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Abstract

We study the two-level uncapacitated facility location (TUFL) problem. Given two
types of facilities, which we call y-facilities and z-facilities, the problem is to decide
which facilities of both types to open, and to which pair of y- and z-facilities each client
should be assigned, in order to satisfy the demand at maximum profit.

We first present two multi-commodity flow formulations of TUFL and investigate
the relationship between these formulations and similar formulations of the one-level
uncapacitated facility location (UFL) problem. In particular, we show that all nontrivial
facets for UFL define facets for the two-level problem, and derive conditions when facets
of TUFL are also facets for UFL. For both formulations of TUFL, we introduce new
families of facets and valid inequalities and discuss the associated separation problems.
We also characterize the extreme points of the LP-relaxation of the first formulation.

While the LP-relaxation of a multi-commodity formulation provides good bounds
in general, the number of variables and constraints grows rapidly with the size of the
problem instance. An alternative model of TUFL is a single-commodity fixed-charge
network flow problem. Rardin and Wolsey showed that by projecting a so-called multi-
commodity extended formulation of fixed-charge network flow problems onto the space
of flow variables used in the weaker flow formulation, a broad class of valid inequali-
ties can be obtained. We discuss a subclass of these inequalities for TUFL that seems
particularly useful for computational purposes.

Subject classification: Facility Location: Discrete; Integer Programming: Cutting
planes/Facets; Transportation: Location Models.






The two-level uncapacitated facility location (TUFL) problem involves two types of
facilities, which we call y-facilities and z-facilities. Decisions have to be made simultaneously
on which facilities of both types to open, and to which pair of y- and z-facility each client
should be assigned. The objective is to maximize profit under the constraint that the demand
of all clients has to be met.

The two-level problem is a natural extension of the well-known uncapacitated facility
location (UFL) problem. This two-level problem can be used to model a hierarchical struc-
ture with a set of major facilities connected to minor facilities, which in turn are connected
to clients. Many practical location situations have a clear two-level structure. For exam-
ple, the distribution networks of many companies often involve major (central) as well as
minor (regional) depots. The central facilities supply the regional ones and such shipment
quantities are typically large, whereas each client is served from a regional depot where
the transport is usually carried out using smaller vehicles. Other applications involve two
types of non-hierarchical facilities. For example, in garbage collection, a truck travels from
a depot to the client and then to a disposal plant, so each client is assigned to a truck depot
and a disposal plant. In situations where spent products are recycled, each client have to
be assigned to a supply facility and a recycling facility. Numerous other applications of
TUFL exist within areas such as telecommunication and computer network design. Some
applications are described in Barros and Labbé (1992).

Very little is known about the structural properties of TUFL, except that it is an
NP-hard problem, since it generalizes UFL which is NP-hard (see Cornuéjols, Fisher and
Nembhauser, 1977, and Cornuéjols, Nemhauser and Wolsey, 1990). Only a few algorithms
for TUFL have been developed. Kaufman et al. (1977) developed a branch-and-bound al-
gorithm generalizing an algorithm for UFL developed by Efroymson and Ray (1966). Tcha
and Lee (1984) also developed a branch-and-bound method where a dual ascent procedure,
similar to the one developed by Erlenkotter (1978), is used together with a primal descent
method to get good lower and upper bounds. Barros and Labbé (1992) studied various
formulations of a problem related to TUFL, and suggested a Lagrangean relaxation and
a primal heuristic to derive bounds in a branch-and-bound algorithm. For the capacitated
two-level problem, Aardal (1992) studied the cutting plane approach. Balakrishnan and
Graves (1989) consider a generalization of TUFL and develop algorithms for finding good
lower and upper bounds on the optimal solution value.

We investigate some structural properties of TUFL. In Section 1, we introduce the
necessary notation and a multi-commodity flow formulation of TUFL, and characterize the
extreme points of its LP-relaxation. We investigate the relationship between TUFL and
UFL in Section 2. Since UFL is a relaxation of TUFL, any inequality valid for UFL is
also valid for TUFL. We show that certain inequalities that define facets for TUFL induce
facets for UFL, and that basically all facet-defining inequalities for UFL can be extended
to facet-defining inequalities for TUFL. Consequently, we obtain several classes of facets for
TUFL from previously-known facet-defining inequalities for UFL (see Cho et al., 1983a,b,



Cornuéjols and Thizy, 1982, Guignard, 1980, and Cornuéjols et al., 1977).

In Section 3, we introduce two sets of constraints to the multi-commodity flow formula-
tion which ensure that a facility is not open unless a client is assigned to it. We present new
families of facets and valid inequalities for both formulations, and discuss the corresponding
separation problems. If we consider UFL with the extra constraints that a facility cannot
be opened unless a client is assigned to it, we show in Section 4 that almost all facets of
this variant of UFL can be extended to facets for the corresponding version of TUFL.

In Section 5, we present a single-commodity flow formulation of TUFL. This formulation
provides a weaker LP-bound than the multi-commodity flow formulation, but may for large
instances be computationally more tractable, as it contains substantially fewer variables and
constraints. In order to strengthen the flow formulation, we consider a subclass of a general
family of inequalities called dicut-collection inequalities, developed by Rardin and Wolsey
(1993). The general class is obtained by projecting a so-called multi-commodity extended
formulation onto the space of the variables of the low formulation.

1 A Multi-Commodity Formulation of TUFL

Here, we introduce a formulation of the two-level uncapacitated facility location problem
that is a natural extension of the one-level facility location problem. This formulation can
be viewed as a multi-commodity fixed-charge network flow problem.

Let I, J, and K denote the sets of z-facilities, y-facilities and clients respectively. Let
m = |I|, n = |J| and ¢ = |K]|. Furthermore, let

= 1 if z-facility ¢ is open,
* 7 10 otherwise,

” { 1 if y-facility j is open,
;=

0 otherwise, and

x5, = fraction of demand of client k that is served by z-facility ¢ and y-facility j.

We want to determine which z- and y-facilities should be opened and to which pair of
facilities each client should be assigned so as to maximize profit under the constraint that
all demand has to be satisfied. To avoid trivial cases, we henceforth assume that m, n and
q are all at least equal to 2.



The two-level facility location problem can be modeled as:

(MC): max» Y > CikZik— O fi¥i— O i%i

i€l jeJ keK jeJ icl
subject to
Y Dz =1 forallkeKk, (1)
iel jeJ
Y omijr <z foralliel, k€K, (2)
JjEJ
Yz <y; foralljel keK, (3)
el
0<z <1 foralliel, (4)
0<y; <1 foralljel, (5)
Tijk >0 foraliel, jed kekK, (6)
z;,y; integer valued foralli€ I, j € J, (7)

where c;jx, is the profit of supplying the demand of client k from z-facility ¢ and y-facility
J, f; and g; are the fixed costs of opening y-facility j and z-facility ¢ respectively.

Model MC is sufficient even for the case when the demand of each client is not allowed to
be split. Because there are no capacity constraints on the depots and facilities, the problem
will always have an optimal solution where the z;;;’s are integer-valued. Let

Xme = {(x,y,z) € RmnatmAn (:L',y,z) satisfies (1) - (7)},

XMC = {(:I:,y,z) € Rmnatman (a:,y,z) satisfies (1) - (6)}a

and let Pyic = conv(Xpmc). An alternative model of TUFL is obtained by considering each
pair (i,7) of z- and y-facilities as a single uncapacitated facility represented by the 0-1-
variable w;;, thus obtaining an UFL-type model. The fixed charges are correctly accounted
for by introducing variables z;, ¢ € I, and y;, j € J, and the forcing constraints

Wij < z;, and Wij < Yi» foralli € I, ] e J

This model allows the results for UFL to be applied directly, at the expense of introducing
an additional m x n 0-1-variables. '

Below we derive the dimension of Pyc and determine which of the defining inequalities
are facet defining. The proofs of Propositions 1 and 2 (part ¢) are straightforward and are
omitted. We defer the proofs of the rest of Proposition 2 to Section 2.

Proposition 1 The dimension of the polytope Pyc is mng+m+n —q.



Proposition 2

(a) ForanyjeJ andk € K, Y ;crxijk < yj defines a facet of Pyc.
(b) Foranyi€el andk€ K, Y et Tijk < 2i defines a facet of Pyc.
(c) Foranyi€l, j€ J and k € K, z;jx > 0 defines a facet of Puc.
(d) Foranyj € J, y; <1 defines a facet of Puc.

(e) Foranyi€ I, z; <1 defines a facet of Pyc-

1.1 Extreme Points of Xy

The next proposition gives a characterization of the extreme points of the LP-relaxation
Xwmc. Let (z,v, 2) be a point in Xpc. We define the sets

L = {1:0<2<1},
Ji = {j:0<y; <1}, and
K1 = {k: there exists an (7, ) pair such that 0 < z;;3 < 1}.

For each k € K;, we define the sets

I = {i:0<2wijkszi<10r0<Za:ijk<zi=1},
jeJ JjeJ

and J, = {j:0<injk§yj<1or0<2xijk<yj=1},
el iel

and the directed graph Gy = (N, Ag) where Ny, = {s,t,d} U I, U Ji and

Ay = {(s,d):ielnL}
U{(z, ) : Tk > 0,1 € fk,j € jk}
U{(j,t) : j € e N 1}
u{(d,1) : injlc < z,1 € fk}
jeJ
U{(,d) : > zijk < yj,4 € Ji}-
i€l

The arcs incident to the dummy node d indicate which of the constraints (2) and (3) are slack
for client k. An arc incident to the dummy source node s indicates that the corresponding
z-variable is fractional; similarly, the arcs (j,t) indicate that y; is fractional.



Example 1

Consider the following point in Xyc for I = J = {1,2,3} and K = {1,2}:

1 1
21=Z2=§,Z3=1, y1=312=§»y3=1,
1 1
Tisl =1 =Tyl = 3, Tim =29y = I3 = 3, all other x;;; = 0.

For this point
L=h={1,2}, hH=J={1,23}, L=J={1,23}

and the graphs G; and Gy are shown in Figure 1.

Gy

= OaONE OO0

Figure 1: The graphs G; and G5 for Example 1.



We call f € R4 a pseudo-feasible flow for Gy, if flow balance is maintained at each node
in Gy except node d; that is, for each node v € Ny \ {d},

Yo fuw= Y few

uENg:(u,v)EAL WEN:(v,w)EA

Note that we allow the flow value for an arc to be either positive or negative. Let Gy, be the
subgraph of G induced by the node-set I, U J, U {d}.

Theorem 3 (z,v,2) € Xymc is an extreme point of Xyc if and only if

(a) foralliel, zi= m,?xzxijk;
jeJ

(b) for all j € Ji, yj = maxy_ wije,
el
(¢) for any k in K1, the graph Gy, does not contain any even undirected circuit,

(d) there is no non-zero vector (o, ') € Rt x R7 such that:

for each k € K}, there is a pseudo-feasible flow ff for G, with f(’“s’i) = ®)
of foralli € N1 and f(kj’t) = f; for allj € JyN J1.

The vector (o, ') specifies a set of flow-values for the arcs incident to the source node s
and sink node ¢ that is held fixed for all the graphs Gy, k € K;. Condition (8) says that for

each k € K;, we can assign flow-values to the remaining arcs in G, to give a pseudo-feasible
flow.

This result generalizes an analogous result for the uncapacitated facility location problem
in Cornuéjols, Fisher and Nemhauser (1977). Since the proof is quite lengthy it is deferred
to the Appendix.

2 Adapting Facets from the One-Level Uncapacitated Facil-
ity Location Problem

The set of feasible solutions to the uncapacitated facility location problem (UFL) is defined
as:

XurL = {(z,y) € RM1™ . ijk =1 for all k € K,
jeJ
zjr <y; foralljeJ, keK,
zjr >0 foralljeJ, keK,

6



0<y; <1 foralljelJ,
y; integer valued for all j € J,}
where z;; is the fraction of client k’s demand served by facility j, and where y; = 1 if

facility j is open, and y; = 0 otherwise. As before, we assume that n and ¢ are both at least
equal to 2. Let Pypr = conv(XuyrrL).

Proposition 4 (Cornuéjols, Nemhauser and Wolsey, 1990)
The dimension of Pyp, s ng+n —q.

Below we show that all nontrivial facets of UFL are also facets for Pyc, thus providing
us with a large collection of facets for TUFL.

Theorem 5 Let

YD apkzin+ Y bjy; < d 9)

jeJ keK jEJ
represent a facet of Pypy that is not a non-negativity constraint for some x;,. Then
o> ap Y wir+ Y bjy; <d
jeJkek i€l jeJ

represents a facet of Pyc.

Proof. Let F ={(z,y,2) € Puc: Z Z ajk injk + ijyj =d}, and let oz + By +
jeJkeK el jeJ
vz < 6 be a valid inequality for Pyc such that for all (z,y,2) € F,

YD gk + By + D vz =0 (10)

i€l jeJ k€K jeJ i€l
Let 7, = {(z,y) € Pyrv : Z Z a;x Tk + Z bjy; = d}. We will show that there exists
jeJkeEK jeJ

6 € R! and g € R,k =1,...,q such that

aiik = Oajr+ i foralliel,j e JkeK,
B; = 0b; for all j € J,
v = 0 forall: €1,
§ = 6d+ Y m
k€K

By Theorem 3.6 in Section 1.4 of Nemhauser and Wolsey (1988), this would imply that the
inequality ax + Sy + vz < 6 defines a facet of Pyc.

First, let (z,y) be a point in ;. From this point, we can construct two points (Z, y, Z),
(Z,y,2) € F as follows:



e Z1=1,z=0fori#1,
e 21 =13%2=12% =0fori#1,2,

e the y;-values are unchanged for all j € J,

forall j € Jand k € K, ZT1jk = Tjky Tijk =0 for 7 # 1.

These two points correspond to allocating all clients to z-facility 1. For the first point, only
z-facility 1 is open; both z-facilities 1 and 2 are open for the second point. By evaluating
(10) at the above points we obtain

D> akmin+ Y By +m = 4,

€T kek el
DD apmik+ Y Byitm+r = 6
jeT keK el

Hence, v = 0, and by symmetry, v; = 0 for all ¢ € I.

From now on, all the points (x,y,2) € F that we consider are such that z; = 1, for all
i. Since we assume that (9) is not a nonnegativity constraint then, for any y-facility j' and
any client &', there is a point in F; with ;s = 1. For simplicity, let (z,y) be a point in F;
with £7; = 1. From this point we can construct m points, (z!,4,1) € F, for I = 1,...,m,
as follows:

e the y;-values are unchanged for all j € J,

0 otherwise, forall 1€ 1,

zhy =0, foralli e I,j € J,j#1,

_Jzjp fi=m, .
ik = {0 otherwise, forallje JJk e K,k # 1.
In the I-th point, client 1 is allocated to y-facility 1 and z-facility . All other clients are
allocated to the same y-facilities as indicated by (z,y), and to the last z-facility m. By
evaluating (10) for (z',y,1),(x%,¥,1),...,(z™,y,1) we obtain for I = 1,...,m:

o1 + Z Z OmjkTsk + E Biyj = 6.
JEJ ’;;1;’ jeJ
Hence, o411 is equal to some constant ag; for I = 1,...,m. By symmetry, we obtain that
forallje Jand k € K, Qijk = Qjk foralli € 1.

Finally, let (x,y) be any point in F; and construct the point (z,y,1) € F as follows:



e the y;-values are unchanged for all j € J,
® X1k = Tjk, for all ]mJ,k € K,
Zi5k = 0, forallieI,i#1,j€ J k€ K.

Here, all clients are assigned to z-facility 1. Evaluating (10) at (x,y, 1) gives

Z Z Tk + Z ﬂjyj = 4.

JEJkEK JjeJ

Since this holds for any point in JF; and since Fj is a facet of Pypr, we know that there
exists € R! with 6 > 0, and 7 € IR! such that

o = Bajp+m forall j € J k€ K,
Bi = 6b; for all j € J,
§ = 6d+ Y m,
keK
which completes the proof. "

Next, we show that some facets of the polytope for the two-level problem also induce
facets for the one-level problem. More precisely, a facet of Pyc is also facet-defining for
Pyr1, as long as the coeflicients of all z;-variables are equal to zero, and as long as the
coeflicients of the variables x;;, are independent of i.

Theorem 6 Every facet of Pyc of the form

YooY apnd @+ Yy by < d, (11)

jeJkeK i€l jed

where the coefficient of z; is zero, for all i € I, and the coefficient of ;5 is independent of
tforallie I, jeJ, ke K, induces a facet for Pypy..

Proof. Let p denote the dimension of Pyc. If (11) represents a facet of Pyic, then we can
construct a p X (mng 4+ m + n + 1) matrix of rank p of the form [M|1] where the elements
in the last column are all 1’s, and each row of M is the vector defining a point in Pyc
lying on the facet represented by (11). Since the rank of a matrix is unchanged by column
operations, the rank of this matrix is unchanged if, for each j and each k, the column
corresponding to the variable z;;; is replaced by the sum of the columns corresponding to
ik fori=1,...,m.

Now consider a submatrix [M’|1] obtained by deleting the columns corresponding to z;
fori=1,...,mand z;jy fori =2,...,m, j=1,...,n,and k = 1,...,q. The rank of this
matrix is at least p — (ng(m — 1) + m) = ng +n — g, since p = mng + m +n — ¢g. Each row
of this submatrix corresponds to a point in Xypr, on the facet defined by (9). =



Since the inequalities

ik < Yj forall j € J,k € K,
and y; <1 for all j € J,

are facet-defining for Pyry, (See Cornuéjols, Nemhauser and Wolsey, 1990), applying The-
orem 5 proves parts (a) and (d) of Proposition 2. Furthermore, since the roles of the z-
and the y-facilities are symmetric, an analogous collection of facets can be derived by inter-
changing the roles of the indices 7 and j, and correspondingly the variables z; and y;, thus
proving parts (b) and (e) of Proposition 2.

In addition to identifying the trivial facets of Pyic, Theorem 5 can be exploited more
generally to yield many more facet-defining inequalities for Pyc. Cornuéjols et al. (1977),
Guignard (1980), Cornuéjols and Thizy (1982) introduced several classes of facets for Pypr..
Later, Cho et al. (1983a,b) developed a general class of facet-defining inequalities that
subsumes all previously-known facets of Pypr,. By applying Theorem 5 to these results, we
obtain a large collection of facets for Pyc involving the clients and the y-facilities, and an
analogous collection of facets for Py involving the clients and the z-facilities.

3 New Facets for TUFL

Here we introduce two new classes of facet-defining inequalities for TUFL. We first describe,
in Section 3.1, facets of Pyc, and introduce, in Section 3.2, facets of a slightly modified
polytope. Both classes involve either z- and z-variables or y- and z-variables. Since the
roles of z- and y-facilities are interchangeable, such classes of facets always come in pairs.

3.1 New Facets of Pyc
3.1.1 The Valid Inequalities

Consider p clients, and assume that precisely one of the p clients is assigned to every y-
facility. If only one y-facility, say j; is open, then all clients, including the designated client
k(j1), have to be assigned to facility j;, since all demand must be met, leading to the
following valid inequality.

Proposition 7 Assume that ¢ > n and let S = {k(1),k(2),...,k(n)} C K be any sequence

of n distinct clients. Then
2 (5 + D Bigui)) 2 2 (12)
Jje€J el

s valid for Xmc.

10



Theorem 8 If ¢ > n > 3, then inequality (12) defines a facet of Pyc.

Proof. We will prove that (12) represents a facet using the indirect method. Let ax +
By + vz < & be valid for Py, and assume that

F = {92 € Puc: Y+ zig) = 2}

Jj&J iel
C {(®y2) €Puc: ) Y. Y aukmige+ ) Biws + D wizi =6}
i€l jeJkeK JjeJ el

To prove that inequality (12) defines facets of Pyyc when ¢ > n > 3, we need to show
that

g = —04+m foralliel,j € Jk(j) € S,
Qijk = Tk forallieI,j € J,k € K,k # k(j),
B = -6 for all j € J,
v = 0 foralli eI,
§ = 204+ m
keK

for some constants 8 > 0 and 7, k € K.

Choose arbitrarily one z-facility i, two y-facilities ji, jo and consider the following tight
point in F with:

Zil

Yir = Yjo
Ty 51k(j2)
Ti152k(j1)
Tivhk

i
O

for all k € K, k # k(j1) or k(j2),

and all other elements with value zero. We refer to the above point as point 1. Consider
a second point with z;, = 1, 43 # %;, and other elements as in point 1. By evaluating the

expression
D) amie+ ) Biyi+ Y vz =0 (13)

i€l jeJ keK JjeJ el

at these two points, we obtain v;, = 0. Varying over all possible choices of i; gives v; = 0
for all ¢ € I, i # i1 and since 4; was chosen arbitrarily we get

v =0foralliel

11



Next, consider the modification of point 1 where z;, = 1 as well for i3 # i1, and where
one arbitrarily chosen client k; is assigned to z-facility ¢2. Evaluating (13) at this point and
at point 1 gives oy, %, = Qi,jk,- Since 41, j; and k; were chosen arbitrarily we have

Qijk = Ok, foralliel,j € J k€ K.

We now consider point 1 and choose an arbitrary client k;, different from clients k(j1), k(j2),
and we re-assign client k; to y-facility jo. Evaluate (13) at the new point and at point 1, and
compare the expressions. This gives a; , = aj,,. Knowing that j; and j, were arbitrarily
chosen and that k is any client different from client k(1) and k(j2) yields

ajr =1 for all j € J k € K, k # k(5). (14)

Next consider a point in F with the same structure as point 1, but where a y-facility
J3 # j1 or jo takes the role of y-facility js, i.e.

Ziy
Yir = Yjs
Tiyj1k(j3)
Tiyjsk(s1)

1
1
1
1
Tirjrk 1

for all k € K,k # k(j1) or k(j3),

and all other variables are equal to zero. By evaluating (13) at the above point and at
point 1, we get o,k(j) = ak(ir) + Biz — Bis = 0. Since aj,i(51) = sk(iy) = Mk(5,) We have
Bj, = Bjs, and as j2 and j3 can be chosen arbitrarily we obtain

B; = —0 for all j € J, (15)
and since (12) is not an improper face we must have 6 > 0.

Finally, consider the following point in F that we refer to as point 2. Choose ¢; and j;
as in point 1, and let

Ziy

Y5
Liyj1k(51)
Li1j1k(j2)
Livjrk

i
= e el et

for all k € K,k # k(j1) or k(j2).

Comparing point 1 to point 2 and using (14), and (15) gives o x(j;) = —0 + Mi(;,)- Given
that j; is an arbitrary y-facility we obtain

ajk = —0 + ny;) for all j € J, and k(j) € S.

12



Evaluating (13) at any point in F gives

0= —20 + Z Nk
keK

which concludes our proof. =

Corollary 9 Assume that ¢ > m and let S = {k(1),k(2),...,k(n)} C K be any sequence
of n distinct clients. Then inequality

Do (E+ D k) 2 2 (16)
iel jeJ

15 valid for Xyc and defines a facet of Puc if ¢ > m > 3.

3.1.2 Separation

Inequality (12), and similarly (16), can be separated by solving a minimum-weight maximum-
cardinality matching problem. For any point (Z,#, z), we consider the complete bipartite
graph G = (JUK, J x K) with edge-weights

wjkz'yj"'z-iijk V(j,k)eJxK.
i€l

Let the minimum-weight matching among all matchings of cardinality n be

M = {(1,k(1)),(2,k(2)), ..., (n, k(n))}.

If the total weight of the matching M is less than 2, then inequality (12), with the sequence
S as defined by the edges of the matching M above, is a valid inequality that cuts off the
point (Z, 7, z).

3.2 New Facets for a Modified Formulation

The formulation MC allows a facility to be open even when no clients are assigned to it,
whereas in many applications we may require that a facility be closed when not used. When
all the fixed costs are positive, the objective function ensures that this will be the case. For
a more general cost structure, it may be necessary to explicitly model this requirement,

thereby obtaining a different formulation of TUFL which we shall refer to as formulation
MC'.

13



Formulation MC' is obtained by adding the following constraints to formulation MC:

Z Z Tijk >z forallie I, (17)
JEJkEK
Z Z Tijr >y; foralljed (18)
i€l keK

Constraints (17) and (18) ensure that no facility is opened if no client is assigned to it. For
inequalities (17) and (18) to be valid we need to explicitly state that the demand should
not be split between clients. In formulation MC’ we therefore replace constraint (7) by

Tijk,Yj, 2 integer valued for alli € I, j€ J, k € K. (7™
Let
Xmo = {(z,y, 2) € R™IT™*" (1,9, 2) satisfies (1) — (6), (7'), (17) — (18)}.
Analogous to the the definitions of Xyc and Pyc we define Xy and Pycr as
Xumor = {(z,y,2) € R™*T™¥" . (g 4, 2) satisfies (1) — (6), (17) — (18)}.

and
Pyer = conv(Xpmer)-

3.2.1 Dimension and Trivial Facets of Py

Here, we state the results on the dimension and trivial facets for Pycr. Since the proof
techniques used for these results are standard they are omitted here.

Proposition 10 The dimension of the polytope Pyicr is

(a) mng+n+n—-q-2ifm=n=q=2,

(b) mng+m+n—q—-1ifq=2andeitherm>3, n=2orm=2, n>3,
(c¢) mng+m+n—q in all other cases.

In the cases when Py is not full-dimensional, all points in Py satisfy the following
equations in addition to the demand constraints (1):

Ifn=2and qg=2: y1—22wi1k=y2—1- (19)
icl keK

Ifm=2and qg=2: zl——ZZxUk:zz—l. (20)
jeJkeK
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The trivial facets of parts (a), (b) and (c) of Proposition 2 are also facet defining with
respect to Pyicr. In addition the following holds:

Proposition 11
(a) Ifq >3, z; <1 represents a facet of Py for alli € I.
(b) Ifq >3, y; <1 represents a facet of Pycr for allj € J.

(c) For any j € J, Yicr kek Tijk = Y; defines a facet of Pyc unless n = 2 and
q23.

(d) For any i € I, ey Ykek Tijk > % defines a facet of Pycr unless m = 2 and
qg23.

Note that none of the inequalities ;5 < 1, y; > 0 and z; > 0 represent facets of Py
as they are implied by the above inequalities. Also note that x;;; < y; and z;; < z; are
never facet defining.

3.2.2 The Valid Inequalities
The new inequalities introduced below are designed to capture structural properties involv-

ing y-facilities and clients as well as z-facilities and clients.

Theorem 12 Let J' C J with1 < |J'| < q.

Sui-S Y Y mp+ @1 - Y y) <0 (21)

jeJ! je€J' i€l keK jeJ!
is valid for Pycr and represents a facet of Pycr if |J'| < min{n, ¢}.

Note that when n = ¢ = 2 and |J'| = 1, (21) represents an improper facet of Pycs; that
is, all points in Pycr satisfy (21) with equality.

Proof of validity:

Case 1: 3 gy y; =0.

Sui=Dd 0 Yz +(a-1ID=>D - <0,

jedJ! jeJ'iel keK jeJ!

where the equality follows from 3¢y 2ier Xokek Tijk = ¢, which holds since all demand
has to be met.
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Case 2: } jgyy; > 1.

Youi= Y3 D> mipp+a—1TDA =D y) < (@= 1IN =Y y) <0,

jeJ! jeJ!iel keK jeJ jgJ’

where the first inequality follows from a combination of inequalities (18), and the second
inequality follows from the assumption that (g — |J'|) > 0.

Proof that (21) is facet defining:
Here we use the same technique as in the proof of Theorem 8. Let |J’| < min{n, ¢}. Without

loss of generality, assume that J' 3 1. Let az + By + vz < § be a valid inequality for Py
such that

F = {@y,2)€Puc: D yi— >, > zip+(a—|INA=Y y)=0}

jeJ jeJ' icl kek il
C{(zy,2) € Pucr = . 0. D cunTije + 9 Biyi + D Thak = 6}
icl jeJ keK jeJ keK

For any +',i" € I, i #1", ' ¢ J', and k' € K, consider the following two points in F:

. _{1 ifi=1and j =7,
Wk~ 10 otherwise,

1 ifj=j
_ ; 22
Yi { 0 otherwise, (22)

z.__{l i£i =1,
t 0 otherwise;

1 ifi=4d"j=35and k=Fk,
and ik =1 ifi=¢,j=j5 and k #F,
0 otherwise,
{ 1 ifj=j,
Y; = .
0 otherwise,
L {1 if i =4 or ",
‘ 0 otherwise.
By comparing the two points we can conclude that
Qi jrgt = Qi + Yin for any i',i" € I, i' #4", any j' ¢ J', and any k' € K.  (23)
Similarly for any j' € J', and for any arbitrary i’ # " and any arbitrary &, consider a
solution where all clients are assigned to z-facility i’ and y-facilities in J' such that all |J'|

facilities are used, and compare it to the solution where client &’ is switched from z-facility
i’ to i". We see that (23) also holds for j € J'.
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Next for j' ¢ J', comparing point (22) and

N _{1 if i = i" and j = §/,
ik 0 otherwise,

o { 1 ifj=4,
Y=o otherwise,
o {1 i Q=

t 0 otherwise,

for any arbitrary i’ # ", and using (23) we see that

—(g—= 1)y =v»  forany i’ #4". (24)

If m > 3 or ¢ > 3, applying (24) to all pairs of distinct ¢ and :” shows that ; = 0 for all
i, and hence ayjr = aynj for any ¢ # ¢, any j, and any k. When m = ¢ = 2, we have
Y2 =~

Next, for any client pair k' # k", and any 7' # 1, consider a point in F where client k'
is assigned to y-facility 1, client k" is assigned to y-facility j' and all clients are assigned to
z-facility 1. Comparing this point to the point in F where the y-facilities for the clients &’
and k" are switched, we get

o1k + Qpjrgr = e + Qe
or Qi — Q11! = Qqgrgn — Q1! for any K 75 K",

Therefore, ayr = a1 + 7; for some constant 7;, for any j # 1 and any k.

Next, let ¢/ = 1. For any k', compare (22) for j' ¢ J' and the following point:

1 ifi=¢,j=7"and k=F,
Tijk = 1 if’i=il,j=jl andk;ék’,
0 otherwise,

1 ifj=4 orj”
- ) 25
Yi { 0 otherwise, (25)

z,={1 ifi =4,

) 0 otherwise.

For j” =1, we see that n; = B; for all j ¢ J'. Compare (25) for ;/ =1 and j” € J'\ {1},
we see that n; = p; — f; for all j € J'.

For any client k', consider a point in F where all clients are assigned to z-facility ¢ and
y-facilities in J’ such that all |J'| facilities are used, and such that client k' and at least one
other client are assigned to y-facility 1. Compare this solution to the solution where client
k' is re-assigned to some other y-facility j' € J'. We can then conclude that a;1, = ;i for
any 4, any j € J', and any k. Therefore n; = 0, and hence g; = 1, for any j € J'.
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Lastly, let 7/ = 1. For any j; ¢ J' and any j, ¢ J' with j; # j2, comparing (22) for
j' = j1 and j' = jo, we see that B;, = B;,. Comparing (22) with ¢/ = 1,5’ ¢ J' and a point
in F where all clients are assigned to z-facility 1 and y-facilities in J', we see that

Bi=—(g—1IDp for all j ¢ J'.

Substitution into (22) shows that § = Z a1k + | |81 + vi. Therefore, ax + By + vz < §

keEK
can be written as

Yook +B1) D D Tk —m (22 -3y -772jk)
keK jeJkeK jeJkeK

+6 (2 vi—- S Y wp+@-1INa-Y w))
jeJ! jeJ! iel keK J&J!

<Y (onk+B1) —m(a—1).

keK
When m > 3 or ¢ > 3, 1 = 0. Hence (21) represents a facet of Pycr. [

Corollary 13 Let I' C I with 1 <|I'| < q. The inequality

You-3 S Y w13 z) <0 (26)

i€l i€l jeJ keK igr
is valid for Py and represents a facet if |I'| < min{m,q}.

Again, if m = g = 2, the inequality (26) for |I'| = 1 is an improper facet.

Example 2

As an illustration, when I = J = K = {1, 2,3}, the following point defined by:

1 1 1 2 1
Z121 = 5, T211 = E’ x311 = g, Z212 = §’ x312 = §,
1 1 1
Tus =3, 3=, 38 = g, all other x;;;, = 0,
1
nn=z=1 =z 3 n=y2=1, y3=0.
is in Xy but does not satisfy (26) with I’ = {1,2}. .

We note that when |I’| = ¢ — 1 and when |J'| = ¢ — 1, the inequalities (21) and (26) are
Chvétal-Gomory inequalities of rank 1 (see Nemhauser and Wolsey, 1988).
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3.2.3 Separation

The separation problems based on the families of inequalities (21) and (26) are quadratic
knapsack problems. However, for fixed size of the subsets |I’| and |J'| respectively, we obtain
linear 0-1 knapsack problems. Let (z*, y*, z*) denote a fractional solution to formulation MC’
and let 7; = 1if j € J' and 7; = 0 otherwise. Below we state the separation problem based
on inequalities (21) for fixed |J/| = ¢.

(KS): max ) (yf =D > eh)m + (g -1 =Dy - 7))
i€t i€l keK jeJ
subject to
;o = 1
jeJ

€ {0,1}  jeJ

Since y; — >ier Lkek Ty < 0 for all j € J due to constraints (18), and since ¢ —¢ > 0 due
to the assumption of Theorem 12, it is easy to see that inequality (21) can be violated only
if 3¢5 y; <1. Let J” denote a maximum cardinality subset of J such that 3= ;c vy} < 1.
It then follows that we only have to solve the knapsack problems KS for n—|J"| <t < ¢-1.
Since the constraint coefficients of the m;-variables are all equal to one, problem KS can be
solved by a greedy algorithm.

4 New Facets for the One-Level Uncapacitated Facility Lo-
cation Problem

All facet-defining inequalities for UFL previously known in the literature have 0-1 coeffi-
cients, except for facets obtained by simultaneous lifting (see Cornuéjols and Thizy, 1982
and Cho et al., 1983b). In both classes of facet-defining inequalities introduced in Theorems
12 and 13, the coefficients of y; for j ¢ J' and z; for ¢ ¢ I may be greater than one. If we
consider the version of UFL where the constraints

>z >y; foralljelJ, (27)
keEK

are added to the set of constraints defining Xyrr,, we obtain the following results. Let Xypy,
be the set of solutions (z,y) satisfying the constraints of Xypr and constraint (27). Also,
let PUFL’ =COIlV(XUFLI).

19



Theorem 14 Let

DD ik + D by < d, (28)

JjeEJkEK JjedJ

represent a facet of Pypyr that is not a non-negativity constraint for some x;;. Then

DD awy T+ Yy by <d, (29)

jeJkeEK iel Jj€J

represents a facet of Pycr.

Theorem 15 Ewvery facet of Pyc of the form

Z Z a5k injk + Z bjy; < d,

jeJkeK i€l jEJ
where the coefficient of z; is zero for all i € I, and the coefficient of x;; is independent of
it forallie I, jeJ, k€K, induces a facet for Pypy.

The proofs of Theorems 14 and 15 are similar to the proofs of Theorems 5 and 6 and
therefore omitted here.

By applying Theorem 15 to the facet-defining inequalities (21) and (26), we can obtain
new facets for Pyprs, the modified formulation of the the one-level uncapacitated facility
location problem.

5 An Alternative Flow Formulation

When solving integer or mixed-integer problems using LP-based solution techniques, such
as the cutting plane approach, the choice of initial formulation plays an important role. It
is crucial to obtain a good initial bound from the linear relaxation. On the other hand, one
wants to avoid too large formulations, since it is practically inevitable that at least a few
branch-and-bound nodes are needed to verify the optimal solution. If the formulation is very
large, the time gained from a very sharp LP-bound may be lost by the time consumed by
solving a large linear program in every branch-and-bound node. A solution to this dilemma
can be the use of a weaker, smaller, initial formulation and then augmenting the formulation
by identifying and adding violated inequalities, thus in some way compensating for the lack
of strength in certain parts of the initial formulation.

Computational experiments have shown that the linear programming bound produced
by formulation MC in general is very sharp (see Rardin and Choe, 1979). However, the
formulation grows rapidly with the size of the instance. Therefore, we introduce in the
following subsection a weaker flow formulation, as an alternative to the multi-commodity
formulation MC. In Section 5.2 we discuss how the flow formulation can be strengthened
by adding dicut collection inequalities (see Rardin and Wolsey, 1993).
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5.1 The Single-Commodity Flow Formulation

Let w;; be the quantity sent from z-facility ¢ to y-facility j and v;x the quantity sent from
y-facility j to client k. Note that vjx = Y ;er Tijr and wi; = Y_pek Tijk- Without loss of
generality we assume that each client’s demand is one unit. The set of feasible solutions to
the flow formulation, F, is given by the following sets of constraints:

(F) : Yvjxk =1 forallkel, (30)
jeJ

vjr <y; foralljedJ kek, (31)

v —d wiy; =0 foralljel (32)
keK i€l

Y wiy <gqz foralliel, (33)
JjeJ

vk, >0 foralljed, keK, (34)

wi; >0 foralliel, jeJ, (35)

0<y; <1 foralljel, (36)

0<z <1 foralliel, (37)

%,Y;, integer valued foralliel, j € J. (38)

Let
Xr = {(v,w,y,2) € RMT™™IN . (4 w,y, 2) satisfies (30) — (38)},

Xr = {(v,w,y,2) € R*IT™HMIn . (4 w,y, 2) satisfies (30) — (37)},
and let Pr = conv(XF).
Proposition 16 Xyc C XF.

Proof. By using vjr = 3 ;cr Tijx and wi; = Y ek Tijk, We can easily verify that XF is
equivalent to the set of solutions defined by the constraints (1),(3), (4)-(6). Let client &k be
assigned to z-facility 7+ and y-facility 7, and assume that all other clients are assigned to
different facilities. z; = 1/q is feasible in Xy, whereas one of the constraints (2) in Xymc
would require z; = 1. . ]

From the proof of Proposition 16 we observe that the flow formulation does not model
the fixed-charge structure of the z-facility level as well as the MC formulation due to the
weaker constraint set (33). In the next section we shall describe a class of inequalities that
can be used to strengthen the flow formulation.

21



5.2 Dicut Collection Inequalities

Rardin and Wolsey (1993) derived a class of valid inequalities, called dicut collection in-
equalities, for general uncapacitated fixed-charge problems, from the projection of a multi-
commodity formulation onto the space of the flow variables. In fact, they showed that the
class of dicut collection inequalities precisely describes this projection. They also showed
that these inequalities subsume many of the previously-known inequalities developed for
more specific network problems, such as uncapacitated lot sizing.

Here we describe a subclass, called simple dicut collection inequalities. Without loss of
generality, Rardin and Wolsey (1993) consider a directed graph with only one source node
s and a set of sink nodes T, where the set of arcs are partitioned into a set of continuous
arcs C and a set of fixed-charge arcs F. A t-dicut for ¢t € T is a set R of arcs whose removal
will block the flow from s to t. We assume that each t-dicut is minimal.

Let T' = {T"'};cr be a collection of sets of dicuts, with no more that one dicut in each
set for each sink. Let 4* = |T'%|; hence, v* < 1 for all t € T. Moreover, let 7. = 1 if arc e is
in some dicut in I' and 7, = 0 otherwise. Furthermore, let

ze = the flow on arc e € C,

__ {1 ifarce€F is open,
Y¢= 10 otherwise,

and let d; denote the demand of sink ¢. The corresponding simple dicut collection inequality

is:
Z YeTe + Z Z diYelYe 2 Z vd:. (39)

ecC e€F teT teT

To represent the two-level facility location problem as a fixed-charge network of the form
considered by Rardin and Wolsey (1993), we introduce a source node s and arcs from s to
every z-facility i. We also split vertices representing facilities 7 and j into two vertices 3,4’
and j', j respectively. The set of sink vertices is the set K of clients. The arcs (j/,) for all
j € J and (4,7') for all 7 € I are the fixed-charge arcs of the network. The arcs (s,3) for all
iel, (i,7)foralli € I,j € J, and (j,k) for all j € J, k € K are the continuous arcs. The
values of v;; and w;; in formulation F represent flows on arcs (j, k) and (¢, j') respectively.
The structure of the digraph relevant to TUFL is shown in Figure 2.

One subclass of the simple dicut collection inequalities that seems particularly useful
for formulation F of TUFL is the so-called fixed-charge path inequalities (see Van Roy and
Wolsey, 1987). These inequalities involve variables for both z- and y-facilities as well as
clients.

Consider the path (7, 7, l~c) from z-facility 7, through y-facility 7 to client k. The demand
of the nodes in the path is equal to zero except for client k. Hence, if we choose a subset
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flow= vj;,

Figure 2: TUFL as a fixed-charge network flow problem.

of arcs supplying any of the nodes on the path, then the total flow on these arcs has to be
less than or equal to the demand of client & plus all possible outflow from that node and
all nodes further down on the path. For the inflow arcs we make use of the fixed-charge
structure. The path structure is shown in Figure 3.

Let I C I'\ {1}, and J* C J\ {j}. Also, let w; denote the flow from the source s to
z-facility 7. The fixed-charge path inequality for path (1,7, k) is:

u; + Z wz-3+ Z Uik Sd,‘cz;+ Z d;“czi+ Z d,'cyj-i- Z w;j+ Z V5 (40)

ier+ jeI+ ier+ jeJ+ F€\{I)) keK\{k}

Note that di, = 1 for all £ € K in our case. The following example shows how an inequality
of type (40) can be used to cut off a fractional solution of Xp.
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ToJ\{j} & From I\ {i}
.......
4.--'.'.23::-';
To K\ {k} & :

Example 3

Let I = J = K = {1,2,3} and consider the path (i=1,5 =1,k =1) with I* = {3} and
J* = {3}. Then the point in Xy defined by:

1 2
A=z a2=3, z3 =0, n=y2=1 y3=0,
wip =1, wyp =2, all other w;; = 0,
vii1=1, wvea=1, wyg=1, all other Uik = 0,

does not satisfy the path inequality:

w11 + w2 + w1z +wsy + v < 21 + 23 + Y3 + wiz + w1z + v12 + vi3.

w1

To see that the inequality (40) is a simple dicut inequality, we use the following equation
derived from flow balance along the path (3,7, k):

wik Yo wgh Y vip=dp+ Y owy+ Y vi— Y wi— Y, U

ielt jeI* J€I\7} keK\(k} i€(I\EH\I+ JEU\FH\I*
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Substituting in (40) gives

Z W;s + Z Vik + d,;Zg + Z d,’czi + Z d,;yj > d,*c, (41)
ie(I\FH\IT FEU\{GH\I+ ielt jegt

which is exactly the simple dicut collection inequality where I'* = @ for all k¥ € K \ {k} and

It = {Gi): i~e {2} U~I+} U{(j,,j)~:j c J+}~
U((#,3) 1 € Y UTHU{G9) 55 ¢ (YU T,

Since the flow on the arc from a y-facility to a client cannot exceed the client’s demand,
we can extend the path inequality to the following valid inequality:

w;+zwi;+2’vﬂc < (de+d,~c)z;+ Z(Edk_'_dl'c)z? (42)
el+ jeJ+ keK— ielt ke K-
+ Z d,;yj + Z w;; + Z V5
jeJt J€(\{F}) ke(K\{E})\ K~

where K~ C K \ {k}.

The separation problem based on the dicut collection inequalities (39) can be solved
by checking if a fractional solution (w*,v*,y*, z*) of the single-commodity flow formulation
is feasible for the multi-commodity extended formulation. That is, if there is a solution
(z*,y*,2") for MC such that 3 ;c; 2}, = vj and Ypex @iy, = wij foralli € I, j € J
and k € K. If there is, then all dicut collection inequalities are satisfied; if not, one has to
examine the dual of the multi-commodity extended formulation, which is a large LP for any
reasonable-sized problem, to identify a violated inequality. No combinatorial algorithm for
solving the separation problem is known. A heuristic for finding violated fixed-charge path
inequalities (40) and extended fixed-charge path inequalities (42) can be found in Van Roy
and Wolsey (1987).

6 Extensions

Rardin and Choe (1979) have shown that the multi-commodity extended formulation models
the fixed-charge behavior more carefully than single-commodity flow models. They presented
empirical evidence showing that the LP-relaxation of the multi-commodity flow formulation
is usually tight and is provably exact in some special networks. Since the model MC is
equivalent to a multi-commodity flow formulation of the two-level uncapacitated location
problem, we should expect its LP-relaxation to be relatively tight. Indeed, the largest gap
that we have been able to construct for Euclidean problems as an example is 9 percent.
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We plan to develop and test a cutting plane approach to solving the two-level uncapac-
itated facility location problem, using the models MC and MC'. One question to address is
the effectiveness of the facets introduced in Section 3. Another issue to be explored is the
tradeoff between the model size and solution quality between the stronger and weaker flow
formulations.
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Appendix

Theorem 3 (z,y,2) € Xymc is an extreme point of Xmc if and only if

(a) PForalliel, z;= ml?,xeijk.
JjE€J
(b) ForalljeJy,y;= mgx%xijk.

(c) for any k in K, the graph Gy, does not contain any even undirected circuit,
(d) there is no non-zero vector (o/, 8') € Rt x R’ such that:

for each k € Ky, there is a pseudo-feasible flow f* for Gy with f(ks’z.) = 5
o} for allie ;NI and f(kj’t)=ﬂ; for all j € Jy N Jy. (8)

The vector (o, §') specifies a set of flow-values for the arcs incident to the source node s
and sink node ¢ that is held fixed for all the graphs G, k € K;. Condition (8) says that for
each k € K;, we can assign flow-values to the remaining arcs in G, to give a pseudo-feasible
flow.

Proof. It is easy to check that (z,y,2) is not extreme if Conditions (a) and (b) are
violated. Suppose condition (c) is violated and the graph G, contain an even undirected
circuit. In the first case, suppose this circuit does not contain node d. Then, the circuit
contains the arcs:

{(il’j1)7(i2’j1)’(i2aj2)(i3,j2) ""(is’js)a(ilajs)}

for some s > 2. Note that the values of the z;;;’s corresponding to these arcs are strictly
between 0 and 1. Construct a point (z',y, z) by alternately increasing and decreasing the
corresponding x;;x’s for the sequence of the arcs in this circuit, that is, let

Tipjnk = Tinink T € forh=1,...,s,
x',ih+1jhk = Tipyiink — ¢ forh=1,...,s, withigy =i,
and all other elements of (z',y,2) the same as (z,y, 2),
for some €’ > 0. A similar point (z",y, z) can be constructed with ¢’ = —¢'. Note that
ZxéijZxQG'k:Zwijk Viel,k €K,
jeJ jeJ jeJ
and Y alp = alp=wu VieJkek
i€l i€l i€l
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For a sufficiently small ¢, both points (2/,y,2) and (z",y,z) are in Xyc, showing that
(z,y,2) is not an extreme point of Xyc.

In the second case, suppose the circuit contains node d. Since the circuit is even, the
number of arcs not incident to d is also even. Again we can construct a point (z/,y, z) by
alternately increasing and decreasing by €’ > 0 the x;;;’s corresponding to the sequence of
arcs of the circuit, skipping the arcs incident to d. An illustration is shown in Figure 4.

Figure 4: Using an even circuit to construct the point (2, y, z).

For node i incident from d in the circuit, 3 ;¢ x;jk may differ from }° ;¢ ; Tijk, and for node
j incident to d in the circuit, }5;c; ;) may differ from 3 ;c; 2ijx. However, since the arcs
(d,?) and (j,d) in Gy indicate that the corresponding constraints (2) and (3) are slack,
(z',y, z) will still be in Xy if ¢ is sufficiently small. As in the first case, we can construct
a similar point (z”,y, z) with €’ = —¢'. Since (z,y,2) is a convex combination of (z',y, z)
and (z”,y,z), and by choosing ¢ > 0, but small enough, both (z’,y, 2) and (2”,y, z) will
be in Xy, then (x,v,2) is not an extreme point.

Finally, we will show that if Conditions (a), (b) and (c) are satisfied, (z,y,z) is an
extreme point of Xy if and only if Condition (d) holds.

Let I2 = {Z L2y = 0}, I3 = {'L L2 = 1},
J2 = {]yj=0}a J3={.7y1=1}7
Ky = {k:x;j) integer-valued for all ¢ and all j}.

Note that I, I and I3 partition I, Jy, J; and Js partition J, and K;, K, partition K.
Suppose condition (d) is violated. Consider (z',y’, ') and (z”,y",2") where

Z=zitoh, Yi=yi+Bj, ik = Tijk + Vijes (43)

"no__ . ! "o_ Al "o . A
and Zp =20, Y=Y iy Tijk = Ligk — Yijk-
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By considering the upper and lower bounds on z;, y; and ;jx, we see that o) = 0 for
i € [, UI3 and B} = 0 for j € J U J; in order for («',y',2') and (z”,y", 2") to be in Xmc.
Furthermore, we must have
'7£jk=0 forie [ ULUI;, j€Jy, k€K,
foriel,, jeJiUuJyUJs, k€K, and (44)
foriehULUI;, 7€ J1UJUJs k€K,

This leaves o; for ¢ € I, 8} for j € Ji and v} for i € L UI3,j € J1 U Js,k € K;
undetermined.

Let (o, #') satisfy (8), and let f* for k € K; be a corresponding set of pseudo-feasible
flows. Then the values for v;;, can be determined as follows. For k € K3, we define

r 0 ifm,-jk=00r 1,
Tijk = f(k;l,j) if 0 < Tijr < L.

Note that flow balance at the nodes I N I; and Ji, N Jy ensures that Zje 7 7£jk = o} and
Yier Vijrx = B if the corresponding constraints (2) and (3) are tight. Flow balance at the
nodes s and ¢ ensures that 357 o; =0and Y5y B; = 0, which are also necessary for
feasibility. Further, we note that the graphs Gy, for k € K, are of two types:

1. Gi contains no undirected cycles — whence any pseudo-feasible flow satisfies
Yier Zjes Yijr = 0.

2. Gj contains an undirected odd cycle — in this case, by adjusting the flow on the
sub-paths in the cycles that start and end with d and contain an odd number of arcs,
a pseudo-feasible flow can be constructed with 3 ;c1 3 es 'ygjk =0.

We also note that we can always assume that (o/, ') is scaled such that

o] < min{z;,1— 2} for all i € I,
|,3;| < min{y;,1 —y;} for all j € Jy,

A

and |f(kz-,’j,)| < min{zije, 1 — Tijre} for (#',4') in the odd cycles in any G*.

Thus, if condition (d) does not hold, then the values of ¢/, 8’ and 4 can be set as above
to show that (z,y, z) is a convex combination of two distinct points in Xyc.

Now suppose condition (d) holds, and suppose that the two points as defined by (43)
are in Xymc. By considering the upper and lower bounds on the variables, we again see that
of =0 for i € [, U I3 and 8 =0 for j € J; U J3, and the conditions (44) hold.

Now, in order for the two points (z',3',2') and (z”,y",2") to be feasible for MC, we
must have 3¢ ; vi;, = of if the corresponding constraint (2) is tight; similarly, >";e1 Vi =
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pB; for j € Jk N Jy if the corresponding constraint (3) is tight. Further, we must have
Yier Ljes Vijr = 0 for every k, implying also Y;eraf = 0 and ¥ ¢, B; = 0. We argue
that o/, 8’ and 4’ must be zero, otherwise a non-zero vector (o, 3') and corresponding
pseudo-feasible flows can be constructed that violates (d). [
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