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Abstract

The notion of treewidth has seen to be a powerful vehicle for many

graph algorithmic studies. This survey paper wants to give an overview

of many classes of graphs that can be seen to have a uniform upper

bound on the treewidth of graphs in the class. Also, some mutual

relations between such classes are discussed.

1 Introduction

Many recent investigations in algorithmic graph theory have been on the
topic of graphs with bounded treewidth. For instance, it appears that many
problems that are intractable (e.g., NP-hard) for general graphs become
polynomial or linear time solvable, when restricted to graphs of bounded
treewidth. (See [19] for an overview.) Clearly, such results also hold for any
class of graphs with the property that there is a uniform upper bound on
the treewidth of the graphs in the class. Thus, it is interesting to know for a
class of graphs, when such a uniform upper bound exists. This paper gives
an overview of several such classes of graphs.

The notion of treewidth was introduced by Robertson and Seymour [75],
and it plays an important role in their fundamental work on graph minors.
The related notion of pathwidth was also introduced by Robertson and
Seymour [70]. It appears that there are many other graph theoretic notions,
that can be seen to be equivalent to either treewidth or pathwidth. In several
cases, these notions have been studied independently, and only after some
time the equivalence was realized.

The following notations and de�nitions will be used throughout this
paper. Unless speci�ed otherwise, a graph G = (V;E) is an undirected
graph without self loops or parallel edges, with vertex set V and edge set
E. If not speci�ed otherwise, n denotes the number of vertices of graph
G = (V;E), i.e., n = jV j. The subgraph of G = (V;E), induced by W is
denoted by G[W ] = (W; f(v; w) 2 E j v 2W ^ w 2Wg).
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2 Treewidth and pathwidth

In this section we give the de�nitions of the notions `treewidth' and `path-
width' of a graph, and summarise some results, discussed in later sections
of this paper, and give some useful lemmas. The notions of treewidth and
pathwidth were introduced by Robertson and Seymour [70, 75].

De�nition. A tree decomposition of a graph G = (V;E) is a pair
(fXi j i 2 Ig; T = (I; F )) with fXi j i 2 Ig a family of subsets of V , one
for each node of T , and T a tree such that

� Si2I Xi = V .

� for all edges (v; w) 2 E, there exists an i 2 I with v 2 Xi and w 2 Xi.

� for all i; j; k 2 I: if j is on the path from i to k in T , then Xi\Xk � Xj.

The width of a tree decomposition (fXi j i 2 Ig; T = (I; F )) is
maxi2I jXij � 1. The treewidth of a graph G is the minimum width over
all possible tree decompositions of G.

One obtains an equivalent de�nition, when the third condition in the
de�nition of tree decomposition is replaced by:

For all v 2 V , the set of nodes fi 2 I j v 2 Xig forms a connected
part (i.e., a subtree) of T .

The notion of pathwidth is obtained by restriction of the trees in the
tree decompositions to paths.

De�nition. A path decomposition of a graph G = (V;E) is a sequence of
subsets of vertices (X1;X2; : : : ;Xr), such that

� S1�i�rXi = V .

� for all edges (v; w) 2 E, there exists an i, 1 � i � r, with v 2 Xi and
w 2 Xi.

� for all i; j; k 2 I: if i � j � k, then Xi \Xk � Xj.

The width of a path decomposition (X1;X2; : : : ;Xr) is max1�i�r jXij � 1.
The pathwidth of a graph G is the minimum width over all possible path
decompositions of G.

Note that each path decomposition can be written as a tree decomposi-
tion with T a path. Throughout this paper we will use the term `vertices'
to denote the vertices v 2 V of graphs G = (V;E), and the term `nodes' to
denote the vertices `i 2 I' of the decomposition tree T = (I; F ).

There are a large number of equivalent characterisations of the notions
`treewidth' and `pathwidth'. We summarise these in the following theorems.
For details, see later sections.
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Theorem 1 Let G = (V;E) be a graph, and let k � 0. The following
statements are equivalent:

1. The treewidth of G is at most k.

2. G is a partial k-tree.

3. G is a subgraph of a chordal graph with maximum clique size k + 1.

4. The dimension of G is at most k.

5. G is k-decomposable.

6. The tangle number of G is at most k.

7. G has a convex tangle of order at most k.

8. k + 1 cops can search G in the Seymour-Thomas search game.

9. k + 1 cops can monotonely search G in the Seymour-Thomas search
game.

10. The number of searchers, needed to search G in the fugitive search
game with an inert fugitive is at most k + 1.

11. The number of searchers, needed to monotonically search G in the
fugitive search game with an inert fugitive is at most k + 1.

Theorem 2 Let G = (V;E) be a graph, and let k � 0. The following
statements are equivalent:

1. The pathwidth of G is at most k.

2. The vertex separation number of G is at most k.

3. The interval thickness of G is at most k + 1.

4. The node search number of G is at most k + 1.

5. The minimum progressive black pebble demand over all directives of G
is at most k + 1.

6. The minimum progressive black and white pebble demand over all di-
rectives of G is at most k + 1.

The following lemma follows directly from the de�nitions.

Lemma 3 For all graphs G, pathwidth(G) � treewidth(G).

A short proof of the following lemma can be found in [23]. Older, but
longer proofs can be found in [15, 94].
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Lemma 4 (See [23]) Let (fXi j i 2 Ig; T = (I; F )) be a tree decomposition
of G = (V;E), and let W � V be a clique in G. Then there exists an i 2 I
with W � Xi.

Lemma 5 (Bodlaender, M�ohring [23]) Let (fXi j i 2 Ig; T = (I; F ))
be a tree decomposition of G = (V;E). Let W1;W2 � V , and suppose
f(v; w) j v 2 W1; w 2 W2g � E. Then there exists an i 2 I with W1 � Xi

or W2 � Xi.

Proof: (The following short proof was noticed by Ton Kloks.) Suppose
not. Consider H = (V;E0), with E0 = f(v; w) j 9i 2 I : v; w 2 Xi; v 6= wg.
As in the proof of Theorem 27, H is chordal, and contains G as a subgraph.
By Lemma 4, there are v1; w1 2 W1, v1 6= w1, with (v1; w1) 62 E0, and
v2; w2 2 W2, v2 6= w2 with (v2; w2) 62 E0. This implies that v1; w1; v2; w2

form a chordless cycle of length four in H, contradicting the chordality of
H. 2

Lemma 6 (See [14, 94]) For every graph G = (V;E):

1. The treewidth of G equals the maximum treewidth of its connected
components.

2. The pathwidth of G equals the maximum pathwidth of its connected
components.

3. The treewidth of G equals the maximum treewidth of its biconnected
components.

Proof: (i) Given tree decompositions of all connected components of a
graph G, a tree decomposition of G can be formed by taking the disjoint
union of the tree decompositions, and then adding arbitrarily some edges
between nodes in the disjoint trees to make a tree from this forest.

(ii) Similar.
(iii) Observe that a graph G is chordal, if and only if each biconnected

component of G is chordal, and that the maximum clique size of G equals
the maximum of the maximum clique size over all biconnected components.
Then use Theorem 27. (Alternatively, one can give a direct construction.)
2

As trees can have arbitrary large pathwidth, the pathwidth of a graph
does not necessarily equal the maximum pathwidth of its biconnected com-
ponents. The following lemma is useful for the design of algorithms on
graphs with bounded treewidth. It can be noted, that a tree decomposition
can be transformed into one of this form in linear time.

Lemma 7 (See [56]) Suppose the treewidth of G = (V;E) is at most k. G
has a tree decomposition f(Xi j i 2 Ig; T = (I; F )), of width k, such that
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a root r of T can be chosen, such that every node i 2 I has at most two
children in the rooted tree T with r as root, and

� If a node i 2 I has two children j1, j2, then Xj1 = Xj2 = Xi. (i is
called a join node.)

� If a node i 2 I has one child j, then either Xi � Xj and jXij = jXj j�1
(i is called a forget node), or Xj � Xi and jXj j = jXij�1 (i is called
an introduce node).

� If a node i 2 I is a leaf of T , then jXij = 1. (i is called a leaf node.)

� jIj = O(k � jV j).

A tree decomposition of the form, described in the Lemma 7 above, is
called nice.

Lemma 8 Suppose the treewidth of G = (V;E) is k. G has a tree decom-
position f(Xi j i 2 Ig; T = (I; F )) of width k, such that

� For all i 2 I: jXij = k + 1.

� For all (i; j) 2 F : jXi \Xj j = k.

Proof: Take an arbitrary tree decomposition of G of width k, and repeat-
edly apply the following operations, until none is possible. The resulting
tree decomposition will satisfy the conditions.

� If (i; j) 2 F , and Xi � Xj or Xj � Xi, then `contract the edge (i; j)':
replace Xi and Xj by one set Xi0 = Xi [ Xj, with i0 adjacent to all
nodes that were adjacent to i or j.

� If (i; j) 2 F , jXij < k+1, and Xj 6� Xi, then add a vertex v 2 Xj�Xi

to Xi.

� If (i; j) 2 F , jXij = jXj j = k + 1, and jXi \ Xjj < k, then choose
a vertex v 2 Xj � Xi, w 2 Xi � Xj , and let Xi0 = Xi � fwg [ fvg.
Replace the edge (i; j) in T by edges (i; i0) and (i0; j). (So, i0 is a new
node in T .)

2

Several other similar results can be derived.
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3 Branchwidth

The notion of branchwidth was also introduced by Robertson and Seymour
[82, 90].

De�nition. A branch decomposition of a graph G = (V;E) is a pair (T =
(I; F ); �), where T is a tree with every node in T of degree one or three,
and � is a bijection from E to the set of leaves in T .

The order of an edge f 2 F is the number of vertices v 2 V , for which
there exist adjacent edges (v; w); (v; x) 2 E, such that the path in T from
�(v; w) to �(v; x) uses f .

The width of branch decomposition (T = (I; F ); �), is the maximum
order over all edges f 2 F . The branchwidth of G is the minimum width
over all branch decompositions of G.

The following relationship between treewidth and branchwidth was pre-
sented in a somewhat more general form (for hypergraphs) in [82].

Theorem 9 (Robertson, Seymour [82]) Let G = (V;E) be a graph with
treewidth k, and branchwidth l, E 6= ;. Then max(l; 2) � k+1 � max(b3=2 �
lc; 2).

Graphs of small branchwidth are characterised by the following theorem.

Theorem 10 (Robertson, Seymour [82]) (i) A graph G has branch-
width 0, if and only if every connected component of G contains at most
one edge.
(ii) A graph G has branchwidth at most 1, if and only if every connected
component of G has at most one vertex of degree at least two.
(iii) A graph G has branchwidth at most 2, if and only if G does not contain
K4 as a minor.

See Section 4 for the notion of minor. As a direct corollary from Theorem
10(iii) and Theorem 17(ii), we have that a graph has branchwidth at most
2, if and only if it has treewidth at most 2. (This relationship is not know
to hold for values other than 2, e.g., a tree with at least two non-leaves has
treewidth 1 and branchwidth 2.)

4 Subgraphs and minors

In this section we give a simple lemma for the treewidth and pathwidth
of subgraphs, and give several relations between treewidth, pathwidth, and
graph minors.

Lemma 11 (See [94]) Let G = (V;E) be a subgraph of H = (V 0; E0).
Then treewidth(G) � treewidth(H), and pathwidth(G) � pathwidth(H).
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Proof: If f(Xi j i 2 Ig; T = (I; F )) is a tree decomposition of G, then
fXi \V 0 j i 2 Ig; T = (I; F )) is a tree decomposition of H with the same or
smaller width. The same argument holds for pathwidth. 2

De�nition. A graph G = (V;E) is a minor of a graph H = (W;F ), if G
can be obtained from H by a series of vertex deletions, edge deletions, and
edge contractions, where an edge contraction is the operation that replaces
two adjacent vertices v, w by one that is adjacent to all vertices that were
adjacent to v or w.

In a long series of fundamental papers, Robertson and Seymour obtained
several important results on graph minors (among others: [70, 75, 72, 79,
76, 77, 78, 81, 80, 82, 88, 89, 90, 83, 84, 85, 69, 86], see also [71, 73, 74, 87,
92].) Treewidth and pathwidth play an important role in these studies. We
mention some of these results, that �t in the framework of this paper.

Theorem 12 (Robertson and Seymour [70]) For every forest H there
is an integer wH such that every graph with no minor isomorphic to H has
pathwidth at most wH .

Bienstock et al [13] show that in Theorem 12, one can take wH = jVH j�2.
A simpler and algorithmic proof, but with a much higher constant can be
found in [28].

Theorem 13 (Robertson and Seymour [75]) For every planar graph
H there is an integer wH such that every graph with no minor isomorphic
to H has treewidth at most wH .

In [91], it is shown that one can take in Theorem 13 cH = 204jVH j+8jEH j
5
.

A similar type of bound was proved by Gorbunov [44]. As there are forests
with arbitrary large pathwidth, it is not possible to prove a variant of The-
orem 12 for graphs H that are not a forest. Also, there are planar graphs
with arbitrary large treewidth, and hence no variant of Theorem 13 can be
proved for graphs that are not planar. Thus, Theorems 12 and 13 are sharp
in the sense that they deal with the largest possible classes of graphs.

In some special cases, one can prove better bounds. For instance, for
H = Ck, the cycle with k vertices, then one can take in Theorem 13, cH =
k�1 [39]. For other special cases, similar bounds can be found in [18, 20, 24].

Perhaps the most important result proven by Robertson and Seymour
in their series of papers on graph minors is the following.

Theorem 14 (Robertson and Seymour) Let G1; G2; : : : be a countable
sequence of graphs. Then there exist j < i such that Gi is isomorphic to a
minor of Gj.
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Figure 1: The forbidden minors for graphs with treewidth at most three

An equivalent way of stating this result is the following.

Theorem 15 (Robertson and Seymour) Let G be a class of graphs,
closed under taking of minors. Then there exists a �nite set of graphs,
called the obstruction set, or the set of forbidden minors of G, such that for
every graph H: H belongs to G, if and only if H does not contain a graph
in the obstruction set of G as a minor.

The following well-known result gives a connection between Theorem 15
and the notions `treewidth' and `pathwidth'.

Lemma 16 If G is a minor of H, then treewidth(G) � treewidth(H), and
pathwidth(G) � pathwidth(H).

Proof: Vertex and edge deletions can be handled as in Lemma 11. If
x is obtained by contracting edge (v; w), then we can make a tree or path
decomposition of the new graph by replacing all occurrences of v and w in
sets Xi by occurrences of x. 2

In other words, for every �xed k, the sets fG jG is a graph with treewidth
at most kg and fG j G is a graph with pathwidth at most kg can be charac-
terised by a �nite set of forbidden minors. Some of these characterisations
are known.

Theorem 17 (i) A graph G = (V;E) has treewidth at most 1, if and only
if G does not contain K3 as a minor.
(ii) A graph G = (V;E) has treewidth at most 2, if and only if G does not
contain K4 as a minor.
(iii) (Arnborg, Proskurowski, and Corneil [6]) A graph G = (V;E)
has treewidth at most 3, if and only if it does not contain any of the four
graphs, shown in Figure 1 as a minor.

The obstruction sets of graphs with pathwidth 1 and 2 are also known
[52]. The size of the obstruction sets can grow very fast: for instance,
the obstruction set of the graphs with pathwidth at most k contains at
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least k!2 trees, each containing 5�3k�1
2 vertices [98]. Ramachandramurthi

[68] investigated the graphs with k+ 1, k + 2 and k+ 3 vertices that belong
to the obstruction sets for graphs of treewidth or pathwidth k.

5 Separators

Several di�erent, but closely related notions of `balanced separators' exist.
We restrict ourselves to vertex separators, and use the following two notions.

De�nition. (i) A type-1 k-separator of a graph G = (V;E) is a set U � V ,
such that V � U can be partitioned into two disjoint sets A and V of at
most k vertices each, such that no vertex in A is adjacent to a vertex in B.
(ii) A type-2 k-separator of a graph G = (V;E) is a set U � V , such that
each connected component of G[V � U ] contains at most k vertices.

Clearly, every type-1 k-separator is also a type-2 k-separator. In the
other direction, we have the following relationship, which can be easily ob-
served.

Lemma 18 If S is a type-2 1
2n-separator of G, then S is a type-1 2

3n-
separator of G.

It was shown by Lipton and Tarjan [61] that every planar graph has
a (type-1) 2

3n-separator of size at most
p

8n. This result is known as the
Planar Separator Theorem, see also Section 13.1. The constant factor in this
result was later improved, e.g., by Djidjev, who showed that every planar
graph has a (type-1) 2

3n-separator of size at most
p

6n and for every �,

0 < � < 1, a (type-1) �n-separator of size at most 4
q

n
� . Related results

exist for graphs of bounded genus, see e.g., [41].
Consider a tree decomposition (fXi j i 2 Ig; T = (I; F )) of graph G =

(V;E). Note that `most' sets Xi will be separators of G: if v 2 Xi1 , w 2 Xi2

and i is an internal node on the path from i1 to i2 in T , then v and w
will belong to di�erent components of G[V �Xi]. Also, all vertices in one
component of G[V �Xi] will be in the same subtree of the forest, obtained
by removing i from T .

Theorem 19 (See e.g., [75, 42, 62, 22]) If the treewidth of G = (V;E)
is at most k, then G has a type-2 1

2 (n� k)-separator of size at most k + 1.

Lingas studied the strongly related classes of s(N)-separable graphs [60].

De�nition. Let s : N ! N be a function. A graph G = (V;E) is s(N)-
separable, if it consists of one vertex, or has a type-1 2

3n-separator S of size
at most s(n), with A and B the two non-adjacent vertex sets that partition
V � S, then G[A] and G[B] are again s(N)-separable.
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As every subgraph of a planar graph is again planar, the results on
separators of planar graphs mentioned above show that planar graphs are
s(N)-separable, with s de�ned by s(n) =

p
6n. We will soon see that these

results can also be stated in terms of treewidth and pathwidth. See also
Theorem 86.

Theorem 20 (i) A graph G = (V;E) with treewidth k is k-separable.
(ii) If G = (V;E) is s(N)-separable, with s a non-decreasing function N!
N, then the pathwidth of G is O(s(n) � logn).
(iii) If G = (V;E) is s(N)-separable, with s a non-decreasing function N!
N, and there exist c; � > 0 with for all N 2 N, s(N) � c � n�, then the
pathwidth of G is O(s(n)).

Proof: (i) This follows from Theorem 19.
(ii), (iii). Let S be the indicated separator, and A and B the correspond-

ing vertex sets partitioning V � S. Recursively make path decompositions
(X1; : : : ;Xr) and (Y1; : : : ; Yq) of G[A] and G[B]. Then take the path decom-
position (X1 [ S;X2 [ S; : : : ;Xr [ S; Y1 [ S; : : : ; Yq [ S). If the maximum
width of such a path-decomposition of a graph with n vertices is at most
k(n), then we have that k(n) � k(22n)+s(n). Hence, k(n) = O(s(n) � logn)(,
and if s(n) � c � n�, then k(n) = O(s(n)). 2

Similar to Theorems 20(ii) and 20(iii) we have:

Theorem 21 Let G be a class of graphs that is closed under taking con-
nected subgraphs. Let f : N ! N be a non-decreasing function. Let
0 < c < 1. Suppose every G 2 G has a type-2 cn-separator of size f(n).
Then every G 2 G has pathwidth at most f(n) � (d 1=c logne+ 1).

Theorem 22 Let G be a class of graphs, that is closed under taking con-
nected subgraphs. Let f : N! N be a non-decreasing function with

8c; 0 < c < 1 : 9c0; 0 < c0 < 1 : 8n 2 N : f(dcne) � c0f(n)

Then the following statements are equivalent.

1. There exists a c1 2N such that for all G 2 G: treewidth(G) � c1 �f(n).

2. There exists a c2 2 N such that for all G 2 G: pathwidth(G) � c2�f(n).

3. There exist c3, c4 > 0, c3 < 1: for all G 2 G: G has a type-2 c3 � n-
separator of size at most c4 � fn.

Proof: (ii) ) (i): trivial.
(i) ) (iii): Cf. Theorem 19.
(iii) ) (ii): Use a construction, similar to the proof of Theorem 20. The

resulting treewidth is bounded by c4f(n) + c4f(bc3nc) + c4f(bc32nc+ � � � =
O(f(n)). 2
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Corollary 23 For every planar graph G = (V;E): pathwidth(G) = O(
p
n).

Theorem 22 shows that Corollary 23 is in a certain sense nothing else as the
Planar Separator Theorem [61] in disguise. See the discussion above and in
Section 13.1.

Corollary 24 For every graph G = (V;E), pathwidth(G) = O(treewidth(G)
� logn).

The algorithm of Arnborg et al. [3] to determine in O(nk+2) time whether
a given graph G = (V;E) has treewidth at most k is based on the charac-
terisation of graphs with treewidth at most k as k-decomposable graphs.

De�nition.[See [2]] A graph G = (V;E) is k-decomposable, if one of the
following two conditions holds:

1. G has at most k + 1 vertices.

2. G has a separator S, jSj � k, such that the components of G[V �S] are
S1; : : : ; Sm, and all graphs (Si [ S; f(v; w) j v; w 2 Si [ S; (v; w) 2 E
or (v 2 S and w 2 S)g) are k-decomposable (1 � i � m). (I.e., take
G[S [ Si] and make every two vertices in S adjacent.)

Theorem 25 (Arnborg and Proskurowski [5]) A graph G = (V;E) is
a partial k-tree, if and only if G is k-decomposable.

(See also [2].) We will later see that a graph is a partial k-tree, if and
only if it has treewidth at most k (Theorem 35).

Another related framework has been developed by Hohberg and Reischuk
[47, 48].

De�nition. A graph G = (V;E) is (k; �)-decomposable, if for any decom-
position of G into k-connected components, the size of each component is
bounded by �.

In [47, 48], it is argued that the k-connected components form a
tree. This tree can be used, to obtain tree decompositions of (k; �)-
decomposable graphs of treewidth O(k + �). Also, graphs with treewidth
k are (O(k); O(k))-decomposable. For some algorithmic purposes, the ap-
proach of Hohberg and Reischuk can have advantages, as it is here possible
to consider graphs with small (constant sized) separators (k = O(1)), but
somewhat larger sized components (e.g., taking � = O(logn)).
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6 Intersection graphs

In this section we consider classes of intersection graphs. Each vertex in
an intersection graph has associated with it an object in some space, and
there is an edge between two vertices if and only if the corresponding objects
intersect.

We consider the chordal graphs, and several subclasses of these. Chordal
graphs are perfect. See [43] for more information on chordal graphs and
other perfect graphs.

De�nition. A graph G = (V;E) is a chordal (or: triangulated) graph, if
and only if every cycle with length exceeding three has an edge between two
non-consecutive vertices in the cycle (a `chord').

Theorem 26 (Gavril [40]) A graph G = (V;E) is chordal, if and only if
there exists a tree T = (I; F ) such that one can associate with each vertex
v 2 V a subtree Tv = (Iv; Fv) of T , such that (v; w) 2 E, if and only if
Iv \ Iw 6= ;.

In other words, a graph is chordal, if and only if it is the intersection
graph of subtrees of a tree.

Theorem 27 (Robertson and Seymour[75]) For every k 2 N+ and ev-
ery graph G = (V;E), the treewidth of G is at most k � 1, if and only if G
is a subgraph of a chordal graph H that has maximum clique size at most k.

Proof: Use the characterisation of Theorem 26.
(: Use the tree decomposition (fXi j i 2 Ig; T ) with Xi = fv 2 V j i 2

Ivg.
): Let a tree decomposition (fXi j i 2 Ig; T = (I; F )) of G with

treewidth at most k be given. Let Tv be the subtree of T , induced by the
set of nodes Iv = fi 2 I j v 2 Xig. The intersection graph H, corresponding
to these subtrees, is a chordal graph that contains G as a subgraph and has
maximum clique size at most k. 2

Instead of the maximum clique size of a chordal graph H, one can also
use its chromatic number, as these are equal for all perfect graphs. It follows
that the treewidth of a chordal graph equals its maximum clique size minus
one. It also follows that every chordal graph G has a tree decomposition
(fXi j i 2 Ig; T = (I; F )) such that the set fXi j i 2 Ig equals the set of
maximal cliques in G.

Similar results can be obtained for subclasses of the chordal graphs.

De�nition. (i) A graph G = (V;E) is an undirected path graph, if and
only if there exists a tree T = (I; F ) such that one can associate with each
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vertex v 2 V a path Pv = (Iv; Fv) in T , such that for all v; w 2 V , v 6= w:
(v; w) 2 E, if and only if Iv \ Iw 6= ;.
(ii) A graph G = (V;E) is a directed path graph, if and only if there exists a
rooted tree T = (I; F ) such that one can associate with each vertex v 2 V
a path Pv = (Iv; Fv) in T which is a sub-path from a path from a leaf of T
to the root of T , such that for all v; w 2 V , v 6= w: (v; w) 2 E, if and only
if Iv \ Iw 6= ;.
(iii) A graph G = (V;E) is an interval graph, if and only if one can associate
with each vertex v 2 V an interval Iv = [lv; rv ] � R, such that for all
v; w 2 V , v 6= w: (v; w) 2 E, if and only if Iv \ Iw 6= ;.
(iv) A graph G = (V;E) is a proper interval graph, if and only if one can
associate with each vertex v 2 V an interval Iv = [lv; rv] � R, such that for
all v; w 2 V , v 6= w: (v; w) 2 E, if and only if Iv \ Iw 6= ;, and no interval
Iv is entirely contained in another interval Iw, v; w 2 V .

It follows that each interval graph is a directed path graph, each directed
path graph is an undirected path graph, and each undirected path graph is
chordal.

De�nition. Let G = (V;E) be a graph. The interval thickness of G is the
smallest maximum clique size of an interval graph G that contains G as a
subgraph.

The following results can be obtained in a similar way as Theorem 27.

Theorem 28 (i) G = (V;E) is a subgraph of an undirected path graph H
with maximum clique size at most k, if and only if G has a tree decomposition
(fXi j i 2 Ig; T = (I; F )) with treewidth at most k � 1, and for all v 2 V ,
Iv = fi 2 I j v 2 Xig induces a path in T .
(ii) G = (V;E) is a subgraph of a directed path graph H with maximum
clique size at most k, if and only if G has a tree decomposition (fXi j i 2
Ig; T = (I; F )) with treewidth at most k � 1, and a root node r 2 I can be
chosen such that for all v 2 V , Iv = fi 2 I j v 2 Xig induces a path in T
which is a sub-path of a path from a leaf in T to r.

Theorem 29 For all graphs G = (V;E), the pathwidth of G is at most
k � 1, if and only if the interval thickness is at most k.

Proof: `�': Suppose (X1; : : : ;Xr) is a path decomposition of G of width
k�1. Associate to each v 2 V the interval [minfi j v 2 Xig;maxfi j v 2 Xig];
the corresponding interval graph contains G and has maximum clique size
at most k.

`�': Without loss of generality, one may assume that all endpoints
lv; rv 2 f1; 2; : : : ; 2n � 1; 2ng. Now take Xi = fv 2 V j lv � i � rvg.
(X1; : : : ;X2n) is a path decomposition of G of width at most k � 1. 2
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De�nition. A graph G = (V;E) is an intersection graph of a graph H =
(W;F ), if one can associate to each vertex v 2 V a connected subgraph of
G, such that for all u; v 2 V , u 6= v: (u; v) 2 E, if and only if the subgraphs,
associated to u and v intersect.

Theorem 30 (Sche�er [94]) Let G = (V;E) be an intersection graph of
a graph H = (V 0; E0), and let c be the maximum clique size of G. Then
treewidth(G) � c� treewidth(H)�1, and pathwidth(G) � c� pathwidth(H)�1.

The circular arc graphs are the intersection graphs of circles (or: graphs
that are a cycle). The proper circular arc graphs are those circular arc
graphs, that have an intersection model (in a circle), such that no arc is
contained entirely in another arc.

Corollary 31 Every circular arc graph G with maximum clique size k has
pathwidth at most 2k � 1.

In Corollary 55, we see that the pathwidth of a proper circular arc graph
with maximum clique size k is at most 2k � 2. We close this section with a
useful result on edge (or line) graphs.

De�nition. The edge graph of a graphG = (V;E) is the graph (E; f(e; e0) j e
and e0 have one endpoint in commong).

Lemma 32 (Bodlaender [17]) Let the treewidth of graph G = (V;E) be
at most k, and the maximum degree of a vertex in G at most d. Then the
treewidth of the edge graph of G is at most (k + 1)d� 1.

Proof: If (fXi j i 2 Ig; T = (I; F )) is a tree decomposition of G of width
k, then (fYi j i 2 Ig; T = (I; F )) with Yi = f(v; w) 2 E j v 2 Xi _ w 2 Xig
is a tree decomposition of the edge graph of G of width at most (k+1)d�1.
2

The same result holds if we use pathwidth instead of treewidth. This
bound may not be sharp.

7 Graph rewriting and elimination orderings

In this section, we consider several aspects of the rewriting of graphs to
other, in general smaller, graphs. The related subject of graph grammars is
discussed in the next section.

Arnborg and Proskurowski [5] have derived sets of rules to rewrite graphs
into smaller graphs with the same treewidth for graphs with treewidth at
most 1, 2, or 3. These rules are shown in Figure 2. See also [2].
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(i) islet rule

(ii) twig rule

(iii) series rule

(iv) triangle rule

(v) buddy rule

(vi) cube rule

Figure 2: Safe and complete rules for rewriting graphs of treewidth at most
3
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(empty graph)

rule (iii) rule(iii)
3 times

rule (v)

rule (iii) rule (ii) rule (i)

Figure 3: Rewriting the 3� 3 grid to the empty graph

Theorem 33 (Arnborg and Proskurowski [5])
(i) A graph has treewidth 0, if and only if it can be rewritten to the empty
graph, using rule (i) from �gure 2.
(ii) A graph has treewidth 1, if and only if it can be rewritten to the empty
graph, using rules (i) and (ii) from �gure 2.
(iii) A graph has treewidth 2, if and only if it can be rewritten to the empty
graph, using rules (i) { (iii) from �gure 2.
(iv) A graph has treewidth 3, if and only if it can be rewritten to the empty
graph, using rules (i) { (iv) from �gure 2.

An example of a graph with treewidth 3 that is rewritten to the empty
graph is given in Figure 3.

In [4], Arnborg et al show a much more general result. For many graph
properties (including all that can be formulated in monadic second order
logic) and all constants k, it holds that there is a �nite set of `local' graph
reduction rules, that rewrite a graph to the empty graph, if and only if it
ful�ls the property and has treewidth at most k. Lagergren [57] shows that
such rules, that are `local' and `based on star substitution' do not exist for
the graphs of treewidth four.

Next we consider perfect elimination orderings of graphs.

De�nition. A perfect elimination ordering of a graph G = (V;E) is a
bijection f : V ! f1; 2; : : : ; ng, such that for all v 2 V , the set fw 2
V j (v; w) 2 W ^ f(w) > f(v)g forms a clique in G. A graph is a perfect
elimination graph, if it has a perfect elimination ordering,

Note that if f is a perfect elimination ordering, then when we remove
the vertices v 2 V one by one, in the order f�1(1); f�1(2); : : : ; f�1(n), then
when we remove v, the neighbours of v form a clique in the remaining graph.
A graph is a perfect elimination graph, if and only if it is a chordal graph
(see [43], Chapter 4). A special type of perfect elimination graphs are the
k-trees.
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De�nition. A graph G = (V;E) is a k-tree, if and only if one of the
following two conditions holds:

1. G is isomorphic to Kk, the complete graph with k vertices.

2. There exists a k-tree H = (W;F ), a vertex v 2 V �W , and vertices
w1; w2; : : : ; wk that form a clique in H, and G is the graph, obtained
by adding v to H and an edge from v to each vertex in fw1; : : : ; wkg,
i.e., G = (W [ fvg; F [ f(v; wi) j 1 � i � kg).

Rose [93] obtained several equivalent characterisations of the class of k-
trees. An x-y-separator of a graph G = (V;E) is a set W � V such that x
and y are in di�erent connected components of G[V �W ].

Theorem 34 (Rose [93]) Let G = (V;E) be a graph. The following four
conditions are equivalent.

1. G is a k-tree.

2. G is connected, G has a k-clique, but not a k + 2-clique, and every
minimal x-y-separator of G is a k-clique.

3. G is connected, jEj = k � jV j � 1
2k(k + 1), and every minimal x-y-

separator of G is a k-clique.

4. G has a k-clique, but not a k + 2-clique, and every minimal x-y-
separator of G is a clique, and for all distinct non-adjacent pairs of
vertices x, y 2 V , there exist exactly k vertex disjoint paths from x to
y.

One can also characterise k-trees as perfect elimination graphs with a
perfect elimination ordering f , such that 8v 2 V : jfw 2 V j (v; w) 2
E ^ f(w) > f(v)gj = k or (f(v) > jV j � k ^ jV j � k).

De�nition. A graph G = (V;E) is a partial k-tree, if and only if G is the
subgraph of a k-tree.

Theorem 35 (See Sche�er [94] or van Leeuwen [101]) A graph G =
(V;E) is a partial k-tree, if and only if the treewidth of G is at most k.

Proof: ): It is su�cient to show that every k-tree G = (V;E) has
treewidth at most k. If jV j � k+ 1, then we are done. Suppose jV j > k+ 1.
There is a vertex v 2 V , such that G[V �fvg] is a k-tree, and the neighbours
of v in G form a clique of size k in G. Using induction, there is a tree
decomposition (fXi j i 2 Ig; T = (I; F )) of G[V � fvg] of width at most
k. By Lemma 4, there is an i0 2 I with Xio containing all neighbours
of v in G. Now (fXi j i 2 I [ fjgg; T = (I [ fjg; F [ f(i0; j)g)) with
Xj = fvg [ fw 2 V j (v; w) 2 Eg is a tree decomposition of G of width k.
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(: W.l.o.g, suppose jV j � k+1. Let (fXi j i 2 Ig; T = (I; F )) be a tree
decomposition of G with treewidth at most k. We claim, with induction to
jV j, that there is a k-tree H = (V;E0), such that for every i 2 I, Xi is a
subset of a clique with k + 1 vertices in G. If jV j = k + 1, we are done.
Otherwise, take a leaf node i 2 I, with neighbour j 2 I in T . If Xi � Xj,
we can remove node i from the tree decomposition, and continue with the
resulting tree decomposition of G. Otherwise, take a vertex v 2 Xi � Xj.
Suppose induction on G� fvg, and (fXi � fvg j i 2 Ig; T ) gives k-tree H 0.
As v 62 Xj , all neighbours of v must belong to Xi. Hence, the neighbours
of v form a subset of a clique C with k vertices in G, so we can add v with
edges to all vertices in C to H 0 and obtain the desired graph H. 2

A bijection f : V ! f1; : : : ; jV jg (called here elimination ordering) has a
�ll-in Ff , which is a set of unordered pairs of vertices in V , and is computed
as follows. (Intuitively, it is the set of edges that must be added to G to
make f a perfect elimination ordering.)

F := ;;
for i := 1 to jV j
do begin Si := fw j (f�1(i); w) 2 E [ F ^ f(w) > ig;

for all v; w 2 Si:
do if (v; w) 62 E [ F then add (v; w) to F

end;
Ff := F .

For a perfect elimination ordering f , Ff = ;. A graph G has dimension
k with respect to f , if max1�i�jV j jSij = k. The dimension of a graph G is
the minimum dimension over all elimination orderings of G.

Theorem 36 (See Arnborg [2]) For every graph G = (V;E), the dimen-
sion of G equals the treewidth of G.

8 Graph grammars and recursive families of

graphs

In this section, we consider some types of graph grammars, the `recursive
families of graphs' and their relationships to treewidth. We will limit the
presentation here to a few notions and results, and direct the readers for
further reading to other sources, e.g. [30, 36, 46, 45].

8.1 Hyperedge replacement grammars

First, we consider the notion of hyperedge replacement grammar, introduced
by Habel and Kreowski. We only give an informal description here: for a
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good introduction to this topic, see e.g. [45, 46]. The framework of context
free graph grammars of Bauderon and Courcelle is essentially similar [8]. See
also [66].

Hyperedge replacement grammars work with hypergraphs, where each
hyperedge is represented as a sequence of vertices. A hyperedge also has a
label, which is either a terminal label, or a non-terminal label. More or less
similar to context free string grammars, a hyperedge replacement grammar
consists of a set of non-terminal labels, a set of terminal labels, a starting
hypergraph (the `axiom'), and a set of rewrite rules. We consider labelled
directed hypergraphs H = (V; S). V is a �nite set of vertices. Graphs are
seen as special cases of hypergraphs where each hyperedge has cardinality
2.

Each rewrite rule has as its left hand side an edge label and a number �.
The right hand side is a directed labelled hypergraph with a sequence of �
distinguished vertices in this hypergraph. Applying a rule consists of: taking
a hyperedge with the corresponding label and � vertices, and replacing it by
the right hand side graph. All vertices, except those which are distinguished
are newly added to the graph. The vertices of the replaced hyperedge are
identi�ed with the corresponding vertices in the sequence of distinguished
vertices.

A hyperedge replacement grammar (HRG) consists of sets of terminal
and non-terminal labels, rewrite rules, and a start graph. (This concept
clearly generalises the concept of context free string grammars.) We say
a (labelled directed) hypergraph is generated by a hyperedge replacement
grammar, if its edges are only labelled with terminal labels, and it can be
produced from the start graph by a sequence of applications of rewrite rules.

De�ne the width of a hyperedge replacement grammar as the maximum
number of vertices of a graph at the right hand side of a rule or the start
graph, minus 1. (The result below can also be proved for hypergraphs, where
for a tree-decomposition of a hypergraph it also must hold that for every
hyperedge Z, there must be an i 2 I with Z � Xi, and the treewidth of a
hypergraph de�ned accordingly.)

Theorem 37 (Lautemann [59]) (i) Every graph, generated by a hyper-
edge replacement grammar of width k, has treewidth at most k.
(ii) For every k, there exists a hyperedge replacement grammar of width k
that generates exactly the directed graphs with treewidth at most k.

Proof: The result can be shown by establishing a direct correspondence
between `derivation trees' for hyperedge replacement grammars and tree
decompositions. Such derivation trees are of a more or less similar form as
derivation trees for context free string rewriting grammars. To each non-
root node of the tree, we associate a hyperedge, and to each non-root and
non-leaf node of the tree, we associate an isomorphic copy of a right hand
side: the hypergraph to which the corresponding hyperedge is rewritten. To
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the root node, we associate the start graph. The children of a node are the
hyperedges of its associated hypergraph.

Using this tree, and associating to each node i the set Xi, consisting of
all vertices in its associated hypergraph (; for leaf nodes), we obtain a tree
decomposition of the generated graph of treewidth, at most the width of the
hyperedge replacement grammar. This proves (i).

For the proof of (ii), we can for example take one terminal and one non-
terminal label, a start graph with one node and a 1-vertex hyperedge with
non-terminal label, and all possible rules, rewriting a hyperedge with at most
k + 1 vertices to a hypergraph with at most k + 1 vertices. Now, each tree-
decomposition with a root node r with jXrj = 1 has an associated derivation
tree, which gives this tree-decomposition, when the process described above
is applied to it. 2

The result also appears in [32], with a less direct proof. Vogler has
shown that hyperedge replacement grammars generate the same languages
of simple graphs as BNLC grammars of bounded nonterminal degree [103].

8.2 Recursive families of graphs

In this section, we discuss the recursive families of graphs, as introduced
in the work of Borie [26] (see also [25, 27]). Similar frameworks have been
introduced by Courcelle (see e.g. [30, 31, 32, 33]) and by Wimer [104]. While
the di�erences between Bories and Wimers formalisms are not very large, I
prefer the former as I �nd it somewhat simpler and more elegant. Courcelles
framework is much more general and more precise, but is di�cult to master
for readers with little algebraic backgrounds. See also [9].

A terminal graph is a triple G = (V;E; T ), where (V;E) is an undirected
graph, and T � V is on ordered set of distinguished vertices, known as the
terminals of G. A terminal graph G = (V;E; T ) is a k-terminal graph, when
jT j � k. The number of terminals of G = (V;E; T ) is denoted by t(G) = jT j.

A c-ary k-terminal recursive operation is a function f , acting on c k-
terminal graphs, and yielding another k-terminal graph, of the following
form. f can be represented by pair (M(f); t), where M(f) is a matrix,
which has r rows and c columns, such that each value Mi;j(f) is an integer
in the range 0 : : : t(Gj). t is an integer, t � k. Given k-terminal graphs
G1, G2, . . . , Gc, f(G1; G2; � � � ; Gc) is obtained in the following way: First,
take the disjoint union of G1, G2, . . . , Gc. Then, for each row i, 1 � i � r,
a number of terminal vertices are identi�ed, namely, we take for each j,
1 � j � c, if Mi;j(f) 6= 0, the Mi;j(f)th terminal of Gj, and identify (or
merge) these vertices. If Mi;j = 0 for all j, 1 � j � c, then a new vertex
is formed. Finally, the vertices corresponding to the �rst t rows become
the terminals of f(G1; � � � ; Gc), vertices corresponding to other rows become
non-terminals.
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A base graph is a k-terminal graph with no nonterminal vertices. A k-
terminal recursive family of graphs is a set G of terminal graphs, for which
there exists a set B of k-terminal base graphs and a �nite set R of k-terminal
recursive operations, such that G is the closure of B under the operations in
R.

Theorem 38 (Wimer [104]) Any k-terminal recursive family of graphs
with only binary composition operators is a subclass of the partial (2k � 1)-
trees.

This can be generalised in the following way:

Theorem 39 For any k-terminal recursive family of graphs G, there is a
constant cG , such that every graph G 2 G has treewidth at most cG .

Proof: Suppose G is generated by set of operations R and base set B.
Let r0 be the maximum number of rows of any matrix, associated with an
operation in R. Now, with induction, we claim that any G = (V;E; T ) 2 G
has a tree decomposition (fXi j i 2 Ig; T = (I; F )) of treewidth at most
max(r � 1; k � 1), such that there is an i 2 I with T � Xi, call i the
distinguished node of the tree decomposition. Clearly this holds for base
graphs (just take a tree decomposition with one node.) Suppose we have
such tree decompositions for G1, . . . , Gc, and f 2 R is a c-ary operator.
Now take one new set Xinew , containing all vertices that were formed from a
row of M(f), and make inew adjacent to all distinguished nodes in the tree
decompositions of G1, . . . , Gc. 2

Many classes of graphs, known to have a uniform treewidth upper bound,
can be seen to be a k-terminal recursive family of graphs (see [26, 104]).
Speci�cally, we mention the following:

Theorem 40 (See [104].) For every k: the class of graphs of treewidth at
most k is a (k + 1)-terminal recursive family of graphs.

Proof: A possible method to proof this is to use nice tree decompositions,
see Lemma 7. We can give a set of operations, generating for graphs G with
a nice tree decomposition (fXi j i 2 Ig; T = (I; F )) of width k, the terminal
graphs Gi = (Vi; Ei;Xi), where i 2 I, Vi =

SfXi j i = j or j is a descendant
of ig, and Ei � E the set of edges between vertices in Vi.

If i is a leaf node, then Gi can be assumed to be a base graph.
If i is a join node, with children j1 and j2, then Gi can be obtained from

Gj1 and Gj2 by identifying corresponding terminals, which can be expressed
by the pair (M; jXij), M being the matrix0

BBBB@
1 1
2 2
...

...
k + 1 k + 1

1
CCCCA
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Introduce nodes can be handled by �rst adding an isolated terminal
vertex (a unary operation, with matrix (1; 2; � � � ; k+1; 0)T ), and then joining
the graph with a base graph, giving the necessary edges to the new vertex.
Forget nodes can be easily handled with another unary operation. 2

See also [32] for similar results.

8.3 Series parallel graphs

A class of graphs with a recursive de�nition that we want to mention specif-
ically is the class of series parallel graphs. In the literature, di�erent de�ni-
tions are given for this notion, in some cases expressing di�erent classes of
graphs. We use here one of the most common de�nitions.

De�nition. A series parallel graph is a multi graph G = (V;E) with two
distinguished vertices, called source s and sink t, which can be formed with
the following rules:

1. A graph with two vertices: source s and sink t and one edge (s; t) is a
series parallel graph.

2. If G1 = (V1; E1) with source s1 2 V1 and sink t1 2 V1 and G2 =
(V2; E2) with source s2 2 V2 and sink t2 2 V2 are series parallel graphs,
then

(a) the graph, obtained by taking the disjoint union of G1 and G2

and then identifying s1 and s2, and identifying t1 and t2 is a
series parallel graph, with source the node, representing s1 and
s2, and with sink the node, representing t1 and t2. This operation
is called a parallel composition. See Figure 4 (i).

(b) the graph, obtained by taking the disjoint union of G1 and G2

and then identifying t1 and s2, is a series parallel graph, with
source s1, and with sink t2. This operation is called a series
composition. See Figure 4 (ii).

A graph G without distinguished source and sink is called series parallel,
if one can select a source and sink, such that G with this source and sink is
a series parallel graph.

Theorem 41 The treewidth of a series parallel graph G is at most 2.

Proof: We prove with induction to the construction ofG that the treewidth
of the graph, obtained by adding edge (s; t) to G is at most 2. This clearly
holds for a graph with two vertices.

Both in the case of a parallel and of a series composition, recursively
make tree decompositions of treewidth 2 of G1 + (s1; t1) and G2 + (s2; t2).
Add a new node, containing (the vertices, resulting from identi�cations of)
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Figure 4: Parallel and series composition

s1; s2; t1; t2. (These are at most three vertices.) Make this new node
adjacent to a node, containing s1 and t1, and to a node containing s2 and
t2. 2

Note that for instance K1;3 is not a series parallel graph. Hence, the
series parallel graphs, as de�ned above, are a proper subset of the graphs of
treewidth 2. However, the following relationship exists between graphs of
treewidth 2 and series parallel graphs.

Theorem 42 A graph G = (V;E) has treewidth at most 2, if and only if
every biconnected component of G is a series parallel graph.

Proof: If every biconnected component of G is series parallel, then every
biconnected component of G has treewidth at most 2 (Theorem 41, hence
G has treewidth at most 2 (Lemma 6).

To prove the other direction, it is su�cient to prove that every bicon-
nected graph of treewidth 2 is series parallel. Consider a biconnected series
parallel graph G = (V;E), with a tree-decomposition (fXi j i 2 Ig; T =
(I; F )) of G of width 2, of the form of Lemma 8. We use induction to jV j.
If jV j � 3, then G clearly is series parallel. Suppose jV j > 3. Now, T
has at least two nodes. Take a leaf i from T with neighbour j in T . Let
fvg = Xi �Xj . Suppose Xi = fv; w; xg. The set of neighbours of v must
be fw; xg (by de�nition of tree-decomposition and biconnectivity). Let G0

be the multi graph, obtained by removing v from G and adding an edge
between w and x if not already present. By induction G0 is series parallel.
Look to the construction of G0 as series parallel graph. Where the edge
fw; xg is taken, we instead take the series parallel graph (fv; w; xg; F ) with
terminals w and x and edges (w; v), (v; x), and (w; x) in case (w; x) 2 E.
This gives a construction of G as series parallel graph. 2
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9 Linear orderings

In this section, we consider linear orderings of the vertices of graphs, and
several di�erent measures of `width' of these linear orderings.

De�nition. A linear ordering of a graph G = (V;E) is a bijection f : V !
f1; 2; : : : ; jV jg.

De�nition. Let G = (V;E) be a graph, and let f : V ! f1; 2; : : : ; ng be a
linear ordering of G.

1. The bandwidth of f is maxfjf(v)� f(w)j j (v; w) 2 Eg.
2. The cutwidth of f is max1�i�n jf(u; v) 2 E j f(u) � i < f(v)gj.
3. The modi�ed cutwidth of f is max1�i�n jf(u; v) 2 E j f(u) < i <

f(v)gj.
4. The vertex separation number of f is max1�i�n jfu 2 V j 9v 2 V :

(u; v) 2 E ^ f(v) � i ^ f(u) < igj.
5. The cyclic bandwidth of f is maxfmin(jf(v) � f(w)j; n � jf(v) �

f(w)j) j (v; w) 2 Eg.
The bandwidth, cutwidth, modi�ed cutwidth, vertex separation number,
cyclic bandwidth of a graph G is the minimum bandwidth, cutwidth, etc.,
over all possible linear orderings of G.

The topological bandwidth of a graph G is the minimum bandwidth over
all graphs G0 which are obtained by addition of an arbitrary number of
vertices along edges of G.

Lemma 43 For every graph G = (V;E), the cyclic bandwidth of G is at
most the bandwidth of G, and the bandwidth of G is at most twice the cyclic
bandwidth of G.

Proof: From the de�nitions, it directly follows that the cyclic bandwidth
of G is at most the bandwidth of G. Suppose f is a linear ordering of G
with cyclic bandwidth k. We suppose n is even; a similar construction can
be used for odd n. The linear ordering g : V ! f1; : : : ; ng, de�ned by

g(v) =

(
2 � f(v) if f(v) � n=2
2n + 1� 2 � f(v) if f(v) > n=2

has bandwidth at most 2k. 2

Theorem 44 For every graph G, the pathwidth of G is at most the band-
width of G, and at most twice the cyclic bandwidth of G.
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Proof: Let f : V ! f1; : : : ; ng be a linear ordering of G with bandwidth
k. Then (X1; : : : ;Xn�k) with Xi = ff�1(i); f�1(i + 1); : : : ; f�1(i + k)g is
a path decomposition of G with pathwidth k. The second bound follows
directly with Lemma 43. 2

These bounds are sharp. Each graph Gn;k = (f1; 2; : : : ; ng; f(i; j) j i; j 2
f1; : : : ; ng; 0 < ji� jj � kg) with n � k+ 1 has bandwidth k, and pathwidth
(and treewidth) k, as it contains a clique with k + 1 vertices as a subgraph,
and each graph G0

n;k = (f1; 2; : : : ; ng; f(i; j) j i; j 2 f1; : : : ; ng; 0 < ji � jj �
k _ ji � jj � n � kg) with n � 2k + 1, and k divides n � 2k + 1 has cyclic
bandwidth k, and pathwidth and treewidth 2k, as it contains K2k+1 as a
minor (for all i, 1 � i � k, contract the vertices k + 1 + i, 2k + 1 + i, . . . ,
n� k + i.)

Theorem 45 For every graph G, the pathwidth of G is at most the topo-
logical bandwidth of G.

Proof: If G0 is obtained by adding vertices along edges of G, then G is a
minor of G0. So, there exists a graphG0 with G a minor of G0, and topological
bandwidth(G) = bandwidth(G0) � pathwidth(G0) � pathwidth(G). 2

Makedon et al. claim a result, that states that the node search number
of a graph is at most its topological bandwidth [63]. However, they use
searcher moves that are not allowed in the node search game; a counter
example is a clique with k vertices: it has topological bandwidth k� 1, but
node search number k (any move with � k � 1 searchers would result in
recontamination.) (See Section 10.)

By considering the graphs Gn;k with n � k+1, it follows that the bound
of Theorem 45 is sharp.

A sharp relation between the topological bandwidth and the cutwidth
of trees was obtained by Chung [29].

Theorem 46 (Chung [29]) Let T be a tree with topological bandwidth k
and cutwidth l. Then k � l � k + log2 k + 2.

Chung [29] also gives for every k, a tree with topological bandwidth k
and cutwidth k + log2 k � 1.

Theorem 47 For every graph G, the pathwidth of G is at most the cutwidth
of G.

Proof: Let f : V ! f1; : : : ; ng be a linear ordering of G with cutwidth k.
Let Xi = fw 2 V j f(w) > i ^ 9v 2 V : (v; w) 2 E ^ f(v) � ig [ ff�1(i)g.
We claim that (X1;X2; : : : ;Xn) is a path decomposition of G of width at
most k.

Consider (v; w) 2 E. If f(v) < f(w), then v; w 2 Xf�1(v), otherwise
v; w 2 Xf�1(w).

25



Next, suppose i1 < i2 < i3, and w 2 Xi1 \ Xi3 . From w 2 Xi3 , it
follows that f(w) � i3 > i2 > i1. As w 2 Xi1 , there must be a v 2 V with
(v; w) 2 E and f(v) � i1. Now we have that w 2 Xi2 . So, (X1;X2; : : : ;Xn)
is a path decomposition of G. The width of this path decomposition is at
most k, as for all i, jXij � 1 + jf(v; w) 2 E j f(v) � i < f(w)gj � 1 + k. 2

Probably, this bound is not sharp. As the cutwidth of an n by n grid is
at most 2n + 1, and the treewidth and pathwidth of an n by n grid are n
(see Section 13.2), it follows that there are graphs G with pathwidth(G) �
1
2(cutwidth(G)� 1).

Theorem 48 For every graph G, the pathwidth of G is at most one larger
than the modi�ed cutwidth of G.

For the relation between the topological bandwidth and cutwidth of a
graph, see [29]. We also have the following relation between cutwidth and
pathwidth.

Theorem 49 For every class of graphs G, the following statements are
equivalent.

1. 9c : 8G 2 G : cutwidth(G) � c.

2. 9c : 8G 2 G : modi�ed cutwidth(G) � c.

3. 9c; d : 8G 2 G : pathwidth(G) � c and degree(G) � d.

Proof: (i) ! (iii): Use Theorem 47. Note that the cutwidth of G is at
least degree(G)=2.

(iii) ! (i): Suppose (X1; : : : ;Xr) is a path decomposition of G of width
at most c. For all v 2 V , let g(v) = minfi j v 2 Xig. Now take a linear
ordering f of G such that g(v) < g(w) ) f(v) < f(w) for all v; w 2 V . We
claim that the cutwidth of f is at most c� degree(G).

Consider j, 1 � j � jV j, with f�1(j) = v. We claim that if f(w) �
j < f(x) and (w; x) 2 E, then w 2 Xg(v) or x 2 Xg(v). Suppose not. Then
g(w) < g(v) < g(x) and w; x 62 Xg(v). This contradicts the de�nition of
path decomposition. (Use that w 2 Xg(w), x 2 Xg(x), and (w; x) 2 E.) So
jf(u; v) 2 E j f(u) � j < f(v)gj � jXg(v)j�degree(G).

(i) ! (ii): Trivial, as the modi�ed cutwidth of a graph is at most its
cutwidth.

(ii) ! (iii): Use Theorem 48. The modi�ed cutwidth of a graph G is
at least degree(G)=2� 2; if v had degree d, and f is a linear ordering of G,
then either f(w; v) j f(w) < f(v)�1g or f(w; v) j f(w) > f(v) + 1g contains
at least d=2� 2 edges. 2

Several authors have noted equivalence between vertex separation num-
ber and pathwidth or an equivalent notion.

26



Theorem 50 (Kirousis and Papadimitriou [54]) For every graph G,
the node search number of G equals the vertex separation number of G plus
one.

Theorem 51 (Kinnersley [51]) For every graph G, the vertex separation
number of G equals the pathwidth of G.

To close this section, we give two results on intersection graphs (cf. Sec-
tion 6).

Theorem 52 Let G = (V;E) be a proper interval graph with maximum
clique size k. Then the bandwidth of G is at most k � 1.

Proof: We may assume that we can associate to all v 2 V an interval
Iv = [lv; rv] � f1; : : : ;mg, such that for all v; w 2 V , v 6= w, (v; w) 2
E , Iv \ Iw 6= ;; lv; rv 2 N, and Iv � Iw ) v = w. So, di�erent
vertices have di�erent values for lv and rv. There exists a linear ordering
f : V ! f1; : : : ; ng of G, such that f(v) < f(w) , lv < lw. We claim that
the bandwidth of f is at most k � 1. Consider an edge (v; w) 2 E with
f(v) < f(w). We have lv < lw < rv. Let X = fx 2 V j f(v) � f(x) �
f(w)g. For all x 2 X, lw 2 Ix, so X is a clique with jf(v) � f(w)j + 1
vertices. Hence jf(v)� f(w)j � k � 1. 2

A somewhat stronger result has been proven by Kaplan and Shamir [50].

De�nition. A path decomposition (X1; : : : ;Xr) of G = (V;E) is a proper
path decomposition, if there are no v; w 2 V , v 6= w, with

minfi j v 2 Xig � minfi j w 2 Xig � maxfi j w 2 Xig � maxfi j v 2 Xig
The proper pathwidth of a graph G is the minimum width of a proper path
decomposition of G.

Theorem 53 (Kaplan, Shamir [50]) The bandwidth of a graph G equals
its proper pathwidth, and is one smaller than the smallest clique size of any
proper interval supergraph of G.

It should be remarked that the notion of proper pathwidth of Kaplan and
Shamir is di�erent from the notion of proper pathwidth of Takahashi, Ueno,
and Kajitani [99]. To distinguish, we use the term 3-proper for discussing
the notion of proper pathwidth of Takahashi et al., in Section 10. With a
proof, similar to the proof of Theorem 52 one can show:

Theorem 54 Let G = (V;E) be a proper circular arc graph with maximum
clique size k. Then the cyclic bandwidth of G is at most k � 1.

Corollary 55 For every proper circular arc graph G with maximum clique
size k, the pathwidth of G is at most 2k � 2.
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10 Search and pebble games, and tangles

In this section we consider characterisations of the pathwidth and treewidth
of graphs by the number of searchers, needed to capture a fugitive in certain
\capturing games", played on the graph, and by pebble games. A more
extensive overview on graph searching, treewidth, pathwidth, and related
notions has been made by Bienstock [10]. We also discuss the notion of
tangles in this section.

De�nition. A search strategy of a graph G = (V;E) is a sequence of the
following types of moves:

1. place a searcher on a vertex.

2. delete a searcher from a vertex.

3. move a searcher over an edge.

Initially, all edges are contaminated. An edge (v; w) 2 E can become cleared
by moving a searcher from v to w, while there is a second searcher on v
or while all other edges adjacent to v are already cleared. An edge e can
become recontaminated, when a move results in a path without searchers
from a contaminated edge to edge e. The search number of G is the minimum
number of searchers, needed to clear all edges.

It has been shown by LaPaugh [58] that for every graph G, there exists
a search sequence, using the minimum number of searchers and clearing all
edges, that does not allow recontamination. Such a search sequence is called
progressive.

A variant of this notion, called node search number, was introduced by
Kirousis and Papadimitriou [53]. In this variant, edges are cleared by having
a searcher on both endpoints of the edge.

Lemma 56 (Kirousis and Papadimitriou [53]) Let G = (V;E) be a
graph with search number k and node search number l. Then l�1 � k � l+1.

Proof: A `node search' can be transformed to an `edge search' by mov-
ing a searcher over each edge when it is cleared. An `edge search' can be
transformed to a node search, by instead of moving a searcher over an edge,
putting a searcher on the second endpoint and then removing the searcher
from the �rst endpoint of the edge. 2

Theorem 57 (Kirousis and Papadimitriou [53]) For every graph G =
(V;E), the node search number of G equals the interval thickness of G.

Recall from Theorem 29 that for every graph, its interval thickness is
exactly one larger than its pathwidth.
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Corollary 58 (See also [37].) For every graph G = (V;E), the node
search number of G equals the pathwidth of G plus one. Furthermore,
pathwidth(G) � search number(G) � pathwidth(G) + 2.

Seymour and Thomas [96] give a characterisation of treewidth by a search
game where a number of cops try to capture a robber, that is seen by the
cops but has in�nite speed. Informally, this game is as follows. The robber
stands at a vertex of the graph and can at any time run at great speed to
any other vertex along a path of the graph, but may not run through or to
a vertex containing a cop. Each of the k cops is either on a vertex or in
a helicopter. The objective of the player, controlling the movement of the
cops is to land a cop via helicopter on the vertex occupied by the robber |
the objective of the robber is to prevent this capture. The robber can see
the helicopter approaching its landing spot, and may run to a new vertex
before the helicopter actually lands.

We proceed with a more formal description of the game. We use the
following notations: G � X denotes the graph G[V � X]. The vertex set
of a connected component of G � X is called an X-
ap. [V ]�k = fW �
V j jW j � kg.

Positions in the game are pairs (X;R), X 2 [V ]�k, R an X-
ap. Player
2 (the robber) starts the game by choosing a connected component W and
the game starts in position (;;W ). Suppose at the start of the ith step in
the game we are in position (Xi�1; Ri). Player 1 (the cops) chooses a new
set Xi 2 [V ]�k, such that either Xi � Xi�1 or Xi�1 � Xi. Player 2 then
chooses, if possible, an Xi-
ap Ri with Ri�1 � Ri or Ri � Ri�1. If this is
not possible, the cops win. Otherwise, proceed with position (Xi; Ri). The
robber wins if the game lasts for ever. If there is a winning strategy for the
cops player, we say that `k cops can search G in the Seymour-Thomas search
game'. If there is a winning strategy for the cops player such that for all
h < i < j: Xh \Xj � Xi, we say that `k cops can monotonely search G in
the Seymour-Thomas search game'. (The sets Xi denote the set of vertices
containing a cop. Ri denotes the component of G[V �Xi] where the robber
is | its exact location is not important due to its speed.)

Seymour and Thomas [96] also de�ne the tangle number of a graph
G = (V;E): a tangle of order k in G = (V;E) is a function �, mapping each
X 2 [V ]�k to an X-
ap, such that for all X � Y 2 [V ]�k: �(Y ) � �(X).
The tangle number of G is the maximum order of all tangles in G. A tangle
� is convex, if and only if for all X, Y 2 [V ]�k:

(�(X) \ �(Y )) [ (X \ �(Y )) [ (�(X) \ Y ) 6= ;

Theorem 59 (Seymour, Thomas [96]) Let G = (V;E) be a graph, k �
0. The following statements are equivalent.

1. The treewidth of G is at most k.
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2. The tangle number of G is at most k.

3. G has a convex tangle of order � k.

4. k + 1 cops can search G

5. k + 1 cops can monotonely search G.

Dendris, Kirousis and Thilikos [34] studied search games where the fugi-
tive is supposed to be inert, i.e., it can it can only move just before a
searcher visits the vertex that it occupies. The (monotone) search number
for an inert fugitive with unbounded speed is de�ned accordingly.

Theorem 60 (Dendris, Kirousis, Thilikos [34]) Let G = (V;E) be a
graph, k � 0. The following statements are equivalent.

1. The treewidth of G is at most k.

2. The number of searchers, needed to search G in the fugitive search
game with an inert fugitive is at most k + 1.

3. The number of searchers, needed to monotonically search G in the
fugitive search game with an inert fugitive is at most k + 1.

Dendris et al. also consider variants where the fugitive has bounded
speed, and obtain, amongst others, the following result.

Theorem 61 (Dendris, Kirousis, Thilikos [34]) Suppose G = (V;E)
has no chordless cycle of length more than s + 2. The treewidth of G is
one less than the monotone search number of G for an inert fugitive with
speed s.

Takahashi, Ueno, and Kajitani [99] made a connection between a mixed
search game and their notion of proper pathwidth. As Kaplan and Shamir
[50] use the same term to describe a di�erent notion, we use the term 3-
proper pathwidth here.

De�nition. A path decomposition (X1; : : : ;Xr) of G = (V;E) of width at
most k is called 3-proper, if jXj1 \ Xj2 \ Xj3 j < k for any Xj1 , Xj2 , Xj3

none of which is a subset of the others. The 3-proper pathwidth of G is the
minimum width of a 3-proper path decomposition of G.

In the mixed search game, edges can be cleared in two ways: either by
having a searcher on both endpoints of the edge, or by having a searcher
move over the edge. In all other aspects, the game is similar to the standard
search game, discussed �rst in this section. De�ne the mixed search number
of G accordingly.
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Theorem 62 (Takahashi, Ueno, and Kajitani [99]) Let G be a graph,
k 2 N. The following three statements are equivalent.
(i) G has proper pathwidth at most k.
(ii) The mixed search number of G is at most k.
(iii) There is a search strategy that clears all edges of G in the mixed search
game, without allowing recontamination, and that uses at most k searchers.

Another type of games are the pebble games. These model sequential
computation (see e.g. [49]), and have been studied extensively. An interest-
ing connection between some of these pebble games and node search number
(and hence pathwidth) was found by Kirousis and Papadimitriou [54].

A pebble game is a `one person game', played on a directed acyclic graph.
We consider two variants: the black pebble game, and the black and white
pebble game.

The black pebble game has the following types of moves:

1. Placing a pebble on a vertex with all predecessors of that vertex con-
taining a pebble. (Hence, vertices with in-degree 0 can always be
pebbled.)

2. Removing a pebble.

In the black and white pebble game, the following moves can be made:

1. Placing a black pebble on a vertex with all predecessors of that vertex
containing a (black or white) pebble.

2. Placing a white pebble on a vertex.

3. Removing a black pebble.

4. Turning a white pebble black when all predecessors of the vertex con-
taining the pebble, contain a (black or white) pebble.

The games start with no pebbles on any vertex of the directed acyclic
graph G = (V;E), and ends when each vertex has been pebbled at least
once. The black pebble demand of G, and the black and white pebble de-
mand, respectively, is the minimum over all possible pebble strategies of the
maximum number of pebbles simultaneously on G when carrying out the
respective game. One can also study `progressive versions' of the games: in
these versions, each vertex can be pebbled only once.

For an undirected graph G, the set of directives of G, is the set of all
directed acyclic graphs whose underlying undirected graph equals G.

Theorem 63 (Kirousis and Papadimitriou [54]) For every undirected
graph G = (V;E), the following three numbers are equal:

1. the minimum progressive black pebble demand over all directives of G.
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2. the minimum progressive black and white pebble demand over all di-
rectives of G.

3. the node search number of G.

Recall that the node search number of G is one larger as the pathwidth
of G, see Theorems 29 and 57.

Theorem 64 (Kirousis and Papadimitriou [54]) For every directed
acyclic graph H = (V; F ) with underlying undirected graph G = (V;E),
with maximum in-degree of a vertex in H k, the progressive black and white
pebble demand, and hence the black and white pebble demand of H is at most
k + 1 times the node search number of G.

11 Trees and forests

In this section we consider the pathwidth and treewidth of trees, forests, and
give a characterisation of treewidth with help of depth-�rst-search spanning
forests. We also introduce, with help of spanning forests, the notions of
vertex and edge remember number, for use in a later section.

Theorem 65 A graph G = (V;E) is a forest, if and only if the treewidth of
G is at most 1.

Proof: By Lemma 6, it is su�cient to proof the result for trees, and
connected graphs. Take an arbitrary vertex r 2 V as root of tree G. Now,
(fXv j v 2 V g; G) with Xr = frg, and for v 6= r, Xv consists of v and the
parent of v, is a tree decomposition of G with treewidth at most 1. Note that
if G is not a tree, then it contains K3 as a minor, and hence has treewidth
at least 2 (use Lemma 17). 2

(Alternately, we can note that every biconnected component of a forest
has treewidth 1, and use Lemma 6.)

From Corollary 24, we know that the pathwidth of a graph with
treewidth k is O(k logn), so for trees, the pathwidth is O(logn). More
precise bounds were obtained by Sche�er [94].

Theorem 66 (Sche�er [94]) For every tree T = (V;E), the pathwidth of
T is at most 3 log(2n+ 1).

Theorem 67 (Sche�er [94]) The pathwidth of a complete binary tree of
depth k (i.e., with 2k+1 � 1 vertices) equals dk=2e.

Theorem 68 (Kirousis and Papadimitriou [54]) The pathwidth of a
complete ternary tree T equals its height.
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(To be precise, Kirousis and Papadimitriou formulate and prove this
result in the equivalent notion of node search, cf. Section 10.)

Ellis et al. [37] obtained among others a precise characterization of what
trees have a speci�c pathwidth (in terms of separation number).

Another characterisation of treewidth can be obtained by looking at
depth-�rst-search spanning trees or forests.

De�nition. (i) A DFS-tree (or: palm tree) of a connected graph G = (V;E)
is a rooted spanning subtree T = (V; F ) with root r 2 V , such that for every
(v; w) 2 E: v is an ancestor of w in T or w is an ancestor of v in T .
(ii) Given a DFS-tree T with root r of G, then the value of T is the maximum
over all vertices v 2 V , of the number of ancestors of v that is adjacent to v
or a descendant of v.

Proposition 69 (Kloks [55]) Let G = (V;E) be a connected graph, and
let r 2 V . The treewidth of a graph equals the minimum value of a DFS-tree
with root r of a supergraph G = (V;E0) of G (E � E0).

We now introduce the notions of vertex remember number and edge
remember number of maximal spanning forests of a graph, which are used
for some proofs in Section 13.1, and were introduced in [16].

Consider a maximal spanning forest T = (V; F ) of a graph G = (V;E).
(I.e., T contains a spanning tree of every connected component of G.) To
every edge e = (v; w) 2 E �F , we can associate its fundamental cycle, that
is: the unique cycle, consisting of e and the simple path from v to w in
T . We de�ne the vertex remember number of G, relative to T , denoted as:
vr(G;T ), to be the maximum over all v 2 V of the number of fundamental
cycles that use v. Similarly, the edge remember number of G, relative to T ,
is denoted by er(G;T ), and de�ned as the maximum over all edges e 2 V
of the number of fundamental cycles that use e.

Theorem 70 Let G = (V;E) be a graph with maximal spanning forest T =
(V; F ), and with maximum vertex degree d. Then

er(G;T ) � vr(G;T ) � d

2
� er(G;T )

Proof: Observe that when k cycles use a vertex v with degree d0, at least
one edge adjacent to v is used by 2k=d0 of these cycles, as each of these
cycles must use two of the edges adjacent to v. The result now follows from
this observation and the de�nitions. 2

Theorem 71 Let T = (V; F ) be a maximal spanning forest of graph G =
(V;E). The treewidth of G is at most max(vr(G;T ); er(G;T ) + 1).
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Proof: Let T 0 be the tree (V [F;F 0), with F 0 = f(v; e)jv 2 V; e 2 F;9w 2
V : e = (v; w)g, i.e. T 0 is obtained by adding an extra vertex in the middle
of each edge in T . We show how to construct sets Xi, i 2 V [ F , such that
(fXiji 2 V [ F ); T 0 = (V [ F;F 0)) is a tree decomposition of G.

First, for all v 2 V , take v 2 Xv and for all (v; w) 2 F , take v; w 2 X(v;w).
Secondly, for each edge (v; w) 2 E �F , choose arbitrarily one of v or w,

say v. Now add v to each Xx, for all vertices x 2 V; x 6= w that are on the
fundamental cycle of (v; w). Only do not add v to Xw. Also, add v to Xe,
for all edges e 2 F on the fundamental cycle of (v; w).

One can verify that this indeed yields a tree decomposition of G. For
v 2 V : jXv j � 1 + vr(G;T ), and for e 2 F : jXej � 2 + er(G;T ). So the
width of this tree decomposition is at most max(vr(G;T ); er(G;T ) + 1). 2

12 Graphs, that `almost' have treewidth k

In this section, we give two easy to obtain lemmas, that help in many cases
to establish an upper bound on the treewidth (or pathwidth) of graphs.

Lemma 72 Let G = (V;E) be a graph, let W � V be a set of vertices,
and suppose that G[V �W ] has treewidth (pathwidth) at most k. Then the
treewidth (pathwidth) of G is at most k + jW j.
Proof: Let (fXi j i 2 Ig; T = (I; F )) be a tree decomposition (path
decomposition) of G[V � W ] of treewidth at most k. Write for all i 2
I: Yi = Xi [ W . Then (fYi j i 2 Ig; T ) is a tree decomposition (path
decomposition) of G of treewidth at most k + jW j. 2

Lemma 73 Let G = (V;E) be a graph, let E0 � E be a set of edges, and
suppose that the graph (V;E�E0) has treewidth (pathwidth) at most k. Then
the treewidth (pathwidth) of G is at most k + jE0j.
Proof: Let W � V be a set, obtained by choosing for every edge e 2 E0

an arbitrary endpoint and putting it in W . G[V � W ] is a subgraph of
(V;E �E0), hence G[V �W ] has treewidth at most k, hence, by lemma 72,
G has treewidth at most k + jW j � k + jE0j. 2

Next we consider almost trees with parameter k, or, in short, `almost
k-trees'. Almost 1-trees are also known as cacti or cactus graphs.

De�nition. A graph G = (V;E) is an almost tree with parameter � k, if
and only if there exists a maximal spanning forest T = (V; F ) of G, such
that in each biconnected component of G there are at most k edges of G
that do not belong to T .

With other words, G = (V;E) is an almost tree with parameter � k,
if and only if for each biconnected component Gi = (Vi; Ei) of G one has
jEij � jVij+ 1 � k.
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Theorem 74 (Bodlaender [14]) The treewidth of an almost tree with pa-
rameter k is at most k + 1.

Proof: For a biconnected graph, we directly can apply Lemma 72, using
the fact that forests have treewidth 1. By Lemma 6, the result now follows.
2

A set of vertices V 0 � V is called a feedback vertex set of a graph G =
(V;E), if G[V � V 0] does not contain a cycle, i.e., is a forest. A set of edges
E0 � E is called a feedback edge set of a graph G = (V;E), if (V;E � E0)
does not contain a cycle.

Corollary 75 If G has a feedback vertex set of size k, then the treewidth of
G is at most k + 1.

In [67], the reduction complexity of st-dags (directed acyclic graphs, with
a unique vertex s of in-degree 0 and a unique vertex t of out-degree 0) is
considered. Consider the following reductions: parallel reduction: remove
all but one of two or more parallel edges; series reduction: replace edges
(v; w) and (w; x), by an edge (v; x) in case w has in- and out-degree 1, and
node reduction: take a vertex v of in-degree 1 and out-degree 1, draw an
edge from every predecessor of v to every successor of v, and remove v and
its adjacent edges. The reduction complexity of st-dag G is the minimum
number of node reductions in a series of parallel, series, and node reductions
that reduces G to a single edge.

Theorem 76 If G is an st-dag with reduction complexity k, then the
treewidth of (the undirected graph underlying) G is at most k + 2.

Proof: First note that we can modify each series of parallel, series, and k
node reductions that reduces G to a single edge to a series of parallel and
series reductions and k vertex removals (take a vertex, and remove it and
its adjacent edges), that also reduces G to a number of components, each
having at most one single edge. (Apply vertex removals on the same vertices
as node reductions in the original sequence.)

Hence, if G has reduction complexity k, there exists a subgraph G0 of
G obtained by removing at most k vertices from G, that can be reduced to
single edge components by series and parallel reductions. Now, G0 can be
seen to be a series parallel graph, hence the treewidth of G0 is at most 2
(Theorem 41), and by Lemma 72, the treewidth of G is at most k + 2. 2

13 Planar graphs

13.1 Planar graphs with small radius

In this section, we consider planar graphs with small radius, and some related
classes of graphs, including the Halin graphs.

35



There are several related notions, that deal with the maximum distance
from vertices or faces of a planar or plane graph to the exterior face. Bien-
stock and Monma [12] list the following four notions:

� Call two faces adjacent when they share a vertex. The maximum
distance of a face to the exterior face is called the radius [72].

� The maximum distance (using the usual notion of distance in a graph)
in G of a vertex to a vertex on the outer face is called the width [35]
or gauge [1].

� Call two vertices adjacent, if they share a face, and call the outer
face adjacent to all vertices on the outer facial cycle. The maximum
distance of a vertex to the outer face is called the outerplanarity [7].

� Call two faces adjacent when they share an edge. The maximum dis-
tance of a face to the outer face is called the depth [11].

The radius, width, outerplanarity, and depth of a planar graph G is the
minimum radius, width, etc., over all possible plane embeddings of G.

Another, equivalent de�nition of the notion `outerplanarity' is the fol-
lowing (see [7]).

De�nition. An embedding of a graph G = (V;E) is 1-outerplanar, if it is
planar, and all vertices lie on the exterior face. For k � 2, an embedding of
a graph G = (V;E) is k-outerplanar, if it is planar, and when all vertices on
the outer face are deleted, then a (k � 1)-outerplanar embedding of the re-
sulting graph is obtained. A graph is k-outerplanar, if it has a k-outerplanar
embedding.

The 1-outerplanar graphs are usually called outerplanar graphs. Bien-
stock and Monma [12] notice the following easy relations.

Lemma 77 (Bienstock and Monma [12]) Let G = (V;E) be a planar
graph with radius r, width w, outerplanarity p, and depth d. Then r � p �
r + 1, r � w + 1, r � d, p � w + 1, p � d + 1.

Lemma 78 Every outerplanar graph G = (V;E) has treewidth at most 2.

Proof: Observe that an outerplanar graph can be rewritten to the empty
graph by the rules (i) { (iii) from Theorem 33. 2

The class of outerplanar graphs is closed under minor taking: its ob-
struction set consists of the graphs K2;3 and K4 (see [97] for some related
results.)

We will show a bound of 3k�1 on the treewidth of k-outerplanar graphs.
We need a series of lemma's.
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Figure 5: K2;3

Lemma 79 Let G = (V;E) be a planar graph with some given planar em-
bedding. Let H = (V;E0) be the graph, that is obtained from G by removing
all edges on the exterior face. Let T 0 = (V; F 0) be a maximal spanning forest
of H. Then there exists a maximal spanning forest T = (V; F ) of G, such
that er(G;T ) � er(H;T 0) + 2, and vr(G;T ) � vr(H;T 0) + degree(G).

Proof: Consider the graph K = (V; (E � E0) [ F 0), i.e. the graph with
edges in T 0, or in G but not in H. Let T = (V; F ) be a maximal spanning
forest of K, such that T 0 � T , i.e. T is obtained by adding edges from E�E0

to T 0. Note that every fundamental cycle in K, relative to T , must form
the boundary of an interior face in K. As each edge is adjacent to at most
2 interior faces, and each vertex is adjacent to at most degree(G) interior
faces, it follows that er(K;T ) � 2, and vr(K;T ) � degree(G).

As T is also a maximal spanning forest of G, and each fundamental
cycle in G either is a fundamental cycle in H, or a fundamental cycle
in K; er(G;T ) � er(K;T ) + er(H;T 0) � er(H;T 0) + 2, and vr(G;T ) �
vr(K;T ) + vr(H;T 0) � vr(H;T 0) + degree(G). 2

Lemma 80 Let G = (V;E) be an outerplanar graph with degree(G) � 3.
Then there exists a maximal spanning forest T = (V; F ), with er(G;T ) � 2
and vr(G;T ) � 2.

Proof: If one removes all edges on the exterior face of G, a tree or forest
T 0 = (V; F 0) results. Clearly er(T 0; T 0) = vr(T 0; T 0) = 0. The result follows
now as in Lemma 79 by observing that each vertex is adjacent to at most 2
interior faces. 2

Lemma 81 Let G = (V;E) be a k-outerplanar graph with degree(G) � 3.
Then there exists a maximal spanning forest T = (V; F ) with er(G;T ) � 2k,
and vr(G;T ) � 3k � 1.
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Proof: Use induction to k. The case k = 1 was shown in Lemma 80. Let
k � 2. If we remove all edges on the exterior face of G, then each vertex
on the exterior face has degree 0 or 1, so a (k � 1)-outerplanar graph is
obtained. The result now follows with induction and Lemma 79. 2

Lemma 82 For every k-outerplanar graph G = (V;E), there exists a
k-outerplanar graph H = (V 0; E0), such that G is a minor of H, and
degree(H) � 3.

Proof: We can replace every vertex with degree d � 4 by a path of d� 2
vertices of degree 3, in such a way that the graph stays k-outerplanar. 2

Now we are ready to prove the main results.

Theorem 83 The treewidth of a k-outerplanar graph G = (V;E) is at most
3k � 1.

Proof: For k = 1, use Lemma 78. Suppose k � 2. By Lemma 82,
there exists a k-outerplanar graph H, such that G is a minor of H, and
degree(H) � 3. By Lemma 81, there exists a maximal spanning forest T
of H, such that er(H;T ) � 2k and vr(H;T ) � 3k � 1. By Theorem 71,
treewidth (H) � maxf3k � 1; 2k + 1g = 3k � 1. By Lemma 16, treewidth
(G) � 3k � 1. 2

Robertson and Seymour proved a very similar result, but based on the
notion of radius.

Theorem 84 (Robertson and Seymour [72]) The treewidth of a pla-
nar graph with radius d is at most 3d+ 1.

We next consider the Halin graphs.

De�nition. A graph G = (V;E) is a Halin graph, if it can be obtained by
embedding a tree without vertices with degree 2 and with at least 4 vertices
in the plane, and connecting its leaves by a cycle that crosses none of its
edges.

Theorem 85 (See [104]) The treewidth of a Halin graph equals 3.

Proof: A similar proof as above can be used. Let G be a Halin graph. G
is a minor of a Halin graph H with maximum vertex degree 3. The latter
clearly has a spanning tree T with vr(H;T ) = 3, and er(H;T ) = 2. The
construction of Theorem 71 gives a tree decomposition of H of width 3.
Hence the treewidth of G is at most 3.

As G contains K4, a clique with 4 vertices, as a minor (contract all
interior vertices to one vertex, a \wheel" results, and then contract further
to K4), treewidth (G) � treewidth (K4) = 3. 2
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We now give an alternate proof of the famous `planar separator theorem'
of Lipton and Tarjan [61] | although the constant factor yielded by the
proof below is higher. See the discussion in Section 5.

Theorem 86 Every planar graph G = (V;E) has a (type-2) 1
2n-separator

of size 2
p

6n � 4:90
p
n.

Proof: Let c = 1
2

p
6 in this proof. Let G = (V;E) be a planar graph,

and consider a �xed plane embedding of G. Let V0 = ;, V1 be the set
of vertices on the exterior face, and let Vi be the set of vertices that are
adjacent to at least one vertex in Vi�1, and do not belong to V0[V1[� � �Vi�2
(i � 2). Take i0 such that

Pi0�1
j=0 jVj j � 1

2n, and
P1

j=i0+1 jVj j � 1
2n. (Such

i0 always exists.) Note that each set Vi separates V0 [ V1 [ � [ Vi�1 from
Vi+1 [ Vi+2 [ � � �. If Vi0 < c

p
n, then we are done. Otherwise, let i1 =

maxfj < i0 j jVj j � c
p
ng, and i2 = minfj > i0 j jVj j � c

p
ng. Note that

G[Vi1+1 [ Vi1+2 [ � � � [ Vi2�2 [ Vi2�1] is an (i2 � i1 � 1)-outerplanar graph,
hence has treewidth at most 3(i2 � i1 � 1) � 1 � 3

c

p
n � 1 (use that all Vj

with j in the range i1 + 1 � � � i2 � 1 have size more than c
p
n), so this graph

has a (type-2) separator S of size 3
c

p
n (Theorem 19). Now S [ Vi1 [ Vi2 is

a (type-2) separator of G of size at most 2c
p
n + 3

c

p
n = 2

p
6n. 2

13.2 Grid graphs

We consider in this section the n by r grid graph.

De�nition. The n � r grid graph is the graph GRn�r = (Vn�r; En�r),
de�ned by Vn�r = f(i; j) j i 2 f1; 2; : : : ; ng; j 2 f1; 2; : : : ; rgg, and En�r =
f((i1; j1); (i2; j2)) j (i1; j1); (i2; j2) 2 Vn�r and (i1 = i2 ^ jj1 � j2j = 1) or
(j1 = j2 ^ ji1 � i2j = 1)g.

Lemma 87 The pathwidth of an n � r grid graph GRn�r is at most
min(n; r).

Proof: W.l.o.g., suppose n = min(n; r). Take Xj�n+i�n�1 = f(i; j); (i +
1; j); ; (i+ 2; j); : : : ; (n; j); (1; j + 1); (2; j + 1); : : : ; (i� 1; j + 1); (i; j + 1)g,
for all i; j, 1 � i � n, 1 � j � r� 1. Then (X1;X2; : : : ;Xn(r�1)�1) is a path
decomposition of GRn�r of width n. 2

Lemma 88 The treewidth of an n� n grid graph GRn�n is at least n.

Proof: In [82], it is shown that a GRn�n has a tangle of order n. Hence,
the tangle number of GRn�n is at least n, and by Theorem 59, the treewidth
of GRn�n is at least n. 2

Corollary 89 The treewidth and pathwidth of the n� r grid graph GRn�r

equal minfn; rg.
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14 Graphs of bounded degree

In this section we mention some di�erent results on the treewidth of graphs
of bounded degree.

Lemma 90 (Sche�er [94]) Every graph of treewidth at most k contains
a vertex of degree at most k.

Proof: If every vertex of G has degree more than k, then G cannot be a
subgraph of a k-tree, because every k-tree has at least one vertex of degree
k, hence G is no partial k-tree, hence G has treewidth more than k. (See
Theorem 35). 2

From Lemma 90, the following result follows easily by induction.

Lemma 91 (Rose [93].) If G = (V;E) has treewidth at most k, then jEj �
k � jV j � 1

2k(k + 1).

Ramachandramurthi introduced the graph parameter 
(G) = min(n �
1;minv;w2V;v 6=w;(v;w)62E max(degree(v);degree(w))). I.e., 
(G) = n � 1, if G
is a clique.

Lemma 92 (Ramachandramurthi [68]) The treewidth of a graph G is
at least 
(G).

Ramachandramurthi [68] also gives characterisations of pathwidth and
treewidth in terms of subgraphs that ful�l certain degree restrictions.

Bodlaender and Engelfriet [21] introduced the notion of domino
treewidth.

De�nition. A tree decomposition (fXi j i 2 Ig; T = (I; F )) of a graph
G = (V;E) is a domino tree-decomposition, if for every v 2 V , there are at
most two nodes i 2 I with v 2 Xi. The domino treewidth of a graph G is
the minimum width over all domino tree decompositions of G.

Theorem 93 (Bodlaender and Engelfriet [21]) For every k, d 2 N,
there exists k0 2 N, such that every graph with treewidth at most k and
maximum degree at most d has domino treewidth at most k0.

There is also a connection of this notion with the notion of strong
treewidth, as introduced by Seese [95].

De�nition. A strong tree decomposition of a graph G = (V;E) is a pair
(fXi j i 2 Ig; T = (I; F )) with fXi j i 2 Ig a collection of disjoint subsets
of V , and T = (I; F ) a tree, such that

� Si2I Xi = V
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� for all edges fv; wg 2 E, either there is an i 2 I with v; w 2 Xi, or
there are i, i0 2 I, that are adjacent in T ((i; i0) 2 F ), and v 2 Xi,
w 2 Xi0 .

The width of a strong tree decomposition (fXi j i 2 Ig; T = (I; F )) is
maxi2I jXij. The strong treewidth of a graph G = (V;E) is the minimum
width over all strong tree decompositions of G.

Note that in general, a strong tree-decomposition of a graph G, is not a
tree-decomposition of G. Trees have strong treewidth 1: take singleton sets
Xi, one for each vertex in the tree.

Lemma 94 (Seese [95]) If the strong treewidth of G is at most k, then
the treewidth of G is at most 2k � 1.

Theorem 95 (Bodlaender and Engelfriet [21]) For every class of
graphs G, the following statements are equivalent:

1. There exists a constant c 2 N, such that every graph in G has domino
treewidth at most c.

2. There exist constants k; d 2 N, such that every graph in G has
treewidth at most k and maximum degree at most d.

3. There exist constants k0; d 2N, such that every graph in G has strong
treewidth at most k0 and maximum degree at most d.

15 Applications

In this section, we mention some of the applications of treewidth to (mostly)
non graph-theoretic applications.

15.1 Gate Matrix Layout

The gate matrix layout problem arises from problems in VLSI design. It
can be formulated as follows. An instance of the problem consists of an
n�m boolean matrix M , and an integer k. We are asked whether we can
permute the columns of the matrix M , such that if in each row, we change
every 0 which lies between the rows leftmost and rightmost 1 into a 1, then
no column contains more than k 1's.

Fellows and Langston [38] showed that there is an elegant translation of
instances of gate matrix layout to instances of pathwidth, as follows. (We
give a slightly more compact transformation, avoiding a �rst step replacing
every column by a number of columns with exactly two 1's.)

Given matrix M , let GM be the graph, obtained by taking a vertex vi
for each row i, and taking an edge between vertices vi and vj , if there exists
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a column c, with Mic = Mjc = 1. E�ectively, this means that each column
corresponds to a clique in G, formed by the rows that have a 1 on the entry
in that column.

Lemma 96 (Fellows, Langston [39]) GM has pathwidth at most k, if
and only if there exists a permutation of the columns of M , such that if
in each row, we change every 0 which lies between the rows leftmost and
rightmost 1 into a 1, then no column contains more than k + 1 1's.

Proof: First, suppose (X1; : : : ;Xr) is a path decomposition of GM of
width at most k. For each column c, note that fvi j Mic = 1g forms a
clique in GM , hence, by Lemma 4, there exists an �c 2 f1; : : : ; rg, such that
fvi j Mic = 1g � X�c . Permute the columns c by a permutation �, with
�c < �c0 ) �(c) < �(c0) for all columns c, c0. One can verify that this
column permutation � actually is of the form requested.

Alternatively, suppose we have permuted the columns of M , and changed
in every row every 0 which lies between the rows leftmost and rightmost 1
into a 1, such that no column contains more than k + 1 1's. Let M 0 be the
resulted matrix. Now (X1; : : : ;Xm), with Xc = fvi j Mic = 1g can be seen
to be a path decomposition of GM of width at most k. 2

See also [68].
A good overview of many of the issues involved here has been made by

M�ohring [64].

15.2 Interval Routing Schemes

Consider a distributed processor network, in which processors want to send
messages to each other. Research has been done on so called compact routing
methods (see [102] for an overview), methods in which processors decide over
what link to forward messages that take relatively little space for storing
such routing information. One type of these methods is interval routing.
In the case of k-interval routing, each processor is numbered with a unique
integer, and each outgoing link is labelled with at most k cyclic intervals of
processor names (integers). (I.e., each edge is labelled with two labels, one
at each endpoint.) A message (when not arriving at its �nal destination) is
forwarded over the link whose label has an interval that contains the name
of the destination processor. It is required that messages arrive at their
destination, using this method, by the shortest route.

In the dynamic link cost setting, one assumes that weights of links can
vary. An (undirected) graph is said to be in k-IRS, if there exists a number-
ing of the vertices (processors), such that for all weight assignments to edges
(links), there exists a label assignment to links, ful�lling the requirements
described above.

Theorem 97 (Bodlaender et al. [24]) If G 2 k-IRS, then the treewidth
of G is at most 4k.

42



For details and more related results, the reader is referred to [24].

15.3 Structured programs

In a very recent paper, Thorup [100] makes a connection between the control-

ow graphs of structured programs and treewidth. Under a rather general
de�nition of `structured program' (including goto-freeness), he shows the
following result.

Theorem 98 (Thorup [100]) All control-
ow graphs of structured pro-
grams have treewidth at most 6.

Thorup also mentions that control graphs of programs written in
Modula-2 have treewidth at most �ve, and control graphs of goto-free pro-
grams written in Pascal have treewidth at most three. The application of
this result lies in algorithms, solving the register allocation problem.

16 Miscellaneous results

16.1 AT-free graph

An asteroidal triple in a graph G = (V;E) is a set of three distinct vertices
v; w; x 2 Y , such that between any two of them, there is a path that does not
contain a neighbour of the third. A graph is AT-free, if it does not contain
an asteroidal triple. M�ohring proved the following interesting result.

Theorem 99 (M�ohring [65]) If G is an AT-free graph, then the treewidth
of G equals its pathwidth.

Postscript

An arboretum is a garden, containing many di�erent kinds of trees, in many
cases made and maintained for study of biologists. This partial k-arboretum
was meant to be a collection of many di�erent kinds of partial k-trees. How-
ever, the `partial' from the title is also meant to re
ect the incompleteness of
the overview. I express my apologies to those, whose work I misrepresented
or have missed to mention. I welcome any comments and suggestions.

This paper bene�ted especially from comments from, help of, discussions
with and collaborations with Babette de Fluiter, Joost Engelfriet, Michael
Fellows, Jens Gustedt, Ton Kloks, Andrzej Proskurowski, Petra Sche�er,
Detlef Seese, Jan van Leeuwen, and several others, to which I apologise here
for forgetting to mention their names.
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