
A technique for automatically proving

termination of constructor systems

Thomas Arts

Utrecht University

Department of Computer Science

P.O. Box 80.089

3508 TB Utrecht

The Netherlands

E-mail: thomas@cs.ruu.nl

UU-CS-1995-32
October 1995

�
Utrecht University
Department of Computer Science

Padualaan 14, P.O. Box 80.089,

3508 TB Utrecht, The Netherlands,

Tel. : + 31 - 30 - 531454

A technique for automatically proving

termination of constructor systems

Thomas Arts

Utrecht University

Department of Computer Science

P.O. Box 80.089

3508 TB Utrecht

The Netherlands

E-mail: thomas@cs.ruu.nl

Technical Report UU-CS-1995-32
October 1995

Department of Computer Science

Utrecht University

P.O.Box 80.089

3508 TB Utrecht

The Netherlands

ISSN: 0924{3275

A technique for automatically proving termination of

constructor systems

Thomas Arts

Utrecht University

Department of Computer Science

P.O. Box 80.089

3508 TB Utrecht

The Netherlands

E-mail: thomas@cs.ruu.nl

Abstract

A technique is described to prove termination of constructor systems
(CSs) automatically. The technique consists of three major steps. First,
determine the dependency pairs of a constructor system. Second, �nd an
equational theory in which the constructor system is contained, and third,
prove that no in�nite chain w.r.t. the equational theory of these depen-
dency pairs exists. The �rst step is easy and can be performed completely
automatically. Here we �rst concentrate on the last step. We assume the
equational theory given in the form of a complete TRS and present several
general criteria on the syntax of the dependency pairs to prove that no
in�nite chain can exist with respect to the given equational theory. For
these criteria no semantic uni�cation is needed and they can be performed
completely automatically. Second we demonstrate a technique to �nd a
complete TRS automatically in case the CS that has to be proved termi-
nating is of a special form. We combine all techniques to show how a CS
introduced by R. Kennaway of almost 400 lines can be proved terminating
completely automatically.

1. Introduction

Termination of term rewrite systems (TRSs), and also of constructor systems
(CSs), is undecidable [HL78]. This means that there is no algorithm able to
prove termination of an arbitrary CS. We can, however, construct algorithms,
like implementations based on the recursive path order (rpo) or Knuth Bendix
order (kbo), that are able to either con�rm termination or end up with the mes-
sage that the used technique is not suitable to prove termination. The technique
presented in this paper can automatically prove termination of a wide class of
CSs among CSs that are not simply terminating. In this sense the technique
di�ers from all methods based on simpli�cation orders, like rpo and kbo, which
are not able to prove termination of CSs that are not simply terminating. The
technique has been introduced in [AZ95a] as a general applicable technique with

1

a few remarks added to point out which parts can be implemented and which
parts are undecidable. Now we focus on the parts that can be implemented.

Roughly speaking the technique exists of three steps. First, determine the
dependency pairs of a constructor system. This can be performed completely
automatically. Second, �nd an equational theory in which the constructor sys-
tem is contained. Finding such an equational theory is undecidable in general.
Heuristics can be given to �nd equational theories for speci�c kinds of CSs.
These heuristics result in complete TRSs instead of a set of equations, such
that checking whether the constructor system is contained in the equational
theory can be performed by semantic uni�cation, or better, reduction together
with syntactic uni�cation. And third, prove that no in�nite chain (w.r.t. the
equational theory) of these dependency pairs exists.

At �rst we concentrate on this last step. We assume the equational theory
given in the form of a complete TRS. We present several general criteria on
the dependency pairs to prove that no in�nite chain can exist w.r.t. the given
equational theory. In the general case, semantic uni�cation is needed to �nd
substitutions for which a sequence of dependency pairs is a chain. Semantic
uni�cation can be used since the equational theory is given in the form of a
complete CS. Unfortunately, semantic uni�cation is not always a terminating
process itself. To be sure that the chains of dependency pairs technique is
terminating, we developed criteria on the dependency pairs for which we do
not need the semantic uni�cation. These criteria do not always apply for a
given CS, but when they are applicable, the CS can be proved terminating
automatically. Thus, only for a subset of CSs for which the chains of dependency
pairs technique is applicable, the technique is applicable automatically.

Second we focus on a technique to derive an equational theory automatically
such that the criteria that we presented before can be ful�lled. As an example of
the power of this method, we show how termination of a CS of almost 400 lines,
introduced by R. Kennaway [Ken95], can be proved completely automatically
with the presented techniques.

2. Chains of dependency pairs

To illustrate the de�nitions that we present in this section, we use the following
constructor system as a leading example.

2.1. Example. The constructor system is a transformation (see [AZ95b]) of the
logic program

leq(0; 0)
leq(0; s(y))
leq(s(x); s(y)) leq(x; y):

split(x; nil; nil; nil)
split(x; cons(y; ys); cons(y; ys1); ys2) leq(y; x); split(x; ys; ys1; ys2)
split(x; cons(y; ys); ys1; cons(y; ys2)) leq(s(x); y); split(x; ys; ys1; ys2)

2

that split a list in two lists, one list with elements greater than some given value
and an other list with elements less than or equal to this value.

leq(0; 0) ! true

leq(0; s(y)) ! true

leq(s(x); s(y)) ! k1(leq(x; y))
k1(true) ! true

split(x; nil) ! splitout(nil; nil)
split(x; cons(y; ys)) ! k4(x; y; ys; leq(y; x))
k4(x; y; ys; true) ! k5(y; split(x; ys))
k5(y; splitout(ys1; ys2)) ! splitout(cons(y; ys1); ys2)
split(x; cons(y; ys)) ! k6(x; y; ys; leq(s(x); y))
k6(x; y; ys; true) ! k7(y; split(x; ys))
k7(y; splitout(ys1; ys2)) ! splitout(ys1; cons(y; ys2))

2.1. Dependency pairs

We abstract from the rewriting itself and concentrate on the possible rewrite
rules that are concerned in the reduction of a term.

2.2. Definition. Let (D; C;R) be a constructor system. If f(t1; : : : ; tm) !
C[g(s1; : : : ; sn)] is a rewrite rule of R and f; g 2 D, then

hf(t1; : : : ; tm); g(s1; : : : ; sn)i

is called a dependency pair (of R).

We say that two dependency pairs hs1; t1i and hs2; t2i are equivalent, notation
hs1; t1i � hs2; t2i, if there exists a renaming � such that s�1 � s2 and t�1 � t2.
We are interested in dependency pairs up to equivalence and when useful, we
may assume, without loss of generality, that two dependency pairs have disjoint
sets of variables.

2.3. Example. For the constructor system as given in Example 2.1 this results
in the following ten dependency pairs.

(1) hleq(s(x); s(y)); k1(leq(x; y))i
(2) hleq(s(x); s(y)); leq(x; y)i
(3) hsplit(x; cons(y; ys)); k4(x; y; ys; leq(y; x))i
(4) hsplit(x; cons(y; ys)); leq(y; x)i
(5) hk4(x; y; ys; true); k5(y; split(x; ys))i
(6) hk4(x; y; ys; true); split(x; ys)i
(7) hsplit(x; cons(y; ys)); k6(x; y; ys; leq(s(x); y))i
(8) hsplit(x; cons(y; ys)); leq(s(x); y)i
(9) hk6(x; y; ys; true); k7(y; split(x; ys))i
(10) hk6(x; y; ys; true); split(x; ys)i

3

Further on we de�ne a chain to be a special sequence of dependency pairs in
which we compare the arguments of the terms semantically. Checking whether
two terms are semantically equivalent is called semantic uni�cation. More pre-
cisely, in the presence of an equational theory E , and given an equation t1 = t2,
we want to �nd uni�ers � such that t�1 =E t

�
2 . If the equational theory E is given

in the form of a complete TRS, then narrowing can be used as a technique to
solve equations t1 = t2 in the presence of this equational theory. Although
this paper aims to proof termination of TRSs by chains of dependency pairs
technique without the use of semantic uni�cation, we still have to choose our
interpretations to be complete TRSs.

2.4. Definition. A TRS R is contained in a complete TRS E if l#E= r#E for
every rule l! r of R.

2.2. Chains of dependency pairs

2.5. Definition. Let E be a complete TRS, such that R is contained in E . A
sequence of dependency pairs is called a chain w.r.t. E if there exists a E-uni�er
� such that for every two consecutive pairs hsi; tii and hsi+1; ti+1i

1. the root symbol of ti equals the root symbol of si+1, and

2. the arguments of t�i equal in the equational theory the arguments of
s�i+1; thus if ti = fi(u1; : : : ; uk) and si+1 = fi(v1; : : : ; vk), then u�1 =E
v�1 ; : : : ; u

�
k =E v

�
k

We do not really need the E-uni�ers itself, but are satis�ed with a substi-
tutions �1; �2; : : : such that any E-uni�er � is an instance of a �i. The main
theorem in [AZ95a] states

2.6. Theorem. Let R be a constructor system. If there exists a complete TRS

E such that R is contained in E, and no in�nite chain of dependency pairs w.r.t.

E exists, then R is terminating.

Hence for proving termination of a constructor system R it remains to show
that, w.r.t. a given equational theory E , no in�nite chain of dependency pairs
exists.

In this paper we assume some complete TRS E to be given. There are
several heuristics to �nd these TRSs automatically, but for arbitrary R it can
be very hard to �nd a complete TRS in which R is contained.

3. Techniques to prove absence of in�nite chains

Given the dependency pairs, we can draw a directed graph of which the nodes
are labelled with the dependency pairs and there is an arrow between two
dependency pairs whenever the right projection of one pair has the same root
symbol as the left projection of the other pair.

4

3.1. Definition. The dependency graph of a set of nodes N of dependency
pairs is a directed graph G = (N;A) where [hs1; t1i; hs2; t2i] 2 A i� the root
symbol of t1 and s2 are equal.

An in�nite chain of dependency pairs has to correspond with an in�nite path
in the dependency graph. A �nite constructor system always results in �nitely
many dependency pairs, hence the dependency graph is �nite. An in�nite path
in a �nite graph implies existence of a cycle in this graph. Thus, for studying
in�nite chains, we can safely remove all nodes and arcs in the dependency graph
that are not on a cycle.

3.2. Example. The dependency graph obtained from the dependency pairs of
Example 2.3 can be seen in Figure 1. Note that dependency pair (1), (5), and

(2)

(6)

(1)

(10)

(4) (8)(5) (3) (7) (9)

Figure 1: Dependency graph

(9) can never occur in an in�nite chain, since none of the dependency pairs
may be its direct adjacent. Also (4) and (8) can be removed from the set of
dependency pairs. The dependency pairs that are on a cycle (Figure 2) are

(2)

(6)

(10)

(7)(3)

Figure 2: The cycles of the dependency graph

5

(2) hleq(s(x); s(y)); leq(x; y)i
(3) hsplit(x; cons(y; ys)); k4(x; y; ys; leq(y; x))i
(6) hk4(x; y; ys; true); split(x; ys)i
(7) hsplit(x; cons(y; ys)); k6(x; y; ys; leq(s(x); y))i
(10) hk6(x; y; ys; true); split(x; ys)i

By removing nodes from the dependency graph, we might obtain several
disconnected cycles. For every cycle, another technique to prove absence of
in�nite chains with the dependency pairs given by the nodes, may be used.

So far we only considered the root symbols of the terms in a dependency
pair. Since a chain of dependency pairs is formed by considering both the root
symbols and the arguments, we present in Section 3.2 a generalised form of the
dependency graph that also takes the comparison of arguments into account.
But, �rst we present a criterion for which the argument comparison is not
necessary.

3.1. Without an equational theory

In some spare cases one can already see on the syntax of the dependency pairs
that no in�nite chain exists. In these cases, a complete TRS in which the
constructor system is contained is not necessary. For example if there is no
recursive call in the rewrite system, then every chain of dependency pairs will
be �nite, or, in other words, there are no cycles in the dependency graph. In
this case termination of the rewrite system can also be proved by RPO.

A di�erent criterion, for which we do not need a complete TRS in which the
system is contained, is a reformulation of a theorem due to Richard Kennaway
[Ken95]. The criterion does not prove that no in�nite chain exists, but directly
proves termination of the constructor system. The reformulation of this theorem
is

3.3. Theorem. Let R be a constructor system. If every dependency pair on a

cycle in the dependency graph has a right projection that

� is linear,

� does not contain a de�ned symbol other than the root symbol, and

� is smaller than the left projection,

then the constructor system is terminating.

In this lemma the left projection is compared to the right projection of a de-
pendency pair w.r.t. the size.

In Section 4 we show that in some cases it is also possible to derive an
equational theory automatically. This results in a completely automatic method
for proving termination of CSs.

6

3.2. A complete TRS is given

From now on we assume that for the constructor system of which termination
has to be proved a complete TRS E , in which the constructor system is con-
tained, is given. This complete TRS might be produced by some algorithm, or
can be supplied by a user.

3.4. Example. The constructor system of Example 2.1 is contained in the fol-
lowing complete TRS E .

leq(x; y) ! C

k1(x) ! C

true ! C

split(x; y) ! C

splitout(x; y) ! C

k4(x; y; z; w) ! C

k5(x; y) ! C

k6(x; y; z; w) ! C

k7(x; y) ! C

This constructor system is terminating and con
uent.

Whenever the given complete TRS is a constructor system itself, one can try
to compare arguments of the left and right projection that are constructor terms
with respect to this complete CS. Note that constructors of the system that has
to be proved terminating need not be constructors in the given complete CS.
In the example above, the symbol true is a constructor of the CS of Example
2.1, but a de�ned symbol in E .

Before we precisely de�ne how we can compare arguments of the left and
right projection, we �rst state an easy lemma.

3.5. Lemma. Let E be a complete constructor system. If s and t are terms in

which no de�ned symbol occurs and � is a normalised substitution such that

s� =E t
�, then s� = t�.

Proof. Since E is a complete CS, s� =E t� implies s�#E= t�#E . Note that � is
a substitution of normal forms and no de�ned symbols occur in s or t. Thus,
no redex occurs in � and no redex occurs in t� or s� . In other words, s� and
t� are normal forms. Thus, s� = s�#E= t�#E= t� . 2

In Section 3 was remarked that dependency pairs that are not on a cycle
of the dependency graph could safely be removed. In constructing the depen-
dency graph, we only considered the root symbols of the two projections of the
pair. Since a chain of dependency pairs is formed by considering both the root
symbols and the arguments, we present a criteria, which takes the comparison
of arguments into account, to safely remove arcs from the graph. There is a
special function to indicate which arguments are important in this comparison.

7

3.6. Definition. An argument selector arg is a function from a signature F
to the natural numbers such that 1 � arg(f) � arity(f) for every function
symbol f 2 F . Note that the argument selector is not de�ned for constants.
The argument selector is naturally extended to non-variable terms in such a way
that arg(f(t1; : : : ; tn)) = targ(f). Thus, selecting an argument of the function
f .

3.7. Lemma. Let E be a complete constructor system, arg an argument selec-

tor on the de�ned function symbols of E. If [hs1; t1i; hs2; t2i] is an arc of the

dependency graph. such that

� in arg(t1)#E and arg(s2)#E no de�ned symbols occur, and

� arg(t1)#E does not unify with arg(s2)#E,

then removing this arc from the graph has no in
uence on the existence of an

in�nite chain of dependency pairs on a path of the graph.

Proof. Assume arg(t1)
� =E arg(s2)

� for some substitution � (of normal
forms). Note that arg(t1)

� !� (arg(t1)#E)
� and hence,

(arg(t1)#E)
� =E (arg(s2)#E)

�:

By Lemma 3.5 (arg(t1) #E)
� and (arg(s2) #E)

� are syntactically equivalent.
Thus, � is a uni�er for arg(t1) #E and arg(s2) #E , which contradicts the as-
sumption that these two terms do not unify. 2

3.8. Example. Let R = f(s(x)) ! f(p(s(x))) be a CS of which termination
has to be proved. Note that this CS is not simply terminating, thus we will
not be able to prove termination with a simpli�cation order like rpo. There
is only one dependency, viz. hf(s(x)); f(p(s(x)))i. A complete CS in which
R is contained is E = f(x) ! C. Thus, the symbols s and p are constructor
symbols. Since p(s(x)) will never unify with s(x), this dependency pair can
not occur in an in�nite chain. Since there are no other dependency pairs, no
in�nite chain exists and R is terminating.

If no uni�cation is possible in a cycle of the dependency graph, then we
may conclude that no in�nite chain can be formed with the dependency pairs
on this cycle. An in�nite chain of the dependency pairs on a cycle can also be
excluded if one of the arguments of a function decreases every time the whole
cycle has been visited.

3.9. Lemma. Let E be a complete constructor system, arg an argument selector

on the de�ned function symbols of E, and > a well-founded order on terms

closed under substitution. If for every dependency pair hs; ti on a cycle of the

dependency graph

� no de�ned symbols occur in arg(s)#E or in arg(t)#E, and

� arg(s)#E� arg(t)#E.

8

and there is a dependency pair hs; ti in this cycle with arg(s)#E> arg(t)#E, then
no in�nite chain of dependency pairs on this cycle exists.

Proof. Assume there is an in�nite chain of dependency pairs

hs1; t1ihs2; t2ihs3; t3i : : :

with (normalised) substitution �. Thus, arg(ti)
� =E arg(si+1)

�. Note that
arg(t)� !� (arg(t)#E)

� and hence,

(arg(ti)#E)
� =E (arg(si+1)#E)

�:

By Lemma 3.5 (arg(ti)#E)
� and (arg(si+1)#E)

� are syntactically equivalent.
Remark that for every i we have arg(si)#E� arg(ti)#E and since > is closed
under substitution,

(arg(si)#E)
� � (arg(ti)#E)

�:

Hence, there exists an in�nite sequence

(arg(s1)#E)
� � (arg(s2)#E)

� � (arg(s3)#E)
� � : : :

Add to this that there is a dependency pair hs; ti with arg(s)#E> arg(t)#E, and
we conclude that if there is an in�nite chain, then such a dependency pair will
occur in�nitely many times in that chain, in other words, � will be in�nitely
many times strict in the above sequence. This contradicts the well-foundedness
of >, hence, no in�nite chain of dependency pairs on this cycle exists. 2

In stead of an argument selector that selects one argument we can also use
argument selectors that pick sequences of arguments and lift the order to an
order on sequences of terms.

3.10. Example. The following constructor system

f(s(x)) ! h(x)
h(x) ! f(x)
h(x) ! g(s(x))

can not be proved terminating by RPO, but can be proved terminating ex-
tremely easy with the chains of dependency pairs technique. The dependency
pairs are

(1) hf(s(x)); h(x)i
(2) hh(x); f(x)i

We like to have s as a constructor in the complete CS in which the system
is contained. By assigning arg(f) = arg(h) = 1 and > the embedding order,
Lemma 3.9 proofs termination of the TRS. The complete CS is given by

f(x) ! C

h(x) ! C

g(x) ! C

9

3.11. Example. Two separate cycles (Figure 2) occur in the dependency graph
of the constructor system of Example 2.1. With Lemma 3.9 we can prove that
no in�nite chain exists consisting of dependency pairs on the cycles by choosing
arg(leq) = 1, arg(split) = 2, and arg(k4) = arg(k6) = 3.

In the last two examples the arguments already were in normal form w.r.t.
the given constructor system. In the following example, we essentially use that
the arguments are reduced before they are compared.

3.12. Example. The following logic program reverses a given list

rev1(x; nil; x)
rev1(x; cons(y; z); w) rev1(y; z; w)
rev(nil; nil)
rev(cons(x; y); cons(z1; z2)) rev1(x; y; z1); rev2(x; y; z2)
rev2(x; nil; nil)
rev2(x; cons(y; z); cons(z1; z2)) rev2(y; z; w1); rev(w1; w2);

rev1(x; w2; z1); rev2(x; w2; z2)

The transformation of this logic program into a constructor system results in
the system R:

rev1(x; nil) ! rev1out(x)
rev1(x; cons(y; z)) ! k1(rev1(y; z))
k1(rev1out(w)) ! rev1out(w)
rev(nil) ! revout(nil)
rev(cons(x; y)) ! k2(x; y; rev1(x; y))
k2(x; y; rev1out(z1)) ! k3(z1; rev2(x; y))
k3(z1; rev2out(z2)) ! revout(cons(z1; z2))
rev2(x; nil) ! rev2out(nil)
rev2(x; cons(y; z)) ! k4(x; rev2(y; z))
k4(x; rev2out(w1)) ! k5(x; rev(w1))
k5(x; revout(w2)) ! k6(x; w2; rev1(x; w2))
k6(x; w2; rev1out(z1)) ! k7(z1; rev2(x; w2))
k7(z1; rev2out(z2)) ! rev2out(cons(z1; z2))

After determining the dependency pairs and drawing the dependency graph
(Figure 3), we encounter several cyclic subgraphs consisting of the following
dependency pairs

(1) hrev1(x; cons(y; z)); rev1(y; z)i
(2) hrev(cons(x; y)); k2(x; y; rev1(x; y))i
(3) hk2(x; y; rev1out(z1)); rev2(x; y)i
(4) hrev2(x; cons(y; z)); rev2(y; z)i
(5) hrev2(x; cons(y; z)); k4(x; rev2(y; z))i
(6) hk4(x; rev2out(w1)); rev(w1)i
(7) hk4(x; rev2out(w1)); k5(x; rev(w1))i
(8) hk5(x; revout(w2)); k6(x; w2; rev1(x; w2))i
(9) hk6(x; w2; rev1out(z1)); rev2(x;w2)i

10

(8)

(6)

(2) (5)

(3)

(7)

(9)

(4)

(1)

Figure 3: The cycles of the rev dependency graph

The cycles of the dependency graph are given in Figure 3. The following
complete CS E , in which R is contained, is assumed to be given

rev1(x) ! C

rev1out(x) ! C

k1(x) ! x

rev(x) ! x

revout(x) ! x

rev2(x; y) ! y

rev2out(x) ! x

k2(x; y; z) ! s(y)
k3(x; y) ! s(y)
k4(x; y) ! s(y)
k5(x; y) ! s(y)
k6(x; y; z) ! s(y)
k7(x; y) ! s(y)
cons(x; y) ! s(y)

Note that cons is a de�ned symbol in E , whereas it is a constructor symbol
in R. By choosing arg(rev1) = 2 dependency pair (1) can not occur in an
in�nite chain. Choose arg(rev) = 1, arg(rev2) = 2, arg(k2) = 2, arg(k3) = 2
and arg(k4) = arg(k5) = arg(k6) = 2. For every dependency pair hs; ti we
easily check that arg(s)#E� arg(t)#E . Moreover, in every minimal cycle of the
dependency graph occurs either dependency pair (4) or dependency pair (5).
Both (4) and (5) are strict dependency pairs, hence by Lemma 3.9 there exists
no in�nite chain with this set of dependency pairs. Thus, R is a terminating
TRS.

3.3. Notes on an implementation

With the chains of dependency pairs technique we aim on a technique that can
be used automatically. The lemmas given in Section 3 determine criteria that
exclude existence of in�nite chains. To perform things automatically, we like to
check automatically whether one of the criteria hold.

Let R be a given constructor system of which termination has to be proven.
For all criteria we �rst have to determine all dependency pairs and we have to

11

construct the dependency graph. All vertices in this dependency graph that
are not on a cycle may be removed. Thus, we start with a dependency graph
consisting of zero or more minimal cycles. First we check the following two
criteria

1. If there are no cycles, then R is terminating.

2. If the conditions of Theorem 3.3 hold, then R is terminating. These
conditions are easily checked automatically.

If these two criteria are not ful�lled, then we need a complete constructor
system E in which R is contained. We assume E to be given and, moreover,
we assume that R is contained in E . We normalise the arguments of the left
and right projection of every dependency pair on a cycle with respect to the
constructor system E . We construct all argument selectors, such that in the
normalised selected arguments no de�ned symbol w.r.t. E occur. For every
argument selector we check that all minimal cycles in the dependency graph
whether meet the criterion of Lemma 3.7 or the criterion of Lemma 3.9. The �rst
criterion is easily checked automatically by a syntactic uni�cation algorithm,
the second criterion is a little more involved. One could consider one �xed
order > on terms, like the embedding order. A more powerful approach is to
combine all cycles that do not meet the �rst criterion, thus, all minimal cycles
that have to meet the second criterion. This results in a list of conditions of the
form arg(s)#E� arg(t)#E. We can easily remove all conditions from this list for
which arg(s)#E= arg(t)#E, but we have to check that for every minimal cycle
at least on condition has left. For the set of conditions left, we have to �nd a
well-founded order that satis�es these conditions. We can try to �nd this order
by replacing the relation > by a rewrite relation! and prove termination of the
so obtained rewrite system. Termination of R then follows from termination of
the new obtained rewrite system. However, the so found order > is a rewrite
order, thus, closed under context and substitution. We only need an order
closed under substitution.

4. Deriving a complete TRS

In the previous section we described a technique to conclude on syntactic criteria
that no in�nite chain of dependency pairs could exist. Thus, by this technique
termination of a CS can be proved. To perform the technique on a CS we
assumed a complete TRS in which this CS is contained to be given. Finding
an arbitrary complete TRS in which a CS is contained, is for most CSs easy.
Just map every function symbol to the same constant. However, with such
a complete TRS, the technique to prove absence of in�nite chains will not
apply. Thus, we need to derive a complete TRS in which the CS is contained
that bears enough information to apply the technique with. In this section we
describe a technique to derive such a TRS. The main idea is to derive a complete
TRS that is a constructor system itself and constructors of the original CS are
also constructors in the derived complete CS. In spare cases it might even be
enough to know the existence of a complete CS E such that the CS R that has

12

to be proved terminating is contained in E and all constructors of R are also
constructors of E , without knowing how E looks like.

4.1. Example. In Example 3.11 we prove absence of an in�nite chain of depen-
dency pairs by choosing arg(leq) = 1, arg(split) = 2, and arg(k4) = arg(k6) =
3 and applying Lemma 3.9. If we had only given that there existed a CS E in
which the CS of Example 2.1 is contained such that the constructors of both
systems coincide, then we could still use the above reasoning to prove absence of
an in�nite chain of dependency pairs, since in the arguments that are compared,
no de�ned symbols occur and hence these arguments are normal forms.

4.1. Mapping to constants

Let R be a CS. A complete TRS in which R is contained can always be obtained
if R is non-collapsing.

4.2. Lemma. If R is a non-collapsing CS, then ff(x1; : : : ; xn) ! Cjf 2 Sg,
where S is the set of all root symbols of any left-hand side or right-hand side of

a rule of R and C is a constant, is a complete TRS in which R is contained.

In Example 2.1, 3.8 and 3.10, the complete TRS was obtained in this way. Thus,
the CSs of Example 2.1, 3.8 and 3.10 can be proved terminating completely
automatically by the chains of dependency pair technique, whereas the recursive
path order does not su�ce for this purpose.

Most constructor systems need a more complicated complete TRS in which
they are contained. For example the constructor system R = K1 [K2 in
Appendix A results in only two dependency pairs, viz.

hinc(9 : x); inc(x)i
hdec(0 : x); dec(x)i:

Choosing the complete TRS as proposed by Lemma 4.2 with constant C say,
then also 9 : x and 0 : x are reduced to this constant. It is not hard to see
that with this complete TRS an in�nite chain of dependency pairs does exist.
Therefore, a more sophisticated complete TRS has to be constructed. The main
idea is to construct a complete TRS in which the CS is contained such that all
constructor symbols of the CS are also constructor symbols of the complete
TRS, which implies that the complete TRS has to be a constructor system
itself. If such a complete TRS can be constructed, then, for this particular CS,
by Lemma 3.9 the CS is terminating.

4.2. Unattached sets of function symbols

Assume that for a given CSR the dependency pairs are such that there exists an
argument selector arg on the de�ned symbols of R with for every dependency
pair hs; ti on a cycle of the dependency graph

� no de�ned symbols occurs in arg(s) or arg(t),

� arg(s) � arg(t)

13

and there is a dependency pair hs; ti in every cycle with arg(s) > arg(t). In this
case Lemma 3.9 is applicable if there exists a complete TRS E in which the CS
is contained, such that all constructor symbols of the CS are also constructor
symbols of E , which therefore also has to be a CS.

In this section we present a criteria that ensure existence of such a complete
CS. Only a restricted class of all CSs will meet the criteria, for example the
CS has to be non-overlapping. However, the criteria can easily be checked
automatically. Moreover, a CS of almost 400 lines introduced by R. Kennaway
in [Ken95], can be proved terminating completely automatically by using the
criteria and the chains of dependency pair technique.

In fact it is a little more complicated. We present a transformation that
transforms a CS R in a CS R such that

� if R is non-overlapping, then R is non-overlapping,

� the dependency pairs that occur on a cycle in the dependency graph are
the same for both R and R,

� the constructors of R are constructors of R.

� R is innermost normalising, if R is innermost normalising.

Thereafter, we show that the transformation is very suitable for constructing
a complete CS E such that R is contained in E and all constructors of R are
constructors of E .

4.3. Definition. Let R be a CS. A subset F of the de�ned function symbols
is called an unattached set for R if no f 2 F is a constant, and for all rewrite
rules l! r of R

� whenever a symbol f of F occurs in r, then the root symbol of l is an
element of F .

� symbols of F do not occur nested in r, i.e., if f(s1; : : : ; sk) occurs in r and
f 2 F , then no g 2 F occurs in s1; : : : ; sk.

We have chosen to demand that unattached symbol may not be a constant to
prevent more case distinctions in the transformation.

4.4. Example. An unattached set of function symbols for the constructor sys-
tem K1 [K2 in Appendix A is fdec; incg.

4.5. Definition. We denote sequences of terms by ht1; : : : ; tni and introduce
the operation � to concatenate sequences of terms, viz.

ht1; : : : ; tmi � hs1; : : : ; sni = ht1; : : : ; tm; s1; : : : ; sni

4.6. Definition. Let F be a set of function symbols. A redex is called an
F -redex if the root symbol is an element of F .

14

For the de�nitions below, (D; C;R) is a constructor system and F � D is an
unattached set for (D; C;R). We de�ne a transformation on constructor systems
that preserves the properties mentioned before. The functions inn, cap, nr and
newy are only de�ned on terms with non nested unattached symbols.

4.7. Definition. The function inn applied on a term results in a sequence of
all subterms in which either no element of F occurs, or the root symbol of the
subterm is an element of F .

inn(x) = hi

inn(g(s1; : : : ; sk)) =

8><
>:
hg(s1; : : : ; sk)i if no f 2 F in s1; : : : ; sk
inn(s1) � : : : � inn(sk) if some f 2 F in

s1; : : : ; sk and g 62 F

Note that if g 2 F then no f 2 F in s1; : : : ; sk since F is an unattached set.

4.8. Definition. The function nr applied on a term, results in the number of
terms that are obtained by inn. Thus, if inn(t) = ht1; : : : ; tni, then nr(t) = n.

nr(x) = 0

nr(g(s1; : : : ; sk)) =

8><
>:

1 if no f 2 F in s1; : : : ; sk
nr(s1) + : : :+ nr(sk) if some f 2 F in

s1; : : : ; sk and g 62 F

4.9. Definition. The function cap applied on a term and a natural number
n, replaces all subterms in the term that are extracted by the function inn by
a fresh variable. The function newy applied on a term and the same natural
number n, results in the list of all fresh variables that are substituted in the
term by the function cap, in case the substituted subterm had f as root symbol,
then newy results for this subterm in fout(yn), where fout is a new function
symbol.

cap(x; n) = x

cap(g(s1; : : : ; sk); n) =

8><
>:

yn if no f 2 F in s1; : : : ; sk
g(cap(s1; n1); : : : ; if some f 2 F in
cap(sk; nk)) s1; : : : ; sk and g 62 F

newy(x; n) = hi

newy(g(s1; : : : ; sk); n) =

8>>>>>>><
>>>>>>>:

hyni if no f 2 F in
s1; : : : ; sk and g 62 F

hgout(yn)i if no f 2 F in
s1; : : : ; sk and g 2 F

newy(s1; n1) � : : : if some f 2 F in
�newy(sk ; nk) s1; : : : ; sk and g 62 F

where all yn are fresh variables and ni = n +
Pi�1

j=1 nr(sj) for 1 � i � k.

15

4.10. Definition. The function trans applied on a rewrite rule results in a
set of rewrite rules. trans(l! r) =

fl! rg if no f 2 F in l

fl! fout(r)g if f 2 F root of l
and no g 2 F in r

fl! ki(vars(r); inn(r)); if f 2 F root of l and
ki(vars(r);newy(r; 1))! fout(cap(r; 1))g some s 2 F in r

where all ki are new, fresh de�ned symbols. De�ne R =
S
l!r2R trans(l! r).

4.11. Example. The transformation applied on the CS of K1[K2 of Appendix
A with unattached set finc; decg results in K1 together with

inc(END) ! incout(1 : END)
inc(0 : x) ! incout(1 : x)

: : :

inc(9 : x) ! k1(x; inc(x))
k1(x; incout(y)) ! incout(0 : y)

: : :

From the transformation and the fact that F is an unattached set we see
that all dependency pairs that are on a cycle in the dependency graph of R are
on a cycle in the dependency graph of R and vice versa. Now we prove that
this transformation is innermost normalisation preserving.

4.12. Lemma. Let t, s be terms such that t !R s. If s contains a term

f(s1; : : : ; sk) that is not in normal form and f 2 F , then in t occurs a term

g(t1; : : : ; tn) that is not in normal form and g 2 F .

Proof. The proof is by induction on the structure of t. Note that t can not be
a variable, since a variable is a normal form. Thus, t = h(u1; : : : ; um) and the
induction hypothesis holds for all u1; : : : ; um. If h 2 F we are done. Assume
h 62 F , then there are two possibilities

1. ui ! ~ui for some 1 � i � m and h(u1; : : : ; ~ui; : : : ; um) = s. If the subterm
f(s1; : : : ; sk) occurs in ~ui, then by induction, a subterm g(t1; : : : ; tn) with
g 2 F that is not in normal form occurs in ui and hence in t. Otherwise
the subterm f(s1; : : : ; sk) occurs in uj for some 1 � j � m with i 6= j,
since h 62 F .

2. there is a rewrite rule h(v1; : : : ; vm)! r in R and a substitution �, such
that

h(u1; : : : ; um) = h(v�1 ; : : : ; v
�
m)! r� = s

The subterm f(s1; : : : ; sk) occurs in r� , but f does not occur in r by
de�nition of an unattached set. Thus, there is an x in r with �(x) =
f(s1; : : : ; sk). Since, var(r) � var(g(v1; : : : ; vm)), the variable x occurs in
a vi for some 1 � i � m. Thus, f(s1; : : : ; sk) is a subterm of ui = v�i . 2

16

4.13. Lemma. If there exists an in�nite innermost reduction starting with a

term t in which in�nitely many F -redexes are contracted, then there exists such

a reduction starting with a subterm f(t1; : : : ; tn) of t with f 2 F and t1; : : : ; tn
innermost normalising terms.

Proof. Assume there exists such a reduction starting with a term t. Let
g(t1; : : : ; tn) be the subterm of minimal depth starting such an in�nite re-

duction, thus t1; : : : ; tn are innermost normalising. Note that g(t1; : : : ; tn)
i
!

+g(u1; : : : ; un) with u1; : : : ; un normal forms and g(u1; : : : ; un) starts such an
in�nite reduction. In this reduction in�nitely many F-redexes are contracted,
hence in this reduction a term s occurs with a subterm f(s1; : : : ; sk) with f 2 F
that is not in normal form. By Lemma 4.12, in g(u1; : : : ; un) occurs a subterm
f(w1; : : : ; wk) with f 2 F that is not in normal form. Since u1; : : : ; un are in
normal form, this subterm is the term g(u1; : : : ; un) and hence g 2 F . 2

4.14. Lemma. Let f and g be symbols of F and u1; : : : ; un terms in normal

form. If f(u1; : : : ; un)
i
!R C[g(s1; : : : ; sk)] and g(s1; : : : ; sk) starts an in�nite

innermost reduction in which in�nitely many F -redexes are contracted, then

f(u1; : : : ; un)
i
!
R

~C[g(s1; : : : ; sk)] and s1; : : : ; sk are of the form v�1 ; : : : ; v
�
k with

no f 2 F occurs in v1; : : : ; vk and � is a substitution of normal forms.

Proof. Note that there is a rewrite rule f(t1; : : : ; tn)! r in R and a substitu-

tion � such that f(u1; : : : ; un) = f(t�1 ; : : : ; t
�
n)

i
!R r� = C[g(s1; : : : ; sk)] Since

u1; : : : ; un are normal forms, � is a substitution of normal forms. The redex
g(s1; : : : ; sk) occurs in r� and no redex occurs in �, thus a term g(v1; : : : ; vk)
occurs in r, such that g(v1; : : : ; vk)� = g(s1; : : : ; sk). By de�nition of an
unattached set, no f 2 F occurs in v1; : : : ; vk. By de�nition of the trans-
formation, the rewrite rule f(t1; : : : ; tn) ! kj(: : : ; g(v1; : : : ; vk); : : :) occurs in
R. Thus,

f(u1; : : : ; un) =

f(t�1 ; : : : ; t
�
n)

i
!
R

kj(: : : ; g(v1; : : : ; vk); : : :)�

= ~C[g(s1; : : : ; sk)]

and s1; : : : ; sk are of the form v�1 ; : : : ; v
�
k . 2

4.15. Lemma. Let s be a term in which no f 2 F occurs and let � be a sub-

stitution of normal forms. If s�
i
!R t, then s�

i
!
R

t and t = u� for some

term u in which no f 2 F occurs and substitution � of normal forms such that

�(x) = �(x) for all x in Dom(�)\Dom(�).

Proof. The proof is by induction on the structure of s. Assume s = g(s1; : : : ; sk)
and for s1; : : : ; sk the induction hypothesis holds. Since no f 2 F occurs in s,
g 62 F . Distinguish two possibilities

1. s�i
i
!R v for some 1 � i � k and g(s�1 ; : : : ; v; : : : ; s

�
k) = t.

2. All terms s1; : : : ; sk are in normal form and a rewrite rule g(t1; : : : ; tn)! u

in R and a substitution � exist such that g(s�1 ; : : : ; s
�
k) = g(s�1; : : : ; s

�
k)!R

u� = t. 2

17

4.16. Theorem. Let R be a CS and F be an unattached set of function symbols

in R. If the transformation R is innermost normalising, then R is innermost

normalising.

Proof. Assume there is an in�nite innermost reduction in R. If only �nitely
many times an F -redex is contracted in this reduction, then the tail of the
reduction is a reduction in R. Assume in the in�nite innermost reduction in-
�nitely many times an F -redex is contracted. By Lemma 4.13 there exists such
a reduction starting with a term f(t1; : : : ; tn) with f 2 F and t1; : : : ; tn inner-

most normalising terms. Thus, f(t1; : : : ; tn)
i
!+
R
f(u1; : : : ; un) with u1; : : : ; un

in normal form and f(u1; : : : ; un) starts such a reduction.

By Lemma 4.13, f(u1; : : : ; un)
i
!R C[g(s1; : : : ; sk)] with g 2 F , s1; : : : ; sk

innermost normalising and g(s1; : : : ; sk) starts an in�nite innermost reduc-
tion in which in�nitely many F -redexes are contracted. By Lemma 4.14,

f(u1; : : : ; un)
i
!
R

~C[g(s1; : : : ; sk)] and s1 = v�1 ; : : : ; sk = v�k for s1; : : : ; sk
without f 2 F and � a substitution of normal forms. Thus, g(s1; : : : ; sk) =

g(v�1 ; : : : ; v
�
k)

i
!+
R
g(~u1; : : : ; ~uk) with ~u1; : : : ; ~uk normal forms and g(~u1; : : : ; ~uk)

starts such a reduction. By Lemma 4.15, g(s1; : : : ; sk)
i
!+
R
g(~u1; : : : ; ~uk). Thus,

by repeating this argument, we obtain an in�nite innermost reduction in R,
which contradicts that R is innermost normalising. 2

The main advantage of translating R into R is the construction of the
complete CS that has to be found to apply the chains of dependency pairs
technique. Finding a such a complete CS is easier for R then it is for R itself.
Just choose one constant for all symbols of F , Fout and the k-symbols. The
CS R is split in two parts, R0 = fl ! rjroot symbol of l in Fg and R n R0.
The problem of �nding a complete CS in which R is contained is now reduced
to �nding a complete CS in which R0 is contained, which is also a part of R.
Thus, we eliminated a part of the CS that can perform problems in �nding a
complete CS in which the CS is contained.

The following corollary links the power of all methods described in this
paper. Note that all conditions of this corollary, except for innermost normali-
sation of R0, can be checked automatically.

4.17. Corollary. Let R be a CS and F an unattached set for R. De�ne

R0 = fl! rjno f 2 F occurs in l; rg. The CS R is complete if

� R is non-overlapping,

� R0 is innermost normalising,

� there exists an argument selector arg on the de�ned symbols of R with for

every dependency pair hs; ti on a cycle of the dependency graph

{ no de�ned symbols occurs in arg(s) or arg(t),

{ arg(s) � arg(t)

and there is a dependency pair hs; ti in every cycle with arg(s) > arg(t).

18

Proof. Assume the demands of the corollary are ful�lled. De�ne R as above.
Note that dependency pairs on a cycle of the dependency graph of R coincide
with the pairs on a cycle of the dependency graph of R. By Lemma 3.9,
termination of R follows from the prove that there exists a complete CS E such
that R is contained in E and all constructors of R are also constructors of
E . Since R0 is innermost normalising and non-overlapping, it is also complete
([Gra95]). Thus,

E = R0 [ff(x1; : : : ; xk)! cjf 2 F [Fout [k-symbolsg

is a complete CS in which R is contained. By the transformation, all constructor
symbols of R are also constructor symbols of E , hence R is terminating. The
transformation is innermost normalisation preserving (Lemma 4.16), thus R is
innermost normalising. By using [Gra95] and the assumption that R is non-
overlapping, we derive that R is complete. 2

4.18. Example. The CS K1 is proved terminating automatically by absence of
cycles in the dependency graph.

For the CS K1[K2 the unattached set finc; decg is found. The unattached
set de�nesR0 to be K1. Note that the CS is non-overlapping and by the previous
observation, terminating and hence innermost normalising. The dependency
pairs are

hinc(9 : x); inc(x)i
hdec(0 : x); dec(x)i:

It is easily seen that these two dependency pairs meet the last condition of the
corollary. Hence, K1 [K2 is terminating.

For the CS K1[K2[K3 the unattached set fnormadd; normsubg is found.
The unattached set de�nes R0 to be K1[K2. Again the CS is non-overlapping
and by the previous observation innermost normalising. No new dependency
pairs on a cycle are introduced, thus the dependency pairs are the same as for
K1 [K2 and hence the CS K1 [K2 [K3 is terminating.

For the CS K1 [K2 [K3 [K4 the unattached set f+;�g is found. The
unattached set de�nes R0 to be the CS that is proved terminating in the pre-
vious observation. The new dependency pairs on a cycle are

h(w : x) + (y : z); x+ zi
h(w : x) +MINUS(z); (w : x)� zi
hMINUS(x)+ (y : z); (y : z)� xi
hMINUS(x)+MINUS(z); x+ zi
h(w : x)� (y : z); x� zi
h(w : x)�MINUS(z); (w : x) + zi
hMINUS(x)� (y : z); x+ (y : z)i
hMINUS(x)�MINUS(z); z� xi

An argument selector that selects both arguments su�ces to meet the last
condition of the corollary, hence, the CS K1 [K2 [K3 [K4 is terminating.

The CS K1[: : :[K5 is proven termination in the same way with unattached
symbol timesten.

19

For the CS K1 [: : :[K6 the unattached symbol times is found. The CS
R0 is de�ned to be K1 [: : : [K5 which is proved terminating in the previous
observation. The new dependency pairs on a cycle are

h(w : x)� (y : z); (w : END)� zi
h(w : x)� (y : z); x� (y : END)i
h(w : x)� (y : z); x� zi
h(w : x)�MINUS(z); (w : x)� zi
hMINUS(x)� (y : z); x� (y : z)i
hMINUS(x)�MINUS(z); x� zi

An argument selector that selects both arguments and the Knuth Bendix order
(performed automatically as described in [DKM90]) su�ce to meet the last
condition of the corollary. Hence, the CS of Appendix A is terminating and
moreover, can be proved terminating completely automatically.

5. Conclusions

The technique, proving absence of in�nite chains of dependency pairs, can be
performed automatically for a subclass of CSs. Even CSs that are not simply
terminating can automatically be proved terminating. Therefore, the technique
essentially di�ers from automatic techniques that are based on simpli�cation
orders, and thus unable to prove termination of CSs that are not simply ter-
minating. Examples like Example 3.8 occur in literature as examples of non-
simply terminating, and hence di�cult, TRSs. However, intuitively proving
termination of these TRSs is not di�cult. The technique of in�nite chains of
dependency pairs justi�es the intuition by giving an easy argumentation, that
can be found automatically, for termination of these TRSs.

We showed that the described techniques are powerful enough to prove ter-
mination of the CS of Appendix A automatically. With Theorem 3.3, which is
the reformulating of the theorem R. Kennaway developed to prove termination
of this CS, termination can be proved directly. However, the described tech-
niques are more general applicable. The techniques do not force linearity of
any subterm, thus the techniques still apply on a slight modi�cation of the CS
of Appendix A with a non-linear subterm on a critical place. In the de�nition
of an unattached set we only demand that there are no de�ned symbols of this
same set nested. In Kennaway's approach no de�ned symbol may occur in a
term starting with a function symbol of the unattached set (if this term occurs
in a dependency pair that occurs on a cycle). Thus, replacing the rewrite rule
for (w : x)� (y : z) of K6 by

(w : x)� (y : z) ! (w �d y)+
(((timesten(w : END) � z) + (x� timesten(y : END)))+
timesten(timesten(x � z)))

results in a modi�ed CS that can still be proved terminating automatically by
the described techniques, whereas Theorem 3.3 fails on the dependency pairs

h(w : x)� (y : z); timesten(w : END)� zi
h(w : x)� (y : z); x� timesten(y : END)i

20

since timesten occurs in the right projection. Finally, Kennaway compares
subterms with respect to the size order, whereas the presented techniques may
use any well-founded order.

The technique is also very suitable to prove termination of CS that are ob-
tained by transforming logic programs into CSs [AZ95b], and therefore, by the
termination preserving property of the transformation, also to prove termina-
tion of logic programs.

In Corollary 4.17 we demand R0 to be non-overlapping and innermost nor-
malising. By [Gra95], R0 is complete. One could expect, by considering this
and the transformation, that the �rst two demands in the corollary can be re-
placed by one demand, viz. R0 is complete. However, the CS of K. Drosten
[Dro89] rejects this possibility.

0 ! 2
1 ! 2
g(x; y; y) ! x

g(y; y; x) ! x

f(0; 1; x) ! f(x; x; x)
f(x; y; z) ! 2

Choose the set of unattached symbols ffg, then R0 is de�ned to be the upper
four rules. Since all critical pairs are joinable, R0 is complete. The only de-
pendency pair hf(0; 1; x); f(x; x; x)i can not be on a cycle by Lemma 3.7. But
the CS is not terminating, since f(g(0; 1; 1); g(0; 1; 1); g(0; 1; 1)) has an in�nite
reduction.

A. Constructor system for decimal arithmetic

R. Kennaway proposed in [Ken95] a constructor system for decimal arithmetic.
The constructor system of approximately 400 rewrite rules can be split into a
base system and several systems that extend the base system. The complete
system can be proved terminating automatically by the chains of dependency
pairs technique together with Corollary 4.17. The base system is denoted by
K1 and K2 : : :K5 denote the extensions of the system.

K1

0 +d 0 ! 0 0�d 0 ! 0
0 +d 1 ! 1 0�d 1 ! MINUS(1)

...
...

9 +d 9 ! 18 7�d 5 ! 2
5�d 7 ! MINUS(2)

0�d 0 ! END
...

1�d 0 ! END 9�d 9 ! 0
...

9�d 9 ! 1 : (8 : END)

21

for all digits in the range 0 : : :9.

K2

inc(END) ! 1 : END dec(0 : x) ! 9 : dec(x)
inc(0 : x) ! 1 : x dec(1 : x) ! 0 : x

inc(1 : x) ! 2 : x
...

... dec(9 : x) ! 8 : x
inc(8 : x) ! 9 : x
inc(9 : x) ! 0 : inc(x)

K3

normadd(0; x) ! 0 : x
...

normadd(9; x) ! 9 : x
normadd(10; x) ! 0 : inc(x)

...
normadd(18; x) ! 8 : inc(x)

normsub(0; END) ! END

normsub(0; x : y) ! 0 : (x : y)
normsub(0;MINUS(x)) ! MINUS(0 : x)
normsub(1; END) ! 1 : END

normsub(1; x : y) ! 1 : (x : y)
normsub(1;MINUS(x)) ! MINUS(9 : dec(x))

...
normsub(9; END) ! 9 : END

normsub(9; x : y) ! 9 : (x : y)
normsub(9;MINUS(x)) ! MINUS(1 : dec(x))
normsub(MINUS(1);END) ! MINUS(1 : END)
normsub(MINUS(1); x : y) ! 9 : dec(x : y)
normsub(MINUS(1);MINUS(x)) ! MINUS(1 : x)

...
normsub(MINUS(9);END) ! MINUS(9 : END)
normsub(MINUS(9); x : y) ! 1 : dec(x : y)
normsub(MINUS(9);MINUS(x)) ! MINUS(9 : x)

22

K4

END+ END ! END

END+ (y : z) ! y : z
END+MINUS(z) ! MINUS(z)
(w : x) +END ! w : x
(w : x) + (y : z) ! normadd(w+d y; x+ z)
(w : x) +MINUS(z) ! (w : x)� z

MINUS(x) + END ! MINUS(x)
MINUS(x) + (y : z) ! (y : z)� x

MINUS(x) +MINUS(z) ! MINUS(x+ z)

END� END ! END

END� (y : z) ! MINUS(y : z)
END�MINUS(z) ! z

(w : x)�END ! w : x
(w : x)� (y : z) ! normsub(w �d y; x� z)
(w : x)�MINUS(z) ! (w : x) + z

MINUS(x)� END ! MINUS(x)
MINUS(x)� (y : z) ! MINUS(x+ (y : z))
MINUS(x)�MINUS(z) ! z � x

K5

timesten(END) ! END

timesten(x : y) ! 0 : (x : y)
timesten(MINUS(x)) ! MINUS(timesten(x))

K6

END� END ! END

END� (y : z) ! END

END�MINUS(z) ! END

(w : x)�END ! END

(w : x)� (y : z) ! (w�d y)+
(timesten(((w : END)� z) + (x� (y : END)))+
timesten(timesten(x � z)))

(w : x)�MINUS(z) ! MINUS((w : x)� z)
MINUS(x)�END ! END

MINUS(x)� (y : z) ! MINUS(x� (y : z))
MINUS(x)�MINUS(z) ! x� z

23

References

[AZ95a] Thomas Arts and Hans Zantema. Termination of constructor sys-
tems using semantic uni�cation. Technical Report UU-CS-1995-17,
Utrecht, May 1995.

[AZ95b] Thomas Arts and Hans Zantema. Termination of logic programs via
labelled term rewrite systems. In Proceedings of CSN 1995. Sion,
November 1995. Full version appeared as technical report UU-CS-
1994-20.

[DKM90] Jeremy Dick, John Kalmus, and Ursula Martin. Automating the
knuth bendix ordering. Acta Informatica, 28:95{119, 1990.

[Dro89] K. Drosten. Termersetzungssysteme : Grundlagen der prototyp-
generierung algebraischer spezi�kationen. Springer, Berlin, 1989.

[Gra95] Bernhard Gramlich. Abstract relations between restricted termina-
tion and con
uence properties of rewrite systems. Fundamenta In-

formaticae, 24:3{23, 1995.

[HL78] G. Huet and D. Lankford. On the uniform halting problem for term
rewriting systems. Technical Report report 283, INRIA, 1978.

[Ken95] Richard Kennaway. Complete term rewrite systems for decimal arith-
metic and other total recursive functions. Presented at the Workshop
on Termination, La Bresse, France, May 1995.

24

