
embedding either a star or a separating triangle. So the star was unavoidable.
So after G was embedded without separating triangles we consider a vertex
of maximum degree. If its degree is n — 1 then G contains a star and cannot be
made 4-connected. Otherwise G contains neither a star nor a separating triangle,
and we can make it 4-connected with the algorithm of Section 3. O

6 Further Remarks and Open Questions

In this paper we considered the problem of triangulating a planar graph without
introducing separating triangles. We showed that if the embedded planar graph
has no separating triangles and does not contain a star the resulting triangulation
does not contain a separating triangle, i.e. the graph is 4-connected. We also
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show how to check in linear time whether a non-embedded graph can be made 4-
connected while maintaining planarity. These results have important applications
in the area of visibility representations of planar graphs.

In order to apply visibility representations, rectangular duals, and straight-
line drawings, the graph has to be 4-connected and triangular [14, 17, 9]. In the
general augmentation context the question arises how to find a mimimum set of
edges whose addition makes a planar graph 4-connected while retaining planarity.
To our knowledge this problem is open.

On the other hand, we are able to test 4-connectivity of a planar graph in linear
time, using the recent work of Eppstein [4]: He solves the subgraph isomorphism
problem in planar graphs in linear time for any pattern of constant size. If there
are k occurrences he lists them in time O(n + k). We use this result as follows:
let G be planar and triconnected, hence the embedding of G is unique. Construct
a new graph H as follows: Every vertex (resp. face) in G is represented by a
vertex-node (resp. face-node) in H. We add an edge between a vertex-node and
a face-node iff the corresponding vertex and face in G are incident. Note that H
is planar, biconnected, and bipartite.

Assume we have a vertex v € G, and (v, u), (v, w) is a pair of edges consecutive
in the adjacency list of v. Then this pair gives rise to a 6-cycle in H as follows:
Let (v,u) belong to the faces Fi, Fy, and let (v,w) belong to the faces Fj, Fj.
Since deg(v) > 3 by triconnectivity we have Fy # F3 and hence get the 6-cycle
C=v—vp —u—vp, —w—vp, —v in H. Note that at v we get deg(v) many
such cycles. We call these 6-cycles the edge-cycles. Also every face F' of length 3
gives rise to one additional 6-cycle in H, as shown in Figure 9.

Figure 9: An edge cycle and a face cycle in H, respectively.

A 4-connected planar graph has no other 6-cycle in H. To be precise, we have
the following lemma:

Lemma 6.1 Let G be a triconnected planar graph. with a minimum degree of at
least 3. Let k be the number of faces of length 8 in G. Then G is 4-connected if
and only if there are exactly 2m + k 6-cycles in H.

Proof: First we show the ”only if” part. Assume G is 4-connected and let
C=v—vp —u—vp —w— Vg — v be a 6-cycle. The vertices of G must be
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either all inside or all outside this cycle, for otherwise the triplet {v, u, w} would
be a separation set. Assume w.l.o.g. that they are all outside the cycle. So on
the inside of C' we have only edges in G. However, since C uses three different
faces there must be at least two edges on the inside of C, and those can only be
edges of the set {(u,v), (v,w), (w,u)}. If all three of these edges are in G then
C corresponds to a face-cyle, otherwise it corresponds to an edge-cycle. So G
contains no other 6-cycle than the edge- and the face-cycles. By the above there
are 2m edge-cycles and k face-cycles in H.

Conversely, let G be not 4-connected and let {u, v, w} be a separation triplet.
By planarity there must be three faces Fy, F3, F3 with w,v in Fj, v,w in F; and
w,u in F3, and we have the 6-cycle C = v — vp, — 4 — vp, — W — VR, — v. Since
{u,v,w} is a separation pair we have two vertices in two different components of
G — {u,v,w}. But then one of them must be on the inside of C' and the other
one on the outside. None of the edge- and face-cycles contains vertices on both
the inside and the outside. So there must be more than 2m + k 6-cycles in H.
O

Using the algorithm of Eppstein, this lemma yields the following result.

Theorem 6.2 Testing 4-connectiity of a planar graph can be done in linear
time and space.

Triangulating planar graphs without introducing separating quadrangles is
a hard problem. Even triangulating a graph consisting of a cycle of length 5
introduces a separating quadrangle. The question arises as to whether there
is a characterization of planar graphs that can be augmented to a 5-connected
triangular planar graph. Also the time complexity of this augmentation algorithm
is an interesting problem for further research. Another natural question is to
apply Eppstein’s result to test 5-connectivity of general planar graphs in linear
time.

However, the authors are not aware of any practical applications of this 5-
connectivity triangulation problem. This problem would thus appear to be more
of theoretical interest.
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