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Abstract

In this paper we propose a general framework to study iterated changes of

belief. Expansions, contractions and revisions are taken as actions which

may be performed by an agent, resulting in a change of its beliefs. The

syntax of the framework is given by a multi-modal language, containing

modalities to reason about the agent's knowledge | representing its non-

defeasible, veridical information | and belief | representing its defeasi-

ble, non-veridical, working information | as well as a modality to reason

about the results of belief-changing actions. The semantics is de�ned us-

ing Kripke-style possible worlds models. The formalisation of single-step

belief changes is proved to be sound and complete with regard to the re-

spective AGM axiomatisations. Iterated changes of belief correspond to

sequences of belief-changing actions. When dealing with sequences of ac-

tions, we allow the result of a belief-changing action to depend on other

factors besides the set of beliefs and the formula that this set is changed

with, thereby adopting a dynamic view on iterated belief change. Sev-

eral desirable properties of iterated belief change are proved to be valid in

our formalisation. Furthermore the validity of various recently proposed

postulates for iterated belief revision is checked.

1. Introduction

The possibility to change currently held beliefs upon acquiring new information
is a typical element of intelligent behaviour. The probably best known and
most prominent formal approach towards belief change is the so called AGM
framework as proposed by Alchourr�on, G�ardenfors and Makinson [1, 5]. In the
AGM framework rationality postulates are proposed for three kinds of belief
changes. The �rst of these is the expansion through which some formula is
added to a set of beliefs regardless of whether the resulting set is consistent.
Through a contraction some formula is retracted from a belief set, and revisions
add some formula to a set of beliefs but in order to maintain consistency of the
resulting belief set it might be necessary to remove some of the old formulae in
the set. Recent research indicates that the AGM framework, which explicitly
deals with single-step belief changes only, is not completely suitable for iterated

1



2

changes of belief. Various modi�cations of, and alternatives to, this framework
have been proposed [2, 3, 4, 10, 14, 16], all aimed at providing an intuitively
acceptable account of iterated belief revision.

The approach that we propose in this paper is a more general one than the
approaches mentioned above. Instead of focusing on iterated belief revisions,
we provide a formalisation of arbitrary sequences of belief changes, which may
consist of expansions, contractions and revisions. Syntactically our system con-
sists of a highly expressive multi-modal language, which combines notions from
epistemic, doxastic and dynamic logic and allows for a concise and intelligible
representation of all kinds of postulates for (iterated) belief change. For the
semantics we employ Kripke-style possible worlds models. To adequately deal
with iterated changes of belief we extend the models that are used for single-
step belief changes. Whereas the original models formalise belief sets, these
extended models correspond to belief systems, consisting of a set of beliefs and
a method for changing the belief set upon execution of belief-changing actions.
The resulting system may be seen as providing a dynamic logic of iterated
belief change, in which an agent continually changes its beliefs by performing
belief-changing actions.

The fragment of our framework that deals with non-iterated, single-step
belief changes, is in spirit similar to the approach proposed by Segerberg [15],
though in e�ect di�erent, the most notable di�erence being the fact that all
AGM postulates are validated in our framework (see x2.1) whereas this is not
the case in Segerberg's. The semantics that we present for the non-iterated
fragment, resembles the spheres semantics proposed by Grove [6] to model be-
lief revision. However, whereas Grove uses the representation of the original
AGM framework, the system that we de�ne allows for a concise formulation of
the AGM postulates in a modal language. Nevertheless, the similarity on the
semantic level makes that our approach towards iterated belief change could
easily be adapted to make the spheres approach suitable to deal with iterated
revision.

Having a well-de�ned semantics to model belief change has the advantage
that it is possible to prove validities | thereby checking postulates instead
of just proposing these | that characterise (iterated) changes of belief. This
possibility of checking and validating postulates is used to investigate various
axiomatisations of iterated belief revision that have been proposed recently
[3, 10, 14].

The rest of the paper is organised as follows. In x2 we look into the basic
framework for single-step belief changes and prove that it is sound and complete
with respect to the AGM axiomatisation. In x3 the formal approach towards
iterated belief change is presented. In x4 we provide some validities that describe
sequences of belief changes, and we look into various other postulates that have
been proposed recently. In x5 we round o�.
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2. Actions that change your mind

The general setting of our framework is that of an agent1, which knows some
formulae, believes other formulae and may change its set of beliefs by performing
special, belief-changing actions. We adopt a Platonic view on knowledge, i.e.
the knowledge of the agent represents the veridical information that it is born
or built with, and that neither grows nor shrinks. The beliefs of the agent
comprise its knowledge and represent its working information. This working
information may grow, sometimes not justi�edly, in which case it should be
possible to retract certain beliefs. Thus beliefs are defeasible and non-veridical.
In representing the agent's knowledge and belief we follow the approach common
in epistemic and doxastic logic [8]: the formula K' denotes the fact that the
agent knows ', and B' that it believes '. As the result of the execution of
belief-changing actions, the agent expands, contracts and revises its beliefs. In
the spirit of the AGM framework, we consider expansions and contractions to
be fundamental, and de�ne revisions in terms of these. Formulae [�]' formalise
that ' is brought about as the result of doing �2.

2.1. Definition. For a denumerable set � of propositional symbols, the lan-
guage L(�) is de�ned to be the smallest superset of � such that

� if '; 2 L; � 2 Ac then :';' ^  ;K';B'; [�]' 2 L

where Ac is the smallest superset of fexpand '; contract ' j ' is purely
propositionalg closed under sequential composition, denoted by ;.

The purely propositional, non-modal, fragment of L(�) is denoted by L0(�).
The constructs _;!;$;> and ? are de�ned in the usual way; M' is de�ned
to be :K:' and revise ' is contract :'; expand '. When the set � of
propositional symbols is understood, which we assume to be the case in the
rest of this paper unless explicitly stated otherwise, we write L and L0 rather
than L(�) and L0(�).

The de�nition of the revise action is a straightforward implementation
of the Levi identity [11], which states that revisions can be de�ned in terms of
contractions and expansions, viz. a revision with some formula ' can be brought
about as a contraction with :' followed by an expansion with ' (see x2.1).

The semantics for L is de�ned using Kripke-style possible worlds models.
These models are universal with regard to knowledge; belief is interpreted using
a subset of the set of worlds, viz. the set of doxastic alternatives.

2.2. Definition. The classM of Kripke models contains all tuples M = hS;Bi
such that

� S � 2� is a non-empty set of possible worlds, or states.
� B � S is the set of doxastic alternatives.

The binary relation j= between a formula ' and a pair M; s consisting of a
model in M and a state s in M is inductively de�ned by:

1Throughout this paper we assume the agent to be neuter.
2Since the framework is such that all actions are both deterministic, i.e. h�i' ! [�]' is

valid, and realizable, i.e. h�i> is valid, it su�ces to consider only formulae of this kind: [�]'
and h�i' are equivalent.



4

M; s j= p ,p 2 s for p 2 �
M; s j= :' ,M; s 6j= '

M; s j= ' ^  ,M; s j= '&M; s j=  

M; s j= K' ,8s0 2 S[M; s0 j= ']
M; s j= B' ,8s0 2 B[M; s0 j= ']
M; s j= [�]' ,r(�;M); s j= '

where r is de�ned by:
r(expand ';M) = hS;B n fs 2 S j M; s j= :'gi
r(contract ';M) = hS;B [ �(:')i
r(�1;�2;M) = r(�2; r(�1;M))

where � is a �xed selection function for M (see De�nition 2.3).

If r(contract ';M) is for all ' 2 L0 de�ned using the selection function � we
call r to be based on �, or �-based. The formula ' is satis�able in the model
M i� M; s j= ' for some s 2 M; ' is satis�able in M i� ' is satis�able in
some M 2 M. The formula ' is valid in the model M, denoted by M j= ', i�
M; s j= ' for all s in M; ' is valid in M, denoted by j= ', i� ' is valid in all
M 2 M. For reasons of convenience we de�ne [[']]M = fs 2 S j M; s j= 'g to
denote the set of states that satisfy '. Whenever the model M is clear from the
context, we drop the subscript and denote [[']]M simply by [[']].

2.3. Definition. Let some model M = hS;Bi be given. A total function � :
L0 ! }(S) is a selection function for M if and only if it meets the following
constraints for all '; 2 L0.

�1: �(') � [[']]
�2: �(') = ; i� B \ [[']] 6= ; or [[']] = ;
�3: if [[']] = [[ ]] then �(') = �( )
�4: �(' _  ) � �(') [ �( )
�5: if �(' _  ) \ [[']] 6= ; then �(') � �(' _  )

2.4. Remark. The de�nition of selection functions as presented above may be
seen as the implementation of a suggestion by Grove [6]. Grove uses a system
of spheres surrounding a belief set to de�ne belief revision. Grove indicates that
with every system of spheres some function can be associated that `selects the
`closest' worlds' ([6], p. 159) in which some formula holds. This selection of
the closest worlds makes that this function is a selection function in the sense
of De�nition 2.3. Since selection functions are not de�ned with the idea of
selecting worlds that are closest according to some criterion (though in e�ect
they do something very similar), it is in fact not easy to construct a system of
spheres when given a selection function. Nevertheless, combining the soundness
theorems of x2.1 with the completeness theorems for the spheres approach en-
sures that it is in principle possible to associate a system of spheres with every
selection function.

Interpreting the K and B operators as in De�nition 2.2 leads to a notion
of knowledge that satis�es an S5 axiomatisation and a notion of belief that
satis�es a K45 axiomatisation. This means in particular that knowledge and
belief are normal modal operators satisfying the axioms of positive and negative
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introspection, and that knowledge is furthermore veridical. Since our formali-
sation of belief-changing actions presupposes the existence of inconsistent belief
sets, our notion of belief does not satisfy the D-axiom :(B' ^ B:') (this in
contrast with the more common approach to belief of Kraus & Lehmann [9]).

The de�nition of r for the expand action is based on the idea that uncer-
tainties of an agent are formalised through its set of doxastic alternatives, and
expansions put an end to uncertainties. The expansion of the beliefs of the
agent with a formula ' may be implemented by removing all states supporting

:' from the set of doxastic alternatives.
The de�nition of r for the contract action is based on the idea that appar-

ent beliefs that an agent has are turned into doubts as the result of a contraction.
This idea can be formalised by implementing a contraction with some formula
' as extending the set of doxastic alternatives such that it encompasses at least
one state not satisfying '. The problem with contractions de�ned in this way is
that it is not straightforward to decide which worlds need to be added, and this
is where selection functions come into play. A selection function picks out `rea-
sonable' states satisfying the negation of the formula that is to be contracted,
i.e. the set of selected states should be such that the resulting contract action
behaves in a reasonable, intuitively acceptably way.

Belief-changing actions are interpreted as model-transformers rather than
the more common state-transitions, which is the usual interpretation for actions
in dynamic logic [7]. The reason for this lies in the fact that belief-changing
actions do not change the state of the world in which the agent resides, but
the doxastic state of the agent, which is formalised through the set of doxastic
alternatives in the model. Therefore a change in the agent's doxastic state is
interpreted as a change in the set of doxastic alternatives, which works out in
a change of the model under consideration.

2.5. Convention. The relation `cpl denotes derivability in classical proposi-
tional logic. The function Th : 2L0 ! 2L0 is the deductive closure operator
associated with `cpl. In the sequel, we let j=cpl denote both validity and seman-
tic entailment in classical propositional logic: for � 2 2�, ' 2 L0 and � � L0,
all of � j=cpl ', � j=cpl � and � j=cpl ' have their usual connotation. The
soundness and completeness properties of classical propositional logic will be
used freely.

The following propositions summarise some general properties that turn out
to be useful in the rest of this paper.

2.6. Proposition. For all �; �1; �2; �3 2 Ac, ' 2 L,  2 L0 and models M
with state s we have:

1. M; s j=  , s j=cpl  

2. M; s j= K', M j= ', M j= K'

3. M; s j= B', M j= B'

4. j= [�]:'$ :[�]'
5. j= [�1;�2]'$ [�1][�2]'
6. j= [(�1;�2);�3]'$ [�1; (�2;�3)]'
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7. j= ([�]('!  ) ^ [�]')! [�] 
8. j= ')j= [�]'

Items two and three imply that whenever the formulaB' is true in a state of
a model, the formulaKB' is valid in the model. Furthermore, wheneverM' is
true in M; s then M j=M' and hence M j= KM'; an analogous result holds for
:B:'. The last two items of Proposition 2.6 express that the box operator [�]
is a normal modal operator, i.e. it satis�es the K-axiom and the rule of necessi-
tation. Hence despite its non-standard, model-transforming interpretation, the
operator [�] still behaves normal. There is however one di�erence between the
interpretation of actions as state-transitions and that as model-transformers.
For the usual interpretation of an action � as a transition between states, it
holds that whenever some formula ' is valid in a model, [�]' is also valid in the
model. This property is in fact obvious, given the fact that execution of such
an action causes only a transition to a state (in which ' holds), and does not
change the model in any way. This property does however not hold for actions
that are interpreted as model-transformers. Consider for example the model
M = hS;Bi such that B = fs; s0g and p 2 s; p 62 s0. Then M j= :(Bp _B:p),
whereas M 6j= [expand p]:(Bp_B:p). The last two items of Proposition 2.6 in-
dicate however, that even though 8M(M j= ') M j= [�]') does not hold when
interpreting actions as model-transformers, 8M(M j= ') ) 8M(M j= [�]')
does.

2.7. Proposition. Let M = hS;Bi be some Kripke model, and let r be �-based

for some selection function � for M. For all ' 2 L0 we have:

r(revise ';M) = hS; (B [ �(')) \ [[']]i

2.1. The AGM framework

In the AGM framework it is investigated how rational changes to the set of
beliefs of an agent should work out. Besides a unique characterisation of ex-
pansions, rationality postulates are proposed that constrain revisions and con-
tractions. These postulates are de�ned in terms of a belief set K � L0 and a
formula ' 2 L0: K

+
' ;K

�
' ;K

�
' denote respectively the expansion, contraction

and revision of K with '.

2.8. Definition. A set � � L0 is an AGM belief set i� � = Th(�), i.e. �
is closed under the derivability operator of classical propositional logic. The
absurd belief set, consisting of all formulae from L0, is denoted by K?.

2.9. Definition. The expansion of an AGM belief set K with a formula ' 2 L0
is de�ned to be the logical closure of K and ', i.e. K+

' = Th(K [ f'g).

2.10. Definition. For K an AGM belief set and '; 2 L0 the following are
the G�ardenfors postulates for belief contraction:

(G�1) K�
' is an AGM belief set.

(G�2) K�
' � K.
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(G�3) If ' 62 K then K�
' = K.

(G�4) If 6`cpl ' then ' 62 K�
' .

(G�5) If ' 2 K then K � (K�
' )

+
' .

(G�6) If `cpl '$  then K�
' = K�

 .

(G�7) K�
' \K

�
 � K�

'^ .

(G�8) If ' 62 K�
'^ then K�

'^ � K�
' .

2.11. Definition. For K an AGM belief set and '; 2 L0 the following are
the G�ardenfors postulates for belief revision:

(G�1) K�
' is an AGM belief set.

(G�2) ' 2 K�
'.

(G�3) K�
' � K+

' .
(G�4) If :' 62 K then K+

' � K�
'.

(G�5) K�
' = K? if and only if `cpl :'.

(G�6) If `cpl '$  then K�
' = K�

 .

(G�7) K�
'^ � (K�

')
+

 .

(G�8) If : 62 K�
', then (K�

')
+

 � K�
'^ .

We call a contraction operator � (revision operator �) an AGM contraction

(AGM revision) i� it satis�es the AGM postulates for contraction (revision).
Given the AGM postulates for revision and contraction, these two operators

turn out to be inter-de�nable, i.e. starting from an AGM revision one can
construct an AGM contraction and vice versa. The Levi-identity K�

' = (K�
:')

+
'

constructs AGM revisions out of AGM contractions and the Harper-identity
K�
' = K \ K�

:' may be used to construct AGM contractions out of AGM
revisions. Whenever a given AGM revision operator � is used to construct
an AGM contraction � via the Harper-identity, the revision operator resulting
from applying the Levi-identity to � is exactly the revision operator � that
one started with. Also when de�ning a contraction operator by applying the
Harper-identity to an AGM revision � that resulted from an AGM contraction
� via the Harper identity, the two contraction operators are identical. The
complete inter-de�nability of revisions and contractions was already used in
the de�nition of r for the revise action, and will also be used in one of the
completeness proofs presented below.

The concept of AGM belief sets is easily incorporated in our modal frame-
work.

2.12. Definition. For a Kripke model M, the belief set associated with M,
notation B(M), is the set f' 2 L0 j M j= B'g.

2.13. Proposition. For any model M, the set B(M) is an AGM belief set.

Proof: It is easily seen that under the de�nition of j= as presented in 2.2, B(M)
is indeed deductively closed, for any M 2M. 2

Since model-based belief sets are AGM belief sets, from now on we will use
these notions interchangeably.
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To achieve a complete correspondence between belief-changing actions in
our framework and AGM belief changes, a restriction to so called full models is
necessary. These are models in which every possible valuation on propositional
symbols occurs as a state.

2.14. Definition. A Kripke model M is a full model if and only if S = 2�.

It is easily seen that in a full model M a formula ' 2 L0 is known i� the
formula is a theorem in classical propositional logic. For ' is known in M i� it
holds at all states in M, i.e. ' is satis�ed by every valuation on propositional
symbols and hence ' is a theorem of classical propositional logic.

2.15. Proposition. For every AGM belief set K, a unique full model M exists
such that K = B(M). This model, denoted by MK , is referred to as the K-

model.

Proof: Let K be some AGM belief set, i.e. K is a deductively closed set of
propositional formulae. De�ne the model MK = hS;Bi where S = 2� and
B = fs 2 S j s j=cpl Kg, i.e. the doxastic alternatives in MK are exactly those
propositional valuations that satisfy K. Then we have for all ' 2 L0:

' 2 K
, K j=cpl ' (since K is deductively closed)
, 8s 2 S[s j=cpl K ) s j=cpl ']
, 8s 2 B[s j=cpl ']
, 8s 2 B[M; s j= ']
, M j= B'

, ' 2 B(M)

and hence K = B(M). 2

Note that the full model MK depends on the set � of propositional symbols:
for di�erent sets of propositional symbols, di�erentK-models result. For a �xed
set � however, the model MK is unique.

For given K-models, our belief-changing actions behave exactly as the ra-
tional changes of belief in the AGM framework.

2.16. Theorem. For any belief set K and ' 2 L0, K
+
' = B(r(expand ';MK)),

where r is based on an arbitrary selection function � for MK.

Proof: Let K be a belief set, let ' 2 L0 and let r be based on an arbitrary
selection function � for M. By De�nition 2.9 we have that K+

' = Th(K [f'g).
We show that Th(K [ f'g) equals B(r(expand ';MK)) by showing that the
two sets are contained in each other. Let M0 = hS;B0i denote r(expand ';MK).

`�' By de�nition of r for expand ' it follows that B0 = B\ [[']], hence ' holds
at all states from B0, and thus ' 2 B(M0). Now let  be an element of K.
By Proposition 2.15 it follows that MK j= B , i.e.  holds at all elements
of B, and hence, since  2 L0,  holds at all elements of B0. Then  2
B(M0), and since  is arbitrary, K � B(M0). Since B(M0) is deductively
closed by Proposition 2.13, it follows that Th(K [ f'g) � B(M0).
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`�' Let  2 B(M0), i.e. M0 j= B . Since M0 = r(expand ';M) it follows that
B0 = B \ [[']]. Hence MK ; s j=  for all s 2 B such that MK ; s j= ', and
thus MK ; s j= (' !  ) for all s 2 B. Then MK j= B(' !  ), and by
Proposition 2.15, '!  2 K. But then  2 Th(K [ f'g). 2

2.17. Theorem (Soundness and completeness for contractions).

� Let M be a full model, let � be a selection function for M, and let K =
B(M). If for any ' 2 L0, K

�
' is de�ned to be B(r(contract ';M)) for r

based on �, then the resulting contraction function is an AGM contraction.

� For any belief set K and AGM contraction �, some selection function �

for MK exists, such that for all ' 2 L0, K
�
' = B(r(contract ';MK)),

where r is based on �.

Proof: The soundness part is shown elsewhere [12], and not repeated here.
With respect to the completeness part, assume that K is some AGM belief
set, and let � be an AGM contraction. Let furthermore MK = hS;Bi be the
K-model. First we need some additional de�nitions.

2.18. Definition. For a given belief set K, K ? ' is the set of all maximal
subsets of K not entailing ', and ? (K) is

S
'2K;6`cpl'

K ? '.

Following an observation by Grove [6], we state without proof that for a
given belief set K a bijection f exists between the elements of S nB in MK and
? (K), such that K 0 2 K ? ' = f 2 L0 j 8s 2 B [ f(K 0)[s j=cpl  ]g.

Alchourr�on, G�ardenfors and Makinson [1] show that any contraction func-
tion � can be de�ned by K�

' = \fK 0 2 K ? ' j K 0 � K 00, all K 00 2 K ? 'g,
where � is a transitive and connected relation on ? (K) such that K ? ' is
smooth for all ' 2 L0 with 6`cpl '

3. Now let � be the relation on ? (K) that
de�nes �. Based on � we de�ne the relation � on S nB by: s � s0 , f�1(s) �
f�1(s0). It is obvious that � inherits the properties of �. In particular, �
is transitive and connected on S n B. Furthermore, for all  2 L0 such that
B \ [[ ]] = ; it holds that [[ ]] is smooth whenever this set is non-empty. Now
using the relation � on S n B we de�ne the function & : L0 � }(S) by:

&( ) =

�
fs 2 S j s 2 [[ ]] & s � s0 for all s0 2 [[ ]]g if B \ [[ ]] = ;
; otherwise

2.19. Lemma. The function & as de�ned above is a selection function for MK.

Proof: We show that & meets the demands imposed on selection functions as
given in De�nition 2.3. Let  ; # 2 L0 be arbitrary.

�1. This demand is obviously met since &( ) is either empty or yields the
minimal elements of [[ ]], and in both cases &( ) � [[ ]].

3Recall that a relation R is transitive on S i� sRs0 and s0Rs00 implies sRs00 and connected
if sRs0 or s0Rs for all s; s0; s00 2 S. A non-empty set S0 � S is smooth i� it contains a minimal
element, i.e. some s 2 S0 exists such that sRs0 for all s0 2 S0.
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�2. The `if' part is obvious: if B\ [[ ]] 6= ;, then &( ) = ; by de�nition, and if
[[ ]] = ; then no minimal elements of [[ ]] exist and hence also in this case
&( ) = ;. The `only if' part trivially holds whenever B \ [[ ]] 6= ;. Hence
assume that B \ [[ ]] = ; and &( ) = ;. In this case the set of minimal
elements of [[ ]] is empty. But since [[ ]] is smooth whenever B \ [[ ]] = ;
and [[ ]] 6= ;, it follows that [[ ]] = ;, which was to be shown.

�3. If [[ ]] = [[#]], then B \ [[ ]] = ; i� B \ [[#]] = ;. Furthermore, the set of
minimal elements of [[ ]] is equal to that of [[#]], which su�ces to conclude
that &( ) = &(#), and thus demand �3 is met.

�4. If B \ [[ _ #]] 6= ; then &( _ #) = ; and hence obviously &( _ #) �
&( ) [ &(#). Hence let B \ [[ _ #]] = ; and let s 2 &( _ #), i.e. s
is a minimal element of the set [[ _ #]]. Then also B \ [[ ]] = ; and
B\ [[#]] = ;, and furthermore either s 2 [[ ]] or s 2 [[#]], by de�nition of j=
for disjunctions. Assume that s 2 [[ ]]; the case for s 2 [[#]] is completely
analogous. Then s is a minimal element of [[ ]]. For assume not: then
there is some s0 2 [[ ]] such that s 6� s0. But then s0 2 [[ _ #]] and s 6� s0

contradicts the minimality of s in [[ _#]]. Hence s is minimal in [[ ]], and
thus s 2 &( ).

�5. Assume that &( _#)\ [[ ]] 6= ;, i.e. let s 2 &( _#)\ [[ ]]. Assume towards
a contradiction that &( ) 6� &( _ #), i.e. some s0 2 &( ) exists such that
s0 62 &( _ #). Now B\ [[ _ #]] = ; and hence also B\ [[ ]] = ;. If s0 � s,
then from the fact that s is minimal in [[ _ #]] it follows by transitivity
of � that s0 is minimal in [[ _#]], which contradicts s0 62 &( _#). Hence
s0 6� s. But then s is an element of [[ ]] such that s0 6� s. Hence not for
all t 2 [[ ]], s0 � t, which contradicts s0 2 &( ). Hence &( ) � &( _ #),
which su�ces to conclude that demand �5 is met.

Since & meets the demands �1 to �5, we conclude that & is indeed a selection
function. 2

Now let ' 2 L0 be some arbitrary formula. If either ' 62 K or `cpl ', then
K�
' = K. In this case either B \ [[:']] 6= ; or [[:']] = ;, which implies that

&(:') = ;. Thus r(contract ';MK) = MK , and B(r(contract ';MK) =
K = K�

' , for r based on &. So let ' 2 K such that 6`cpl '. Then we have:

K�
' = \fK 0 2 K ? ' j K 0 � K 00 for all K 00 2 K ? 'g
= \ff 2 L0 j 8s 2 B [ f(K 0)[s j=cpl  ]g j f(K

0) 2 [[:']];
f(K 0) � s0 for all s0 2 [[:']]g

= \ff 2 L0 j 8s 2 B [ f(K 0)[s j=cpl  ]g j f(K
0) 2 &(:')g

= f 2 L0 j 8s 2 B [ &(:')[MK ; s j=  ]g
= f 2 L0 j r(contract ';MK) j= B g
= B(r(contract ';MK)) 2

2.20. Theorem (Soundness and completeness for revisions).

� Let M be a full model, let � be a selection function for M, and let K =
B(M). If for any ' 2 L0, K

�
' is de�ned to be B(r(revise ';M)) for r

based on �, then the resulting revision function is an AGM revision.
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� For any belief set K and AGM revision �, some selection function � for
MK exists, such that for all ' 2 L0, K

�
' = B(r(revise ';MK)), where r

is based on �.

Proof: The soundness part is shown elsewhere [12], and not repeated here.
With respect to the completeness part, assume that K is some AGM belief set,
and let � be an AGM contraction, i.e. � validates the AGM postulates. Let fur-
thermore MK = hS;Bi be the K-model. Let the AGM contraction � be de�ned
from � through the Harper-identity. In this case � is exactly the AGM revision
that results from applying the Levi-identity to the AGM contraction� [5]. From
Theorem 2.20 it follows that some selection function � for MK exists, such that
for all ' 2 L0, K

�
' = B(r(contract ';MK)) for r based on �. Now let � be

such a selection function. We claim that for all ' 2 L0, K
�
' = r(revise ';MK)

for r based on �. To see this, let M0 be r(contract :';MK), for some ' 2 L0
arbitrary. Then r(revise ';MK) = r(expand ';M0). From Theorem 2.16 it
follows that B(r(expand ';M0)) = (B(M0))+' . Now B(M0) equals K�

:', and
hence B(r(revise ';MK)) = B(r(expand ';M0)) = (K�

:')
+
' = K�

', which was
to be shown. 2

Theorems 2.16 to 2.20 indicate that our system may be viewed as an agent-
oriented, modal implementation of AGM belief changes, in which dynamic, dox-
astic and epistemic logic are combined. The expressiveness of our framework
allows for a concise representation of the AGM postulates as validities with
respect toM. The proofs of the following propositions are not given here; they
can be found elsewhere [12].

2.21. Proposition. For all '; 2 L0 we have:

� j= [expand ']B $ B('!  )

2.22. Proposition. For all ',  and # 2 L0 we have:

1. j= ([contract ']B( ! #) ^ [contract ']B )! [contract ']B#
2. j= [contract ']B#! B#

3. j= :B'! ([contract ']B#$ B#)
4. j= :K'! [contract ']:B'
5. j= B'! (B#! [contract '; expand ']B#)
6. j= K('$  )! ([contract ']B#$ [contract  ]B#)
7. j= ([contract ']B# ^ [contract  ]B#)!

[contract (' ^  )]B#
8. j= [contract (' ^  )]:B'!

([contract (' ^  )]B#! [contract ']B#)

2.23. Proposition. For all '; ; # 2 L0 we have:

1. j= ([revise ']B( ! #) ^ [revise ']B )! [revise ']B#
2. j= [revise ']B'
3. j= [revise ']B#! [expand ']B#
4. j= :B:'! ([expand ']B#! [revise ']B#)
5. j= [revise ']B? $ K:'
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6. j= K('$  )! ([revise ']B#$ [revise  ]B#)
7. j= [revise (' ^  )]B#! [revise '; expand  ]B#
8. j= :[revise ']B: !

([revise '; expand  ]B#! [revise (' ^  )]B#)

An important observation concerning the AGM postulates is the almost
complete absence of postulates guiding iterated changes of belief. The sequences
of belief changes that do occur are all such that the �nal change in the sequence
is the most straightforward kind of belief change, viz. an expansion. The inves-
tigation of more general iterated belief changes is the subject of the following
sections.

3. Actions that keep on changing your mind

The AGM framework | and hence also the dynamic framework presented in
the previous section | is a reasonable one when modelling single-step belief
changes. However, for non-trivial sequences of belief changes, the AGM frame-
work is on the one hand not restrictive enough, and on the other hand too
restrictive. The problem of the AGM framework being not restrictive enough is
tackled by a number of proposed additional postulates [3, 4, 14]. With regard
to the AGM framework being too restrictive we would like to focus on what we
call the postulate of rehabilitation:

' 62 K ) (K+
' )

�
' = K

The postulate of rehabilitation states that an expansion with some formula can
always be undone by a contraction with the same formula. In our opinion this
postulate is a reasonable and acceptable one, especially from an agent-oriented
point of view. Consider for instance the situation of an agent that adopts
some formula by default (cf. [13]). Upon recognising a possible inconsistency
caused by this adoption, the agent could decide to retract the formula again,
thereby expecting to end up with its original belief set. Despite its apparent
acceptability this postulate is explicitly not present in the AGM framework. As
G�ardenfors states it:

`One may wonder what happens if K is �rst expanded by A and
then contracted with respect to A. Do we always get K back? This
cannot be true in general, [. . . ] because if :A 2 K, then K+

A = K?,
and ifH is another belief set such that :A 2 H, then alsoH+

A = K?,
and hence (K+

A )
�
A = (H+

A )
�
A. It follows that (K+

A )
�
A cannot always

be identical with K.' ([5], pp. 62{63)

The crux of the argument given by G�ardenfors is the conclusion of (K+

A )
�
A =

(H+

A )
�
A from K+

A = H+

A . The formalisation that we present, in which the
postulate of rehabilitation is validated, attacks the argument of G�ardenfors
exactly on this conclusion. We allow the results of belief changes to depend not
only on the belief set under consideration, but also on the way this belief set
originated. And for two (seemingly) identical belief sets K+

A and H+

A it may be
the case that their origin is so much di�erent that retracting A from these sets
leads to di�erent results.
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3.1. Belief systems

To formalise iterated changes of belief in our framework, we introduce the notion
of belief systems. Intuitively, a belief system consists of a set of beliefs of the
agent and a method describing how the belief set changes under the execution
of belief-changing actions. As such, these belief systems are highly analogous to
the knowledge systems of Williams [16], which consist of a knowledge set and
a preference relation which determines how changes of the knowledge set work
out. Formally, belief systems are triples hS;B; �i, consisting of a set S of states,
a set B of doxastic alternatives and a function � which is a selection function
for hS;Bi in the sense of De�nition 2.3. The function � provides a method
to modify the belief set determined by the set B of doxastic alternatives upon
execution of belief-changing actions4. The combination of B and � represents a
more structured kind of doxastic state of the agent as compared to plain belief
sets. Execution of belief-changing actions a�ects the whole of the doxastic
state of the agent, i.e. in general both the set B of doxastic alternatives and
the function � are modi�ed. The result of executing a belief-changing action
is a new belief system, of which the set of doxastic alternatives is modi�ed as
in x2, and whose selection function provides a method to change the (new) set
of beliefs determined by the modi�ed set of doxastic alternatives. As such, our
approach is a typical dynamic one, according to the classi�cation proposed by
Freund & Lehmann [4]. In dynamic approaches to iterated belief change, as
for instance proposed by Boutilier [2] in the setting of a conditional logic, and
by Williams [16] in a probabilistic setting, the agent starts with a belief set K
and a method of changing K. A change of belief does not only modify K but
also a�ects the method of changing the belief set such that the new method
is applicable to the new belief set. In static approaches the e�ect of a change
of a belief set K with some formula ' depends on K and ' only, and is not
liable to change. Although a static approach to belief change may seem to
be more in line with the AGM framework, the major advantage of dynamic
approaches is their 
exibility. Freund & Lehmann [4, 10] show that even a
fairly weak set of postulates for iterated belief revision inevitably trivialises
the revision operator in the static case, whereas from a dynamic point of view
iterated changes of belief may satisfy all kind of intuitively acceptable properties
without trivialising (see x4).

In the following de�nitions we propose a formalisation of belief systems,
and of belief-changing actions, execution of which modi�es belief systems rather
than belief sets.

3.1. Definition. The classM? consists of all tuples M = hS;B; �i where S and
B are as in De�nition 2.2 and � is a selection function for hS;Bi in the sense of
De�nition 2.3.

4Note that belief systems are both very expressive and very 
exible. Not only may one
formalise belief sets through the set B of doxastic alternatives and a method to change this
belief set through the function �, but by restricting the set S of states it is furthermore possible
to formalise integrity constraints, which are �xed, unassailable demands that should be met
throughout all changes of belief.
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3.2. Definition. The binary relation j=? between a formula ' and a pair M; s
consisting of a model M 2M? and a state s in M, is de�ned almost exactly as
the relation j= in De�nition 2.2, the only di�erence being the replacement of
the function r by r?, which is for sequential compositions de�ned as r and for
expansions and contractions as follows:

r?(expand ';M) = hS;B0; �0i where B0 = B n [[:']] and
�0(#) = �(#) if B \ [[#]] = ; or B0 \ [[#]] 6= ;
�0(#) = B \ [[#]] otherwise

r?(contract ';M) = hS;B0; �0i where B0 = B [ �(:') and
�0(#) = �(#) if B \ [[#]] 6= ; or B0 \ [[#]] = ;
�0(#) = ; otherwise

Validity on and satis�ability in a model M 2 M? and the class M? is de�ned
as for M.

3.3. Remark. Note that in the class M? we no longer have a unique K-model
for a given belief set K: although the set B of doxastic alternatives is uniquely
determined byK, a whole range of selection functions may be used to constitute
a K-model in M?.

3.4. Proposition. For all M = hS;B; �i 2 M? and for all ' 2 L0 we have:

r?(revise ';M) = hS;B0; �0i where B0 = (B [ �(')) \ [[']] and
�0(#) = B \ [[#]] if B \ [[#]] 6= ; and B0 \ [[#]] = ;
�0(#) = �(#) if B \ [[#]] = ; and B0 \ [[#]] = ;
�0(#) = ; if B0 \ [[#]] 6= ;

Proof: Let M = hS;B; �i 2 M? and ' 2 L0 be arbitrary. From De�nition 3.2
it follows that

r?(revise ';M)
= r?(contract :'; expand ';M)
= r?(expand '; r?(contract :';M))
= r?(expand '; hS;B [ �('); �0i)
= hS; (B [ �(')) \ [[']]; �00i

which leaves to show that �00 is adequately characterised. Let # 2 L0 be arbi-
trary. For reasons of convenience we de�ne:

� M1 = hS;B1; �1i = r?(contract :';M)
� M2 = hS;B2; �2i = r?(expand ';M1) = r?(revise ';M)

We distinguish three cases:

1. B \ [[#]] 6= ; and B2 \ [[#]] = ;. In this case B1 \ [[#]] 6= ;, and thus
�2(#) = B1 \ [[#]] = (B [ �(')) \ [[#]]. Now since B2 \ [[#]] = ; it follows
that �(') \ [[#]] = ;. Hence �2(#) = B \ [[#]], which was to be shown.

2. B \ [[#]] = ; and B2 \ [[#]] = ;. In this case also B1 \ [[#]] = ;. Hence
�2(#) = �1(#) and �1(#) = �(#). Thus �2(#) = �(#) which was to be
shown.
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3. B2 \ [[#]] 6= ;. In this case �2(#) = �1(#). Also B1 \ [[#]] 6= ;. Now
if B \ [[#]] 6= ;, then �1(#) = �(#), and since � is a selection function,
�(#) = ;. If B \ [[#]] = ;, �1(#) = ;, which su�ces to conclude this case.

2

3.5. Remark. Since the function r? is for a given model hS;B; �i based on
the selection function �, and is, as far as the set of doxastic alternatives is
concerned, de�ned as the function r, the soundness and completeness results
presented in x2.1 transfer directly to the system presented in this section. That
is, the expand, contract and revise actions when de�ned as in 3.2 satisfy the
respective AGM characterisations of expansions, contractions and revisions.
Moreover, for every belief set K and every AGM contraction �, some model
M 2M? exists such that for all ' 2 L0, K

�
' = B(r?(contract ';M)), and the

same is true for AGM revisions. In this aspect the system de�ned above is a
conservative extension of the one presented in the previous section.

The general idea underlying the de�nition of r? for both expand ' and
contract ' is that the agent possesses a sense of historical awareness which
makes it prefer the worlds that it most recently considered possible doxastic al-
ternatives. One can imagine the agent being aware of the presence of these pos-
sibilities, which make it easier to reconsider these as compared to other worlds
that it never before considered possible: unknown, unloved. This historical
awareness of the agent is intuitively related to the postulate of rehabilitation:
if the agent should have the possibility to undo undesired changes of belief, the
previous constellation of the agent's belief should somehow be recorded. The
modi�cation of the selection function as proposed in the de�nition of r? above,
takes care of this recording.

When performing an expansion with some formula ', the selection function
in the resulting model equals the original selection function for those formulae
of which the negation was already believed in the original model and hence is
also believed in the model resulting from the expansion, and the same holds
for formulae whose negation is not believed a posteriori. In the latter case the
negation of the formulae is also disbelieved a priori, which implies that the
original selection function | and hence also the resulting selection function |
yields an empty set of states for these formulae. For a formula whose negation
is not believed a priori, but is believed as the result of the expansion, the new
selection function is de�ned to comprise exactly those doxastic alternatives of
the original model that supported the formula, these being exactly the states
that caused the a priori disbelief in the negation of the formula.

When performing a contraction with some formula ', the resulting selection
is identical to the original one for formulae whose whose negation is either not
believed a priori, or still believed a posteriori. For these formulae the origi-
nal selection function either yields the empty set, in which case the resulting
selection function should do the same by demand �2 for selection functions,
or picked a set of worlds that is disjoint with the new, larger, set of doxastic
alternatives and therefore needs not to be modi�ed. In the case that the nega-
tion of a formula becomes disbelieved as the result of performing a contraction,
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the new selection function yields an empty set of worlds when applied to this
formula.

Following the terminology of Williams [16], we refer to the process of chang-
ing a belief system as a transmutation. The transmutations caused by the exe-
cution of a belief-changing action preserve well-de�nedness of belief systems.

3.6. Proposition. If M 2M? is a well-de�ned Kripke model then

� r?(expand ';M) is a well-de�ned Kripke model

� r?(contract ';M) is a well-de�ned Kripke model

for all ' 2 L0.

Proof: Let M = hS;B; �i be a well-de�ned Kripke model. We show the case for
the expand action; the case for the contract action goes through analogously
and is left to the reader. So let M0 = hS;B0; �0i be r?(expand ';M), for some
' 2 L0. Since B0 = B n [[:']], it is obvious that B0 � B � S. This leaves
only to show that �0 is a selection function. First observe that �0 is indeed a
total function on L0, which leaves to show that �0 meets the demands given in
De�nition 2.3. Let #; � 2 L0 be arbitrary.

�1. If �0(#) = �(#), then since � is a selection function, it follows that �0(#) �
[[#]]. If �0(#) is B \ [[#]] it follows directly that �0(#) � [[#]].

�2. For the `only if' part assume that �0(#) = ; and B0 \ [[#]] = ;. Then to
show that [[#]] = ;. If B0 \ [[#]] = ;, then from �0(#) = ; if follows that
also B \ [[#]] = ;. For otherwise �0(#) = B \ [[#]] 6= ;. Hence in this case
�0(#) = �(#). Thus �(#) = ; and since � is a selection function it follows,
from B \ [[#]] = ;, that [[#]] = ;, which was to be shown. For the `if' part
assume that B0 \ [[#]] 6= ; or [[#]] = ;. To show that �0(#) = ;. Now if
B0\ [[#]] 6= ;, then since B0 � B also B\ [[#]] 6= ;. Hence �0(#) = �(#), and
by demand �2 for � it follows that �(#) = ;. If [[#]] = ;, also B\ [[#]] = ;.
Hence �0(#) = �(#), which by demand �2 for � is equal to ;.

�3. Assume [[#]] = [[�]]. Then B \ [[#]] = B \ [[�]], B0 \ [[#]] = B0 \ [[�]] and
�(#) = �(�), which su�ces to conclude that �0(#) = �0(�).

�4. If B \ [[# _ �]] = ;, then also B \ [[#]] = ; and B \ [[�]] = ;. Hence in
this case �0(# _ �) = �(# _ �), �0(#) = �(#) and �0(�) = �(�). Thus
�0(#_ �) = �(#_ �) � �(#)[ �(�) = �0(#)[ �0(�), which implies that �4
is validated. If B0\ [[#_�]] 6= ;, then �0(#_�) = �(#_�), and since B0 � B
also B \ [[# _ �]] 6= ;, and by �2, �(# _ �) = ;. Hence �0(# _ �) = ; and
trivially �0(#_ �) � �0(#)[ �0(�). If B\ [[#_ �]] 6= ; and B0 \ [[#_ �]] = ;,
then also B0 \ [[#]] = ; and B0 \ [[�]] = ;. Furthermore, either B \ [[#]] 6= ;
or B\ [[�]] 6= ;. If both are true, then �0(#) = B\ [[#]], �0(�) = B\ [[�]], and
since �0(# _ �) = B \ [[# _ �]] = (B \ [[#]]) [ (B \ [[�]]), demand �4 is met.
If B\ [[#]] = ;, then B\ [[#_ �]] = B\ [[�]], and hence �0(#_ �) = �0(�), in
which case �4 is validated. The case where B \ [[�]] = ; is analogous.

�5. Assume �0(# _ �) \ [[#]] 6= ;. If B \ [[# _ �]] = ;, then also B \ [[#]] = ;.
Hence �0(# _ �) = �(# _ �) and �0(#) = �(#). Then �(# _ �) \ [[#]] 6= ;,
and since � is a selection function, �0(#) = �(#) � �(# _ �) = �0(# _ �).
If B0 \ [[# _ �]] 6= ;, then �0(# _ �) = �(# _ �) = ;, and hence this
case is not applicable. If B \ [[# _ �]] 6= ; and B0 \ [[# _ �]] = ;, then
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�0(#_�) = B\ [[#_�]] = (B\ [[#]])[ (B\ [[�]]). Since �0(#_�)\ [[#]] 6= ;, it
follows that B\ [[#]] 6= ;, and since B0\ [[#_�]] = ; and hence B0\ [[#]] = ;,
it follows that �0(#) = B\ [[#]]. Thus �0(#) � �0(#_�) and hence demand
�5 is met. 2

3.7. Corollary. If M 2 M? is a well-de�ned Kripke model then, for all ' 2
L0, r

?(revise ';M) is a well-de�ned Kripke model.

When performing an expansion with a formula that is already believed, or
a contraction with a disbelieved formula, the generalised law of inertia states
that the underlying belief system should not change, i.e. not only should the
belief set of the agent be una�ected, but performance of such an intuitively
super
uous action should also not in
uence the way that future changes of
belief work out. For the system de�ned above, it is indeed the case that these
degenerated belief-changing actions correspond to void transmutations.

3.8. Proposition. For all M 2M? and all ' 2 L0 it holds that:

� M j=? B') r?(expand ';M) = M
� M j=? :B') r?(contract ';M) = M

Proof: We show the case for the contract action; the other case is shown in
a similar way. So let M = hS;B; �i be some model from M?, and assume that
M j=? :B'. Let M

0 = hS;B0; �0i be r?(contract ';M). In order to prove that
M0 = M we show that B0 = B and �0 = �. From M j=? :B' it follows that
B \ [[:']] 6= ;, and hence, by demand �2 for selection functions, �(:') = ;.
Then B0 = B [ �(:') = B. This leaves to show that �0 = �. Let # 2 L0 be
arbitrary. In the case that either B\ [[#]] = ; or B0\ [[#]] 6= ;, we have direct that
�0(#) = �(#). But since B0 = B the case where B \ [[#]] 6= ; and B0 \ [[#]] = ; is
impossible. Hence �0 = �, and thus M0 = M. 2

3.9. Corollary. For all M 2M? and all ' 2 L0 it holds that:

� M j=? :B:') r?(revise ';M) = r?(expand ';M)
� M j=? B' ^ :B:') r?(revise ';M) = M

4. Postulates for iterated belief change

The AGM postulates, and in fact any postulate describing single-step belief
changes, satisfy the general pattern that they contain some occurrences of for-
mulae [�]B' where � 2 Ac and ' 2 L0, when phrased in terms of our frame-
work; exactly these formulae describe the changes to belief sets that follow
execution of belief-changing actions. As soon as one considers belief systems
instead of just belief sets, other postulates than those constraining belief sets
may be worth looking at. For in this case it is not only interesting how the
agent's belief set changes as the result of the execution of a belief-changing
action, but also how the selection function is modi�ed. While changes of belief
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sets are described by formulae [�]B' with ' 2 L0, changes of belief systems
correspond to formulae of the form [�]�, where � 2 Ac and � 2 L. The formula
� is an arbitrary formula, and may in particular contain references to future
changes of belief. The following example illustrates the di�erences in expressive
power of the two kinds of formulae.

4.1. Example. Let L = L(fp; qg) and consider the full model M = hS;B; �i,
where B = ffqg; ;g and �(#) = ; whenever B \ [[#]] 6= ; and S \ [[#]] otherwise.
The function � is the so called All-is-Good function which was previously shown
to be a selection function [12]. Now consider revisions with the formulae p
and p ^ :q respectively. In the model M the formula [revise p; revise p ^
:q]B# $ [revise p ^ :q]B# is valid for all # 2 L0. Hence execution of the
actions revise p; revise p ^ :q and revise p ^ :q result in identical changes
to the agent's belief set. However, it is not the case that these actions cause
the same transmutation of the belief system M. For it is true that M j=?

[revise p; revise p^:q][revise q](B(p^q)^:B?) whereas M j=? [revise p^
:q][revise q](B(:p ^ q) ^ :B?).

Example 4.1 shows that one may distinguish between the direct e�ects and
the side-e�ects that follow execution of a belief-changing action. The direct
e�ects of an action cause a change in the set of beliefs of the agent whereas the
side-e�ects a�ect the way future changes of belief work out. In terms of models,
direct e�ects reside in the modi�cation of the set of doxastic alternatives and
side-e�ects are visible in the adaption of the selection function. In terms of
postulates, direct e�ects a�ect formulae B' with ' 2 L0 and side-e�ects a�ect
general formulae �5. Now two actions with the same direct e�ects may have
di�erent side-e�ects. Hence even though they change the belief set of the agent
in the same way, they constrain future changes of beliefs in di�erent ways.

Proposition 3.8 and Corollary 3.9 given in the previous section may be
interpreted as postulates for belief systems.

4.2. Proposition. For all ' 2 L0, � 2 L we have:

� j=? B'! ([expand ']�$ �)
� j=? :B'! ([contract ']�$ �)
� j=? :B:'! ([revise ']�$ [expand ']�)
� j=? :B:' ^B'! ([revise ']�$ �)

Proposition 4.2 is in fact weaker than the corresponding proposition and
corollary of x3, in the sense that it is not stated that two actions result in the
same model upon execution, but in two models that satisfy exactly the same
set of formulae. However, not only lies our main interest in the formulae that
are satis�ed by a model, and not directly in the shape of the model, but it is
furthermore the case that proofs of propositions like 4.2 will in general consist

5The di�erence between direct e�ects and side-e�ects may also be used to characterise
static and dynamic approaches to iterated belief change. Static approaches are those where
changing the belief set does not have any side-e�ects, whereas in dynamic approaches side-
e�ects may (and do) occur.
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of proving the two resulting models to be equal, just as the proof of postulates
on the belief set level consists of proving the equality of two sets of doxastic
alternatives. This is also the reason why postulates at the general formula level
deal with equivalences only, and do in general not contain implications. For in
order to prove equivalence of two formulae [�1]� and [�2]� for all �, it su�ces
to prove that the models resulting from execution of �1 and �2 are identical,
whereas it is not clear how it should be proved that [�1]� implies [�2]� for all
� 2 L.

As argued at the beginning of x3, the semantics for iterated belief change
should validate the postulate of rehabilitation. It turns out that the postulate
is indeed valid, and even in the strongest possible sense, i.e. it is a property of
belief systems and not just of belief sets.

4.3. Proposition. For all ' 2 L0 and � 2 L we have:

� j=? :B'! ([expand '; contract ']�$ �)

Proof: Let M be a model such that M j= :B' for some ' 2 L0 and let M1 =
hS;B1; �1i = r?(expand ';M) and M2 = hS;B2; �2i = r?(contract ';M1). We
show that M2 = M, i.e. B2 = B and �2 = �. Since M j= :B', B\[[:']] 6= ;, and
since B1\ [[:']] = ; it follows that �1(:') = B\ [[']]. Hence B2 = B1[�1(') =
(B \ [[']]) [ (B \ [[:']]) = B. This leaves to show that �2 = �. So let # 2 L0 be
arbitrary. If B\ [[#]] 6= ;, then also B2\ [[#]] 6= ;. Hence �(#) = ; and �2(#) = ;.
So assume B \ [[#]] = ;. Then since B1 � B and B2 = B, also B1 \ [[#]] = ;
and B2 \ [[#]] = ;. In this case �2(#) = �1(#) = �(#). Thus in both cases
�2(#) = �(#), and since # is arbitrary this su�ces to conclude that �2 = �. 2

Combining Proposition 4.3 with clause 6 of Proposition 2.6 leads to the
following corollary.

4.4. Corollary. For all ' 2 L0, � 2 L we have:

� j=? :B'! ([revise '; contract ']�$ [contract :']�)

The property expressed in Corollary 4.4 is quite intuitive if one considers a
revision to consist of a `negative part' (a contraction), followed by a `positive'
part (an expansion): by the postulate of rehabilitation this latter positive part
is undone by the consecutive contraction, leaving only the negative �rst part to
be e�ective.

The following proposition formalises various properties of sequences of belief
changes, mostly at the level of belief sets. To make a concise representation
possible, we denote theoremhood through the knowledge operator. Since a
formula is a theorem in classic propositional logic i� it is known in a full model
and full models constitute a special subclass of M?, this does not a�ect the
applicability or generality of the validities that we prove here.

4.5. Proposition. For all '; ; # 2 L0 we have:

1. j=? ([contract ']B#^ [contract  ]B#)! [contract '; contract  ]B#
2. j=? K('!  )! ([contract '; contract  ]B#! [contract  ]B#)
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3. j=? K( ! ')! ([contract '; revise  ]B#$ [revise  ]B#)
4. K( ! ') ! ([contract '; revise  ]� $ [revise  ]�) is not for all

'; 2 L0, � 2 L valid

Proof: We show all four items. Let M be some model with state s, and let
'; ; # 2 L0 be arbitrary.

1. Assume that M; s j=? [contract ']B# ^ [contract  ]B#. The only in-
teresting case is where M; s j=? B' ^ B , so assume this to be true.
In this case M1 = r?(contract ';M) = hS;B [ �(:'); �1i, and M2 =
r?(contract  ;M) = hS;B[�(: ); �2i. If M1; s j=? :B , it follows that
r?(contract '; contract  ;M) = M1, and then M; s j=? [contract ']B#
implies M; s j=? [contract '; contract  ]B#. If M1; s j=? B , then
r?(contract '; contract  ;M) = hS;B [ �(:') [ �1(: ); �

0i. Since
(B [ �(:')) \ [[: ]] = ;, it follows by the �rst clause of De�nition 3.2 for
contractions that �1(: ) = �(: ). Now since M; s j=? [contract ']B#,
# holds at all worlds from B [ �(:'). Since M; s j=? [contract  ]B#,
# holds at all worlds from B [ �(: ). Hence # holds at all worlds from
B[�(:')[�(: ), and thus M; s j=? [contract '; contract  ]B#, which
was to be shown.

2. Assume that M; s j=? K(' !  ), and, since this is the only interesting
case, assume also that M; s j=? B'^B . Let M1 = r?(contract ';M) =
hS;B[�(:'); �1i and M2 = r?(contract  ;M) = hS;B[�(: ); �2i. We
distinguish two case:

� M; s j=? [contract ']B . Then r?(contract '; contract  ;M) =
hS;B [ �(:') [ �1(: ); �

0i. Since (B [ �(:')) \ [[: ]] = ; we have
by clause 1 of De�nition 3.2 for contractions that �1(: ) = �(: ).
Thus M; s j=? [contract '; contract  ]B# implies that # holds
at all worlds from B [ �(:') [ �(: ). In particular this implies
that # holds at all worlds from B [ �(: ), and hence M; s j=?

[contract  ]B#.
� M; s j=? [contract ']:B . Then r(contract '; contract  ;M) =
hS;B [ �(:'); �0i. Since M; s j=? K('!  ), also M; s j=? K((: _
:')$ :'). Now since M; s j=? B and M; s j=? [contract ']:B 
it follows that �(:') \ [[: ]] 6= ;. From �3 it follows that �(: _
:') \ [[: ]] 6= ;, and by �5, �(: ) � �(: _ :') = �(:'). Hence
M; s j=? [contract '; contract  ]B# implies that # holds at all
worlds in B [ �(: ), and hence M; s j=? [contract  ]B#.

Since in both cases it holds that M; s j=? [contract '; contract  ]B#!
[contract  ]B#, we conclude that this clause is indeed true.

3. Assume that M; s j=? K( ! '). If M; s j=? :B' the property holds
trivially. Hence assume M; s j=? B'. Let M1 = r?(contract ';M). We
distinguish two cases:

� M; s j=? B: . From M; s j=? K( ! ') it follows that �(:') �
[[: ]]. Hence : holds at all worlds from B [ �(:'). By clause
1 of De�nition 3.2 for contractions it follows that �1( ) = �( ).
Hence r?(revise  ;M1) = hS; �( ); �0i. Also, r?(revise  ;M) =
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hS; �( ); �00i. Thus M; s j=? [contract '; revise  ]B# i� M; s j=?

[revise  ]B#.
� M; s j=? :B: . Then also M1; s j=? :B: , and r

?(revise  ;M1) =
hS; (B [ �(:')) \ [[ ]]; �0i. Since M; s j=? K( ! '), �(:') � [[: ]],
and hence (B [ �(:')) \ [[ ]] = B \ [[ ]]. Also r?(revise  ;M) =
hS;B \ [[ ]]; �00i, and thus M; s j=? [contract '; revise  ]B# i�
M; s j=? [revise  ]B#.

Since in both cases M; s j=? [contract '; revise  ]B#$ [revise  ]B#,
we conclude that clause 3 of Proposition 4.5 is true.

4. This case is shown by the model M of Example 4.1. For it holds that
M j=? [contract (:p _ :q); revise :p][revise p]B(p ^ q) and M 6j=?

[revise :p][revise p]B(p ^ q). 2

The �rst item of Proposition 4.5 states that whenever two single contractions
both result in the agent believing a formula #, then the agent also believes #
after the two contractions have been performed sequentially (in any order).
Intuitively this is clear: if the agent does not believe the second formula that
is to be retracted after the contraction of the �rst one, the second contraction
amounts to a void action. Otherwise the belief in the second formula was
una�ected by the �rst contraction and the second contraction is performed as
if the �rst one did not happen. In both cases it is clear that # is believed after
the sequence of the two contractions. The second item states that whenever a
formula # is believed after two contractions such that the second one retracts
a formula that is known to be implied by the �rst retracted formula, then # is
also believed after a single contraction with the second formula. Two important
remarks need to be made concerning this validity, the �rst of these being that
the property is not as obvious as it might seem at �rst sight. For one could
think of a situation in which the formula  is believed before, and no longer
believed after, the contraction with '. In this case the second contraction in
the sequence amounts to a void action, but it is not directly clear that the single
contraction with  necessarily results in a belief set which contains the one that
results from the contraction with ', even if  is known to be implied by '. The
second remark is that the antecedent K(' !  ) is necessary for validity: the
consequent is in itself not valid. The third item states that a contraction with
a formula ' that precedes a revision with a `stronger' formula  has no e�ect
at all on the belief set level: one might as well directly perform the revision.
However, item 4 states that this property does not hold for belief systems. In
particular, it is not the case that contract '; revise  and revise  constrain
future changes of belief in the same way whenever  is known to imply '.

Iterated revisions can be completely characterised with respect to their di-
rect e�ects.

4.6. Proposition. For all '; ; # 2 L0 we have:

� j=? [revise ']B: ! ([revise '; revise  ]B#$ [revise  ]B#)
� j=? [revise ']:B: ! ([revise '; revise  ]B#$ [revise ('^ )]B#)
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Proof: Let M = hS;B; �i be a Kripke model with s 2 S, and let '; ; # 2 L be
arbitrary. We show both clauses.

� Assume that M; s j=? [revise ']B: . For reasons of convenience we
introduce the following models:

� M11 = r?(contract :';M)
� M1 = r?(revise ';M) = r?(expand ';M11)
� M2 = r?(revise  ;M1) = r?(revise '; revise  ;M)
� M3 = r?(revise  ;M)

For i = 1; 2; 3; 11 we assume Mi to be the tuple hS;Bi; �ii. Note that since
M; s j=? [revise ']B: , B2 = �1( ). Hence it su�ces to show that B3
is equal to �1('): for M; s j=? [revise '; revise  ]B# i� # holds at all
worlds from �1( ) and M; s j=? [revise  ]B# i� # holds at all worlds
from B3. We distinguish four cases:

1. M; s j=? B' ^ :B:'. In this case the property trivially holds since
M1 = M and M2 = M3.

2. M; s j=? :B' ^ :B:'. Then M11 = M and M1 = r?(expand ';M).
We distinguish two cases:

� M; s j=? :B: . In this case B\ [[ ]] 6= ;, and since B1\ [[ ]] = ;,
it follows that �1( ) = B \ [[ ]]. Also, if M; s j=? :B: then
B3 = B \ [[ ]]. Hence in this case �1(') = B3.

� M; s j=? B: . In this case B\ [[ ]] = ; and hence �1( ) = �( ).
Furthermore, if M; s j=? B: also B3 = �( ). Hence also in
this case �1( ) = B3.

Since in both cases �1( ) = B3, we conclude that whenever M; s j=?

:B' ^ :B:', �1(') = B3.
3. M; s j=? :B' ^B:'. In this case B11 = B [ �(') and B1 = �(').

Again we distinguish two cases:

� M; s j=? :B: . Then since B\[[ ]] 6= ;, also B11\[[ ]] 6= ;. Since
M; s j=? [revise ']B: , B1 \ [[ ]] = ;. Hence by De�nition 3.2
for expansions, �1( ) = (B [ �(')) \ [[ ]] = B \ [[ ]]. Also, if
M; s j=? :B: , B3 = B \ [[ ]], and hence �1( ) = B3.

� M; s j=? B: . Then B\ [[ ]] = ;. Since M; s j=? [revise ']B: 
also �(') \ [[ ]] = ;. Hence B11 \ [[ ]] = (B [ �(')) \ [[ ]] = ;.
Then by De�nition 3.2 for contractions, �11( ) = �( ). Since
B11 \ [[ ]] = ;, �1( ) = �11( ) = �( ). From M; s j=? B: it
follows that B3 = �( ), and hence �1( ) = B3.

Since in both cases �1( ) = B3, we conclude that whenever M; s j=?

:B' ^B:', �1(') = B3.
4. M; s j=? B' ^ B:'. Then B = ; and both B11 and B1 are equal

to �('). Since M; s j=? [revise ']B: , �(') \ [[ ]] = ;. Hence
B11 \ [[ ]] = ; and thus �11( ) = �( ). Since B11\ [[ ]] = ;, �1( ) =
�11( ) = �( ). Furthermore, since M; s j=? B: , B3 = �( ), which
su�ces to conclude that �1( ) = B3.

In all four cases, �1( ) = B3. Hence M; s j=? [revise '; revise  ]B#$
[revise  ]B#, which concludes the proof of clause 1 of Proposition 4.6.

� Assume that M; s j=? [revise ']:B: . We distinguish three cases.
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1. M; s j=? B:'. In this case r
?(revise ';M) = hS; �('); �0i, and since

M; s j=? [revise ']:B: , r
?(revise '; revise  ;M) = hS; �(') \

[[ ]]; �00i. On the other hand r?(revise '^ ;M) = hS; �('^ ); �00i
since M; s j= B:(' ^  ). We show that �(') \ [[ ]] = �(' ^  ) by
showing that the two sets are contained in each other.

`�' By �3, �(') = �(('^ ) _ ('^: )), which is by �4 contained
in �('^ )[ �('^: ). Since by �1, �('^: ) � [['^: ]], it
follows that �(') \ [[ ]] � �(' ^  ).

`�' Since M; s j=? [revise ']:B: it follows that �(') \ [[ ]] 6= ;.
Now by �3, �(') = �(('^ )_'), by �1, �(') � [[']], and hence
�(('^ )_')\ [['^ ]] 6= ;. Then by �5, �('^ ) � �('). Since
by �1, �('^ ) � [['^ ]], it follows that �('^ ) � �(')\ [[ ]].

Now M; s j=? [revise '; revise  ]B# i� # holds at all worlds
from �(') \ [[ ]] i� # holds at all worlds from �(' ^  ) i� M; s j=?

[revise ' ^  ]B#.
2. M; s j=? B' ^ :B:'. By Corollary 3.9(2), r?(revise ';M) = M.

Since M; s j=? [revise ']:B: also M; s j=? :B: . Now M; s j=?

B' ^ :B: implies M; s j=? :B:(' ^  ) and thus r?(revise ' ^
 ;M) = hS;B\[['^ ]]; �0i. Now r?(revise '; revise  ;M) = hS;B\
[[ ]]; �00i. Since B � [[']] it follows that B\ [['^ ]] = B\ [[ ]]. Hence
M; s j=? [revise '; revise  ]B# i� # holds at all worlds from B\[[ ]]
i� # holds at all worlds from B\[['^ ]] i� M; s j=? [revise '^ ]B#.

3. M; s j=? :B' ^ :B:'. Then from Corollary 3.9(1) it follows that
r?(revise ';M) = hS;B\ [[']]; �0i. Since M; s j=? [revise ']:B: ,
r?(revise '; revise  ;M) = hS;B \ [[']] \ [[ ]]; �00i. From M; s j=?

:B:' ^ [revise ']:B: , it follows by Proposition 2.23(4) and
Proposition 2.21 that M; s j=? :B(' ! : ), i.e. M; s j=? :B:(' ^
 ). Hence r?(revise ' ^  ;M) = hS;B \ [[' ^  ]]; �00i. Now B \
[[']] \ [[ ]] = B \ [[' ^  ]], and thus M; s j=? [revise '; revise  ]B#
i� M; s j=? [revise ' ^  ]B#.

Since in all three cases, M; s j=? [revise '; revise  ]B#$ [revise ' ^
 ]B#, we conclude that clause 2 of Proposition 4.6 indeed holds. 2

The �rst item of Proposition 4.6 states that if two consecutive revisions are
such that the second revision asserts a formula that is inconsistent with the be-
lief set resulting from the �rst revision, then the second revision prevails. That
is, the second revision alone results in the same set of beliefs as the sequence of
the two revisions. The second item states that whenever the second revision of
a sequence of two revisions asserts a formula that is consistent with the set of
beliefs that results from the �rst revision, then a revision with the conjunction
of the two asserted formulae results in the same set of beliefs as the sequence
of the two revisions. In both cases the sequence of the two revisions may be
reduced to a single revision as far as the beliefs of the agent are concerned.
However, this reduction does not go through at the transmutation level.

4.7. Proposition. The following are not for all '; 2 L0 and � 2 L valid:

� [revise ']B: ! ([revise '; revise  ]�$ [revise  ]�)



24

� [revise ']:B: ! ([revise '; revise  ]�$ [revise (' ^  )]�)

Proof: Both items are shown by the model given in Example 4.1. The in-
validity of the �rst item follows from the observation that although M j=
[revise p]B::p, M j= [revise p; revise :p][revise q]B(p ^ q) and M 6j=
[revise :p][revise q]B(p ^ q). The second item follows from combining M j=
[revise p]:B:(p ^ :q) with the observations made in Example 4.1. 2

A discussion on the importance of the results of Proposition 4.7 is postponed
to the end of x4.1.

4.1. Postulates for iterated belief revision

Here we look into several extensions of, and alternatives to, the AGM axiomati-
sation, all aimed at providing an intuitive account of iterated belief revision. We
are mainly interested in the possible validity of the various postulates; for thor-
ough discussions on the desirability and intuitive acceptability of the postulates
we refer to the papers in which they were proposed. The notion of validity is in
this section to be understood as validity in the class M? of models. Whenever
possible, we will interpret the proposed postulates both at the belief set level
and at the level of belief systems.

Darwiche & Pearl [3] propose four additional postulates that, in combination
with the AGM postulates, should take care of intuitively acceptable iterated
revision. Rephrased in our framework, they are the following.

4.8. Definition. For '; ; # 2 L0, the following are the postulates of Darwiche
& Pearl:

DP1. K( ! ')! ([revise '; revise  ]B#$ [revise  ]B#)
DP2. K( ! :')! ([revise '; revise  ]B#$ [revise  ]B#)
DP3. [revise  ]B'! [revise '; revise  ]B'
DP4. [revise  ]:B:'! [revise '; revise  ]:B:'

Freund & Lehmann argue that `the postulate [DP2], contrary to the claims
of Darwiche and Pearl is inconsistent with the AGM axioms' ([4],p. 8), i.e. there
is no revision that satis�es both the AGM postulates and DP2. Although this
inconsistency goes through when adopting the static view to belief change, it
does not in our dynamic account.

4.9. Proposition. The postulates of Darwiche & Pearl are valid for all '; 

and # in L0.

Proof: Postulate DP1 is seen to be valid by combining both clauses of Propo-
sition 4.6 with clause 6 of Proposition 2.23. DP2 follows from the �rst clause of
Proposition 4.6, the second clause of Proposition 2.23 and the fact that knowl-
edge on propositional formulae persists. For postulate DP3 assume that M is
some Kripke model with state s, and let '; 2 L0 be arbitrary. Assume that
M; s j=? [revise  ]B'. Now if M; s j=? [revise ']B: , then by the �rst
clause of Proposition 4.6 it follows that that M; s j=? [revise '; revise  ]B'.
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If M; s j=? [revise ']:B: then by clause 2 of Proposition 4.6, M; s j=?

[revise '; revise  ]B' i� M; s j=? [revise ' ^  ]B'. From clauses 7 and
8 of Proposition 2.23 it follows that M; s j=? [revise ' ^  ]B' i� M; s j=?

[revise '; expand  ]B'. Now since M; s j=? [revise ']B' it follows by
Proposition 2.21 that also M; s j=? [revise '; expand  ]B', which su�ces to
conclude that DP3 is indeed valid. The only interesting case for DP4 is where
M; s j=? [revise ']:B: . In this case M; s j=? [revise '; revise  ]:B:'
i� M; s j=? [revise ' ^  ]:B:'. Now since M; s j=? [revise  ]:B:', it fol-
lows that M; s 6j=? K(:' ^ : ). Then by clauses 2 and 5 of Proposition 2.23
it follows that M; s j=? [revise ' ^  ](B(' ^  ) ^ :B?). But then also
M; s j=? [revise '^ ]:B:', and thus M; s j=? [revise '; revise  ]:B:'. 2

In our opinion, the statement that DP2 is inconsistent, contrary to the

claims of Darwiche & Pearl, is not correct. The soundness proof that Darwiche
& Pearl provide is with regard to a dynamic semantics for belief revision, and it
follows from Remark 3.5 and Proposition 4.9 that a dynamic semantics might
well be capable of validating both the AGM axiomatisation and postulate DP2.

Although Darwiche & Pearl deal with changes to belief sets only, two of
their postulates do make sense | and are in fact not valid | at the level of
belief systems.

4.10. Proposition. The following are not for all '; 2 L0, � 2 L valid:

DP1'. K( ! ')! ([revise '; revise  ]�$ [revise  ]�)
DP2'. K( ! :')! ([revise '; revise  ]�$ [revise  ]�)

Proof: Both items are shown in exactly the same way as the corresponding
items of Proposition 4.7. 2

Nayak, Foo, Pagnucco and Sattar [14] proposed a set of postulates that is
meant to serve as an alternative to the set proposed by Darwiche & Pearl. They
propose to add the following postulates to the AGM axiomatisation.

4.11. Definition. For '; ; # 2 L0, the following are the postulates of Nayak
et al.:

N0. B? ! ([revise ']B#$ K('! #))
N7. M(' ^  )! ([revise '; revise  ]B#$ [revise (' ^  )]B#)
N8. K:(' ^  ) ^M'! ([revise '; revise  ]B#$ [revise  ]B#)

After showing that these postulates are inconsistent with the AGM ax-
iomatisation when regarded from a static perspective, Nayak et al. argue for a
dynamic account of belief change. However, it turns out that not all postulates
are valid for our dynamic semantics.

4.12. Proposition. The �rst two postulates of Nayak et al. are not for all

'; ; # 2 L0 valid; postulate N8 is valid for all '; ; # 2 L0.

Proof: Postulate N8 is a weakened version of DP2, in which the antecedent
K( ! :') is strengthened to K( ! :') ^M'. To see that N0 is not
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valid, take a belief set K such that some '; # 2 L0 exist with f'; #g � K and
6`cpl ('! #). Let MK = hS;B; �i be a K-model. If M0 = r?(expand :';MK),
then M0 = hS; ;; �0i, where �0(') = B \ [[']] = B. Now for arbitrary s 2 S
we have that M0; s j=? B?, M

0; s j=? [revise ']B# but M0; s 6j=? K(' ! #),
since 6`cpl (' ! #). Hence M0; s 6j=? B? ! ([revise ']B# $ K(' ! #)).
Postulate N7 is shown to be invalid as follows. Take two di�erent propositional
symbols p and q, and de�ne the full model M = hS;B; �i where B = [[p ^ :q]]
and � is the All-is-Good function for hS;Bi. Since M is full and p; q 2 � are
arbitrary, M j=? M(p ^ q). Now r?(revise p; revise q;M) = hS; [[q]]; �0i and
r?(revise p ^ q;M) = hS; [[p ^ q]]; �00i. Since q 6j=cpl p, [[q]] \ [[:p]] 6= ;, and
hence M; s 6j=? [revise p; revise q]Bp, while M; s j=? [revise p ^ q]Bp. Thus
postulate N7 is not for all '; 2 L0 valid. 2

That postulate N0 is not valid, is not really surprising. For this postulate
is essentially a static one which neglects the possibility that | even for incon-
sistent belief sets | changes of belief depend on other factors than just the set
that is changed and the formula that the set is changed with. As such, this
postulate clashes with the postulate of rehabilitation, and the example given
in support of the latter postulate may be read as one against postulate N0.
With respect to the non-validity of N7 note that this postulate may be inter-
preted as an unjusti�ed strengthening of the second clause of Proposition 4.6:
it is not su�cient that ' and  are a priori consistent,  needs to be con-
sistent after the agent's beliefs have been revised with '. The postulate N8':
K:(' ^  ) ^M' ! ([revise '; revise  ]� $ [revise  ]�) is not for all
� 2 L valid; this can be shown by a similar argument as the one that shows the
invalidity of DP2'.

Having shown that both the postulates of Darwiche & Pearl and those of
Nayak et al. are not suitable when adopting a static view, Lehmann [10] pro-
posed an alternative account of iterated belief revision. Instead of the usual
AGM belief sets, Lehmann considers sequences of revisions with consistent for-
mulae as the fundamental notion. To replace the AGM postulates Lehmann
proposes a new set of postulates that is suitable and usable for both static
and dynamic approaches to belief revision. Formulated in the language L,
Lehmann's postulates are the following.

4.13. Definition. For '; ; # 2 L0 and � 2 L the following are the postulates
proposed by Lehmann:

L1. [revise ']B'
L2. [revise ']B#! B('! #)
L3. B' ^ :B? ! ([revise ']�$ �)
L4. K( ! ')! ([revise '; revise  ]�$ [revise  ]�)
L5. [revise ']:B: ! ([revise '; revise  ]�$

[revise '; revise (' ^  )]�)
L6. [revise :'; revise ']B#! [revise ']B#

Postulates L1, L2 and L6 act on the belief set level, whereas the other
postulates act on the level of belief systems. In its original form as given by
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Lehmann, the prerequisite of L3 is B'. Since Lehmann assumes revisions of
consistent belief sets with consistent formulae only, he does not have to take
inconsistent belief sets into account. Belief sets may be inconsistent in our
framework, which explains the additional :B? in the prerequisite of L3.

4.14. Proposition. Lehmann's postulates, with the exception of L4, are valid

for all '; ; # in L0 and � 2 L.

Proof: The validity of the postulates L1, L2 and L3 follows directly from the
validity of the AGM postulates. Postulate L6 follows from the �rst clause
of Proposition 4.6. The invalidity of L4 follows directly from that of DP1'.
The validity of L5 is seen as follows. Let M j= [revise ']:B: , and let
M0 = hS;B0; �0i = r?(revise ';M). Then M0 j= B' ^ :B: , and thus M0 j=
:B:(' ^  ). Then r?(revise  ;M0) = r?(expand  ;M0) = hS;B0 \ [[ ]]; �01i
and r?(revise ' ^  ;M0) = r?(expand ' ^  ;M0) = hS;B0 \ [[' ^  ]]; �02i.
Now since M0 j= B' it follows that B0 \ [[ ]] = B0 \ [[' ^  ]]. From Proposi-
tion 3.4 it follows that �01(#) = �02(#) for all # 2 L0. Hence r

?(expand  ;M0) =
r?(expand ' ^  ;M0), which su�ces to conclude Proposition 4.14. 2

Lehmann's postulate L4 is the weakest one in the set consisting of both
items of Proposition 4.7 and the postulates DP1', DP2' and N8'. Moreover, L4
is the only genuine postulate for belief systems; the other mentioned postulates
are generalisations of postulates that are originally aimed at describing and con-
straining iterated belief revision at the level of belief sets. The non-validity of
L4 in our semantics is therefore considered to be more conspicuous than that of
the other postulates. The reason for the non-validity lies in the incompatibility
of L4 with the postulate of rehabilitation. Informally this incompatibility is due
to the historical awareness associated with the latter postulate, which clashes
with the 
avour of amnesia associated with L4. For L4 states that the agent
forgets that there ever was a revision with a formula ' after it subsequently per-
forms a revision with some stronger formula  , whereas the historical awareness
approach allows the revision with ' to have had some side-e�ects that persist
under execution of the revision with  , thereby possibly in
uencing the fu-
ture course of events. Phrased di�erently, Lehmann's agents do not remember,
our agents do not forget. The incompatibility of these points of view can also
be shown formally: extending the AGM axiomatisation with the postulate of
rehabilitation precludes Lehmann's postulate L4 in some | fairly natural |
situations.

4.15. Proposition. For all '; 2 L0 we have:

j=? B:' ^ :B? ^ :K:'^ [revise ']:B(' ^  )!
([revise '; revise ' ^  ][contract ' ^  ]B'^
[revise ' ^  ][contract ' ^  ]:B')

Proof: We start with a general Lemma that is of use in the proof of the propo-
sition.
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4.16. Lemma. For all '; 2 L0 we have:

j=?  ! ')j=? B'! [contract : ]B'

Proof: The proof is straightforward: execution of the contract : action adds
only worlds satisfying  | and hence satisfying ' | to the set of doxastic al-
ternatives. Since all the elements from this set satis�ed ' a priori, it follows
that all elements from the new set of doxastic alternatives satisfy ', and hence
B' holds after the contraction. 2

Let M 2M? be such that M j=? B:'^:B?^:K:'^[revise']:B('^ ).
Such an M exists by Proposition 4.17 given below. By Corollary 4.4 it follows
that j=? :B('^ )! ([revise '^ ; contract'^ ]�$ [contract:'_: ]�),
for all � 2 L (z). Since M j=? [revise ']:B(' ^  ) it follows that M j=?

[revise ']([revise '^ ; contract '^ ]�$ [contract :'_: ]�), and hence
M j=? [revise '][revise '^ ; contract '^ ]�$ [revise '][contract :'_
: ]�, for all � 2 L. By Lemma 4.16 we have that j=? B' ! [contract :' _
: ]B'. By Remark 3.5 we have that j=? [revise ']B', and therefore j=?

[revise '][contract :' _ : ]B'. Hence M j=? [revise '][revise ' ^
 ; contract '^ ]B'. Now fromM j=? B:'^:B? it follows that M j=? :B'.
Hence also M j=? [contract :' _ : ]:B', and thus by z, M j=? [revise ' ^
 ; contract '^ ]:B', i.e. M j=? [revise '^ ][contract '^ ]:B'. Thus
M j=? [revise '; revise ' ^  ][contract ' ^  ]B' and M j=? [revise ' ^
 ][contract ' ^  ]:B', which was to be shown. 2

4.17. Proposition. For some '; 2 L0, the formula B:' ^ :B? ^ :K:' ^
[revise ']:B(' ^  ) is satis�able.

Proof: Consider the model M de�ned in Example 4.1. For this model it holds
that M j= B:p ^ :B? ^ :K:p ^ [revise p]:B(p ^ q). 2

4.18. Corollary. For every contraction operator � that satis�es the AGM
axiomatisation and the postulate of rehabilitation, it holds for all '; 2 L0 and
K � L0 that if :' 2 K;? 62 K;' ^  62 K�

'; 6`cpl :' then ' 2 ((K�
')
�
'^ )

�
'^ 

and ' 62 (K�
'^ )

�
'^ , where � is the revision operator de�ned out of � via the

Levi-identity.

4.19. Remark. Proposition 4.15 can be used to provide (counter)examples for
all the non-validities that we previously encountered. Extending the antecedent
of the implication given in Proposition 4.15 with the conjunct [revise ']B(:'_
: ) provides a counterexample to Proposition 4.7(1) and DP1', whereas extend-
ing it with the conjunct [revise ']:B(:' _ : ) yields a counterexample to
Proposition 4.7(2) and DP2'. Extending the implication with K:('^ ) leads
to a counterexample for N8'.

Proposition 4.15 shows that the approach based on historical awareness is
to a considerable extent incompatible with the forgetful attitude formalised by
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postulate L4. One has to choose either for Lehmann's postulate L4 or for the
postulate of rehabilitation, without having the possibility of adopting a middle
course. In view of the area of application of our approach, viz. the formali-
sation of rational (information) agents that may adopt beliefs by default, the
arguments in favour of the postulate of rehabilitation in our opinion outweigh
those that support L4.

5. Discussion

In this paper we propose a formal framework to study iterated changes of belief
in a modal (dynamic-epistemic-doxastic) context. We formalised expansions,
contractions and revisions as actions, which, when performed by an agent, result
in a change in its beliefs. The expressiveness of our (multi-modal) language
allows for a concise representation of all kinds of postulates for (iterated) belief
change. Furthermore, the formalisation of single-step belief changes is proved
to be sound and complete with regard to the respective AGM axiomatisations.
To interpret sequences of belief-changing actions we extend the models used for
single-step belief changes, such that they represent belief systems, which consist
not only of the agent's belief set but also contain a method for changing this set
upon the execution of belief-changing actions. Execution of a belief-changing
action has the direct e�ect that the agent's belief set is modi�ed; as a side-e�ect
a method for changing the modi�ed set of beliefs is yielded. Several intuitively
acceptable properties of iterated belief change are proved to be valid in our
formalisation. Furthermore the validity of various recently proposed postulates
for iterated belief revision is checked, both when interpreted as postulates for
belief sets and as postulates for belief systems.
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