
Scheduling UET, UCT dags with release

dates and deadlines

Jacques Verriet

UU-CS-1995-31
September 1995

�
Utrecht University
Department of Computer Science

Padualaan 14, P.O. Box 80.089,

3508 TB Utrecht, The Netherlands,

Tel. : + 31 - 30 - 531454

Scheduling UET, UCT dags with release

dates and deadlines

Jacques Verriet

Technical Report UU-CS-1995-31
September 1995

Department of Computer Science

Utrecht University

P.O.Box 80.089

3508 TB Utrecht

The Netherlands

ISSN: 0924{3275

Scheduling UET, UCT dags with release dates and deadlines

Jacques Verriet

Department of Computer Science, Utrecht University,
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands.

E-mail: jacques@cs.ruu.nl

Abstract

The problem of scheduling precedence graphs for which every task has to be executed
in a non-uniform interval is considered, with interprocessor communication delays. For the
following classes of graphs we will present a polynomial time algorithm that �nds minimum-
lateness schedules.

1. Outforests on two processors.

2. Series-parallel graphs and opposing forests with the least urgent parent property (to be
de�ned) on two processors.

3. Inforests with the least urgent parent property on m processors.

1 Introduction

The problem of scheduling a set of tasks under a precedence relation has been studied for a long
time. The objective of most of the examined subproblems is �nding the shortest schedule of a
precedence graph on a set of fully connected processors. Many of these subproblems have been
shown to be NP-complete [15]. Only for very restricted problems e�cient algorithms are known:
the execution lengths of all tasks are equal, the communication delays for information exchange
are neglected, the number of processors is two [4], or special classes of precedence graphs are
considered [9, 13, 16].

In parallel architectures large delays occur before the result of the execution of a task on one
processor can be used by a task on another processor. If these communication delays are not ne-
glected, the scheduling problems known to be solvable in polynomial time are even more restricted.
The objective of these problems is �nding a shortest schedule for special classes of graphs on two
processors or on an unrestrictively large number of processors such that the communication delays
do not exceed the execution time of a task [11, 14, 1].

In this report another constraint is added to the scheduling problem. Every task has to be
executed in a non-uniform time interval: each task must be executed after a given release date
and must be completed before a given deadline. To our knowledge the problem for precedence
graphs with non-uniform deadlines and communication delays has not been considered before.

The problem of scheduling with release dates and deadlines is a generalisation of scheduling
to minimise the makespan, that is scheduling with a uniform release date and a uniform deadline.
Hence studying scheduling problems with release dates and deadlines increases the insight into
other scheduling problems. For instance it is unknown if a minimum-length schedule on two
processors for an arbitrary precedence graph with unit execution times and unit communication
delays can be constructed in polynomial time. Several problems closely related to this problem
are studied in this report.

Furthermore scheduling with release dates and deadlines can be useful when scheduling to
minimise the schedule length. Some scheduling problems trying to �nd a shortest schedule on
m+ 1 processors can be transformed into a scheduling problem with release dates and deadlines

1

on m processors and vice versa. This can be done by completely �lling one processor and trans-
lating the starting times and �nishing times of the tasks scheduled on this processor into release
dates and deadlines of the remaining tasks using the precedence constraints [7]. Release dates
and deadlines can be eliminated by adding extra tasks and simulating the release dates and dead-
lines of the original tasks by adding precedence constraints between the original and the new tasks.

In this report several scheduling algorithms will be presented. These algorithms construct
schedules for graphs, in which every task has been assigned a deadline and possibly a release date.
The algorithms take communication delays into account. All algorithms have the same global
structure. First the deadlines are modi�ed such that they are consistent with the precedence con-
straints. The modi�ed deadlines determine a priority list containing every task. A list scheduling
algorithm assigns a starting time to every task using the priority list.

In the following section two scheduling algorithms are presented. It will be shown that the
second algorithm constructs schedules on two processors for outforests in which no release date
and no deadline is violated, if such schedules exist. The �rst algorithm works in the special case of
uniform release dates, and is faster. For an outforest this algorithm constructs a schedule meeting
every deadline, if such a schedule exists.

In section 3 an extra constraint on the modi�ed deadlines is introduced. This extra constraint
is called the least urgent parent property. In section 3 two algorithms for scheduling graphs with
the least urgent parent property are presented. The �rst is an algorithm for scheduling a class
of graphs, that is a superclass of the class of series-parallel graphs and of the class of opposing
forests, on two processors. This algorithm constructs schedules in which no deadline is violated,
if such schedules exist.

The other algorithm that will be presented in section 3, constructs schedules for inforests with
the least urgent parent property on an arbitrary number of processors. This algorithm �nds a
schedule meeting every deadline in polynomial time, if such a schedule exists. Checking whether a
schedule on m processors of length at most D exists for an inforest with unit execution times and
unit communication delays is shown to be NP-complete by Lenstra, et al [12]. Hence minimising
the schedule length for inforests with the least urgent parent property instead of inforests with
arbitrary deadlines is a subproblem of this problem that is solvable in polynomial time.

Some preliminary de�nitions conclude this section. Let G be a graph. Throughout this report
G will be used to denote a graph or the set of vertices of a graph. This will be clear from the
context. G is a precedence graph, if G is a directed acyclic graph. From now on a graph G is a
precedence graph containing n nodes and e edges. The nodes in a graph will also be called tasks.
Let u; v be nodes of G. u is called a child of v, if (v; u) is an edge of G. If u is a child of v, v is
called a parent of u. The outdegree (indegree) of u is the number of children (parents) of u. u is
a child (parent) of a set of nodes V , if u is a child (parent) of a node in V . u is a predecessor of v,
if nodes u = u0; : : : ; uk+1 = v (k � 0), exist, such that (u0; u1); (u1; u2); : : : ; (uk; uk+1) are edges
of G. In that case v is called a successor of u, which is denoted by u � v. Also u is a successor
(predecessor) of a set of nodes V , if u is a successor (predecessor) of a node in V . Nodes without
successors will be called sinks, nodes without predecessors will be called sources.

In this report we consider graphs, in which every node u has been assigned a deadline D(u) and
possibly a release date R(u). In the rest of this report release dates are assumed to be nonnegative
integers, deadlines are considered to be positive integers. If only deadlines are assigned to the
tasks, the release date of each node is considered zero.

Algorithms will be presented for nonpreemptively scheduling with release dates and deadlines
on a set of fully connected processors. Duplication of tasks is not allowed. Communication delays
are not negligible: if v is a child of u and u and v are not executed on the same processor, then
the execution of v can start unit time after the execution of u has �nished.

A schedule for a graph G on m processors is a list of subsets of G. These subsets are called
time slots. A schedule S = (S0; : : : ; Sl�1) is a valid schedule for G, if the following six properties

2

are satis�ed.

1.
Sl�1
t=0 St = G.

2. St \ St0 = ; for all t 6= t0.

3. jStj � m for all t, 0 � t � l � 1.

4. If u � v, u 2 St, and v 2 St0 , then t < t0.

The preceding four properties are satis�ed for schedules in which communication delays are
neglected and in which they are not. The following two properties are satis�ed in schedules in
which communication delays are taken into account. These need not be satis�ed for schedules in
which the communication delays are neglected.

5. If u 2 St, then St+1 contains at most one child of u.

6. If u 2 St+1, then St contains at most one parent of u.

These properties do not contain information about which task is executed on which processor.
Given a valid schedule on m processors for a graph G �nding a correct assignment of a processor
to every task takes O(minfmn; n+ eg) time.

Let S be a valid schedule for a graph G. If a node u in G is an element of time slot St, u is said
to be scheduled at time t. u is said to meet its deadline, if the execution of u is �nished at time
� D(u). So u meets its deadline, if it is scheduled at time t, such that t � D(u)� 1. Furthermore
u does not violate its release date, if R(u) � t. If t � D(u), then u is called late and its lateness
is t + 1�D(u). The lateness of a task meeting its deadline is considered 0. The lateness of S is
the maximum lateness of a task scheduled in S. S is called optimal, if no other valid schedule has
lateness less than S. If each node meets its deadline, then S is called 0-optimal.

A partial schedule for a graph G on m processors is a schedule S = (S0; : : : ; Sl�1) that satis�es
properties 2, 3, 4, 5, and 6 and the following property.

10: If v 2
Sl�1
t=0 St and u � v, then u 2

Sl�1
t=0 St.

So in a partial schedule S the predecessors of a task that is scheduled in S, are scheduled in S as
well.

Let S = (S0; : : : ; Sl�1) be a partial schedule of a graph G on m processors. A node u of G, not
scheduled in S, is called available at time t with respect to S, if t � R(u) and (S0; : : : ; St�1; St [
fug; St+1; : : : ; Sl�1) is a partial schedule of G on m processors.

2 Scheduling outforests on two processors

Two algorithms were presented by Garey and Johnson [6, 7] for scheduling arbitrary graphs without
communication delays on two processors: one for scheduling graphs to meet deadlines and the other
for scheduling with release dates and deadlines. In this section two algorithms will be presented
for scheduling on two processors with unit communication times.

2.1 Scheduling with deadlines

A scheduling algorithm will be presented that �nds optimal schedules on two processors for out-
forests. The algorithm is similar to the algorithm by Garey and Johnson [6] for scheduling graphs
with deadlines on two processors without communication delays. The algorithm consists of two
steps. First the deadlines are modi�ed, such that they are consistent with the precedence con-
straints. The modi�ed deadlines are used to create a priority list containing all tasks. Using this

3

priority list a starting time will be assigned to every task.

In any valid schedule for a graph G on m processors a task is scheduled at an earlier time than
its successors. Therefore the deadline of a task may be smaller than the deadlines of its successors.
Let u be a task having k � 1 successors having a deadline � d. Because of communication delays
only one of its children can be scheduled immediately after u, so the lower bound on the time to
schedule u and its successors is 2 +

�
k�1
m

�
. So u has to be completed at time d� 1�

�
k�1
m

�
. The

modi�cation of the deadlines when scheduling graphs on m processors is done as follows.

While there are nodes not having a modi�ed deadline, select a node u not having a modi�ed
deadline, such that all successors of u have been assigned a modi�ed deadline. Assume v1; : : : ; vk
are the successors of u, such that D(v1) � : : : � D(vk). Then

D(u) = min

�
D(u); min

1�i�k
D(vi)� 1�

�
i� 1

m

��
:

The following lemma shows the consistency of the modi�ed deadlines, that is it will be shown
that in every schedule meeting all original deadlines each modi�ed deadline is met as well.

Lemma 2.1. Let G be a graph in which every task has been assigned a deadline. Let S be a valid
schedule for G on m processors. If S meets every original deadline, then S meets every modi�ed
deadline.

Proof. Let G be a graph in which each task has been assigned a deadline. Let S be a valid schedule
for G on m processors. Suppose S meets all original deadlines. Let u be a task of G. Induction is
used to prove u meets its modi�ed deadline. If u is a sink, D(u) is not changed during the deadline
modi�cation, so u clearly meets its modi�ed deadline. So we may assume u is not a sink. Suppose
every successor of u meets its modi�ed deadline. Let v1; : : : ; vk be the successors of u such that
D(v1) � : : : � D(vk). Let 1 � i � k, u has i successors having a deadline � D(vi). Because
of communication delays it takes at least 2 +

�
i�1
m

�
time slots to schedule u and its successors

v1; : : : ; vi. So u must be scheduled at time � D(vi) � 2 �
�
i�1
m

�
. So u is completed at time

� D(vi)� 1�
�
i�1
m

�
. So u meets its modi�ed deadline.

After a modi�ed deadline has been calculated for each task a priority list L is constructed. L
contains all tasks ordered by nondecreasing deadlines. Using L every task is assigned a starting
time in the following way. Initially S is the empty sequence. For every time slot St L is traversed
to �nd as many tasks as possible, however at most m, that are available at time t. These tasks
are assigned to St.

Priority list scheduling()
1 let L = (u1; : : : ; un) contain all tasks ordered by nondecreasing deadlines
2 t = 0
3 while L contains unscheduled tasks
4 do for i = 1 to n

5 do if ui is unscheduled and available at time t
6 then schedule ui at time t
7 t = t+ 1

The complexity of the above algorithm is dominated by the deadline modi�cation algorithm.
Let G be a graph in which each task has a deadline. By using counting sort O(n) time is needed to
create a priority list. Assigning starting times requires quadratic time. The length of the schedule
constructed by the above algorithm is at most n. By introducing some extra variables it is possible
to check whether a node is unscheduled and available in constant time. For every time slot the
priority list is traversed once, so O(n2) time is used to �nd available tasks.

4

If G is a transitive closure, the deadline modi�cation takes O(e) time. For each node u the
successors can be ordered by nondecreasing deadlines in O(outdegree(u)) time. The modi�cation
of the deadline of a task u takes constant time for each successor of u, so the modi�cation of D(u)
requires O(outdegree(u)) time. Therefore the deadline modi�cation takes O(e) time.

If however G is not a transitive closure, the transitive closure of G has to be computed �rst. It
takes O(n�) time to build the transitive closure of G for some �. Coppersmith and Winograd [5]
have bounded � by 2:376. Goral�c��kova and Koubek [8] have shown that the transitive closure of
G can be computed in O(n + e + ne�) time, where e� is the number of edges in the transitive
reduct of G. Clearly e� � e. Since a forest has O(n) edges, the transitive closure of an outforest
can be computed in O(n2) time.

So the algorithm uses O(n2) time to schedule forests and transitive closures, and O(n�) time
for other graphs.

The following theorem shows that the above algorithm constructs a 0-optimal schedule on two
processors for an outforest, if a 0-optimal schedule exists.

Theorem 2.2. Let F be an outforest in which each task has been assigned a modi�ed deadline. Let
L be a list containing all tasks of F ordered by nondecreasing deadlines. If a 0-optimal schedule for
F on two processors exists, the schedule constructed by the above algorithm using L is 0-optimal.

Proof. Let F be an outforest in which every task has been assigned a modi�ed deadline. Let L be
a priority list containing all tasks of F ordered by nondecreasing deadlines. Suppose a 0-optimal
schedule for F on two processors exists. Let S be the schedule on two processors constructed by
the algorithm using L. Suppose S is not 0-optimal. Assume t is the �rst time at which a task is
scheduled that violates its deadline. Suppose u 2 St and D(u) � t. Since a 0-optimal schedule
exists, there is a time slot before St containing less than 2 tasks having a deadline � D(u). Let
St0�1 be the last time slot before St that contains at most 1 task having a deadline � D(u). De�ne

F 0 =
St�1
i=t0 Si [fug. F

0 contains 2(t� t0)+1 tasks having a deadline � D(u). At time t0� 1 there
are unscheduled tasks having a deadline � D(u). Since every task has at most one parent, St0�1
contains exactly one task u0 such that D(u0) � D(u).

Case 1. u0 is a predecessor of all nodes in F 0. Because of communication delays at most one
child of u0 can be scheduled at time t0. This implies t = t0 and u is a child of u0. So u0 has at
least one successor having a deadline � D(u). So D(u0) � D(u)� 1 � t� 1 = t0 � 1. Since
u0 is scheduled at time t0 � 1, it violates its deadline. Contradiction.

Case 2. F 0 contains a task which is not a successor of u0. Let v be a node of F 0 that is not
a successor of u0. Assume F 0 does not contain any predecessors of v. v was rejected at time
t0 � 1. So v was not available at time t0 � 1 after u0 had been scheduled. This implies u0

and v have the same parent u00, which is scheduled at time t0 � 2. Therefore every task in
F 0 is a successor of u00. So u00 has at least 2(t� t0) + 2 successors having a deadline � D(u).
Therefore

D(u00) � D(u)� 1�
�
1
2 (2(t� t0) + 1)

�
= D(u)� 1� t+ t0 � 1
� t0 � 2:

Because u00 is scheduled at time t0 � 2, it violates its deadline. Contradiction.

Let F be an outforest, in which every task u has been assigned a deadline D0(u). Let D1(u)
denote the modi�ed deadline of u. Let S be an optimal schedule for F on two processors. Suppose
the lateness of S is l. De�ne D0

0(u) = D0(u) + l for every task u in F . Let F 0 denote the
outforest F in which every task u has deadline D0

0(u). In S every task meets deadline D0
0(u). So

the above algorithm �nds a schedule for F 0 in which every task u is completed at time D0
0(u).

5

First the algorithm computes a modi�ed deadline D0
1(u) for every task u. It is easy to see that

D0
1(u) = D1(u) + l for every task u in F . So each priority list ordered by nondecreasing deadlines

D0
1(u) is also ordered by nondecreasing deadlines D1(u). The availability of a task does not depend

on its deadline, so the schedule constructed by the above algorithm only depends on the priority
list. So in the schedule for F constructed by the above algorithm on two processors every task u
is completed at time D0

0(u) = D0(u) + l. So this schedule is optimal.

Corollary 2.3. Let F be an outforest in which every task has been assigned a deadline. The
schedule for F constructed by the above algorithm on two processors is optimal.

Proof. Obvious.

The algorithm does not �nd optimal schedules for arbitrary graphs on 2 processors. Something
stronger can be shown: for all k there are graphs such that a 0-optimal schedule on two processors
exists and the above algorithm �nds a schedule with lateness k. Figure 1 shows a graph in which
all tasks have been assigned a modi�ed deadline. This graph will be called Gi.

Ai

Bi

Ci

Ui Vi

Wi Xi Yi

Zi

D(Ai) = 5i+ 2; D(Bi) = 5i+ 3; D(Ci) = 5i+ 4

D(Ui) = 5i+ 1; D(Vi) = 5i+ 2

D(Wi) = 5i+ 4; D(Xi) = 5i+ 4; D(Yi) = 5i+ 4; D(Zi) = 5i+ 5

Figure 1: The graph Gi

A0 B0 C0

U0 V0 W0 X0

Y0 A1 B1 C1

V1U1 W1 X1

Y1 Z1Z0

Uk Vk Wk Xk

Yk ZkAk Bk Ck

Figure 2: A 0-optimal schedule for G

A0 B0 C0U0

V0 W0 X0 Y0

A1 B1 C1

V1

U1

W1 X1 Y1 Z1Z0

Bk CkUk

Vk Wk Xk Yk Zk

Ak

Figure 3: A schedule for G constructed by the above algorithm

Now we will consider the graph G = G0 [G1 [: : : [Gk. Some extra edges are added to G:
(Yi; Ui+1); (Yi; Vi+1); (Yi; Ai+1) are edges of G for all i, 0 � i � k�1. A schedule on two processors
for G is shown in �gure 2. This schedule is 0-optimal. Figure 3 shows a schedule constructed by the
above algorithm using priority list L = L0; : : : ; Ln, where Li = (Ui; Vi; Ai; Bi; Ci;Wi; Xi; Yi; Zi).
This schedule is not 0-optimal: Yi is scheduled at time 6i + 4. Therefore the lateness of Yi is

6

6i+ 5� (5i+ 4) = i+ 1. So the lateness of this schedule is k + 1.

It is however possible to prove an upper bound on the lateness of a task. This will be done
by introducing an approximation algorithm �nding schedules in which no task is scheduled before
the time it is scheduled by the above algorithm.

Let G be a graph in which every task has been assigned a modi�ed deadline. Let N(t) denote
the number of tasks scheduled at time t. De�ne V (d) = fu 2 G j D(u) = dg for all d, 1 � d � D,
where D = maxuD(u). The sets V (d) will be called levels. The algorithm schedules the tasks
such that every task of V (d + 1) is scheduled after every task of V (d) for all d, 1 � d � D � 1.
Every task u with deadline d has at most one child with deadline d + 1. However a task having
deadline d+ 1 can have more than one parent having deadline d. So if jV (d)j � 1, then the tasks
of V (d+1) can be executed in the time slot immediately after the last time slot containing a task
of V (d). If jV (d)j � 2, then a time slot is left empty between the last time slot containing a task
of V (d) and the �rst time slot containing a task of V (d+ 1).

Level scheduling()
1 let (u1; : : : ; un) contain all tasks ordered by nondecreasing deadlines
2 t = 0
3 d = 1
4 for i = 1 to n

5 do while D(ui) = d

6 do if N(t) = m

7 then t = t+ 1
8 schedule ui at time t
9 N(t) = N(t) + 1
10 if jV (d)j � 1
11 then t = t+ 1
12 else t = t+ 2
13 d = d+ 1

Let G be a graph. Suppose an optimal schedule for G has lateness l. Let L = (u1; : : : ; un)
be a list containing all tasks of G ordered by nondecreasing deadlines. It is easy to see that
in the schedule constructed by the approximation algorithm using L no task is executed at an
earlier time than in the schedule constructed by the list scheduling algorithm. Let S1 be the
schedule constructed by the list scheduling algorithm using L and S2 the schedule constructed by
the approximation algorithm using L. Let u be a task having deadline d. u is scheduled before all
tasks having a deadline larger than d. Obviously

t �
dX

i=1

�
1

m
jV (i)j

�
+

d�1X
i=1

jV (i)j�2

1 � 1:

It is not di�cult to see that t is maximal, if jV (i)j = 2 for all i, 1 � i � d � 1, G has m(d + l)
tasks having a deadline � d, and S2t is the last time slot of S2 containing a task having deadline
d. In that case

t = d� 1 +
�
1
m
(m(d+ l)� 2(d� 1))

�
+ d� 1� 1

= 2d� 3 +
�
d+ l� 2

m
(d� 1)

�
= 3d+ l � 3�

�
2
m
(d� 1)

�
:

So u is scheduled at time � 3d+ l� 3�
�
2
m
(d� 1)

�
. Therefore its lateness is at most 2d+ l� 2��

2
m
(d� 1)

�
. The lateness of a task in S2 is at least its lateness in S1. So the lateness of a task

with deadline d scheduled in S1 is � 2d + l � 2 �
�
2
m
(d� 1)

�
. So the lateness of S1 is at most

2D + l � 2�
�
2
m
(D � 1)

�
, where D is the maximum deadline of G.

7

Also the algorithm does not �nd optimal schedules when scheduling outforests on more than
two processors. As was the case for scheduling arbitrary graphs on two processors, the lateness
for schedules for outforests on more than two processors constructed by the above algorithm is
unbounded. This also holds for schedules of outforests for which a 0-optimal schedule exists. Fig-
ure 4 shows an outforest, that will be called Fi. We consider the outforest F = F0[: : :[Fk . In this
graph we add some edges: (Qi; Ai+1); (Qi; Ni+1); (Qi;Wi+1); (Qi; Xi+1); (Qi; Xi+1); (Qi; Yi+1);
(Qi; Zi+1) are edges of F for all i, 0 � i � k�1. Figure 5 shows a 0-optimal schedule on three pro-
cessors. In �gure 6 another schedule for F is shown. This schedule is constructed by the above algo-
rithm, using priority list L = L0; : : : ; Lk, where Li = (Wi; Xi; Yi; Zi; Ai; Ni; Bi; Ci; Di; Oi; Pi; Qi).
In this scheduleQi is executed at time 6i+4 for every i. So the lateness ofQi is 6i+5�(5i+4) = i+1
for each i. So the lateness of this schedule is k + 1.

Ai

Bi Ci Di

Ni

Oi Pi Qi

Wi Xi Yi Zi

D(Ai) = 5i+ 2; D(Bi) = 5i+ 4; D(Ci) = 5i+ 4; D(Di) = 5i+ 4

D(Ni) = 5i+ 2; D(Oi) = 5i+ 4; D(Pi) = 5i+ 4; D(Qi) = 5i+ 4

D(Wi) = 5i+ 1; D(Xi) = 5i+ 2; D(Yi) = 5i+ 2; D(Zi) = 5i+ 2

Figure 4: An outforest for which a 0-optimal schedule exists

A0

B0

C0

D0

W0 X0

Y0

Z0

A1 B1 C1

D1

W1 X1

Y1

Z1N0

O0

P0

Q0

N1

O1

P1

Q1 Wk

ZkXk

Yk

Ak Bk Ck

DkNk

Ok

Pk

Qk

Figure 5: A 0-optimal schedule for F

A0 B0

C0

D0

W0

X0

Y0

Z0 A1 B1 C1

D1

W1 X1

Y1

Z1N0 O0 P0

Q0

N1

Q1

O1

P1

Ak Bk Ck

DkNk Ok

Pk

QkWk Xk

Yk

Zk

Figure 6: A schedule for F constructed by the above algorithm

A similar construction can be used to prove that the algorithm by Garey and Johnson con-
structs schedules on three processors in which the lateness is unbounded, even for outforests for
which a 0-optimal schedule exists.

An upper bound of 2d + l � 2 �
�
2
m
(d� 1)

�
on the lateness of a task having deadline d was

proved before, where l is the lateness of an optimal schedule. However for outforests a better upper
bound on the lateness can be proved. In an outforest every task has at most one predecessor, so
the tasks having deadline d + 1 can be executed immediately after the tasks having deadline d.
Another approximation algorithm will be presented. This algorithm �nds schedules in which the

8

levels are executed immediately after each other.

Outforest level scheduling()
1 let L = (u1; : : : ; un) contain all tasks ordered by nondecreasing deadlines
2 t = 0
3 d = 1
4 for i = 1 to n

5 do if D(ui) = d

6 then while D(ui) = d

7 do if N(t) = m

8 then t = t+ 1
9 schedule ui at time t
10 N(t) = N(t) + 1
11 t = t+ 1
12 d = d+ 1

Let F be an outforest for which an optimal schedule on m processors has lateness l. Let L be
a list containing all tasks of F ordered by nondecreasing deadlines. Let S1 be the schedule for F
constructed by the above algorithm using L. Let S2 be the schedule created by the outforest level
scheduling algorithm using L. It is not di�cult to see that no task of F is executed at an earlier
time in S2 than in S1. Let u be a task of F having deadline d. u is executed at time t after all
tasks having a deadline � d� 1. So

t �
dX

i=1

�
1

m
jV (i)j

�
� 1:

It is easy to see that t is maximal, if jV (i)j = 1 for all i, 1 � i � d� 1, jV (d)j = m(d+ l)� (d� 1)
and t is the last time at which a task having deadline d is scheduled. In that case

t = d� 1 +
�
1
m
(m(d+ l)� (d� 1))

�
� 1

= d� 2 +
�
d+ l � 1

m
(d� 1)

�
= 2d+ l � 2�

�
1
m
(d� 1)

�
:

So its lateness is at most d+l�1�
�
1
m
(d� 1)

�
. The lateness of a task in S2 is at least the lateness of

this task in S1, so the lateness of a task with deadline d scheduled in S1 is � d+ l�1�
�
1
m
(d� 1)

�
.

So the lateness of S1 is at most D+ l� 1�
�
1
m
(D � 1)

�
, where D is the maximum deadline of F .

So the lateness of a schedule for a graph G on m processors constructed by the above algorithm
is at most D+ l�1�

�
1
m
(D � 1)

�
, if G is an outforest, where D = maxuD(u) and l is the lateness

of an optimal schedule for G on m processors. If G is not an outforest, the lateness of the schedule
is at most 2D + l � 2�

�
2
m
(D � 1)

�
.

2.2 Scheduling with release dates and deadlines

Scheduling graphs in which every task has been assigned a deadline and a release date can be
done in a similar manner to scheduling with only deadlines. The algorithm presented in this
section also consists of two parts. The �rst part modi�es all release dates and deadlines, the
second part does the actual scheduling. The algorithm is similar to the algorithm of Garey and
Johnson [7] for scheduling arbitrary graphs on two processors with release dates and deadlines
without communication delays.

Because in every valid schedule a task u is scheduled after all its predecessors, the release
date of u may exceed the release dates of all its predecessors. Therefore the release dates can be
modi�ed as follows.

9

While there are nodes not having a modi�ed release date, select a node u not having a modi�ed
release date such that all parents v1; : : : ; vk of u have been assigned a modi�ed release date. Then

R(u) = max

�
R(u); max

1�i�k
R(vi) + 1

�
:

It is obvious that in every valid schedule not violating any original release date no task is
scheduled before its modi�ed release date.

The modi�cation of the deadlines is more involved. Two de�nitions are needed to de�ne the
deadline modi�cation. Let G be a graph in which all tasks have deadlines and (modi�ed) release
dates. For all nodes u in G and integers r; d such that R(u) � r � D(u) � d de�ne

G(u; r; d) = fv 2 G j D(v) � d & (u � v _ R(v) � r) & u 6= vg :

For all nodes u in G and integers r; d such that R(u) � r � D(u) � d and d > r + 1 de�ne

H(u; r; d) = fv 2 G j D(v) � d & (u � v _ R(v) > r + 1)g :

The sets G(u; r; d) and H(u; r; d) will be used to de�ne the deadline modi�cation. A set
G(u; r; d) contains tasks that have to be completed before time d and can start execution not
before r or after u has been scheduled. Therefore if G(u; r; d) is su�ciently large, u has to be
executed before all tasks of G(u; r; d) in order to meet its deadline. Something similar holds for
H(u; r; d). The following shows the deadline modi�cations due to G(u; r; d) and H(u; r; d).

Let u be a task and let r; d be integers such that R(u) � r � D(u) � d.

1. If jG(u; r; d)j � m(d� r), then

D(u) = min

�
D(u); d�

�
1

m
jG(u; r; d)j

��
:

2. If d > r + 1 and jH(u; r; d)j � m(d� (r + 2)) + 2, then

D(u) = min

�
D(u); d� 1�

�
1

m
(jH(u; r; d)j � 1)

��
:

Let G be a graph. When a deadline modi�cation occurs the sets G(u; r; d) and H(u; r; d) may
get changed. This might cause some triples (u; r; d) to be considered more than once. However
by carefully considering all triples, no triple needs to be considered twice and only O(n3) triples
have to be taken into account.

The deadline modi�cation algorithm consists of three nested loops. It is similar to the deadline
modi�cation algorithm by Garey and Johnson [7]. The outer loop selects values of d in decreasing
order. For each value of d the middle loop selects nodes u, for which D(u) � d, in order of in-
creasing release dates. For �xed u; d the inner loop selects values r in increasing order. The inner
loop modi�es the deadline of u, if a modi�cation condition holds. The deadline modi�cation is
done by the following algorithm.

Deadline modification()
1 let L = (u1; : : : ; un) contain all tasks ordered by nondecreasing release dates
2 D = maxiD(ui)
3 R = maxiR(ui)
4 for d = D downto 1
5 do for i = 1 to n

6 do if D(ui) � d

7 then for r = R(ui) to R

10

8 do if jG(ui; r; d)j � m(d� r)
9 then D(ui) = min

�
D(ui); d�

�
1
m
jG(ui; r; d)j

�	
10 if d > r + 1 and jH(ui; r; d)j � m(d� (r + 2)) + 2
11 then D(ui) = min

�
D(ui); d� 1�

�
1
m
(jH(ui; r; d)j � 1)

�	

It is not di�cult to see that this loop structure allows every triple (u; r; d) to be considered only
once. The values of jG(u; r; d)j and jH(u; r; d)j and the modi�ed deadline imposed on u do not
depend on the (original) deadline of u. So as long as jG(u; r; d)j and jH(u; r; d)j remain unchanged,
an extra consideration of the triple (u; r; d) does not result in a modi�cation, that has not already
occurred in the �rst consideration of the triple. jG(u; r; d)j and jH(u; r; d)j can only change, if the
deadline of some node v is modi�ed, such that the (original) deadline of v is greater than d and
the modi�ed deadline is at most d. Since the outer loop considers the values of d in decreasing
order, the modi�cations causing jG(u; r; d)j or jH(u; r; d)j to change have already occurred. So no
triple (u; r; d) needs to be considered more than once.

Some deadlines and release dates may be quite large. So the above algorithm may need to
consider a large number of triples. It is however possible to bound the number of values of r and
d that need to be considered.

For �xed u, d at most n+ 2 values of r need to be taken into account. It can be shown, that
the values, that need to be considered are the release dates of the nodes v in the graph, for which
R(u) � R(v) � D(u), and D(u) and D(u)� 2. Suppose r is a value, not one of the at most n+2
indicated values, which causes D(u) to be changed. In that case d � r and jG(u; r; d)j � m(d� r)
or d > r + 1 and jH(u; r; d)j � m(d � (r + 2)) + 2. Suppose d � r and jG(u; r; d)j � m(d � r).
Let r0 be the smallest release date exceeding r or D(u) whichever is the smallest. Since r0 > r,
jG(u; r0; d)j = jG(u; r; d)j � m(d � r) > m(d � r0). So the same modi�cation will occur when
considering (u; r0; d).

Otherwise suppose d > r + 1 and jH(u; r; d)j � m(d � (r + 2)) + 2 for some r that is not one
of the restricted set of values. Let r0 be the smallest of the smallest release date exceeding r and
D(u)� 2. r0 > r, so jH(u; r0; d)j = jH(u; r; d)j � m(d� (r + 2)) + 2 > m(d� (r0 +2)) + 2. So the
same modi�cation occurs when considering a value from the restricted set of values.

It is more complicated to prove that only O(n) values of d need to be considered. The values
d that need to be considered are the modi�ed deadlines of all nodes u. To show this some
preprocessing is required. The deadlines have to be changed, such that for all nodes u; v if u � v,
then D(u) � D(v). This property is easy to maintain and it does not violate the existence of
0-optimal schedules.

The next value of d to be considered is the largest current deadline less than the previously
considered value of d. Obviously this assures all deadline modi�cations to occur. Suppose for
some d no task having deadline d remains after considering all triples (u; r; d). It can be proved
that no 0-optimal schedule exists. Let u be a task having deadline d, such that when its deadline
is changed, no task having deadline d remains. Due to the constraint on the deadlines u has no
successors with a deadline � d. D(u) was modi�ed, so either jG(u; r; d)j � m(d � r) and r � d

or jH(u; r; d)j � m(d � (r + 2)) + 2 and d > r + 1 for some r. If jG(u; r; d)j � m(d � r) and
r � d, then G(u; r; d) contains at least m(d � r) tasks having a release date � r and a deadline
� d. Since u was the last task having a deadline d, every task in G(u; r; d) has a deadline � d� 1.
jG(u; r; d)j � m(d � r) > m(d � 1 � r). In the interval [r; d � 1] only m(d � 1 � r) tasks can be
executed. So no 0-optimal schedule exists.

If jH(u; r; d)j � m(d� (r+2))+ 2 and d > r+1, then H(u; r; d) contains � m(d� (r+2))+2
tasks having a release date � r+2 and a deadline � d. Only m(d� (r+2)) tasks can be executed
in the interval [r + 2; d], so no 0-optimal schedule exists.

Therefore no 0-optimal schedules are lost, if the deadline modi�cation algorithm is terminated,
when after considering d no tasks with deadline d remain. So only O(n) values of d need to be
considered.

11

So to modify the deadlines in a graph consisting of n nodes O(n) values of r have to be con-
sidered in the inner loop of the algorithm and O(n) values of d need to be selected in the outer
loop. So only O(n3) triples need to be considered.

The following lemma shows the consistency of the modi�ed deadlines.

Lemma 2.4. Let G be a graph in which each task has been assigned a release date and a deadline.
Let S be a valid schedule for G on m processors. If S meets all original deadlines, then each node
meets its modi�ed deadline.

Proof. Let G be a graph in which each task has been assigned a release date and a deadline. Let S
be a schedule for G on m processors. Suppose S meets all original deadlines. Let u be a task of G
and let r; d be integers such that R(u) � r � D(u) � d. Suppose D(u) was changed when (u; r; d)
was considered, otherwise u obviously meets the deadline computed when the triple (u; r; d) was
considered.

1. jG(u; r; d)j � m(d� r).

Case 1. jG(u; r; d)j > m(d�r). Scheduling all tasks of G(u; r; d) onm processors requires at
least

�
1
m
jG(u; r; d)j

�
� d� r+1 time slots. So there is a task u0 of G(u; r; d) scheduled

at time � d�
�
1
m
jG(u; r; d)j

�
� d� (d� r + 1) = r � 1. Clearly u0 is a successor of u,

so u is completed at time d�
�
1
m
jG(u; r; d)j

�
.

Case 2. jG(u; r; d)j = m(d � r). De�ne G0 = G(u; r; d) [fug. jG0j = m(d � r) + 1, so
scheduling the tasks of G0 takes at least d� r+1 time slots. Hence G0 contains a node
u0 scheduled at time � r� 1. u0 is either a successor of u or u itself. In both cases u is
completed at time r = d�

�
1
m
jG(u; r; d)j

�
.

2. d > r+1 and jH(u; r; d)j � m(d� (r+2))+2. Let v1; v2 be two tasks of H(u; r; d) scheduled
at time t1 and t2 such that t1 � t2 and all other tasks of H(u; r; d) are scheduled at time � t2.
De�neH 0 = H(u; r; d)n fv1g. Then jH 0j = jH(u; r; d)j�1 � m(d�(r+2))+1. It takes at least�
1
m
jH 0j

�
time slots to schedule all tasks of H 0. v2 is a task of H 0 which is an element of the

�rst time slot containing a task of H 0. So t2 � d�
�
1
m
jH 0j

�
� d�

�
1
m
(m(d� (r + 2)) + 1)

�
�

r+1. So v2 is a successor of u. Since t1 � t2, v1 is also a successor of u. Due to communication
delays u is scheduled at time � t2�2 � d�2�

�
1
m
(jH(u; r; d)j � 1)

�
. Therefore u is completed

at time d� 1�
�
1
m
(jH(u; r; d)j � 1)

�
.

So u meets its modi�ed deadline computed when the triple (u; r; d) was considered.

The assignment of a starting time to every task is done by an algorithm similar to the one
presented in section 2.1 using a priority list. This is possible because of the way the availability
of a task is de�ned. R0 denotes the smallest release date of an unscheduled task.

Priority list scheduling()
1 let L = (u1; : : : ; un) contain all tasks ordered by nondecreasing deadlines
2 t = 0
3 while L contains unscheduled tasks
4 do R0 =1
5 for i = 1 to n

6 do if ui is unscheduled and available at time t
7 then schedule ui at time t
8 else if ui is unscheduled
9 then R0 = minfR0; R(ui)g
10 t = maxft+ 1; R0g

12

The complexity of the above algorithm is dominated by the deadline modi�cation. The other
steps of the algorithm run in quadratic time. Clearly the release date modi�cation takes O(e)
time and the creation of the priority list requires O(n) time.

The algorithm assigning starting times is similar to the algorithm for scheduling graphs with
only deadlines. Because some release dates might be quite large, we may not assume that t is at
most n, if St is a non-empty time slot of the schedule S constructed for G. To obtain an algorithm
with a quadratic running time R0 was introduced. Obviously the algorithm uses O(nT) time
to assign a starting time to every task, where T is the number of values of t considered by the
algorithm.

If during the execution of the algorithm t never increases by more than 1, the constructed
schedule has length O(n), so O(n) values of t are considered. Suppose t1; : : : ; tk and t01; : : : ; t

0
k

are values of t considered during the assignment of starting times, such that t0i is the last value
considered before ti and t0i � ti � 2 for all i, 1 � i � k. De�ne Vi = fu 2 G j ti�1 � R(u) < tig,
where t0 = 0. Only O (jVij) values of t are considered during the assignment of starting times
to the tasks of Vi. So the total number of values of t considered by the algorithm is O(n). So
assigning starting times takes O(n2) time.

The deadline modi�cation algorithm has to consider all triples (u; r; d). Let G be a graph,
assume G is a transitive closure. As was explained above only O(n3) triples have to be taken into
account in each step of the deadline modi�cation algorithm.

It can also be shown that only O(n2) deadline modi�cations occur during the execution of the
deadline modi�cation algorithm: at most one deadline modi�cation occurs for �xed u and d. Let
r0 be the smallest value of r such that jG(u; r; d)j � m(d� r) or jH(u; r; d)j � m(d� (r + 2)) + 2
and d > r + 1. If jG(u; r0; d)j � m(d � r0), then D(u) = d �

�
1
m
jG(u; r0; d)j

�
� r0. Since the

values of r are selected in increasing order, all values of r such that jG(u; r; d)j causes D(u) to be
modi�ed (these values are at most r0), have already been considered.

If d > r0+1 and jH(u; r0; d)j � m(d�(r0+2))+2, then D(u) = d�1�
�
1
m
jH(u; r0; d)j � 1

�
�

d � 1� d + r0 + 2� 1 = r0. Therefore all other values of r for which the algorithm modi�es the
deadline of u have been considered earlier. So only O(n2) deadline modi�cations occur.

Furthermore O(n3) time is required to compute and update jG(u; r; d)j and jH(u; r; d)j and to
maintain the extra constraint on the deadlines. The maintenance of the constraint requires linear
time after each deadline modi�cation, so this can be done in O(n3) time. The computation and
updating of jG(u; r; d)j and jH(u; r; d)j is done by the deadline modi�cation algorithm. This is
only described for jG(u; r; d)j, computation and updating of jH(u; r; d)j can be done in a similar
way.

Assume u1; : : : ; un is the list of tasks sorted by nondecreasing modi�ed release dates. For
�xed u and d the middle loop computes C = jG(u;R(u); d)j and i0 = min fi j R(ui) = R(u)g. Set
R = R(u).

After each execution of the inner loop i0 is incremented by 1 until either i0 > n or R(ui0) > R,
if R < D(u). Subtract 1 from C for each node uj such that i00 � j < i0, where i

0
0 is the old value

of i0 and u 6� uj , D(uj) � d, and R(uj) = R. Now C = jG(u;R0; d)j, where R0 is the smallest of
d and the smallest release date exceeding R. Set R = R0 and continue.

This way O(n2) values jG(u; r; d)j and jH(u; r; d)j are computed. These computations each re-
quire linear time. The computation of i0 and R also takes O(n) time. In the inner loop i0, R and
C are updated by adding or subtracting 1. For �xed u and d at most n additions and subtractions
occur. Therefore the algorithm computing the modi�ed deadlines requires O(n3) time.

The following theorem shows the algorithm for scheduling outforests with release dates and
deadlines constructs 0-optimal schedules on two processors, if these exist.

Theorem 2.5. Let F be an outforest in which every task has a modi�ed release date and a modi�ed
deadline. Let L be a list containing all tasks of F ordered by nondecreasing deadlines. If a 0-optimal

13

schedule for F on two processors exists, the schedule constructed by the above algorithm using L
is 0-optimal.

Proof. Let F be an outforest in which all tasks have a modi�ed release date and a modi�ed
deadline. Let L be a list containing all tasks of F ordered by nondecreasing deadlines. Suppose a
0-optimal schedule on two processors exists. Let S be the schedule on two processors constructed
by the above algorithm using L. Suppose not every task meets its deadline in S. Let t be the
�rst time at which a task violating its deadline is scheduled. Assume u 2 St and D(u) � t. Let
t0 � 1 < t be the last time at which at most one task having a deadline � D(u) is scheduled.

De�ne F 0 =
St�1
i=t0 Si[fug. jF

0j = 2(t� t0)+1 and every task in F 0 has a deadline � D(u). De�ne
P = St0�1 \ fv 2 F j D(v) � D(u)g.

Case 1. jP j = 0. Every task in F 0 was rejected at time t0 � 1. Since every task has at most
one parent, all tasks of F 0 have a release date larger than t0�1. So F contains � 2(t� t0)+1
tasks that have to be executed in the interval [t0; t]. In this interval only 2(t� t0) tasks can
be executed, so no 0-optimal schedule exists. Contradiction.

Case 2. jP j = 1. Suppose u0 2 P . All tasks of F 0 were rejected at time t0 � 1. So none of
the tasks of F 0 was available at time t0 � 1 after u0 was scheduled.

Case 2.1. Every task in F 0 has a release date � t0 or is a successor of u0. Clearly F 0 �
G(u0; t0; D(u)). So jG(u0; t0; D(u))j � jF 0j � 2(D(u)� t0) + 1. Therefore

D(u0) � D(u)�
�
1
2 (2(D(u)� t0) + 1)

�
= D(u)� (D(u)� t0 + 1)
= t0 � 1:

Since u0 is scheduled at time t0 � 1, u0 violates its deadline. Contradiction.

Case 2.2. F 0 contains a node that is no successor of u0 or has a release date � t0 � 1. Let
v be such a node. We may assume that v has a release date � t0� 1. v was rejected by
the algorithm at time t0 � 1. Because R(v) � t0 � 1, u0 and v have a common parent
u00, which is scheduled at time t0� 2. Clearly F 0 is a subset of H(u00; t0� 2; D(u))nfu0g.
Therefore jH(u00; t0 � 2; D(u))j � jF 0j + 1. So H(u00; t0 � 2; D(u)) contains at least
2(D(u)� t0) + 2 tasks. So

D(u00) � D(u)� 1�
�
1
2 (2(D(u)� t0) + 2� 1)

�
= D(u)� 1�D(u) + t0 � 1
= t0 � 2:

Because u00 is scheduled at time t0 � 2, it violates its deadline. Contradiction.

This algorithm does not �nd optimal schedules for outforests. Let F be an outforest, in which
every task u has been assigned a deadline D0(u). Suppose l is the lateness of an optimal schedule
for F on two processors. Let D0

0(u) = D0(u)+l for every task u. Let F
0 be the outforest F in which

each task u has deadlineD0
0(u). LetD1(u) andD

0
1(u) be the modi�ed deadlines of task u computed

by the deadline modi�cation algorithm for F and F 0, respectively. In generalD0
1(u) 6= D1(u), since

the deadline modi�cation algorithm only modi�es a deadline D(u), if R(u) � D(u).
It is however possible to de�ne an algorithm that �nds optimal schedules. Let F be an outfor-

est containing n tasks. De�ne l0 = maxf0;maxu R(u)�D(u) + 1g. Any valid schedule for F has
lateness at least l0. In an optimal schedule a task u is scheduled at time � R(u) + n� 1. So the
the lateness of u in an optimal schedule is � R(u) + n� 1+ 1�D(u) � l0 + n� 1. Therefore the
lateness of an optimal schedule for F on two processors is at most l0+n� 1. By adding l to every
deadline and applying the above algorithm to the resulting outforest a schedule with lateness at
most l is constructed, if such a schedule exists. So using binary search an optimal schedule can

14

be found. The algorithm constructing an optimal schedule takes O(n3 logn) time.

The above algorithm does not construct 0-optimal schedules for arbitrary graphs. This can be
seen in �gures 7, 8 and 9: �gure 7 shows a graph and a 0-optimal schedule for this graph is shown
in �gure 8. Using priority list L the above algorithm �nds the schedule shown in �gure 9 that is
not 0-optimal.

U V

YXW

C

B

A

R(A) = 0; R(B) = 1; R(C) = 2

R(U) = 0; R(V) = 0; R(W) = 1; R(X) = 1; R(Y) = 1

D(A) = 2; D(B) = 3; D(C) = 4

D(U) = 1; D(V) = 2; D(W) = 4; D(X) = 4; D(Y) = 4

Figure 7: A graph in which all tasks have modi�ed release dates and deadlines

U V W X

YA B C

Figure 8: A 0-optimal schedule

U

V W X

YA B C

L = (U; V;A;B;C;W;X; Y)

Figure 9: The schedule constructed by the algorithm using list L

By assigning release date zero to every task in the graph shown in �gure 1 a graph is con-
structed for which a schedule meeting every deadline exists. By joining k of these graphs the way
this was done in section 2.1 a graph is constructed for which the lateness is at least k.

Let G be a graph, in which every task has a release date and a deadline. Suppose an optimal
schedule for G on m processors is 0-optimal. In that case R(u) < D(u) for every node u in G.
So no task in the schedule constructed by the level scheduling approximation algorithm, which is
presented in section 2.1, violates its release date. By using this approximation algorithm it is easy
to see that the lateness of a task u in G in the schedule for G on m processors constructed by the
above algorithm is at most 2D � 2�

�
2
m
(D � 1)

�
, where D = maxuD(u).

Again it is possible to prove a better upper bound for outforests. The outforest level scheduling
algorithm presented in section 2.1 constructs schedules that might not be valid schedules, if release
dates are considered. Let F be an outforest, in which every task has been assigned a deadline and
a release date. Suppose a 0-optimal schedule for G on m processors exists. Let S be the schedule
for G onm processors constructed by the above algorithm. By de�ning a level algorithm similar to

15

the level algorithm for outforests presented in section 2.1 it is easy to see that the lateness of a task
in S having deadline d is at most d�1. So the lateness of S is at mostD�1, whereD = maxuD(u).

Also for inforests the above algorithm does not construct optimal schedules. The algorithm can
however be used to de�ne an algorithm for scheduling inforests on two processors. This algorithm
uses the above algorithm. The algorithm for scheduling inforests �rst transforms the inforest into
an outforest by exchanging deadlines and release dates and by reversing all edges.

Let F be an inforest. Let D = maxuD(u). We may assume D > maxu R(u). An outforest
F 0 will be constructed. D0(u); R0(u) will denote the deadlines and release date of task u in F 0,
respectively. (u; v) is an edge of F 0, if and only if (v; u) is an edge of F . Let u be a task of F . We
de�ne

D0(u) = D �R(u) and R0(u) = D �D(u):

It is easy to see that a 0-optimal schedule for F exists, if and only if a 0-optimal schedule for F 0

exists.
The above algorithm will be applied on F 0. The schedule for F can be constructed from the

schedule for F 0 by considering the �rst time slot to be the last and vice versa: if a task is scheduled
at time t in the schedule for F 0, then in the schedule for F it is scheduled at time D � t� 1.

The transformation of an inforest consisting of n nodes into an outforest and the transformation
of the schedule for the outforest into a schedule for the inforest both require O(n) time. So this
algorithm �nds a schedule for an inforest in O(n2) time. It �nds 0-optimal schedules on two
processors, if such a schedule exists.

This algorithm does not �nd optimal schedules. It is however possible to �nd an optimal
schedule using binary search. That way �nding an optimal schedule takes O(n3 logn) time.

3 Scheduling graphs with the least urgent parent property

In the previous section two algorithms were presented that construct optimal schedules on two
processors for outforests. It is not surprising that these algorithms are optimal for outforests: the
deadline modi�cation algorithms only consider a task and its successors. The predecessors of a
task are not taken into account. So in a graph, in which every task has been assigned a modi�ed
deadline, every task with deadline d has at most one successor with deadline d+1, but every task
having deadline d+1 can have any number of predecessors having deadline d. Hence a task u has
a successor that is most likely to be executed immediately after u, but it has no predecessor that
is most likely to be scheduled immediately before u.

In this section an extra constraint on the deadlines is added. In a graph in which the deadlines
satisfy this extra constraint, every task has a parent that is most likely to be executed immediately
before this task. This parent is called the least urgent parent and the constraint is called the least
urgent parent property.

De�nition 3.1 (Least urgent parent property). Let G be a graph, in which every task has
been assigned a (modi�ed) deadline. G has the least urgent parent property, if every node u in
G that is not a source, has exactly one parent, such that the deadline of this parent exceeds the
deadline of the other parents of u. This parent will be called the least urgent parent of u.

In this section two algorithms for scheduling graphs with the least urgent parent property will
be presented: one for scheduling series-parallel graphs on two processors and one for inforests on
an arbitrary number of processors.

3.1 Scheduling series-parallel graphs on two processors

We will consider series-parallel graphs with the least urgent parent property. Chr�etienne and
Picouleau [3] have de�ned series-parallel graphs as follows. Series-parallel graphs have a single
source and a single sink, and a recursive structure. The graph consisting of a single node is the
smallest series-parallel graph, this single node is both its source and its sink. Suppose G1; : : : ; Gk

16

are series-parallel graphs having sources s1; : : : ; sk and sinks t1; : : : ; tk. There are two ways to
construct a series-parallel graph from G1; : : : ; Gk: the graph SER(G1; : : : ; Gn) is constructed by
joining G1; : : : ; Gk and adding edges (ti; si+1) for all i, 1 � i � k � 1. SER(G1; : : : ; Gk) is shown
in �gure 10. The graph PAR(G1; : : : ; Gk) is constructed by joining G1; : : : ; Gk and adding edges
(s; si) and (ti; t) for all i, 1 � i � k, where s is the source of PAR(G1; : : : ; Gk) and t is its sink.
PAR(G1; : : : ; Gk) is shown in �gure 11.

G1 G2 : : : Gk

Figure 10: SER(G1; : : : ; Gk)

G1

G2

...

ts

Gk

Figure 11: PAR(G1; : : : ; Gk)

This de�nition is similar to the de�nitions of two terminal series-parallel graphs by Lawler [10]
and edge series-parallel graphs by Valdes, et al [16]. The class of series-parallel graphs, as we will
consider them, is almost a subclass of the class of two terminal series-parallel graphs: the graph
consisting of a single node is the only series-parallel graph, that is not a two terminal series-parallel
graph. Two terminal series-parallel graphs may contain more than one edge between two nodes,
this is not allowed in the series-parallel graphs we consider. Furthermore series-parallel graphs do
not have transitive edges, that is if (u; v) and (v; w) are edges of a series-parallel graph, (u;w) is
not. Two terminal series-parallel graphs may contain transitive edges.

Series-parallel graphs have some nice properties. Using induction it is easy to prove a series-
parallel graph satis�es the following properties.

1. Every node has at most one child or at most one parent.

2. If two nodes u and v have a common child w, then w is the only child of u and v.

3. If two nodes u and v have a common parent w, then w is the only parent of u and v.

4. If two nodes u and v have a common child w, then every child of a parent of u is a predecessor
of w.

5. If two nodes u and v have a parent w in common, then every parent of a child of u is a
successor of w.

In �gure 12 a graph is shown for which properties 4 and 5 are not satis�ed. Therefore this graph
cannot be an induced subgraph of the transitive closure of a series-parallel graph.

To schedule graphs with the least urgent parent property, the algorithm constructs schedules
of a special form. These schedules will be said to have the least urgent parent property.

De�nition 3.2 (Least urgent parent property). Let G be a graph with the least urgent parent
property. Let S be a schedule for G. S has the least urgent parent property, if for every node u in
G that is not a source, the least urgent parent of u is executed after all other parents of u.

17

Figure 12: A forbidden subgraph for the transitive closure of a series-parallel graph

The algorithm for scheduling with deadlines presented in section 2.1 will be changed to �nd
schedules with the least urgent parent property for graphs with the least urgent parent property.
To be able to de�ne the algorithm a di�erent notion of availability is needed.

De�nition 3.3 (Least urgent parent availability). Let G be a graph with the least urgent
parent property. Let S be a partial schedule for G on m processors. A task u is least urgent parent
available at time t with respect to S, if u is available in the normal sense and if u is the least
urgent parent of v, then all other parents of v are scheduled before time t.

The modi�ed algorithm constructs schedules with the least urgent parent property on m pro-
cessors for graphs with the least urgent parent property. The deadline modi�cation is done by the
deadline modi�cation algorithm presented in section 2.1. The algorithm to assign starting times to
the tasks uses a list containing all tasks ordered by nondecreasing (modi�ed) deadlines. In order to
bound the complexity of the algorithm two variables are introduced. NrParents(u) denotes the
number of unscheduled parents of u and LastParent(u) denotes the last time at which a parent of u
is scheduled. Initially NrParents(u) equals the indegree of u and LastParent(u) = �1 for each u.

Least urgent parent list scheduling()
1 let L = (u1; : : : ; un) contain all tasks ordered by nondecreasing deadlines
2 t = 0
3 while L contains unscheduled tasks
4 do for i = 1 to n

5 do if ui is unscheduled and least urgent parent available at time t
6 then for all children v of ui
7 do NrParents(v) = NrParents(v) � 1
8 LastParent(v) = t

9 schedule ui at time t
10 t = t+ 1

The deadline modi�cation requires O(n�) time for arbitrary graphs. For outforests and series-
parallel graphs the deadline modi�cation takes O(n2) time: from the result by Goral�c��kova and
Koubek [8] mentioned the section 2.1 it follows that it takes O(n2) time to compute the transitive
closure of a series-parallel graph, since such a graph has at most 2n� 2 edges as is proved in the
following lemma.

Lemma 3.4. Let G be a series-parallel graph. The number of edges in G is at most 2 jGj � 2.

Proof. Let G be a series-parallel graph. Let E(G) denote the number of edges of G. Induction is
used to prove E(G) � 2 jGj � 2. The lemma obviously holds for the graph consisting of a single
node. Let G1; : : : ; Gk be series-parallel graphs, such that E(Gi) � 2 jGij � 2 for all i, 1 � i � k.

1. G = SER(G1; : : : ; Gk).

18

E(G) =
Pk

i=1 E(Gi) + k � 1

�
Pk

i=1(2 jGij � 2) + k � 1
= 2 jGj � 2k + k � 1
= 2 jGj � k � 1
� 2 jGj � 2:

2. G = PAR(G1; : : : ; Gk).

E(G) =
Pk

i=1 E(Gi) + 2k

�
Pk

i=1(2 jGij � 2) + 2k
= 2(jGj � 2)� 2k + 2k
= 2 jGj � 4
� 2 jGj � 2:

For each time slot the priority list L is traversed to �nd least urgent parent available tasks.
It is easy to see that a task u is least urgent parent available at time t, if it is available and
NrParents(v) = 1 and LastParent(v) < t for each child v of u such that u is the least urgent
parent of v. Every task, that is not a source, has exactly one least urgent parent, so there are only
O(n) edges (u; v) such that u is the least urgent parent of v. For every node u two lists of children
are kept: one list contains all children for which u is the least urgent parent, the other children of
u are contained in the other list. So to check whether an available node u is least urgent parent
available only the children in the �rst list have to be checked. Suppose u has ku children for which
it is the least urgent parent. O(ku) time is required to check whether u is least urgent parent
available.

Let G be a graph. Since every task has release date zero, the length of a schedule for G
constructed by the above algorithm is at most n. Therefore O(nku) time is needed to check
whether a node u is least urgent parent available throughout the execution of the algorithm. Hence
O(n2) time is required to scan the priority list throughout the algorithm, because

P
u2G ku � n.

Creating the priority list takes O(n) time, as does the initial assignment of LastParent(u)
for every node u. The initial assignment of the values NrParents(u) takes O(indegree(u))
time for each node u, so O(e) time in total. Constant time is needed to update NrParents(v)
and LastParent(v) after a starting time has been assigned to a node u for every child v of u.
So after a node u is scheduled updating NrParents and LastParent for its children requires
O(outdegree(u)) time. So O(e) time is required to update NrParents and LastParent. So
O(n2) time is used by the above algorithm to schedule a graph.

So the least urgent parent algorithm uses O(n�) time to schedule an arbitrary graph. We
already know that computing the transitive closure of forests and series-parallel graphs requires
only O(n2) time. So the least urgent parent scheduling algorithm uses O(n2) time to schedule a
forest or a series-parallel graph.

Now it is proved that the above algorithm �nds a 0-optimal schedule on two processors for a
series-parallel graph with the least urgent parent property, if a 0-optimal schedule exists.

Theorem 3.5. Let G be a series-parallel graph with the least urgent parent property. Let L be a
list containing all tasks of G ordered by nondecreasing deadlines. If a 0-optimal schedule for G
on two processors exists, the schedule constructed by the least urgent parent scheduling algorithm
using L is 0-optimal.

Proof. Let G be a series-parallel graph with the least urgent parent property. Let L be a list
containing all tasks of G ordered by nondecreasing deadlines. Suppose a 0-optimal schedule for
G on two processors exists. Let S be the schedule for G on two processors constructed by the
least urgent parent scheduling algorithm using L. Suppose S is not 0-optimal. Let t be the �rst

19

time at which a task is scheduled that violates its deadline. Assume u 2 St and D(u) � t. Let
t0�1 < t be the last time at which at most one task having a deadline � D(u) is scheduled. De�ne

G0 =
St�1
i=t0 Si [fug. De�ne P = St0�1 \ fv 2 G j D(v) � D(u)g.

Case 1. jP j = 0. All tasks of G0 were rejected at time t0 � 1. The only tasks in G0 that are
available, are least urgent parents of nodes for which at least two parents are not scheduled
at time < t0 � 1. Let v be a task in G0 scheduled at time t0. Two parents of v are scheduled
at time t0 � 2, otherwise v would be scheduled at time t0 � 1. S has the least urgent parent
property, so the least urgent parent of v is scheduled at time t0� 1. This is impossible, since
P = ;.

Case 2. jP j = 1. Suppose u0 2 P . If every task of G0 would be a successor of u0, t and t0

would be equal, since only one child of u0 can be scheduled immediately after u0. In that
case u0 has one successor, u. This implies D(u0) � D(u) � 1 � t � 1 = t0 � 1. So u0 would
not meet its deadline. So G0 contains a task that is not a successor of u0.

Case 2.1. St0�2 contains a parent u
00 of u0 and every task of G0 is a successor of u00. u00 has

at least 2(t� t0) + 2 successors with a deadline � D(u). So

D(u00) � D(u)� 1�
�
1
2 (2(t� t0) + 1)

�
= D(u)� 1� t+ t0 � 1
� t0 � 2:

Since u00 2 St0�2, it violates its deadline. Contradiction.

From now on we assume t 6= t0. If t = t0 and u is neither a child of u0 nor a child of a parent
of u0 scheduled at time t0 � 2, u is the least urgent parent of a child of u0. In that case
D(u0) < D(u), so u0 would violate its deadline.

Case 2.2. St0�2 does not contain a parent of u0. St0 contains two tasks. Because of com-
munication delays one of these tasks is not a successor of u0. Let v 2 St0 be a task that
is not a successor of u0. v was rejected at time t0 � 1. So v is not least urgent parent
available with respect to St0�1.

Case 2.2.1. v is not available at time t0 � 1. Because v is no successor of u0, St0�2
contains two parents of v. Since S has the least urgent parent property, the least
urgent parent of v is scheduled at time t0� 1. So u0 is the least urgent parent of v.
Contradiction.

Case 2.2.2. v is available at time t0 � 1, but v is not least urgent parent available. So
v is the least urgent parent of a node w. All other parents of w have a deadline
< D(v) � D(u). v is scheduled at time t0, so u0 is a parent of w as well. Since G
is a series-parallel graph, w is the only child of u0 and v. Let w0 2 St0 , such that
w0 6= v. w0 is not a successor of u0 or v, since G is a series-parallel graph. w0 was
rejected at time t0 � 1. St0�2 cannot contain two parents of w0, otherwise u0 would
be the least urgent parent of w0. So w0 is a least urgent parent of some node. Since
w0 is scheduled at time t0 and G is a series-parallel graph, w0 is the least urgent
parent of the child of u0. So v = w0. Contradiction.

Case 2.3. St0�2 contains a parent u00 of u0 and G0 contains a node v such that u00 6� v.
Assume v has no predecessors in G0. v was rejected at time t0 � 1. So v is not least
urgent parent available with respect to St0�1.

Case 2.3.1. v is not available at time t0 � 1. v is no successor of u00, so u0 is no
predecessor of v. Therefore St0�2 contains two parents of v. But in that case u0 is
the least urgent parent of v. Contradiction.

Case 2.3.2. v is available at time t0 � 1. v was rejected at time t0 � 1. Therefore v
is not least urgent parent available. So v is the least urgent parent of a node w.
Assume v is scheduled at time t0 such that St0 is the �rst time slot after St0�1
containing a task that is not a successor of u00.

20

Case 2.3.2.1. t0 = t0. u0 is a parent of w, otherwise v would be least urgent
parent available at time t0 � 1. Let w0 6= v be scheduled at time t0. Since G is
a series-parallel graph, w0 is not a successor of u0 or v. St0�2 cannot contain
two parents of w0, otherwise u0 would be the least urgent parent of w0. So w0

is the least urgent parent of another node. Since w0 is scheduled at time t0 and
G is a series-parallel graph, w0 is the least urgent parent of the child of u0. So
v = w0. Contradiction.

Case 2.3.2.2. t0 6= t0. Before time t0 another parent w
0 of w is scheduled, other-

wise v would be scheduled at time t0 � 1. w0 is a successor of u00. u00 has at
least two children, since one of the tasks scheduled at time t0 cannot be a child
of u0. Let x; y be two children of u00, such that x = w0 or x � w0. Since v is
not a successor of u00, the subgraph induced by fu00; v; x; y; wg of the transitive
closure of G is isomorphic to the graph shown in �gure 12. Contradiction.

From the preceding theorem the existence of schedules with the least urgent parent property
clearly follows.

Corollary 3.6. Let G be a series-parallel graph with the least urgent parent property. If a 0-
optimal schedule for G on two processors exists, a 0-optimal schedule with the least urgent parent
property exists.

Proof. Obvious from theorem 3.5.

The least urgent parent availability of a task does not depend on its deadline. So the above
algorithm �nds optimal schedules.

Corollary 3.7. Let G be a series-parallel graph with the least urgent parent property. The schedule
on two processors for G constructed by the above algorithm is optimal.

Proof. Obvious.

Only properties 2, 4, and 5 of series-parallel graphs are used in the proof of theorem 3.5. Hence
theorem 3.5 and corollaries 3.6 and 3.7 hold for a larger class of graphs: the class of graphs that
satisfy properties 2, 4, and 5 and have the least urgent parent property.

For example theorem 3.5 and corollaries 3.6 and 3.7 also hold, if G is an inforest or an oppos-
ing forest (a graph consisting of an inforest and an outforest) with the least urgent parent property.

The above algorithm does not �nd an optimal schedule for every graph with the least urgent
parent property. Figure 13 shows a graph with the least urgent parent property, for which a
0-optimal schedule on two processors exists. Such a schedule is shown in �gure 14. It is easy to
see that this schedule is the only 0-optimal schedule for this graph, that is every task must be
scheduled at the time it is scheduled in this schedule in order to meet every deadline. The schedule
shown in �gure 14 does not have the least urgent parent property.

Using the outforest level scheduling algorithm presented in section 2.1 an upper bound on the
maximum lateness of a schedule constructed by the above algorithm can be proved. Let G be a
graph with the least urgent parent property. Every task in G with deadline d + 1 has at most
parent with deadline d. Therefore the outforest level scheduling algorithm �nds a valid schedule
for G. Let S be the schedule for G on m processors constructed by the above algorithm. It is not
di�cult to see that the lateness of task u in S is at most its lateness in the schedule constructed
by the approximation algorithm. So if an optimal schedule for G has lateness l and u has deadline
d, then the lateness of u is at most d+ l � 1�

�
1
m
(d� 1)

�
.

21

X Y

W Z A B C D

D(A) = 2; D(B) = 3; D(C) = 3; D(D) = 4

D(W) = 4; D(X) = 2; D(Y) = 1; D(Z) = 4

Figure 13: A graph with the least urgent parent property

Y A

WX

B

C

D

Z

Figure 14: The only 0-optimal schedule

3.2 Scheduling inforests on m processors

In the section 3.1 it was mentioned that the algorithm constructing 0-optimal schedules for series-
parallel graphs also �nds optimal schedules for inforests with the least urgent parent property.
Now an algorithm will be presented for scheduling inforests with the least urgent parent property
on an arbitrary number of processors.

It will be proved that if a 0-optimal schedule exists, a 0-optimal schedule with the least urgent
parent exists as well. The existence of 0-optimal schedules with the least urgent parent property
will be shown using an algorithm constructing such schedules.

Like all algorithms presented earlier this algorithm �rst modi�es every deadline and assigns
starting times using the modi�ed deadlines. The deadline modi�cation for inforests is less com-
plicated than for arbitrary graphs. It is not necessary to compute the transitive closure of an
inforest: to modify the deadline of a node only the deadline of its child has to be considered.

While some nodes do not have a modi�ed deadline, select of node u not having a modi�ed
deadline, such that its child v has an modi�ed deadline. Then

D(u) = minfD(u); D(v)� 1g:

Clearly the modi�ed deadlines are consistent with the precedence constraints. It is not di�-
cult to see that the deadlines calculated by the above algorithm equal the deadlines the general
deadline modi�cation algorithm would compute.

The assignment of starting times is done by the algorithm presented in section 3.1 without the
variables that were introduced to bound the complexity.

Least urgent parent list scheduling()
1 Let L = (u1; : : : ; un) contain all tasks ordered by nondecreasing deadlines
2 t = 0
3 while L contains unscheduled tasks
4 do for i = 1 to n

5 do if ui is unscheduled and least urgent parent available at time t
6 then schedule ui at time t
7 t = t+ 1

Now it will be shown that this algorithm constructs 0-optimal schedules, if such schedules exist.

22

Theorem 3.8. Let F be an inforest with the least urgent parent property. Let L be a list containing
all tasks of F ordered by nondecreasing deadlines. If a 0-optimal schedule on m processors exists,
the schedule constructed by the above algorithm using L is 0-optimal.

Proof. Let F be an inforest with the least urgent parent property. Let L be a list containing
all tasks of F ordered by nondecreasing deadlines. Suppose a 0-optimal schedule for F on m

processors exists. Let S be the schedule constructed by the above algorithm using L. Suppose not
every task meets its deadline in S. Let St be the earliest time slot containing a task violating its
deadline. Assume u 2 St and D(u) � t. Let t0 � 1 < t be the last time such that St0�1 contains

less than m tasks having a deadline � D(u). De�ne F 0 =
St�1
i=t0 Si [fug and P = St0�1 \ fv 2 F j

D(v) � D(u)g.

Case 1. P = ;. Every task of F 0 is rejected at time t0 � 1. So every task in F 0 available
at time t0 � 1 is the least urgent parent of a node, for which at least two parents are not
scheduled at time < t0 � 1. If an available task of F 0 is not least urgent parent available at
time t0 � 1, then this task is not least urgent parent available at time t0. So St0 contains a
task for which two parents are scheduled at time t0 � 2. Let v be such a task. In that case
St0�1 must contain the least urgent parent of v. Contradiction.

Case 2. P 6= ;.

Case 2.1. t = t0. u is not a child of P , otherwise a task in P would violate its deadline.
Since S has the least urgent parent property, St0�2 does not contain two parents of u.
So u is available at time t0�1. u is not scheduled at time t0�1, so u is the least urgent
parent of some node v such that another parent of v is scheduled at time � t0 � 1. u is
scheduled at time t = t0, so St0�1 contains another parent w of v. u is the least urgent
parent of v, so D(w) < D(u) � t. So D(w) � t� 1 = t0 � 1. So w violates its deadline.
Contradiction.

Case 2.2. t 6= t0. Not every task in F 0 is a successor of P . De�ne V0 = fw 2 St0 j
w is a child of Pg and V1 = fw 2 St0nV0 j w is the least urgent parent of some node w0

and P contains another parent of w0g. Let V = V0 [V1. Since a task has at most one
child, jV j � jP j � m � 1. Therefore St0nV is not empty. Let v be a task in St0nV .
v was rejected at time t0 � 1. v is not the least urgent parent of a task w0 such that
another parent of w0 is scheduled at time � t0 � 1. So v is not available at time t0 � 1.
So St0�2 contains two parents of v. In that case St0�1 contains the least urgent parent
of v. Contradiction.

From the preceding theorem the existence of schedules with the least urgent parent property
clearly follows for every inforest with the least urgent parent property for which a schedule meeting
each deadline exists.

Corollary 3.9. Let F be an inforest with the least urgent parent property. If a 0-optimal schedule
for F on m processors exists, a 0-optimal schedule with the least urgent parent property on m

exists.

Proof. Obvious from theorem 3.8.

This result will be used to de�ne a more e�cient algorithm to schedule inforests with the least
urgent parent property. Let F be an inforest with the least urgent parent property. F will be
transformed into an inforest to be scheduled without communication delays. This transformation
is similar to the transformation for outforests de�ned by Lawler [11]. The transformed inforest
will be called a delay-free inforest. For each node u in F having parents v1; : : : ; vk such that v1 is
the least urgent parent of u, the delay-free inforest contains the edges (v1; u) and (vi; v1) for all i,
2 � i � k. The deadlines remain unchanged. Figure 15 contains an inforest with the least urgent
parent property and �gure 16 shows the corresponding delay-free inforest.

23

U V W

X Y

Z

D(U) = 1; D(V) = 1; D(W) = 2

D(X) = 3; D(Y) = 4; D(Z) = 5

Figure 15: An inforest with the least urgent parent property

U V

W

X

Y

Z

Figure 16: The corresponding delay-free inforest

Clearly a valid schedule for the delay-free inforest F 0 is a valid schedule for F . Such a sched-
ule has the least urgent parent property. Each valid schedule for F with the least urgent parent
property is a valid schedule for F 0. So if a 0-optimal schedule for F exists, a 0-optimal schedule
for F 0 exists.

Brucker, et al [2] have presented an algorithm for scheduling delay-free inforests. This algorithm
�nds 0-optimal schedules, if such schedules exist. This algorithm is described below.

First every deadline is modi�ed. This is done the way it was described for inforests with
communication delays. The tasks are put in a list ordered by nondecreasing deadlines. A list
scheduling algorithm assigns a starting time to each task. LastParent(u) denotes the last time
slot containing a parent of u. Initially LastParent(u) = �1 for every node u. N(t) equals the
number of tasks scheduled at time t and First is the earliest time slot that is not completely �lled,
that is First equals the smallest t, such that N(t) � m � 1. Initially N(t) = 0 for each t and
First = 0. The assignment of starting times is done by the following algorithm.

Delay-free list scheduling()
1 let L = (u1; : : : ; un) contain all tasks ordered by nondecreasing deadlines
2 for i = 1 to n

3 do t = maxfLastParent(ui) + 1; F irstg

24

4 schedule ui at time t
5 N(t) = N(t) + 1
6 if N(t) = m

7 then First = First+ 1
8 let v be the child of ui
9 LastParent(v) = maxft; LastParent(v)g

Clearly both the deadline modi�cation and the assignment of starting times require linear time.
For an inforest with the least urgent parent property (with communication delays) linear time is
needed to �nd the corresponding delay-free inforest.

So the above algorithm algorithm �nds schedules in linear time. These schedules are 0-optimal,
if a 0-optimal schedule exists.

Also because deadlines do not in
uence the least urgent parent availability, the above algorithm
�nds optimal schedules.

Corollary 3.10. Let F be an inforest with the least urgent parent property. The schedule for F
constructed by the above algorithm is optimal.

Proof. Obvious.

Concluding remarks

In this report two algorithms were presented that construct optimal schedules for outforests. These
algorithms can be used to present an algorithm that �nds 0-optimal schedules of minimum length.

Let F be an outforest in which every task has been assigned a release date and a modi�ed
deadline. Suppose a 0-optimal schedule for F on two processors exists. Let R = maxu R(u) and
D = maxuD(u). The length of a shortest 0-optimal schedule for G is at least R + 1 and at most
D � R + n. By assigning deadline D0(u) = minfD(u); lg to every task u in G and applying the
algorithm presented in subsection 2.2 to G a 0-optimal schedule of length at most l is constructed,
if such a schedule exists. By using binary search a 0-optimal schedule of minimum length is found.
So after applying this algorithm O(log n) times a 0-optimal schedule of minimum length is found.
So O(n3 logn) time is used to �nd a 0-optimal schedule of minimum length. If uniform release
dates are considered only O(n2 log n) time is required.

Note that this construction cannot be used for the algorithm that constructs 0-optimal sched-
ules having the least urgent parent property of minimum length, since the least urgent parent
property of a graph is violated by this construction.

For several of the graphs we needed an extra constraint on the deadlines to present an algo-
rithm that �nds optimal schedules. This is caused by the deadline modi�cation algorithm. This
algorithm uses the information that for each node u at most one child of u can be scheduled
immediately after u. The knowledge that at most one parent of u can be executed immediately
before u is not used. The least urgent parent property is based on this information: the least
urgent parent of a task is executed immediately before this task.

In order to present algorithms �nding optimal schedules for inforests and series-parallel graphs
or other classes of graphs with arbitrary deadlines the extra knowledge has to be used either in
the deadline modi�cation algorithm or during the assignment of starting times.

References

[1] H.H. Ali and H. El-Rewini. The time complexity of scheduling interval orders with commu-
nication is polynomial. Parallel Processing Letters, 3(1):53{58, 1993.

25

[2] P. Brucker, M.R. Garey, and D.S. Johnson. Scheduling equal-length tasks under treelike
precedence constraints to minimize maximum lateness. Mathematics of Operations Research,
2(3):275{284, August 1977.

[3] P. Chr�etienne and C. Picouleau. Scheduling with communication delays: a survey. In Proc.
Summer School on Scheduling Theory and its Applications, Bonas, France, 1992. To appear.

[4] E.G. Co�man, Jr. and R.L. Graham. Optimal scheduling for two-processor systems. Acta
Informatica, 1:200{213, 1972.

[5] D. Coppersmith and S. Winograd. Matrix multiplication via algorithmic progressions. In
Proceedings of the 19th Annual Symposium on the Theory of Computation, pages 1{6, 1987.

[6] M.R. Garey and D.S. Johnson. Scheduling tasks with nonuniform deadlines on two processors.
Journal of the ACM, 23(6):461{467, July 1976.

[7] M.R. Garey and D.S. Johnson. Two-processor scheduling with start-times and deadlines.
SIAM Journal on Computing, 6(3):416{426, September 1977.

[8] A. Goral�c��kova and V. Koubek. A reduct-and-closure algorithm for graphs. In Be�cv�a�r,
editor, Mathematical Foundations of Computer Science 1979, number 74 in Lecture Notes in
Computer Science, pages 301{307, Berlin, 1979. Springer-Verlag.

[9] T.C. Hu. Parallel sequencing and assembly line problems. Operations Research, 9(6):841{848,
1961.

[10] E.L. Lawler. Sequencing problems with series-parallel precedence constraints. Unpublished
manuscript, 1978.

[11] E.L. Lawler. Scheduling trees on multiprocessors with unit communication delays. Unpub-
lished manuscript, 1993.

[12] J.K. Lenstra, M. Veldhorst, and B. Veltman. The complexity of scheduling trees with com-
munication delays. In T. Lengauer, editor, Proc. 1st European Symposium on Algorithms,
ESA '93, volume 726 of Lecture Notes in Computer Science, pages 284{294, Berlin, 1993.
Springer-Verlag. To appear in Journal of Algorithms.

[13] C. H. Papadimitriou and M. Yannakakis. Scheduling interval-ordered tasks. SIAM Journal
on Computing, 8(3):405{409, August 1979.

[14] C. Picouleau. New complexity results on the UET-UCT scheduling problem. In Proc. Summer
School on Scheduling Theory and its Applications, pages 487{502, Bonas, France, 1992. To
appear in Discrete Applied Mathematics.

[15] J.D. Ullman. NP-complete scheduling problems. Journal of Computer and System Sciences,
10:384{393, 1975.

[16] J. Valdes, R.E. Tarjan, and E.L. Lawler. The recognition of series parallel digraphs. SIAM
Journal on Computing, 11(2):298{313, May 1982.

26

