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Abstract

In this paper, we consider the complexity of a number of combinatorial problems;
namely, Intervalizing Colored Graphs (DNA physical mapping), Trian-
gulating Colored Graphs (perfect phylogeny), (Directed) (Modified)

Colored Cutwidth, Feasible Register Assignment and Module Alloca-

tion for graphs of bounded treewidth. Each of these problems has as a
characteristic a uniform upper bound on the tree or path width of the graphs in
\yes"-instances. For all of these problems with the exceptions of feasible register
assignment and module allocation, a vertex or edge coloring is given as part of the
input.

Our main results are that the parameterized variant of each of the considered
problems is hard for the complexity classes W [t] for all t 2 Z

+. We also show
that Intervalizing Colored Graphs, Triangulating Colored Graphs, and
Colored Cutwidth are NP -Complete.

1 Introduction

The focus of this paper is on a number of graph decision problems which share the char-
acteristic that all have a uniform upper bound on their path or tree width in the following
sense. Each of these problems takes as input a graph G (it may be colored or directed)
and a positive integer k and asks a particular question regarding G. If, in fact, the answer
is \yes" for this instance, then one can prove that there exists an upper bound b(k) on the
path or tree width of the graph.

�Some of the results contained in this paper were �rst reported in [11, 29, 10].
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This bound opens up the following possibility: using the algorithm of Bodlaender [6] we
can determine that no such decomposition of width b(k) exists or be given a decomposition
of G. In either case, the running time for this procedure is linear in the size of G but
exponential only in k. By means of one of several general algorithmic design methodologies
(see [1, 4, 5, 15, 20, 54]) we may then answer the original question in time linear in the size
of G. Hence, for small values of k, this procedure may lead to algorithms that are practical
even for very large graphs G. Examples where these methods have been successful include
Treewidth, Pathwidth, Min Cut Linear Arrangement, Feedback Vertex
Set, Feedback Arc Set and Search Number.

Unfortunately, we show that the parameterized variant of problems Intervalizing
Colored Graphs, Triangulating Colored Graphs, (Modified) (Directed)
Colored Cutwidth, Feasible Register Assignment, and Module Allocation
on graphs of bounded treewidth to be W [t]-Hard for all t 2 Z+. This excludes the
possibly of applying these techniques and, in fact, goes further to exclude the possibility
of an O(jGj�) algorithm for �xed values of k (where � is independent of both the size of
G and k) under the assumption (very similar to the more familiar P 6= NP hypothesis)
that the tth level, for any t, of the parameterized hierarchy does not collapse to the lowest
level.

The reductions that we describe also demonstrate that the problems Intervalizing
Colored Graphs, Triangulating Colored Graphs and Colored Cutwidth
(with one color) are NP-Complete.

The plan of the paper is as follows. In Section 2, we introduce basic notions from
Parameterized Complexity theory. In Section 3, de�nitions and some basic properties of
the problems, considered in this paper are given. In Section 4, we show �xed parameter
intractability for the considered problems via reductions from a parameterized variant of
the Longest Common Subsequence problem. These same reductions also establish
NP-hardness for the unparameterized versions of several of these problems. Some �nal
remarks are made in Section 5.

2 Parameterized Computational Complexity

2.1 Parameterized Problems, Fixed-Parameter Tractability and
Reductions

A parameterized problem is a set L � ����� where � is a �xed alphabet. For convenience,
we consider that a parameterized problem L is a subset of L � ���N . For a parameterized
problem L and k 2 N we write Lk to denote the associated �xed-parameter problem Lk =
fxj(x; k) 2 Lg. We say that a parameterized problem L is (uniformly) �xed-parameter
tractable if there is a constant � and an algorithm � such that � decides if (x; k) 2 L

in time f(k)jxj� where f : N ! N is an arbitrary function. Let A;B be parameterized
problems. We say that A is (uniformly many:1) reducible to B if there is an algorithm �
which transforms (x; k) into (x0; g(k)) in time f(k)jxj�, where f; g : N ! N are arbitrary
functions and � is a constant independent of k, so that (x; k) 2 A if and only if (x0; g(k)) 2
B.
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2.2 Complexity Classes

A Boolean circuit is of mixed type if it consists of circuits having gates of the two kinds:

1. Small gates: not gates, and gates and or gates with bounded fan-in.

2. Large gates: and gates and or gates with unrestricted fan-in.

The depth of a circuit C is de�ned to be the maximum number of gates (small or large)
on an input-output path in C. The weft of a circuit C is the maximum number of large
gates on an input-output path in C. A family of decision circuits F has bounded depth if
there is a constant h such that every circuit in the family F has depth at most h, and F

has bounded weft if there is constant t such that every circuit in the family F has weft at
most t. The weight of a boolean vector x is the number of 1's in the vector.

De�nition 1 Let F be a family of decision circuits (possibly having many di�erent circuits
with a given number of inputs). We associate to F the parameterized problem LF =
f(C; k) : C accepts an input vector of weight kg. A parameterized problem L belongs to
W [t] if L reduces to the parameterized circuit problem LF (t;h) for the family F (t; h) of
mixed type decision circuits of weft at most t, and depth at most h, for some constant h.
A parameterized problem L belongs to W [P ] if L reduces to the circuit problem LF , where
F is the set of all circuits (no restrictions). We designate the class of �xed-parameter
tractable problems FPT .

These de�nitions give us the hierarchy of parameterized complexity classes

FPT � W [1] � W [2] � � � �W [t] � � � � W [P ]

for which there are many natural hard or complete problems [37, 23, 24]. For example, all
of the following problems are now known to be complete forW [1] : Square tiling, Inde-
pendent set, Clique, Bounded post correspondence problem, k-Step deriva-
tion for context-sensitive grammars, Vapnik-Chervonenkis dimension, and
the k-Step halting problem for nondeterministic Turing machines [17, 22, 26].
Thus, any one of these problems is �xed-parameter tractable if and only if all of the others
are; and none of the problems for which we here prove W hardness results are �xed-
parameter tractable unless all of these are also. Dominating set is proved complete for
W [2] in [25].

In this paper, we will use as a starting point for our reductions the following problem:

Longest Common Subsequence (LCS-1)
Instance: Alphabet �, strings s1; : : : ; sK 2 ��, integer M 2 N.
Parameter: K.
Question: Does there exist a string in �� of length at least M , that is a

subsequence of each string s1; : : : ; sK?

Theorem 1 [8, 10] For all t 2 Z+, LCS-1 is hard for W [t].
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Other problems hard (or complete) forW [t] for all t includeWeighted t-Normalized
Satisfiability, Bandwidth, Domino Treewidth, and Uniform Emulation on a
Path (see [37]). If any one these problems complete for W [t] is FPT then, all other
problems complete for W [t], for all t, are FPT . We will describe all problems in this
paper in the same format as above. We will not describe the unparameterized variants as
these can be obtained by simply ignoring the parameter �eld from the description.

3 Problem De�nitions

Common to all of the problems we consider, a uniform upper bound exists for the
width of the graphs. For Intervalizing Colored Graphs, Triangulating Col-
ored Graphs, Feasible Register Assignment and Colored Cutwidth this up-
per bound holds only in \yes" instances. We state the appropriate de�nitions relating
to treewidth and pathwidth below and provide several lemmas which will be used in our
hardness proofs. The following subsections provide brief histories, related results, applica-
tions and, where appropriate, the said upper bound on the width of the graphs in \yes"
instances.

De�nition 2 A tree-decomposition of a graph G = (V;E) is a pair (fXi j i 2 Ig; T =
(I; F )) with fXi j i 2 Ig a collection of subsets of V , and T = (I; F ) a tree, such that

�
S
i2I Xi = V .

� For all (v; w) 2 E, there exists an i 2 I with v; w 2 Xi.

� For all v 2 V , fi 2 I j v 2 Xig forms a connected subtree of T .

The width of a tree-decomposition (fXi j i 2 Ig; T = (I; F )) is maxi2I jXij � 1. The
treewidth of a graph is the minimum width over all possible tree-decompositions of that
graph.

De�nition 3 A tree-decomposition (fXi j i 2 Ig; T = (I; F )) is a path-decomposition,
if T is a path. The pathwidth of a graph is the minimum width over all possible path-
decompositions of that graph.

Path-decompositions are also often denoted by the sequence of the successive subsets
Xi: (X1; X2; : : : ; Xr). The following well known result can easily be proved.

Lemma 2 Let (fXi j i 2 Ig; T = (I; F )) be a tree-decomposition of G = (V;E). Let
v0; v1; : : : ; vr be a path in G. Suppose v0 2 Xi, vr 2 Xj, and suppose that k is on the path
between i and j in T . Then fv0; : : : ; vrg \Xk 6= ;.

Lemma 3 [13] Let (fXi j i 2 Ig; T = (I; F )) be a tree-decomposition of G = (V;E). Let
W1;W2 � V , such that for all v 2 W1, w 2 W2, (v; w) 2 E. Either for all v 2 W1,
there exists an i 2 I with fvg \W2 � Xi, or for all v 2 W2, there exists an i 2 I with
fvg \W1 � Xi.
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3.1 Intervalizing Colored Graphs (or DNA Physical Mapping)

A graph G = (V;E) with a coloring c : V ! C is properly colored, if there is no edge
between vertices with the same color. An undirected graph G = (V;E) is an interval
graph, if one can associate with each vertex v 2 V , an interval [Lv; Rv] � R, such that for
all v; w 2 V , v 6= w: (v; w) 2 E , [Lv; Rv] \ [Lw; Rw] 6= ;.

The following problem models in a straightforward but limited way the determination
of contig assemblies in DNA physical mapping.

Intervalizing Colored Graphs (ICG)
Instance: A graph G = (V;E) and a coloring c : V ! C.
Parameter: jCj = k.
Question: Does there exist a supergraph G0 = (V;E 0) of G which is properly

colored by c and which is an interval graph?

We brie
y describe the DNA physical mapping problem which ICG models and discuss
the issue of the computational realism of this model. A general problem which has appli-
cations at several levels of sequence reconstruction (such as protein sequencing, nucleotide
sequencing and gene sequencing) is: Given a set of fragments of a sequence X and a mea-
sure of overlap between pairs of sequence fragments in this set, reconstruct the order of
these fragments in X. This problem is typically broken into four steps (see [28]):

1. Fragment the sequence X. (This step may be repeated for several identical copies of
X.)

2. Determine a set of characteristics for each fragment, termed its �ngerprint or signa-
ture.

3. Compute a similarity or overlap measure between pairs of fragments based on their
respective �ngerprints.

4. Using the overlap information, assemble the fragments into islands of contiguous
fragments, termed contigs.

According to the kind of sequence under investigation, there are many ways in which
these steps might be accomplished [28]. The fragmentation of a copy of X in step 1 is
termed a digest. Where X is a piece of DNA, the fragments produced in step 1 can be
reproduced in large quantities, and are termed clones. Obviously, if two clones originate in
step 1 from the same copy of X, then they do not overlap. Thus, ICG models the situation
where step 1 is applied to k copies of X, i.e., where k digests are performed in creating
the clone library. The vertices of the input graph G correspond to the clones created by
the k digests. The vertices corresponding to clones originating in the same partial digest
have the same color. The edges of the graph correspond to overlapping pairs of clones.
The goal is to predict further overlaps, and ultimately to reconstruct the sequence X.

It has long been recognized that graph intervalization problems are useful within molec-
ular biology (see [39] and references). The classical and parameterized complexities of a
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number of such problems related to ICG have recently been determined (see [7] and ref-
erences). Indeed one such problem, Colored Graph Sandwich, is equivalent to ICG
and was independently of [29] shown to be NP-complete in [34]. As values of k for ICG
are typically small in practice, e.g., k = 8 in the yeast genome sequencing project [19], the
parameterized version of ICG studied here is of some importance.

Lemma 4 Let G = (V;E) be a graph with a vertex coloring c : V ! f1; 2; : : : ; kg, that
is a subgraph of a properly colored interval graph G0. Then the pathwidth of G is at most
k � 1.

Proof: It is easy to see that the pathwidth of an interval graph is one less than its
maximum clique size, which equals its chromatic number (since interval graphs are perfect,
see [33]). Hence the pathwidth of G0 is at most k � 1 implying the pathwidth of G is at
most k � 1.

3.2 Triangulating Colored Graphs (or Perfect Phylogeny)

Historically, one of the major e�orts in molecular biology has been the computation of
phylogenetic trees, or phylogenies, which describe the evolution of a set of species from
a common ancestor. A phylogeny for the set S of species, is a rooted tree in which the
leaves represent the species in S and the internal nodes of the tree represent the ancestral
species. There are many di�erent methods known for inferring the best phylogeny, e,g.,
parsimony, distance-matrix �tting, maximum likelihood[30, 50]. Over the last ten years,
the computational complexities of many of these methods have been determined (see [52]
and references). These complexities depend on, among other things, how the species in the
given set are described. One of the standard models uses characters to describe species.
Here, a character is an equivalence relation on the species set, partitioning the set into
the di�erent character states. Under this model, a proposed phylogeny will also assign
character states to each of the hypothesized species indicated by the internal nodes.

Many of the methods for inferring phylogenies are based on properties that must be
satis�ed by characters in candidate phylogenies. One such property is the following:

For each state of the character, the set of nodes in the tree having that state
should form a connected component, i.e., that state is convex [27].

Following [27], a character which satis�es this property is said to be true. The Character
Compatibility problem (see [43] and references) looks for the phylogeny such that the
largest possible subset of the given characters are true. A special case of this problem asks
if there is a phylogeny such that all given characters are true. Such a phylogeny is said to
be perfect, and the characters are said to be perfectly compatible. The Perfect Phylogeny
problem [36] is then de�ned as follows.

Perfect Phylogeny
Instance: A set of k characters, de�ning a species set S.
Parameter: k.
Question: Does there exist a perfect phylogeny for S with this set of charac-

ters?
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The version in which the number of characters is a �xed constant k is called the k-
Perfect Phylogeny problem.

In 1974, Buneman [16] showed that the Perfect Phylogeny problem reduced to a graph-
theoretic problem, which we call the Triangulating Colored Graphs problem (or
TCG). A graph is said to be triangulated (or chordal) if it does not contain an induced
cycle of length at least four. The Triangulating Colored Graphs problem is:

Triangulating Colored Graphs (TCG)
Instance: Graph G = (V;E), coloring c : V ! C.
Parameter: jCj = k.
Question: Does there exist a supergraph G0 = (V;E 0) of G which is properly

colored by c and which is triangulated?

If I is the instance of the Perfect Phylogeny problem, and GI the corresponding in-
stance of the Triangulating Colored Graphs problem, then vertices of GI correspond to
the character states of I, with states of the same character having the same color. Two
vertices are adjacent if their corresponding character states share a species in common.
Thus, the number of colors of TCG corresponds to the number of characters in the Perfect
Phylogeny problem.

In 1990, Kannan and Warnow [40] showed that these two problems were polynomially
equivalent. Though these problems are NP-complete [48, 53], over the last few years,
polynomial time algorithms for the various �xed-parameter versions of these problems
have been found. Since molecular data results in characters with few states, attention has
particularly been given to the case where the parameter r is bounded. When the characters
are binary (i.e. r = 2), the problem can be solved in O(sk) time [36]. For r = 3, character
compatibility can be determined in O(s2k) time [41] or O(sk2) time [48]. For r = 4 (the
case for characters derived from DNA sequences), the problem can be solved in O(s2k)
time [41]. An O(23r(sk3 + k4)) time algorithm has been found for the general case by
Agarwala and Fernandez-Baca [2]. This has been improved by Kannan and Warnow [42]
to an O(22rsk2) time algorithm.

For the TCG problem, linear time algorithms for the case of two and three-colored
graphs [12, 38, 40, 45] and an O((n +m(k � 2))k+1) time algorithm for triangulating k-
colored graphs [44] have been found. These algorithms correspond to O(s) algorithms
for compatibility of two or three characters on s species, and an O((rk)k+1 + sk2) time
algorithm for compatibility of k r-state characters on s species.

Since perfect phylogenies rarely occur in practice, it is often of more interest to �nd the
maximally-true phylogenies produced by the Character Compatibility problem. However,
this problem is NP-complete even for binary characters [21]. One approach to approxi-
mating such phylogenies is to look for perfect phylogenies on small subsets of characters.
Though the reductions in [21] also establish that even this approximation problem is W[1]-
hard when the size of wanted subset is the parameter and the characters are binary, the
k-Perfect Phylogeny problem, i.e., the problem of determining if a given set of characters
of �xed size is perfectly compatible, is still of interest to computational biologists.

Lemma 5 Let G = (V;E) be a triangulated graph with a proper vertex coloring c : V ! C.
G does not contain a simple cycle with only two colors used for the vertices on the cycle.
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Lemma 6 Let G = (V;E) be a graph with a vertex coloring c : V ! f1; 2; : : : ; kg, that is
a subgraph of a properly colored, triangulated graph G0. Then the treewidth of G is at most
k � 1.

Proof: The same proof as of that for Lemma 4 replacing \triangulated" for \interval" and
\treewidth" for \pathwidth".

3.3 Colored Cutwidth

Interesting variations on a number of \classical" graph-theoretic decision problems can
be de�ned by considering an input consisting of k distinct graphs on the same set of
vertices, and asking whether there is a solution (described in terms of the vertex set)
that simultaneously solves the problem for all of the k graphs. We may equivalently view
k graphs on one vertex set V as a k-edge colored graph. The following problem asks
whether there is a permutation of V that simultaneously has cutwidth k for each induced
monochromatic subgraph.

A linear ordering of a graph G = (V;E) is a bijective function f : V ! f1; : : : ; jV jg.
The colored cutwidth of a linear ordering f of an edge colored graph G = (V;E), with
edge coloring c : E ! C is

max
c2C

max
1�i�jV j

jf(v; w) 2 E j c((v; w)) = c ^ f(v) � i < f(w)gj

Note that a linear ordering f has colored cutwidth 1 if and only if for every two edges
(v; w) and (x; y) of the same color, the open intervals (min(f(v); f(w));max(f(v); f(w)))
and (min(f(x); f(y));max(f(x); f(y))) have an empty intersection. If we have two edges
for which these two open intervals intersect, then we call this a color con
ict. The colored
cutwidth ofG with edge coloring c is the minimum over the colored cutwidths of all possible
linear orderings of G. The following is the decision version of this problem:

Colored Cutwidth One (CC-1)
Instance: a graph G = (V;E), an edge coloring c : E ! C.
Parameter: jCj = k.
Question: Does G have colored cutwidth 1?

We also consider the directed colored cutwidth problem where the input is a directed
acyclic graph with a coloring of its edges. We require that if (v; w) 2 E, then f(v) < f(w),
i.e. we look for a topological ordering f of G with minimum colored cutwidth. Denote this
problem DirectedCC-1.

De�ne the modi�ed colored cutwidth (ModifiedCC-1) of a graph as follows: the
modi�ed colored cutwidth of a linear ordering f of an edge colored graph G = (V;E), with
edge coloring c : E ! C, is

max
c2C

max
1�i�jV j

jf(v; w) 2 E j c((v; w)) = c ^ f(v) < i < f(w)gj

The modi�ed colored cutwidth of G with edge coloring c is the minimum over the modi�ed
colored cutwidths of all possible linear orderings of G.
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It is easy to show that a yes-instance of CC-1 has has pathwidth at most k � 1.

We remark that the method of Gurari and Sudborough from [35] can be generalised to
solve colored cutwidth (or its directed variant) with a �xed number of colors, and a �xed
cutwidth per color, in polynomial time.

3.4 Feasible Register Assignment

One of the most fundamental problems encountered in computer system design is to e�-
ciently allocate registers during execution of a program. Consider a system with a single
processor and an arbitrarily high number of general purpose registers with programs con-
sisting of a sequence of assignment instructions. We disallow memory stores - instructions
are of only two forms: (1) load a register with the contents from a speci�ed memory loca-
tion and (2) apply an operator to the contents of two registers placing the result in a third
register. See [3].

The order of execution of a program is represented by G, a directed acyclic graph. We
may view the act of placing a value into a register as placing a \pebble" on a vertex of
the graph. Pebbles are originally placed on vertices of in-degree 0 and moved according to
the arcs of the graph. At any point during execution there are at most k pebbles on the
graph.

Feasible Register Assignment (FRA)
Instance: Directed acyclic graph G = (V;E), positive integer k, and a register

assignment r : V ! fR1; : : : ; Rkg.
Parameter: k.
Question: Is there a linear ordering f of G and a sequence S0; S1; : : : ; SjV j of

subsets of V such that S0 = ;, SjV j contains all vertices of in-degree 0 in G,
and for all i, 1 � i � jV j, f�1(i) 2 Si, Si � ff

�1(i)g � Si�1, Si�1 contains
all vertices u for which (f�1(i); u) 2 E and for all j, 1 � j � k, there is at
most one vertex u 2 Si with r(u) = Rj?

The Feasible Register Assignment problem has been well studied and it is known
that the decision version which asks whether there exists a feasible register assignment
with k registers is NP -Hard (see [46]). Several restricted versions of this problem have
been considered and linear time algorithms have been found if, for example, the programs
compute solutions to expressions which have no common subexpressions (see [47]).

In our case, we consider a parameterized variant of Feasible Register Assignment
where the maximum number of registers allowed during the execution of a program is small
relative to the size of the program (i.e. the number of registers k is independent of the size
of the graph G).

Denote by GR the directed graph obtained from the directed graph G by reversing the
direction of all arcs.

Lemma 7 Let f be a linear ordering of directed acyclic graph G = (V;E). Let r :
V ! fR1; : : : ; Rkg be given. Write n = jV j. Then there exists a sequence of subsets
S0; S1; : : : ; Sn � V such that this sequence and f satisfy together the conditions of the fra
problem if and only if

9



1. f is a topological order of GR.

2. For the sequence of subsets S 0
0; S

0
1; : : : ; S

0
n, de�ned by S 0

0 = ; and for all i, 1 � i � n,
Si = fv j f(v) � i and the indegree of v in G is 0g[fv j f(v) � i^9w 2 V : (w; u) 2
E ^ f(w) > ig, it holds that no set contains vertices assigned to the same register,
i.e., for all i, 1 � i � n, for all j, 1 � j � k, there is at most one vertex u 2 S 0

i with
r(u) = Rj.

Proof: (: One can directly verify that f and the sequence S 0
0; : : : ; S

0
n ful�l the require-

ments of the fra problem.

): First note that it must be the case that for all v 2 V , f(v) = minfi j 1 � i �
n; v 2 Sig. For every edge (u; v) 2 E, note that v 2 Sf(i)�1, hence f(v) � f(i)�1. So f is
a topological order of GR. Next observe that we can remove a vertex w that has indegree
at least 1 simultaneously from all sets Si with i � maxw j (w;v)2E f(w), without violating
the conditions of the Feasible Register Assignment problem.

It is not hard to show that a yes-instance for FRA has pathwidth at most k.

3.5 Module allocation on graphs of bounded treewidth

The Module Allocation Problem seeks to minimise the overall cost of executing a set of
modules on a set of processors in a distributed system. The cost of executing a module is
a function of

1. which processor it is executed on,

2. interference with other modules (ie. two modules require the same processor),

3. and the need to communicate with other modules.

We assume tables are given describing (1) and (2) above. The information for (3) is
encoded as a graph and supplied as part of the input. In our case, we seek to minimise
overall cost when this graph has a bound on its treewidth independent of its size. More
formally,

Module allocation on graphs of bounded treewidth (MA)
Instance: A set of modules M = f1; 2; : : : ; mg,
a set of processors P = f1; 2; : : : ; pg,
a cost function e : (M � P ) ! R : (x; y) 7! t where t is the cost of executing

module x 2 M on processor y 2 P ,
a communication cost function C : (M � P �M � P ) ! R : (x; y; x0; y0) 7! t

where t is the communication cost when module x is assigned to processor
y and module x0 is assigned to processor y0,

a communication graph G = (M;E),
and a positive real number l.
Parameter: treewidth(G) = k.
Question: Does there exist an assignment of modules to processors such that

the total cost of execution is less than or equal to l?
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If C(x; y; x0; y) then we interpret this as interference ie. both x and x0 need to execute
on processor y.

TheMA problem is know to beNP -Hard in general (see [14, 31, 49, 51]) but polynomial
for several restricted families of graphs. When G is restricted to be a series-parallel graph,
the best known algorithm is O(mp3) (see [14]) and when G is a tree, MA can be solved in
time O(mp2) (see [51]). Fern�andez-Baca [31] generalize this result to graphs of bounded
treewidth k giving an O(mpk+1) assignment algorithm. Furthermore, Fern�andez-Baca and
Medepalli [32] consider a restricted version of MA (Parametric MA) where the cost
functions e and C are linear functions of a new parameter � ; that is, C((�; �); (�; �)) = �a+b,
and give an O(m1+(k+1)log2pm) assignment algorithm. Of course, the question remains
whether there exist algorithms forMA and Parametric MA with running times O(jV j�)
where � is independent of the input parameters and the treewidth of G (equal to k in this
discussion). The later sections of this paper address this directly.

4 Hardness for the W-Hierarchy

4.1 Hardness of CC-1, ICG, and TCG

Theorem 8 (i) CC-1 is W [t]-Hard for all t 2 Z+.
(ii) ICG is W [t]-Hard for all t 2 Z+.
(iii) TCG is W [t]-Hard for all t 2 Z+.

Proof: (i) We reduce from LCS-1.

Let strings s1; : : : ; sK 2 �� and an integer M be an instance of LCS-1. We denote the
length of a string sk as Lk. We write R = j�j, and � = f�0; : : : ; �R�1g. We now construct
an edge colored graph G = (V;E). We allow that G has parallel edges (to remove the
parallel edges without changing the colored cutwidth of G, we can subdivide every edge
and give a subdivided edge the color of the corresponding original edge. The hardness of
CC-1 for simple graphs follows from hardness of CC-1 for graphs with parallel edges.)

The set of colors C is de�ned as follows:

C = fci j 0 � i � Kg [

fdi j 1 � i � Kg [

fei;j j i 2 f0; 1; 2g; 1 � j � Kg [

ffi;j j 1 � i � K; 1 � j � K; i 6= jg

We now describe G and the coloring of its edges. G consists of the following components:

1. Two anchors. We create four vertices v11; v
1
2; v

2
1 ; v

2
2. For every color c 2 C, we create

an edge (v11; v
1
2) with color c and an edge (v21; v

2
2) with color c. Write A = fv11; v

1
2; v

2
1; v

2
2g.

11



2. Choice components. Create vertices fwm
i j 1 � m � M; 0 � i � 3Rg. Create the

following edges:

� An edge (v12; w
1
0) with color c0.

� An edge (wM
3R; v

2
1) with color c0.

� For all m, 1 � m < M , an edge (wm
3R�1; w

m+1
0 ) with color c0.

� For all m, 1 � m �M , i, 0 � i � 3R� 1, edges (wm
i ; w

m
i+1) with color c0, and for all

k, 1 � k � K, an edge (wm
i ; w

m
i+1) with color dk.

� For allm, 1 � m �M , i, 0 � i � R�1, and for all k, 1 � k � K, an edge (wm
3i ; w

m
3i+1)

with color e0;k, an edge (wm
3i+1; w

m
3i+2) with color e1;k, and an edge (wm

3i+2; w
m
3i+3) with

color e2;k.

3. String components. Create vertices fxkl;i j 1 � k � K; 1 � l � Lk; 0 � i � 3R+1g.

For all k, 1 � k � K, create the following edges:

� two edges (v12; x
k
1;0), one with color ck, and one with color dk.

� two edges (xkLk;3R+1; v
2
1), one with color ck and one with color dk.

For all k, 1 � k � K, and all l, 1 � l � Lk, create the following edges:

� two edges (xkl;3R+1; x
k
l+1;0), one with color ck and one with color dk.

� for all i, 0 � i � 3R, an edge (xkl;i; x
k
l;i+1) with color ck.

� for all r, 0 � r � R�1, an edge (xkl;3r; x
l
l;3r+1) with color e1;k, an edge (xkl;3r+1; x

l
l;3r+2)

with color e2;k, and an edge (xkl;3r+2; x
l
l;3r+3) with color e0;k.

� an edge (xkl;3R; x
k
l;3R+1) with color e1;k.

� Suppose �i is the l'th character of string sk, i.e., skl = �i. Then, for all r 6= i, and for
all k0 6= k, create an edge (xkl;3r+1; x

k
l;3r+2) with color fk0;k. For all k

0 6= k, create an
edge (xl3i+1; x

k
3i+2) with color fk;k0.

Let G = (V;E) be the resulting graph, and let cG : E ! C be the resulting coloring of
the edges of G.

Claim 8.1 G with coloring cG has colored cutwidth 1 if and only if s1; : : : ; sK have a
common subsequence of length M .

Proof: ): Suppose f is a linear ordering of G with colored cutwidth 1. Note that no
vertex x can be placed by f between v11 and v12, as any edge adjacent to x would cause a
color con
ict with one of the edges between v11 and v

1
2. Furthermore, for no edge (v; w) 2 E,

can it be the case that v is placed to the left of v11 and w is placed right of v11, as this
also causes a color con
ict. A similar argument is valid for v12, and for the other `anchor'

12



vertices v21 and v
2
2 . It follows that all vertices must be placed between f(v12) and f(v

2
1). So,

w.l.o.g., we may assume that for all x 62 A, f(v11) < f(v12) < f(x) < f(v21) < f(v22).

Note that every vertex x 2 V � A lies on a path from v12 to v21 with all edges of this
path of the same color c 2 fc0; c1; : : : ; cKg. If v

1
2; y1; y2; : : : ; yp; v

2
1 is such a path, we must

have that f(v12) < f(y1) < f(y2) < � � � < f(yp) < f(v21), otherwise we have a color con
ict.
It follows that we have for all m, 1 � m �M , i; i0, 0 � i < i0 � 3R, f(wm

i ) < f(wm
i0 ), and

that for all m;m0, 1 � m < m0 � M , i; i0, 0 � i; i0 � M , f(wm
i ) < f(wm0

i0 ). Also, for all
k, 1 � k � K, l, 1 � l � Lk, i; i

0, 0 � i < i0 � 3R + 1, f(xkl;i) < f(xkl;i0), and for all k,
1 � k � K, l; l0, 1 � l < l0 � Lk, i; i

0, 0 � i; i0 � 3R + 1, f(xkl;i) < f(xkl0;i0).

Now, look at vertices of the form xkl;0 and xkl;3R+1. As these are adjacent to an edge
with color dk, they cannot be placed between two vertices of the form wm

i , w
m
i+1, so they

must be placed in one of the following open intervals:

� (f(v12); f(w
1
0))

� (f(wm
3R); f(w

m+1
0 )) for some m, 1 � m �M .

� (f(wM
3R); f(v

2
1)).

Moreover, all vertices xk1;0 must be placed in the �rst of these intervals, and all vertices
xkLk ;3R+1 must be placed in the last of these intervals. Also, for all l, 1 � l < Lk, the two
vertices xkl;3R+1 and xkl+1;0 must belong to the same interval.

Write, for all k, 1 � k � K, and all m, 1 � m �M ,

g(k;m) = maxfl j 1 � l �M; f(xkl;0) < f(wm
0 )g

Consider a �xed k, 1 � k � K. As f(xk1;0) < f(w1
0), we have that all g(k;m) � 1.

Note that for each i, 1 � i � 3R� 2, m, 1 � m �M , there must be at least one vertex of
the form xkl;j with f(wm

i ) < f(xkl;j) < f(wm
i+1). If not, then there is an edge (between two

vertices in the kth choice component) with color dk, e0;k, e1;k, or e2;k, that crosses both
wm
i and wm

i+1. But this gives either at wm
i or at wm

i+1 (or at both) a color con
ict, as for
each of these four colors, at least one of these two vertices is adjacent to an edge of that
color. Also, for such a vertex xkl;j, we have that j 6= 0 and j 6= 3R + 1. So, we now have
that g(k; 1) < g(k; 2) < � � � < g(k;M).

Consider some �xed k, 1 � k � K, and m, 1 � m � M . For each of the pairs
wm
3i+1, w

m
3i+2, (0 � i � R � 1) there must be at least one vertex xkg(k;m);j with f(wm

3i+1) <

f(xkg(k;m);j) < f(wm
3i+2). As between w

m
3i+1 and w

m
3i+2 there is an edge with color e1;k, x

k
g(k;m);j

may not be adjacent to an edge with color e1;k, so j must be of the form j = 3j 0+2. As we
have R intervals (f(wm

3i+1); f(w
m
3i+2)), and R vertices of the form xkg(k;m);3j0+2, it follows that

for all i, 0 � i � R� 1, f(wm
3i+1) < f(xkg(k;m);3i+2) < f(wm

3i+2). With a similar argument it

follows that f(wm
3i+2) < f(xkg(k;m);3i+3).

So, now for all k; k0, 1 � k; k0 � K, m, 1 � m � M , we have that the open in-
tervals (f(xkg(k;m);3i+1); f(x

l
g(k;m);3i+2)) and (f(xk

0

g(k0;m);3i+1); f(x
k0

g(k0;m);3i+2)) overlap. Sup-

pose that skg(k;m) = �i 6= sk
0

g(k0;m) = �i0 . Now, edges (xkg(k;m);3i+1; x
l
g(k;m);3i+2) and

(xk
0

g(k0;m);3i+1; x
k0

g(k0;m);3i+2) exist with color fk;k0. This gives a color con
ict, contradiction. It
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follows that all character sequences skg(k;1)s
k
g(k;2) � � � s

k
g(k;m) are subsequences of s

k of length
m, and that all these sequences are equal.

(: Now suppose s1; : : : ; dK have a common subsequence of length M . Let g :
f1; : : : ; Kg � f1; : : : ;Mg ! N be a function, such that for all k, 1 � k � K, m;m0,
1 � m < m0 � M : 1 � g(k;m) < g(k;m0) � Lk, and that all subsequences
skg(k;1)s

k
g(k;2) � � � s

k
g(k;m) are equal. We denote, for all k, 1 � k � K, g(k; 0) = 0. The

following procedure produces a linear ordering f of G with colored cutwidth 1.

f(v11) := 1;
f(v12) := 2;
p := 3;
for m := 1 to M do ( Number the vertices of the form xkl;i for

g(k;m� 1) < l � g(k;m), and the vertices of the
form wm

i .)
( First, number the vertices of the form xkl;i for
g(k;m� 1) < l < g(k;m) )

for k := 1 to K

do for l := g(k;m� 1) + 1 to g(k;m)� 1
do( If g(k;m) = g(k;m� 1) + 1, then nothing

happens in this step.)
for i := 0 to 3R + 1
do f(xkl;i) := p; p := p+ 1;
enddo;

enddo;
enddo;
(Number the vertices of the form xkg(k;m);i or w

m
i .)

for i := 0 to 3R
do for k := 1 to K

do f(xkg(k;m);i) := p; p := p+ 1;

enddo;
f(wm

i ) := p; p := p+ 1;
enddo;
for k := 1 to K

do f(xkg(k;m);3R+1) := p; p := p+ 1;

enddo;
enddo;
( Number the vertices of the form xkl;i for l > g(k;M).)
for k := 1 to K do for l := g(k;M) + 1 to Lk

do for i := 0 to 3R + 1
do f(xkl;i) := p; p := p+ 1;
enddo;

enddo;
enddo;
f(v21) := p; p := p+ 1;
f(v22) := p;

14



It is an easy, but tedious veri�cation that the function f , yielded by this procedure,
indeed is a linear ordering of G with colored cutwidth 1. We only will discuss one case
here, and omit the other cases.

Suppose there is a color con
ict between a pair of edges (xkl;3r+1; x
k
l;3r+2) and

(xk
0

l0;3r0+1; x
k0

l0;3r0+2) with color fk;k0. By construction of the function f , l must be of the
form l = g(k;m) for some m, 1 � m � M , and l0 = g(k0; m). Also, we must have
that r = r0. Existence of the edge (xkg(k;m);3r+1; x

k
g(k;m);3r+2) with color fk;k0 shows that

skg(k;m) = �r. Existence of the edge (xk
0

g(k0;m);3r+1; x
k
k0(k0;m);3r+2) with color fk;k0 shows that

sk
0

g(k0;m) 6= �r. This is a contradiction with the assumption that we have chosen equal
subsequences. This ends the proof of Claim 8.1.

From Claim 8.1 and the W [t]-Hardness, for all t 2 Z+, of the LCS-1 problem, part (i)
of the theorem follows.

(i) , (ii) Let G = (V;E) be a graph, with an edge coloring cG : E ! C. We de�ne
a bipartite graph H = (V [ E; F ) with F = f(v; (v; w)) j v 2 V; (v; w) 2 Eg. (H is
obtained from G by subdividing every edge.) Furthermore, using a new color a 62 C, we
de�ne a vertex coloring cH : V [E ! C [fag of H as follows: for all v 2 V , color v with a
(cH(v) = a) and for all `edge-vertices' e 2 E, color e with its old color in G (cH(e) = cG(e)).

The following claim shows that this transformation from (G; cG) to (H; cH) is in fact a
reduction from CC � 1 to ICG, hence proving part (ii) of the theorem.

Claim 8.2 Let G and H be constructed as above. G has colored cutwidth 1 if and only if
H is a subgraph of a properly colored interval graph.

Proof: ): Let f : V ! f1; : : : ; jV jg be a linear ordering of G with colored cutwidth 1.
Assign to each v 2 V the interval [f(v) � 1

3
; f(v) + 1

3
]. To every edge (v; w) 2 E, assign

the interval [min(f(v); f(w))� 1
6
;max(f(v); f(w)) + 1

6
]. One can easily verify that these

intervals form an interval model of a properly colored interval graph that contains H as a
subgraph; that is, intervals of adjacent vertices intersect and no two intervals of vertices
with the same color intersect. The latter condition follows from the condition that the
colored cutwidth of f is 1.

(: Suppose that we have for every vertex z 2 V [E an interval Iz = [Lz; Rz] such that
intervals of adjacent vertices intersect and intervals of vertices with the same value do not
intersect. As all vertices v 2 V have the same color, all intervals Iv are disjoint. Number
the vertices v 2 V in the following manner: take a bijective function f : V ! f1; : : : ; jV jg
such that, for all v; w 2 V , Lv < Lw , f(v) < f(w). Now f(v) < f(w) ) Lv � Rv <

Lw � Rw. We claim that f is a linear ordering of G with colored cutwidth 1. Consider
edges (v; w) 2 E and (x; y) 2 E, f(v) < f(w), f(x) < f(y). Note that [Rv; Lw] � I(v;w)
and [Rx; Ly] � I(x;y). So, [Rv; Lw] \ [Rx; Ly] = ;. When analyzing the di�erent cases with
respect to the order and possible equalness of f(v); f(w); f(x); f(y), one easily can verify
that no color con
ict between (v; w) and (x; y) is possible.

(i) , (ii) , (iii) Let s1; : : : ; sK;M be an instance of LCS-1, let G = (V;E) with
coloring cG : E ! C be the edge colored graph constructed as in part (i) of this proof,
and let H = (V [ E; F ) with vertex coloring cH : V [ E ! C [ fag be the vertex colored
graph constructed from G as in part (ii). The following now holds:
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Claim 8.3 Let H be constructed as above. H is a subgraph of a properly colored interval
graph if and only if H is a subgraph of a properly colored chordal graph.

Proof:

): Trivial.

(: Suppose H is a subgraph of a properly colored triangulated graph H 0. There exists
a tree-decomposition (fXi j i 2 Ig; T = (I;F)) of H 0, such that for all i 2 I, Xi is a clique
in H 0 and hence no two vertices in Xi have the same color.

Note that the edges between v11 and v12 in G form in H with v11 and v12 a complete
bipartite subgraph. By Lemma 3, we know that either there exists an i0 2 I with v11; v

1
2 2

Xi0 or there exists an i0 2 I such that v11 2 Xi0 and all edges (v11 ; v
1
2) belong to Xi0 . The

former cannot be the case as v11 and v12 have the same color hence we may assume the
latter. There cannot belong any other vertices included in Xi0 and v11 and its adjacent
edges together have all possible colors. Similarly, there exists a node i1 such that Xi1

contains precisely v22 and all edges (v21; v
2
2). We may suppose that i0 and i1 are leaves of

T , as neither set Xi0 or Xi1 is a separator of H.

Let I 0 be the set of all nodes i 2 I that are on the path from i0 to i1 in T (i0, i1
inclusive).

We claim that for all v 2 V there exists an i 2 I 0 with v 2 Xi. Suppose the contrary.
Note that v is on a path in G from v11 to v

2
2 with all edges of the same color, say c�. This

path corresponds to a path Y in H from v11 to v
2
2 containing v where vertices are alternately

colored c� and a. Let Y = y0; y1; : : : ; yq where y0 = v11, yq = v22 and suppose v = yj. Let
v 2 Xi2 and let i3 be the �rst node on the path from i2 to i0. Xi0 must contain a vertex yj1
with j1 < j and a vertex yj2 with j2 > j (by Lemma 2). Now the subpath of Y between
yj1 and yj2 forms a cycle with the edge (yj1; yj2) in H

0. Therefore, H 0 contains a cycle with
only two colors used for the vertices on the cycle; a contradiction by Lemma 5. Hence, for
all v 2 V , there exists an i 2 I with v 2 Xi.

We now claim that, for all (v; w) 2 E, there exists an i 2 I 0 with v; (v; w) 2 Xi. For
all z 2 V [ E, let Iz = fi 2 I j z 2 Xig. There exist nodes i4 2 Iv \ I(v;w), i5 2 Iw \ I(v;w).
Let i6 be the �rst node in I 0 on the path from i4 to i5. Since T is a tree, Iv \ Iw = ;,
Iv \ Iw 6= ;, and Iw \ I

0 6= ;, i6 must exist. We must have that (v; w) 2 Xi6 , (by de�nition
of a tree-decomposition) and v 2 Xi6 as otherwise, for all i 2 I 0, v 62 Xi.

We now can conclude that (fXi j i 2 I 0g; T [I 0]) is a path-decomposition of H, for which
for all i 2 I 0 it is true that all vertices in Xi have di�erent colors. So H is a subgraph of a
properly colored interval graph.

The preceding claim gives us a transformation from LCS-1 to TCG and part (iii) of
the theorem follows.

Corollary 9 The following problems are NP -Complete: CC-1, ICG, TCG.

Proof: Membership in NP is trivial. Note that the reduction used in Theorem 8 is many:1.
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Corollary 10 For every class of graphs G such that every graph in G is chordal and every
interval graph belongs to G, the following problem is W [t]-Hard for all t 2 Z+ and its
unparameterized version is NP-Hard:

Instance: Graph G = (V;E), coloring c : V ! C.
Parameter: jCj = k.
Question: Does there exist a graph H 2 G, that contains G as a subgraph and

is properly colored?

Proof: Note that in Claim 8.3 the statements are also equivalent to the following state-
ment:

H is a subgraph of a properly colored graph H 0 2 G.

Therefore the same reduction from LCS-1 can be used.

Corollary 11 The following are W [t]-Hard for all t 2 Z+ and NP -Complete:
(i) DirectedCC-1, (ii) DirectedCC-1 for graphs with only one vertex with
outdegree 0 and (iii) ModifiedCC-1.

The proofs of these consist of easy modi�cations of the above arguments and are omit-
ted.

The version of Directed CC-1 with only one vertex with outdegree 0 will be used in
a subsequent proof for the parameterized hardness of FRA.

4.2 Hardness for Feasible Register Assignment

Theorem 12 Feasible Register Assignment is W [t]-Complete for all t 2 Z+.

Proof: We reduce from DirectedCC-1 with only one vertex of degree 0. By
Corollary 11, the W [t]-Hardness for all t 2 Z+ of FRA follows.

Let G = (V;E) be a directed acyclic graph with z the unique node in G with outdegree
0 and let cG : V ! C be an edge coloring of G where C = f1; 2; : : : ; kg. Our argument is
similar to that used for ICG.

Let H = (V [ E; F ) be the directed, acyclic graph de�ned by F = f(v; (v; w)) j v 2
V; (v; w) 2 Eg [ f((v; w); w) j w 2 V; (v; w) 2 Eg; that is, H is obtained by subdividing
every edge of G whilst retaining the same directions for edges. Note that H is a directed
acyclic graph. We de�ne a register assignment r (or, equivalently, a coloring) of the vertices
of H as follows: 8v 2 V : r(v) = R0; 8e 2 E : r(e) = RcG(e).

Claim 12.1 HR with register assignment r is a \yes"-instance to the FRA problem if
and only if the directed colored cutwidth of G with coloring cG is 1.
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Proof: (: Let f , S0; : : : ; SjV j+jEj be a solution to the FRA problem for HR and r. Note
that z is the unique node in H with indegree 0, and hence f(z) = jV j+ jEj. Let g be the
linear ordering of G, such that for all v; w 2 V : f(v) < f(w) , g(v) < g(w). As f is a
topological order of H = (HR)R, we have that g is a topological order of G. We claim the
directed colored cutwidth of g is 1. Suppose there is a color con
ict between edges (v; w),
(x; y) in E. Let u = g�1(g(v)+ 1), i.e., u is the next vertex in V after v, in both orderings
f and g. v cannot belong to Sf(u), as u and v have the same color. So, if f((w; v)) > f(u),
we get a contradiction. So, f(v) < f((w; v)) < f(u), and (w; v) belongs to all sets Si, with
f(u) � 1 � i � f(w) � 1. A similar analysis holds for the edge (x; y) (or vertex (y; x).
Case analysis now shows there is a set Si with (w; v); (y; x) 2 Si: contradiction, as these
two vertices have the same register assigned to them.

): Let g : V ! E be a topological sort of G with directed colored cutwidth 1.
Take a linear ordering f of HR that ful�ls: 8v; w 2 V : f(v) < f(w) , g(v) < g(w),
and 8v 2 V; (v; w) 2 E : f(v) < f((w; v)) < f(g�1(g(v) + 1)), i.e., all vertices (w; v)
representing a reversed edge (v; w), are placed after v in the ordering f , but before the
next vertex from G. f is a topological order of HR.

Let S 0
0; : : : ; S

0
jV j+jEj be de�ned as in Lemma 7. We must verify that for all S 0

i all vertices
have a di�erent register assigned to them. We cannot have two vertices with register R0 in
the same set S 0

i, as these are vertices in V , and all successor of a vertex in V are placed in
the ordering f before the next vertex in V , i.e., before the next vertex that is assigned to
R0. Also, the only vertex with indegree 0 in HR is z, and z belongs only to S 0

jV j+jEj and no
other Si. Suppose now there exist vertices (w; v); (y; x) 2 Si, with R(w;v) = R(y;x). There is
a color con
ict (w.r.t. g) between the edges (v; w), and (x; y): f(v) < f((w; v)) � i < f(w),
and f(x) < f((y; x)) � i < f(y), hence the open intervals (g(v); g(w)) and (g(x); g(y))
intersect. Contradiction. Therefore f must satisfy the conditions of Lemma 7.

This completes the theorem.

4.3 Hardness for Module allocation on graphs with bounded
treewidth

Theorem 13 Module Allocation on graphs of bounded treewidth is W [t]-
Hard, for all t, even when all communication costs are restricted to 0 or 1.

Proof: We reduce from LCS-1. Let s1; : : : ; sK 2 �� and integer M be our instance of
LCS-1. Denote by Li the length of string si. Denote by sij the jth character of string i.

We create a graph G = (V;E) with K �M vertices, as follows:

V = fvi;j j 1 � i �M; 1 � j � Kg

E = f(vi;j; vi0;j0) j (i = i0 ^ j 6= j 0) _ (i0 = i+ 1 ^ j = j 0)g

It is easy to see that the treewidth of G is at most 2K � 1.

We create
PK

i=1 Li processors where each processor corresponds to one character in
each of the strings. We write processor pi;j for the processor that corresponds to the ith
character in string sj.
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We assign costs as follows:

The execution cost for all modules vk;l and processors pi;j is de�ned to be:

e(vk;l; pi;j) = 0

The communication cost between module vk;l and module vk;l0 when assigned to pro-
cessors pi;j and pi0;j0 respectively where i 6= i0 is de�ned to be:

C((vk;l; pi;j); (vk;l0; pi0j0)) =

(
0 if sji = s

j0

i0

1 otherwise

The communication cost between module vk;l and module vk+1;l when assigned to pro-
cessors pi;j and pi0;j0 respectively is de�ned to be:

C((vk;l; pi;j); (vk+1;l; pi0;j0)) =

(
0 if l = j = j 0 and i0 > i

1 otherwise

Claim 13.1 Let M be the instance of the Module Allocation problem constructed
above. Then, there exists a module assignment of total cost 0 if and only if the strings
s1; : : : ; sK have a common subsequence of length M .

Proof: (: Suppose the common subsequence is of the form sifi(1) � s
i
fi(M), fi(1) < fi(2) <

� � � < fi(M), for all i, 1 � i � K. Now assign each module vk;l to processor pf(k);l. One can
verify that this gives cost 0. For instance, for modules vk;l and vk;l0, the communication
cost is 0, as slf(k) and s

l0

f(k0) denote the kth character in the common substring, so are equal.

): Suppose we have a module allocation with cost 0. To get communication costs
between modules vk;l and vk+1;l 0, we must have assigned each module vk;l to a module
vfl(k);l, for some fl(k), 1 � fl(k) � ll. Moreover, we must have fl(k) < fl(k + 1). So, each
sequence slfl(1) � � � s

l
fl(M) forms a subsequence of the string sl.

These subsequences must be equal. The kth character of the ith subsequence is sifi(k).
Take i 6= i0. As the communication cost between vk;i and vk;i0 must be 0, it follows that
sifi(k) = si

0

f
i0
(k).

From the above claim and the W [t]-Hardness, for all t inZ+ of the LCS-1, the result
follows.

Corollary 14 Parametric MA is W [t]-Hard for all t 2 Z+.

Proof: Note that all costs are either 0 or 1 and therefore trivially linear functions of the
parameter � .
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5 Conclusions

In this paper, we have shown hardness for several graph problems on bounded width
graphs. All of the problems consider are NP -Complete and W [t]-Hard for all t 2 Z+.

Recently in [9] it has been shown that ICG is in fact NP -Complete for any �xed k � 4.
For the case of k = 3, they give anO(jVGj

2) algorithm. This provides an interesting contrast
with Triangulating Colored Graphs, which can be solved in time O(jVGj

k+1) for any
�xed k.

For Module Allocation and Parametric Module Allocation, our results
suggest that the algorithms found in [31] and [32] respectively are in some sense optimal.
The algorithm for Module Allocation has running time O(mpk+1) and it appears
unlikely that the factor of k can be removed from the exponent. Likewise, the same
conclusion can be drawn for Parametric Module Allocation although it remains
open whether algorithms without the factor of p in the exponent exist.

Membership in the W hierarchy remains open for all of these problems although it is
noted that the result of [9] implies that ICG is not in any level of the W -hierarchy unless
P = NP .
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