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Abstract

Combinatorial optimization problems appear in many disciplines ranging
from management and logistics to mathematics, physics, and chemistry. These
problems are usually relatively easy to formulate mathematically, but most
of them are computationally hard due to the restriction that a subset of the
variables have to take integral values. During the last two decades there has
been a remarkable progress in techniques based on the polyhedral description
of combinatorial problems, leading to a large increase in the size of several
problem types that can be solved. The basic idea behind polyhedral techniques
is to derive a good linear formulation of the set of solutions by identifying
linear inequalities that can be proved to be necessary in the description of the
convex hull of feasible solutions. Ideally we can then solve the problem as
a linear programming problem, which can be done e�ciently. The purpose of
this manuscript is to give an overview of the developments in polyhedral theory,
starting with the pioneering work by Dantzig, Fulkerson and Johnson on the
traveling salesman problem, and by Gomory on integer programming. We also
present some modern applications, and computational experience.
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Combinatorial optimization deals with maximizing or minimizing a function subject
to a set of constraints and subject to the restriction that some, or all, variables
should be integers. A well-known combinatorial optimization problem is the traveling
salesman problem, where we want to determine in which order a \salesman" has to
visit a number of \cities" such that all cities are visited exactly once, and such that the
length of the tour is minimal. This problem is one of the most studied combinatorial
optimization problems because of its numerous applications, both in its own right
and as a substructure of more complex models, and because it is notoriously di�cult
to solve.

The computational intractability of most core combinatorial optimization prob-
lems has been theoretically indicated, i.e. it is possible to show that most of these
problems belong to the class of NP-hard problems, see Karp (1972), and Garey and
Johnson (1979). No algorithm with a worst-case running time bounded by a polyno-
mial in the size of the input is known for any NP-hard problem, and it is strongly
believed that no such algorithm exists. Therefore, to solve these problems we have to
use an enumerative algorithm, such as dynamic programming or branch and bound,
with a worst-case running time that is exponential in the size of the input. The
computational hardness of most combinatorial optimization problems has inspired
researchers to develop good formulations and algorithms that are expected to reduce
the size of the enumeration tree. To use information about the structure of the convex
hull of feasible solutions, which is the basis for polyhedral techniques, has been one
of the most successful approaches so far. The pioneering work in this direction was
done by Dantzig, Fulkerson and Johnson (1954), who invented a method to solve the
traveling salesman problem. They demonstrated the power of their technique on a
49-city instance, which was huge at that time.

The idea behind the Dantzig-Fulkerson-Johnson method is the following. Assume
we want to solve the problem

minfcx subject to x 2 Sg; (1)

where S is the set of feasible solutions, which in this case is the set of traveling
salesman tours. Let S = P \ ZZn, where P = fx 2 IRn : Ax � bg and where Ax � b
is a system of linear inequalities. Since S is di�cult to characterize, we could solve
the problem

minfcx subject to x 2 Pg (2)

instead. Problem (2) is easy to solve as linear programming problems are known to
be polynomially solvable, but since it is a relaxation of (1) it may give us a solution
x� that is not a tour. More precisely, the following two things can happen if we solve
(2): either the optimal solution x� is a tour, which means that x� is also optimal for
(1), or x� is not a tour, in which case it is not feasible for (1). If the solution x� is not
feasible for (1) it lies outside the convex hull of S which means we can cut o� x� by
identifying a hyperplane separating x� from the convex hull of S, i.e. a hyperplane
that is satis�ed by all tours, but violated by x�. An inequality that is satis�ed by all
feasible solutions is called a valid inequality. When Dantzig, Fulkerson and Johnson
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solved the relaxation (2) of their 49-city instance they indeed obtained a solution x�

that was not a tour. By looking at the solution they identi�ed a valid inequality that
was violated by x�, and added this inequality to the formulation. They solved the
resulting linear programming problem and obtained again a solution that was not a
tour. After repeating this process a few times a tour was obtained, and since only
valid inequalities were added to the relaxation, they could conclude that the solution
was optimal.

Even though many theoretical questions regarding the traveling salesman problem
remained unsolved, the work of Dantzig, Fulkerson and Johnson was still a break-
through as it provided a methodology that was actually not limited to solving trav-
eling salesman problems, but could be applied to any combinatorial optimization
problem. This new area of research on how to describe the convex hull of feasible
solutions by linear inequalities was called polyhedral combinatorics. During the last
decades polyhedral techniques have been used with considerable success to solve many
previously unsolved instances of hard combinatorial optimization problems, and it is
still the only method available for solving large instances of the traveling salesman
problem. The purpose of this paper is to describe the basic theoretical aspects of
polyhedral techniques and to indicate the computational potential.

A natural question that arises when studying the work by Dantzig, Fulkerson and
Johnson is whether it is possible to develop an algorithm for identifying valid inequal-
ities. This question was answered by Gomory (1958), (1960), (1963) who developed
a cutting plane algorithm for general integer linear programming, and showed that
the integer programming problem (1) can be solved by solving a �nite sequence of
linear programs. Chv�atal (1973) proved that all inequalities necessary to describe
the convex hull of integer solutions can be obtained by taking linear combinations of
the original and previously generated linear inequalities and then applying a certain
rounding scheme, provided that the integer solutions are bounded. Schrijver (1980)
proved the more general result that it is possible to generate the convex hull of in-
teger solutions by applying a �nite number of operations to the linear formulation
containing the integer solutions, starting with P , if P is rational but not necessarily
bounded. The results by Gomory, Chv�atal, and Schrijver are discussed in Section 1.
Here we will also address the following two questions: When can we expect to have a
concise description of the convex hull of feasible solutions? How di�cult is it to iden-
tify a violated inequality? These questions are strongly related to the computational
complexity of the considered problem, i.e. the hardness of a problem type will catch
up with us at some point, but we shall also see that certain aspects of the answers
make it possible to hope that a bad situation can be turned into a rather promising
one.

The results of Gomory, Chv�atal and Schrijver were very important theoretically,
but they did not provide tools for solving realistic instances within reasonable time.
Researchers therefore began to develop problem speci�c classes of inequalities that
contain inequalities that can be proved to be necessary in the description of the con-
vex hull of feasible solutions. Based on the various classes of valid inequalities it is
then necessary to develop separation algorithms, i.e. algorithms for identifying vio-
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lated inequalities given the current solution x�. In Section 2 we begin by describing
families of valid inequalities and the corresponding separation problems for two basic
combinatorial optimization problems. These inequalities are important as they are
often useful when solving more complex problems as well, either directly, or as a start-
ing point for developing new, more general families of inequalities. Moreover, they
represent di�erent arguments that can be used when developing valid inequalities.
We then discuss two applications: the capacitated facility location problem, and the
economic lot-sizing problem.

Next to the theoretical work of developing good classes of valid inequalities and
algorithms for identifying violated inequalities, there is a whole range of computa-
tional issues that have to be considered in order to make polyhedral methods work
well. These issues, together with some alternative approaches to solving integer and
combinatorial optimization problems, and an extensive list of problems for which
polyhedral results are known, will be discussed in the accompanying Part II of this
paper.

Research carried out in the Netherlands involves both theoretical and more prob-
lem speci�c results. Gerards and Schrijver have considered several important theo-
retical issues, see e.g. Schrijver (1980,1981), Gr�otschel, Lov�asz and Schrijver (1981),
Cook, Gerards, Schrijver and Tardos (1986). Here we also want to mention the result
of H.W. Lenstra (1983) that the integer programming problem (1) can be solved in
polynomial time for a �xed number of variables. Although not speci�cally a result
in polyhedral combinatorics, it is central in integer programming and combinatorial
optimization. If we consider more problem speci�c results, lot-sizing problems have
been considered by Van Eijl, Van Hoesel, Kolen and Wagelmans, see Van Hoesel and
Kolen (1994), Van Hoesel, Wagelmans, and Wolsey (1994), Van Eijl and Van Hoesel
(1995), Van Hoesel, Kolen and Van Eijl (1995). Gerards and Schrijver characterize
graphs for which the node packing polytope is described completely by certain con-
straints, see Gerards and Schrijver (1986), Gerards (1989), and Gerards and Shepherd
(1995). Inequalities for the node packing problem have been used to solve problems
such as the radio link frequency assignment problems by Aardal, Hipolito, Van Hoesel
and Jansen (1995), and the uncapacitated facility location problem by Aardal and Van
Hoesel (1995). Various more complex facility location problems have been studied by
Aardal, see Aardal, Pochet and Wolsey (1993), Aardal (1994), and Aardal, Labb�e,
Leung and Queyranne (1994). Results on scheduling problems have been obtained
by Nemhauser and Savelsbergh (1992), Crama and Spieksma (1995), Van den Akker,
Van Hoesel and Savelsbergh (1993), and Van den Akker, Hurkens and Savelsbergh
(1995). Savelsbergh has also considered the single-node �xed charge 
ow model (Gu,
Nemhauser and Savelsbergh (1995)), and he is one of the researchers behind the com-
mercial mixed-integer programming software MINTO, see Savelsbergh, Sigismondi
and Nemhauser (1994).
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1 Theoretical background

The integer linear programming problem (ILP) is de�ned as

minfcx : x 2 Sg;

where S = P \ ZZn and P = fx 2 IRn : Ax � bg. We call P the linear formulation

of ILP. A polyhedron P is rational if it can be determined by a rational system
Ax � b of linear inequalities, i.e., a system of inequalities where all entries of A and
b are rationals. The convex hull of the set S of feasible solutions, denoted conv(S),
is the smallest convex set containing S. A facet-de�ning valid inequality is a valid
inequality that is necessary to describe conv(S), i.e. it is the \strongest possible"
valid inequality. In Figure 1 we give an example of sets P , S and conv(S).
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Figure 1: P , S, and conv(S).

If we know the linear description of conv(S) we can solve the linear programming
problemminfcx : x 2 conv(S)g which is computationally easy. In this section we shall
primarily address the issue of how di�cult it is to obtain conv(S). First we show that
for rational polyhedra, and for not necessarily rational, but bounded, polyhedra, we
can generate conv(S) algorithmically in a �nite number of steps. In general however,
there is no upper bound on the number of steps in terms of the dimension of S. We
also demonstrate that it is very unlikely that conv(S) of any NP-hard problem can be
described by concise families of linear inequalities. Finally, we relate the complexity
of the problem of �nding a hyperplane separating a vector x� from conv(S) or showing
that x� belongs to conv(S), to the complexity of optimizing over S. In general these
two problems are equally hard, but if we restrict the search of a separating hyperplane
to a speci�c class, this problem might be polynomially solvable even if the underlying
optimization problem is NP-hard.

1.1 Solving Integer Programming Problems by Linear Pro-

gramming

Gomory's Cutting Plane Algorithm. What was needed to transform the proce-
dure of Dantzig, Fulkerson and Johnson (1954) into an algorithm was a systematic
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procedure for generating valid inequalities that are violated by the current solution.
Assume that we want to solve the variant of ILP where the integer vectors in S are
bounded and where all entries of the constraint matrix A and the right-hand side
vector b are integers. Gomory (1958), (1960) and (1963) developed a cutting plane

algorithm based on the simplex method, for solving integer linear problems on this
form. This was the �rst algorithm developed for integer linear programming that
could be proved to terminate in a �nite number of iterations. The basic idea of Go-
mory's algorithm is similar to the approach of Dantzig, Fulkerson and Johnson, i.e.
instead of solving ILP directly we solve the linear programming (LP) relaxation (2)
by the simplex method. If the optimal solution to LP is integral, then we are done,
and otherwise we need to identify a valid inequality cutting o� x�. Gomory developed
a technique for automatically identifying a violated valid inequality and proved that
after adding a �nite number of inequalities, called Gomory cutting planes, the optimal
solution is obtained. We shall illustrate Gomory's technique by an example. Assume
we have solved the LP-relaxation (2) of an instance of ILP by the simplex method,
and that one of the rows of the �nal tableau reads

x1 �
1
11
x3 +

2
11
x4 =

36
11
;

where x1 is a basic variable and variables x3 and x4 are non-basic, i.e. at the current
solution x1 = 36=11 and x3 = x4 = 0. We now split each coe�cient in an integer and
a fractional part by rounding down all coe�cients. The integer terms are put in the
left-hand side of the equation and the fractional terms are put in the right-hand side.
Since all coe�cients are rounded down, the fractional part of the variable coe�cients
in the right-hand side becomes nonpositive, giving

x1 � x3 � 3 = �10
11x3 �

2
11x4 +

3
11 :

In any feasible solution to ILP, the left-hand side should be integral. Moreover, all
variables are nonnegative. Since the variables in the right-hand side appear with
nonpositive coe�cients we can conclude that

3
11 �

10
11x3 �

2
11x4 � 0 ; and integer: (3)

We have argued that inequality (3) is valid, i.e. it is not violated by any feasible
integer solution. It is easy however to see that it does cut o� the current fractional
solution as x3 = x4 = 0. Let bxc denote the integer part of x.

Outline of Gomory's cutting plane algorithm.

1. Solve the linear relaxation (2) of ILP with the simplex method. The current
number of variables is k. If the optimal solution x� is integral, stop.

2. Choose a source row i0 in the optimal tableau with a fractional basic variable.
Row i0 reads �ai0;1x1 + �ai0;2x2 + : : : + �ai0;kxk = �bi0. Let a0ij = �aij � b�aijc; and
b0i = �bi � b�bic.

3. Add the equation �a0i0;1x1�a
0
i0;2

x2� : : :�a0i0;kxk+xk+1 = �b0i0, where xk+1 is a
slack variable, to the current linear formulation, and reoptimize. If the optimal
solution x� is integral, stop, otherwise k  k + 1, go to 2.

5



In the outline above we have not speci�ed how to choose the source row. To be able
to prove that the algorithm terminates in a �nite number of steps we have to make
sure that certain technical conditions are satis�ed. The technical details are omitted
here but can be found in Gomory (1963) who gives two proofs of �niteness, and in
Schrijver (1986), page 357.

Theorem 1 Gomory (1963). There exists an implementation of Gomory's cutting

plane algorithm such that after a �nite number of iterations either an optimal integer

solution is found, or it is proved that S = ;.

A recent discussion on Gomory cutting planes can be found in Balas et al. (1994)
who incorporate the cutting plane algorithm in a branch-and-bound procedure and
report on computational experience.

Chv�atal's Rounding Procedure. Chv�atal (1973) studied the more general version
of ILP, where the integer vectors of S are bounded and where the entries of A and
b are real numbers. He showed that if one takes linear combinations of the linear
inequalities de�ning P and then applies rounding, and repeats the procedure a �nite
number of times, conv(S) is obtained. After each iteration of the procedure we
get a new linear formulation containing more inequalities. We again illustrate the
procedure by an example. Note that this example will be referred to frequently in
the sequel. Let G = (V;E) be an undirected graph where V is the set of vertices and
E is the set of edges. A matching M in a graph is a subset of edges such that each
vertex is incident to at most one edge in M , see Figure 2. In the �gure thick lines
represent edges belonging to the matching. An early application of matching appears
in so-called sets of distinct representatives, where a family of sets is given. From each
set one element should be chosen, such that all chosen elements are di�erent. The
matching problem is also a substructure in many school timetabling problems. For
more technical details, see Gerards (1995).
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Figure 2: A maximum matching.

Let xe be equal to one if edge e belongs to the matching M and zero otherwise,
and let �(v) = fe 2 E : e is incident to vg. The maximum cardinality matching
problem can be formulated as the following linear integer programming problem.

max
X
e2E

xe (4)

s.t.
X

e2�(v)

xe � 1 for all v 2 V; (5)

0 � xe � 1 for all e 2 E; (6)
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xe integer for all e 2 E: (7)

Let U be any subset consisting of k vertices, where k � 3 and odd, and let E(U) be
the set of edges with both endvertices in U . By adding inequalities (5) for all v 2 U
we obtain 2

P
e2E(U) xe � jU j, or equivalently

X
e2E(U)

xe �
jU j

2
: (8)

Since each xe is an integer, the left-hand side of (8) has to be integral. As jU j is odd,
the right-hand side of (8) is fractional, and hence we can round down the right-hand
side of (8) giving the valid inequality

X
e2E(U)

xe �

$
jU j

2

%
; (9)

which we call an odd-set constraint. It is easy to show that the odd-set constraints
are necessary to describe the convex hull of matchings in G. We also note that there
are exponentially many odd-set constraints as there are exponentially many ways
of forming subsets U . We shall now give a more formal description of Chv�atal's
procedure.

An inequality
Pn

j=1 ajxj � b is said to belong to the elementary closure of a
set P of linear inequalities, denoted e1(P ), if there are inequalities

Pn
j=1 aijxj � bi;

i = 1; : : : ;m de�ning P , and nonnegative real numbers �1; �2; : : : ; �m such that

mX
i=1

�iaij = aj with aj integer; j = 1; : : : ; n; and

$
mX
i=1

�ibi

%
� b:

For integer values of k > 1, ek(P ) is de�ned recursively as ek(P ) = e(P [ ek�1(P )).
The closure of P is de�ned as c(P ) = [1k=1e

k(P ).

Theorem 2 Chv�atal (1973). If S is a bounded polyhedron, then conv (S) can be

obtained after a �nite number, k, of closure operations.

An interesting question is if k can be bounded from above by a function of the
dimension of S. Chv�atal called the minimum number of closure operations required
to obtain conv(S), given a linear formulation P , the rank of P . If we return to the
matching problem (5){(7), it was proved by Edmonds (1965) that the convex hull of
the matching polytope is determined by inequalities (5), (6) and (9). As the odd-
set constraints (9) can be obtained by applying one closure operation on the linear
formulation, the rank of the set of inequalities (5) and (6) is one. In general however,
there is no upper bound on k in terms of the dimension of P as the two-dimensional
polytope P = fx 2 IR2

+ : x1 + 2tx2 � 2t; x1 � 2tx2 � 0g illustrates. One closure
operation reduces the polytope only slightly, i.e., the point (t�1; 1

2
) belongs to e1(P ),

and similarly, the point (t � k; 12) belongs to ek(P ) for k < t. Only if S = ; does
there exists an upper bound on k that is a function of the dimension of P . This was
proved by Cook et al. (1987).
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(0; 0)

(0; 1)
(t; 1

2
)P

Figure 3: The number of closure operations is of order t.

There is a clear relation between Chv�atal's closure operations and Gomory's cut-
ting planes in the sense that every Gomory cutting plane can be obtained by a series
of closure operations, and every inequality belonging to the elementary closure can
be obtained as a Gomory cutting plane. It would be possible to prove Theorem 2
using Gomory's algorithm, but then one would �rst need to get rid of the inequalities
xj � 0; j; : : : ; n; and the assumption that the entries of A and b have to be integer.
For further details, see Chv�atal (1973).

Schrijver's Rounding Procedure. Schrijver (1980) studied the version of ILP
where S is not necessarily bounded, and where P is de�ned by a rational system
of linear inequalities. The operations carried out on P to obtain the convex hull of
feasible solutions is quite di�erent from the linear combination and rounding schemes
developed by Gomory and Chv�atal. The key component of Schrijver's procedure is
the formulation of a totally dual integral (TDI) system of inequalities. A rational
system Ax � b of linear inequalities is TDI if for all integer vectors c such that
maxfcx : Ax � bg is �nite, the dual, minfyb : yA = c; y � 0g, has an integer optimal
solution. Note that if Ax � b is TDI, and if b is integral, then P = fx : Ax � bg is
an integral polyhedron, i.e. all extreme points of P are integral. TDI systems were
introduced by Edmonds and Giles (1977).

Each iteration of Schrijver's procedure consists of the following two steps.

1. Given a rational polyhedron P , �nd a TDI system Ax � b de�ning P , with A
integral.

2. Round down the right-hand side b.

It has been proved by Giles and Pulleyblank (1979) and Schrijver (1981) that there
exists a TDI system as in step 1 of Schrijver's procedure for every rational polyhedron
P , and that the TDI system is unique if P is full-dimensional. Finding such a TDI
system can be done in �nite time. After one iteration of the above procedure we get
a polyhedron P (1) strictly contained in P unless P is integral. Given the polyhedron
P (1) we repeat the steps 1 and 2. This continues until conv(S) is obtained.

Theorem 3 Schrijver (1980). For each rational polyhedron P , there exists a natural

number k, such that after k iterations of Schrijver's procedure conv (S) is obtained.

The results presented above are of signi�cant theoretical importance as they give
algorithmic ways of generating the convex hull of feasible solutions. All three ap-
proaches are �nite, but from a practical point of view �nite in most cases does not
imply that computations can be done within reasonable time. One apparent question
is whether for some problem classes it is possible to write down the linear description
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of the convex hull in terms of concise families of linear inequalities. If that is pos-
sible we could apply linear programming directly. This is the topic of the following
subsection.

1.2 Concise Linear Descriptions

Wementioned in the previous subsection that the convex hull of matchings in a general
undirected graph G is given by the de�ning inequalities (5), (6), and the exponential
class of inequalities (9). Assume now that G is bipartite, i.e. that we can partition
the set V of vertices into two sets V1; V2; such that all edges have one endvertex in V1
and the other endvertex in V2. For bipartite graphs the convex hull of matchings is
described by the de�ning inequalities (5) and (6) only, which is a polynomial system
of linear inequalities. This means that for bipartite graphs the integrality condition
(7) is redundant. In contrast, there is no concise linear description known for the
traveling salesman problem, even if we allow for exponential families of inequalities.
The reason why the bipartite matching problem is so easy is that the constraint
matrix is totally unimodular (TU). A matrix A is TU if each subdeterminant of A is
equal to 0,1 or -1.

Theorem 4 If A is a TU matrix the polyhedron P = fx : Ax � bg is integral for all
integer vectors b for which P is not empty.

Seymour (1980) provided a complete characterization of TU matrices yielding a poly-
nomial algorithm for testing whether a matrix is TU. For a thorough discussion on
TU matrices we refer to Schrijver (1986), and Nemhauser and Wolsey (1988).

It is interesting to observe here that the bipartite matching problem is polynomi-
ally solvable as its linear description is polynomial in the dimension of the problem.
For the matching problem in general undirected graphs there is a polynomial com-
binatorial algorithm due to Edmonds (1965), but the traveling salesman problem is
known to be NP-hard. The following theorem con�rms that there is a natural link
between the computational complexity of a class of problems and the possibility of
providing concise linear descriptions of the convex hull of feasible solutions. Before
stating the result we need to introduce the following decision problems:

The lower-bound feasibility problem. An instance is given by integers m;n, an m� n
matrixA, vectors b and c, and a scalar �. The question is: 9 x 2 ZZn : Ax � b; cx > �?

The facet validity problem. An instance is given by the same input as for the
lower-bound feasibility problem. The question is: Does cx � � de�ne a facet of
conv(fx 2 ZZn : Ax � bg)?

Note that if the lower-bound feasibility problem for a family of polyhedra is NP-
complete then optimizing over the same family of polyhedra is NP-hard.

Lemma 5 If any NP-complete problem belongs to co-NP, then NP=co-NP.

Theorem 6 Karp and Papadimitriou (1980). If lower-bound feasibility is NP-complete,

and facet validity belongs to NP, then NP=co-NP.
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The way to prove Theorem 6 is to show that if facet validity belongs to NP, then
lower-bound feasibility belongs to co-NP. If lower-bound feasibility is NP-complete
we can through Lemma 5 conclude that NP=co-NP. It is extremely unlikely that
NP=co-NP, as this implies that all NP-complete problems have a compact certi�cate
for the no-answer. Hence, if we believe that NP6=co-NP, and if minfcx : x 2 Sg is
NP-hard, then there are classes of facets of conv(S) for which there is no short proof
that they are facets.

1.3 Equivalence Between Optimization and Separation

We have seen that if a problem is NP-hard we cannot expect to have a concise
linear description of the convex hull of feasible solutions. Moreover, for the matching
problem, which is polynomially solvable and which has a concise linear description of
the convex hull of feasible solutions, this description is exponential in the dimension
of the problem. These observations do not necessarily have to be negative since what
we primarily need is a good description of the area around the optimal solution. The
question is then whether there exists an e�cient way to identify a violated inequality
whenever needed, i.e. if we can �nd, in polynomial time, a hyperplane separating
a given fractional solution from the convex hull, or prove that no such hyperplane
exists.

The separation problem for a family FP of polyhedra. Given a polyhedron P 2 FP ,
and a solution x�, �nd an inequality cx � �, valid for P , satisfying cx� > �, or prove
that x� 2 P .

The optimization problem for a family FP of polyhedra. Given is a polyhedron P 2
FP . Assume that P 6= ; and that P is bounded. Given a vector c 2 IRn, �nd a
solution x0 such that cx0 � cx for all x 2 P .

Theorem 7 Gr�otschel, Lov�asz and Schrijver (1981). There exists a polynomial time

algorithm for the separation problem for a family FP of polyhedra, if and only if there

exists a polynomial time algorithm for the optimization problem for FP .

The theorem says that separation in general is equally hard as optimization but, as
we shall see in the next section, when applying the polyhedral approach we develop
speci�c families of valid inequalities for a given problem type, such as the odd-set
constraints (9) developed for the matching problem.

The separation problem based on a family FI of valid inequalities. Given a solution
x�, �nd an inequality cx � � belonging to FI, satisfying cx� > �, or prove that no
such inequality in FI exists.

The separation problem based on a family of valid inequalities may be polynomially
solvable even if the underlying optimization problem is NP-hard. Moreover, even
if a family of inequalities is NP-hard to separate we may still be able to separate
it e�ectively using a heuristic. Good separation heuristics together with a good
implementation of a preprocessing routine and a branch-and-bound scheme, form the
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basis for the success of the polyhedral approach.

2 Polyhedral Results for Selected Combinatorial

Structures

The results presented in the previous section did provide very important theoreti-
cal answers, but no e�cient computational tools. In the early seventies there was
a renewed interest in developing general purpose integer programming solvers. In-
stead of Gomory's cutting plane method, which tended to be very time consuming,
one developed facet de�ning inequalities and corresponding separation algorithms for
various problem types, and embedded the separation algorithms in a branch-and-
bound framework. In the early days one generated violated inequalities only in the
root node of the branch-and-bound tree, whereas in modern implementations inequal-
ities may be generated in every node. Since the added inequalities could be proved
to be necessary to describe the convex hull of feasible solutions one could expect that
they would be more e�ective than the Gomory cutting planes. Moreover, developing
facet de�ning inequalities and associated separation algorithms for some basic combi-
natorial structures that occur frequently in more general combinatorial optimization
problems, would possibly be very useful when solving a wide range of problems. In
the late seventies and in the eighties remarkable computational progress was made.
Here we shall describe some classes of facet de�ning valid inequalities developed for
a few basic, important, combinatorial optimization problems. The main purpose is
to give an impression of how inequalities and separation algorithms are developed,
and how they can be used, not only for the problem for which they are developed,
but also for more general structures. Since the space provided here is not enough for
a complete survey, we recommend the following literature to the interested reader.
The books by Schrijver (1986), and Nemhauser and Wolsey (1988) provide a broad
theoretical foundation as well as many examples. The latest developments on solv-
ing large traveling salesman problems are reported by Applegate et al. (1994). The
article by J�unger et al. (1995) contains a comprehensive survey of computational
results obtained by using polyhedral techniques. In Part II of this article we present
an extensive list of di�erent problem types for which polyhedral results are known,
together with references.

Before we start the more technical exposition we give some basic de�nitions. An
inequality �x � �0 is called valid for P if each point in P satis�es the inequality. The
set F = fx 2 P : �x = �0g is called a face of P , and the valid inequality �x � �0
is said to de�ne the face F . A face is said to be proper if it is not empty and if it
is properly contained in P , i.e. if ; 6= F 6= P . The dimension of a proper face F ,
dim(F ), is strictly smaller than the dimension of P . If dim(F ) = dim(P )� 1, i.e., if
the dimension of F is maximal, then F is called a facet. The facet de�ning inequalities
are important since they are precisely the inequalities needed to de�ne the convex
hull of feasible solution in addition to the set of inequalities that are satis�ed with
equality by every feasible point.
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2.1 The Traveling Salesman Problem

Consider a complete undirected graph G = (V;E) with n = jV j. In the traveling
salesman problem (TSP) we want to �nd a minimum length Hamiltonian cycle, i.e.
a minimum length cycle containing each vertex exactly once. A modern application
of the TSP occurs when manufacturing printed circuit boards. It is then necessary to
drill numerous small holes for the wiring, which is done using a numerically controlled
drilling machine. To speed up production it is desirable to �nd the drilling sequence
that gives the shortest cycle. Another application occurs in vehicle routing. Here
we need to simultaneously decide on the number of vehicles needed to serve a set of
clients, as well as the tour, from a central depot, to a subset of the clients, and back
to the depot, that each vehicle has to make.

Let xe = 1 if edge e is belongs to the Hamiltonian cycle, and let xe = 0 otherwise.
Moreover, let de denote the length of edge e 2 E. As before, E(S) denotes the set of
edges with both endvertices in S. Often, the vertices of the graph are called cities,
and the Hamiltonian cycle is called a tour.

min
X
e2E

dexe (10)

s.t.
X
e:v2e

xe = 2 for all v 2 V; (11)

X
e�E(S)

xe � jSj � 1 for all ; � S � V; (12)

xe 2 f0; 1g for all e 2 E: (13)

The formulation restricted to the constraints (11) and (13) is called the 2-matching

relaxation of TSP and its solutions are referred to as 2-matchings. Such solutions may
constitute disjoint cycles, or subtours. Constraints (12), introduced by Dantzig et al.
(1954), prevent subtours, and are therefore called subtour elimination constraints.
Edmonds (1965) studied the polyhedral structure of the 2-matching polytope, and
obtained a complete linear description of the convex hull of feasible solutions by
adding so-called 2-matching inequalities to the linear relaxation of the 2-matching
polytope, i.e. to constraints (11) and 0 � xe � 1 for all e 2 E . Since the 2-matching
problem is a relaxation of TSP, the 2-matching inequalities are also valid for TSP. We
illustrate these inequalities by considering a solution to the linear relaxation of the 2-
matching polytope illustrated in Figure 4. The thick lines in the �gure correspond to
variables that have value 1 and the thin lines correspond to variables with value 0.5.
The intuition behind the 2-matching inequality is as follows. From Figure 4 we see
that the triangles induced by the vertices f1; 2; 3g or f4; 5; 6g would cause a violation
of the degree constraints (11) if we impose integrality. Therefore, consider one of the
triangles, say H = f1; 2; 3g. Let E(H) be the set of edges with both endvertices in
H, and let E0 = ff1; 4g; f2; 5g; f3; 6gg, i.e each edge in E0 has exactly one endvertex
in H. Furthermore, let x(F ) =

P
e2F xe. From the set of edges E(H) [ E 0 at most

four can belong to a 2-matching since otherwise at least one of the vertices in H
will have degree 3, which violates constraints (11). The cumulative value of the
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Figure 4: A fractional solution violating a 2-matching constraint.

variables corresponding to edges in E(H) [ E0 is 4.5. Hence, we can conclude that
the inequality x(E(H)) + x(E0) � 4 is violated by the solution described above. In
general, a 2-matching constraint has the form

x(E(H)) + x(E0) � jHj+
�
1

2
jE0j

�
; (14)

where H � V and where the edges in E0 have precisely one endvertex in H. Note that
only 2-matching constraints with an odd number of edges in E0 can be facet-de�ning,
since they are otherwise implied by the degree constraints.

Comb inequalities were introduced by Chv�atal (1975) as a generalization of the
2-matching constraints. In the comb inequalities the edges in E0 are replaced by an
odd number, s, of disjoint vertex sets T1; : : : ; Ts, called teeth, each having one vertex
in common with the handle H. The comb inequality is written as

x(E(H)) +
sX

j=1

x(E(Tj)) � jHj+
sX

j=1

(jTjj � 1) �
1

2
(s+ 1): (15)

Chv�atal's comb inequalities were generalized by Gr�otschel and Padberg (1979) who
introduced structures where each tooth can have more than one vertex in common
with the handle. The clique tree inequalities, introduced by Gr�otschel and Pulleyblank
(1986), are further generalization of comb inequalities in the sense that clique trees
contain multiple handles, which are connected through the teeth. Many more exotic
classes of inequalities have been derived to date, but the search for new classes is still
vivid. A good overview of the current state-of-the-art is provided by Applegate et al.
(1994). Goemans (1993) considers the quality of various classes of inequalities with
respect to their induced relaxations.

The separation problem based on the subtour elimination constraints can be
viewed as a minimum cut problem, which is polynomially solvable using max-
ow
algorithms. Separation of the 2-matching constraints is also polynomial, which was
shown by Padberg and Gr�otschel (1985). Violated 2-matching constraints are however
usually identi�ed using a heuristic, since this is still e�ective and faster in practice.
No polynomial time algorithm is known for solving the separation problem based on
the comb inequalities, but there are fast heuristic methods available that perform
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quite well. For clique tree inequalities, not even good heuristics are known that will
perform well in general. To illustrate the progress made by using the polyhedral
approach to solve the TSP, we present, in Table 1, the sizes of the largest instances
that have been solved to optimality since 1954. Note that the values given in the
column zrootLP have been rounded to the nearest integer. In the tables to follow we
use the following notation: zLP denotes the value of the LP-relaxation, and zIP de-
notes the optimal value of ILP. By % gap we mean the percentage duality gap, i.e.
(zIP � zLP )=zIP . The percentage duality gap closed, denoted % gap closed, is cal-

culated as (zrootLP � zLP )=(zIP � zLP ), where z
root
LP is the value of the LP-relaxation

after all violated inequalities that have been identi�ed in the root node of the branch-
and-bound tree have been added. The number of branch-and-bound nodes needed to
verify the optimal solution is given in the column B&B nodes.

B&B
cities zrootLP zIP nodes application year reported by:

49 12,345 12,345 1 map USA 1954 Dantzig et al.
120 6,942 6,942 1 map Germany 1980 Gr�otschel
318 38,765 41,345 35 drilling 1980 Crowder & Padberg
532 27,628 27,686 85 map USA 1987 Padberg & Rinaldi
666 294,080 294,358 21 world map 1991 Gr�otschel & Holland

1,002 258,860 259,045 13 drilling 1990 Padberg & Rinaldi
2,392 378,027 378,032 3 drilling 1990 Padberg & Rinaldi
3,038 137,660 137,694 287 drilling 1992 Applegate et. al
4,461 182,528 182,566 2,092 map Germany 1994 Applegate et. al
7,397 23,253,123 23,260,728 2,247 programmable 1994 Applegate et. al

logic arrays

Table 1: Computational results for the traveling salesman problem.

2.2 The Knapsack Problem

Consider a set N = f1; : : : ; ng of items, each having a weight aj, and a value cj. A
\knapsack" is to be �lled with a subset of the items, such that the cumulative weight
of the items does not exceed a given threshold, and such that the cumulative value
is maximum. The knapsack polytope occurs as a substructure in many capacitated
combinatorial optimization problems. An example is the capacitated facility location

problem presented in Section 2.3. The knapsack problem is formulated as

max
X
j2N

cjxj (16)

s.t.
X
j2N

ajxj � b; (17)

xj 2 f0; 1g for all j 2 N: (18)

Assume that the vectors c; a, and the right-hand side b are rational, and let XK

denote the set of feasible solutions to the knapsack problem. We call a set C a cover,
or a dependent set, with respect to N if

P
j2C aj > b. A cover isminimal if

P
j2S aj � b

14



for all S � C. If we choose all elements from the cover C, it is clear that the right-
hand side of (17) is exceeded. Hence, the following knapsack cover inequality (Balas
(1975), Hammer et al. (1975) and Wolsey (1975))

X
j2C

xj � jCj � 1 (19)

is valid. A generalization of (19) is given by the family of (1; k)-con�guration inequal-

ities (Padberg (1980)). Let �C � N , and t 2 N n �C be such that
P

j2 �C aj � b and such
that Q [ ftg is a minimal cover for all Q � �C with jQj = k. Let T (r) � �C vary over
all subsets of cardinality r of �C, where r is an integer satisfying k � r � j �Cj. The
(1; k)-con�guration inequality

(r � k + 1)xt +
X

j2T (r)

xj � r (20)

is valid for conv(XK), and if k = j �Cj the cover inequalities (19) are obtained. The
(1; k)-con�guration inequalities are primarily designed to deal with elements j of the
knapsack having a large coe�cient aj.

In general inequalities (19) are not facet de�ning, but they can be made to become
facets by applying certain techniques, called lifting, to systematically increase the
dimension of the face induced by the inequalities. Lifting techniques are described
in Part II of this article. A special case of a lifted cover inequality, where all lifting
coe�cients are equal to zero or one, is obtained by considering the extension E(C)
of a minimal cover C, where E(C) = fk 2 N n C : ak � aj; for all j 2 Cg. The
inequality

P
j2E(C) xj � jCj � 1 is valid for conv(XK) and under certain conditions it

also de�nes a facet of conv(XK).

The separation problem based on the cover inequalities can again be viewed as a
knapsack problem as we show below. Assume we are given the point x�. To �nd a
cover inequality (19) violated by x� we need to �nd a set C such that

P
j2C x

�
j > jCj�1

and
P

j2C aj > b. Let zj = 1 if j 2 C, and let zj = 0 otherwise, and assume without
loss of generality that aj; j 2 N , and b are integral. For (19) to be violated the
zj-variables have to satisfy the constraints

X
j2N

x�jzj >

0
@X
j2N

zj

1
A � 1 and

X
j2N

ajzj � b+ 1:

The �rst of the above constraints can be rewritten as
P

j2N(1� x�j )zj < 1, leading to
the following formulation of the problem of �nding the most violated cover inequality
(19)

min � =
X
j2N

(1� x�j )zj (21)

s.t.
X
j2N

ajzj � b+ 1; (22)

zj 2 f0; 1g for all j 2 N: (23)
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A violated cover inequality is identi�ed if and only if � < 1. To see that the separation
problem (21)-(23) is equivalent to a knapsack problem we only need to complement
the zj-variables, i.e. substitute zj by 1�zj. Problem (21)-(23), however, is often easier
to solve than the original knapsack problem since, at a typical fractional solution x�,
many variables take value zero or one. If x�j = 1, the coe�cient of zj in (21) is equal to
zero, and we can set zj equal to one. Analogously, if x�j = 0 we set zj is equal to zero.
Therefore, typically few variables remain in the separation problem. Crowder et al.
(1983) developed a heuristic for the separation problem and for lifting the inequalities
to become facets. Once a minimal cover C is generated it is also used in a heuristic for
�nding a violated (1; k)-con�guration inequality. They implemented the algorithms
and solved large, real-life, 0-1 integer programming problems without any apparent
structure by automatically generating knapsack cover inequalities. This was one of
the early computational breakthroughs in combinatorial optimization, as most of the
problems were considered not amenable to exact solution within reasonable time.
Table 2 gives a summary of the computational results. The valid inequalities were
generated and added in the root node of the branch-and-bound tree only. The results
include some initial preprocessing to delete some variables and constraints, and to
reduce the size of some coe�cients. For more details about preprocessing we refer
to Part II of this article. In Table 2 vars, constr., and ineq. denote the number of
variables, constraints, and added valid inequalities respectively.

original problem preprocessing cutting plane B&B
vars constr. zLP vars. constr. zLP ineq. zLP nodes zIP
33 16 2,520.6 33 16 2,819.4 36 3,065.3 113 3,089.0
40 24 61,796.5 40 24 61,829.1 29 61,862.8 11 62,027.0
201 134 6,875.0 195 134 7,125.0 139 7,125.0 1,116 7,615.0
282 242 176,867.5 282 222 176,867.5 462 255,033.1 1,862 258,411.0
291 253 1,705.1 290 206 1,749.9 278 5,022.7 87 5,223.8
548 177 315.3 527 157 3,125.9 296 8,643.5 36 8,691.0

1,550 94 1,706.5 1,550 94 1,706.5 94 1,706.5 10 1,708.0
1,939 109 2,051.1 1,939 109 2,051.1 110 2,051.1 334 2,066.0
2,655 147 6,532.1 2,655 147 6,532.1 149 6,535.0 214 6,548.0
2,756 756 2,688.7 2,734 739 2,701.1 1,065 3,115.3 2,392 3,124.0

Table 2: Results for general zero-one problems.

2.3 The Capacitated Facility Location Problem

In the capacitated facility location problem (CFL) we are given a set M = f1; : : : ;mg
of possible location sites for facilities and a set N = f1; : : : ; ng of clients. The capacity,
mj, at each location site is known, as well as the demand, dk, of each client. The total
demand of the clients in the set S � N is denoted by d(S): We also know the �xed
cost of setting up each facility, fj, and the per unit transportation cost, cjk, between
every facility { client pair. We want to determine at which site a facility should be
opened and how the 
ow should be distributed between the open facilities and the
clients such that the sum of the �xed costs and the transportation costs is minimized,
and such that all clients are served, and all capacity restrictions are satis�ed.
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Let yj = 1 if facility j is open, and let yj = 0 otherwise. The 
ow from facility j
to client k is denoted by vjk. The mathematical formulation of CFL is given below.

min
X
j2M

fjyj +
X
j2M

X
k2N

cjkvjk (24)

s.t.
X
j2M

vjk = dk for all k 2 N; (25)

P
k2N vjk � mjyj for all j 2M; (26)

0 � vjk � dkyj for all j 2M; k 2 N; (27)

yj 2 f0; 1g for all j 2M: (28)

Inequalities (27) are redundant for CFL, but they do strengthen the LP-relaxation of
CFL and are therefore included here.

By aggregating the 
ow from each depot we can easily see that a version of the
knapsack polytope forms a relaxation of CFL. By using the aggregate 
ow variables
vj =

P
k2N vjk; j 2M , we can obtain the aggregate capacity and demand constraints

0 � vj � mjyj for all j 2M; (29)

X
j2M

vj = d(N): (30)

If we combine constraints (29) and (30) with constraint (28) we obtain a so-called
surrogate knapsack polytope XSK = fy 2 f0; 1g :

P
j2M mjyj � d(N)g. Complement-

ing the yj-variables, i.e. letting y0j = 1�yj for all j 2M , gives the knapsack polytope
fy0 2 f0; 1g :

P
j2M mjy

0
j �

P
j2M mj � d(N)g. Hence we can use the knapsack cover

inequalities (19) when solving CFL. Note that these inequalities can also be derived
for subsets K � N of the clients. The cover inequalities have proved very useful
computationally, as is illustrated in Table 3. In the table we report on the number of
branch-and-bound nodes and the time needed to verify optimum if we use the linear
relaxation of CFL only, compared to if we use the linear relaxation and added violated
lifted knapsack cover inequalities. All instances have 33 facilities and 50 clients.

B&B cover % gap B&B
problem % gap nodes time (s) ineq. closed nodes time (s)

50331 1.5 399 686 13 86.0 31 125
50332 1.2 691 1,560 58 54.3 51 450
50333 1.5 259 556 122 54.1 89 769
50334 0.7 239 493 42 76.6 23 213
50335 1.3 685 1,232 25 78.3 49 248

Table 3: Result of adding knapsack cover inequalities to CFL.

The knapsack polytope is a quite drastic relaxation of CFL since it disregards all

ows. Aardal et al. (1993) considered the general family of submodular inequalities

X
j2J

X
k2Kj

vjk � f(J)�
X
j2J

(f(J)� f(J n fjg))(1� yj); (31)
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where Kj � K for all j 2 J , and where f(J) for J �M is the maximum feasible 
ow
from the facilities in J to the clients in K given the arc set f(j; k) : j 2 J; k 2 Kjg.
The function f(J) is a submodular set function. Here, if yj = 1 for all j 2 J , the
resulting inequality becomes

P
j2J

P
k2Kj

vjk � f(J), which is valid since f(J) is the
maximum 
ow. If yk = 0 for k 2 J , and yj = 1 for all j 2 J n k, then the value
f(J) � f(J n fkg) is precisely the amount with which the maximum 
ow decreases
if we close facility k. Aardal et al. completely characterize some large subclasses
of the family of facet-de�ning submodular inequalities. Separation algorithms, and
computational results of applying polyhedral techniques to solve CFL, are reported
by Aardal (1994).

2.4 The Economic Lot Sizing Problem

In the economic lot-sizing problem (ELS) we have a planning horizon consisting of
T periods. In each period t, a demand dt must be satis�ed by production in one
or more of the periods in f1; : : : ; tg. We have unit production costs, ct, and setup
costs, ft, which are incurred whenever production takes place in t. Let xt denote the
production level, and yt indicate whether a setup is made in period t. Moreover, let
ds;t; (1 � s � t � T ), denote the cumulative demand of the periods fs; : : : ; tg, i.e.,
ds;t =

Pt
�=s d� . The mathematical programming formulation of ELS is:

min
TX
t=1

(ftyt + ctxt) (32)

s.t.
TX
t=1

xt = d1;T ; (33)

tX
�=1

x� � d1;t for all 1 � t � T � 1; (34)

xt � dt;Tyt for all 1 � t � T; (35)

xt � 0 for all 1 � t � T; (36)

yt 2 f0; 1g for all 1 � t � T: (37)

ELS is one of the relatively few combinatorial optimization problems that are poly-
nomially solvable (see Wagelmans et al. (1993) for the description of an O(T logT )
algorithm). For such problems we can expect to be able to give a compact charac-
terization of the convex hull of feasible solutions, c.f. the matching problem (5)-(7).
Barany et al. (1984) showed that the constraints 0 � yt � 1 for all 1 � t � T , y1 = 1,
(33), (36), together with the exponential class of (l; S)-inequalities (38) presented
below, completely describe the convex hull of solutions.

Take any 1 � l � T and S � L = f1; : : : ; lg. The (l; S)-inequalities are written as

X
t2LnS

xt +
X
t2S

dt;lyt � d1;l: (38)
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The intuition behind the (l; S)-inequalities is as follows. Assume that no production
takes place in the periods in S. Then the full demand d1;l has to be produced in
the periods in L n S, giving

P
t2LnS xt � d1;l. Now, suppose we do produce in some

of the periods in S, and let period k be the �rst such period. The production for
demand in periods f1; :::; k�1g then has to be done in periods in LnS. It is however
possible that the remaining demand, dk;l, is produced in a single period in S, which
explains the coe�cients of the yt-variables. Although the class of (l; S)-inequalities
is exponential, we can still solve ELS e�ciently by the polyhedral approach since the
separation problem based on these inequalities is polynomially solvable (Barany et
al. (1984)).

We can generalize ELS by introducing startup costs, i.e. a payment for the �rst
period in a set of consecutive periods in which production takes place. This new
problem is referred to as ELSS. Below we demonstrate that the (l; S)-inequalities
can be generalized to incorporate the variables representing the startups such that
the resulting inequalities are valid for ELSS. A typical situation where startups are
relevant is when painting items. If we want to start painting after a break of a couple
of periods, we need to clean the residue from the old paint, and �ll new paint in the
machine, which incur a cost. Let the variables zt, 1 � t � T; indicate whether a
startup takes place, and let gt denote the startup cost in period t. The startups are
introduced by adding inequalities

zt � yt � yt�1; for all 1 � t � T; with y0 = 0 (39)

to the constraints, and the terms gtzt, for all t, to the objective function of the
formulation of ELS. Let l, L, and S be de�ned as above, and let R be a subset of S
such that the �rst element of S belongs to R as well. Furthermore, let p(t) = maxfj 2
S : j < tg. If S \ f1; :::; t� 1g = ;, then p(t) = 0. The following (l; R; S)-inequalities,X

t2LnS

xt +
X
t2R

dt;lyt +
X

t2SnR

dt;l(zp(t)+1 + : : :+ zt) � d1;l; (40)

introduced by Van Hoesel, Wagelmans, and Wolsey (1994), describe together with
constraints (33), (36), (39), yt � 0; and zt � 1; 1 � t � T the convex hull of feasible
solutions to ELSS. To see that inequalities (40) are valid we again distinguish the cases
whether production occurs in periods in S. The case where S contains no production
period is analogous to the same case for the (l; S)-inequalities. Now, assume that
period k is the �rst period in S where production takes place, and choose � as the
smallest period such that a setup occurs in all periods f�; :::; kg. Since at least one of
the variables z� ; y� ; :::; yk appears in the left-hand side of the (l; R; S)-inequality with
a coe�cient at least equal to dk;l, the inequality is valid. The separation problem
based on inequalities (40) can be solved as a set of T shortest path problems.

3 Concluding Remarks

We have attempted to present a broad introduction to the theory of polyhedral com-
binatorics. There are of course several theoretical issues that we have not discussed,
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and we have given little attention to the many computational aspects of polyhedral
techniques that are necessary to address to solve problems successfully. These issues
will however be treated in Part II of this article, where we also present a list, with
references, of problems for which polyhedral results are known, and a brief discussion
of some alternative techniques for solving combinatorial optimization problems.
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