B A Proof Theory of
Asynchronously
Communicating Sequential
Processes

B [S Je Boer, N. Francez, M.
van Hulst, and EA. Stomp

UU-CS-1996-05
January 1996

\ Universiteit Utrecht

ISSN: 0924-3275

A proof theory of asynchronously communicating sequential
~ processes*

F. S. de Boer! N. Francez? M. van Hulst! F. A. Stomp?

Abstract

We present compositional Hoare logics for distributed systems in which communication is
asynchronous via FIFO channels. The logics are proved sound and relative complete.

One of our main results is that the non-compositional proof method for (synchronous) CSP
of Apt, Francez, and de Roever applied to asynchronous communication allows a compositional
formulation in which the so-called cooperation test can be fully incorporated in the local
verification of the (sequential) components of the system. Thus, the resulting method enables
(verified) local specifications of the components, which may be augmented with auxiliary
variables, to be combined into a global specification without any test involving the way those
local specifications have been derived. .

We argue that the approach presented in the current paper is preferable over other com-
positional proof methods presented in the literature in that it allows more flexibility in cor-
rectness proofs. The applicability of our approach is demonstrated by a correctness proof of a
distributed program for leader election.

*This paper is the culmination of two independent developments, one by Francez and Stomp (preliminary versions
[11, 12]) and the other by de Boer and van Hulst (preliminary versions [4, 6, 7]). As the two approaches had much
in common, they were joined together upon the advice of the editor of TCS, in sequel to the submission of the first
for publication to TCS. The research of the authors F.S. de Boer and M. van Hulst has been partially supported by
the Human Captial and Mobility Network ‘EXPRESS’.

1Utrecht University, Department of Computer Science, P.O. Box 80089, 3508 TB Utrecht, The Netherlands.

¥The Technion -Israel Institute of Technology, Department of Computer Science, Haifa 32000, Israel.

SAT&T, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, USA.

1 Introduction

Hoare logics have been developed for and applied successfully to a variety of sequential program-
ming constructs (see for an overview [2]). For the parallel programming language CSP a Hoare
logic is presented in [3]. The proof method in [3] is based on the proof-theoretical ideas first
introduced in [15] for a parallel programming language based on communication via shared vari-
ables. Characteristic of this method is its two-leveled structure: In the first level the (sequential)
components of a system are verified using assumptions about the communication statements; the
second level consists of checking whether the assumptions introduced in the first level for the var-
ious components are mutually consistent. This test is called the cooperation test. Since this test
involves information of the internal structure of the local proofs of the correctness of the sequential
components, this proof method is not compositional.

The results

In this paper we develop compositional Hoare logics for distributed systems composed of processes
which communicate asynchronously via FIFO (First In First Out) channels.

One of our main results is that the non-compositional proof method of [3] applied to ACSP (Asyn-
chronously Communicating Sequential Processes) allows a formulation in which the cooperation
test can be fully incorporated in the verification of the (sequential) components of a system. As
a consequence the resulting proof method mainly consists of the verification of the parallel com-
ponents in a slight extension of the usual Hoare logic for sequential programs. The verified local
specifications then can be logically combined into a global specification, without any additional
test involving the way these local specifications are derived (as usually codified in proof outlines).
As such the resulting proof method is compositional. Moreover, we prove that the method is
sound and (relative) complete. The applicability of the proof method is demonstrated by proving
correctness of a distributed leader election algorithm.

To obtain a (relative) complete proof method for ACSP auziliary variables are needed to describe
and reason about dynamic control properties. These variables do not affect the control of the
original program. We show that when restricting sequential processes to deterministic control
structures, these variables are no longer needed.

Comparison with related work

The first proof method for ACSP was proposed in [19] and [20]. That method is an adaptation of
the system presented in [14] for synchronously CSP. These systems are not compositional because
of the so-called tests for satisfaction and interference-freedom. A proof method in the same spirit
has been proposed by Camp, Kearns, and Ahuja [9] to reason about communication though flush-
channels, which generalize conventional asynchronous channels.

A compositional Hoare logic for CSP has been developed in [22]. This Hoare logic has been applied
to ACSP in [17]. Other similar compositional proof systems for reasoning about asynchronous
communication have been presented in [13, 21, 18]. Francez [10] gives on overview of many existing
proof methods for sequential and parallel/distributed programs. Compositionality in the above-
mentioned systems is achieved by the incorporation of certain logical variables which range over
histories, i.e. sequences of communication events. In [4] a completeness proof for the method of
[3] (for CSP) is given which is based on a compositional semantics, and which, as a consequence,
encodes in a precise manner the compositional proof method of [22]. Similarly we show how to
“extract” the compositional proof method of [17] from the completeness proof of our proof method
for ACSP. The completeness proof thus shows that the compositional reasoning pattern based
on histories can be mimicked in our proof method. However in general histories complicate the
reasoning process while in many real-life examples simple boolean “flags” as auxiliary variables
already suffice. Therefore compositional proof methods, which allow auxiliary variables of any

kind, like the one presented in this paper, are more flexible and thus more useful in practice.
The plan of the paper

In the next section we introduce our programming language of asynchronously communicating
sequential processes. We present our proof system for reasoning about partial correctness properties
of programs in Section 3. Soundness and (relative) completeness of this proof system is proved in
the Sections 4 and 5 respectively. In Section 6, we prove correctness of a distributed leader election
program. A proof system for reasoning about non-terminating programs is presented in Section 7.
As shown in Section 8 the proof system can be simplified when we restrict ourselves to so-called
deterministic processes. Finally, Section 9 draws some conclusions.

2 Programming language

In this section we define the syntax and the semantics of the programming language used through-
out this paper. The semantics describes the behaviour of asynchronously communicating processes.
Processes interact only via directed communication channels which are implemented by unbounded
FIFO-buffers. A process can send a value along a channel or it can receive a value along a channel.
The value sent along a channel is appended to the buffer which implements that channel, whereas
receiving a value along a channel consists of retrieving the first element from its corresponding
buffer. Thus values are received along a channel in the same order as they have been sent along
that channel. A process is suspended when it tries to receive a value along an empty channel.
Since buffers are assumed to be unbounded sending values can always take place.

2.1 Syntax

We assume given a set Pvar of (program) variables, and a set C of channel names with typical
element c, The sets Pvar and C are assumed to be disjoint.

The syntax of a statement, which can be executed by a (sequential) process, is defined by the
following grammar:

S == skip
| r:=e
| clle
| ¢z
! 5158,
| licalg: = S
| licalg: = S

In the above, e denotes an expression, and A denotes some fixed and finite set (of indices.) (The
syntactic structures of expressions and of indices is left unspecified.)

The statements skip and z := e have their usual meaning. Sending the value of expression e along
channel ¢ is described by the send-statement c!le, whereas receiving a value along channel ¢ and

recording that value in variable z is described by the receive-statement c??z. We sometimes refer
to a receive- or a send-statement as an IO statement. Sequential composition is denoted by “;”.
The statement |;calg: — Si] is called a guarded conditional. It consists of a (finite number of)
guarded statements g; — S; (¢ € A). Every guard is either a boolean expression b or a sequential
composition b; ¢??z, for some boolean condition b and some receive-statement c?7z. (The syntactic
structure of boolean expressions is left unspecified.) Guard b is enabled in some state, if it evaluates
to true in that state. If enabled, execution of such a guard is equivalent to the execution of skip.
Guard b;¢??z is enabled in some state, if in that state b evaluates to true and channel c¢ is not
empty. If enabled, execution of such a guard is equivalent to the execution of ¢??z. The execution
of a guarded conditional [;calg; — Si] consists of the execution of some enabled guard g; and the
execution of S; thereafter. If there exists no enabled guard, then the execution of the guarded
conditional suspends. The guarded iteration *|ica[g: — Si] consists of repeatedly executing the
guarded selection {;c[g: — S:] until all the boolean parts of the guards are false (and the iteration
terminates). Note that we do not have send-statements in guards. However this does not reduce
the expressive power as in CSP ([8]) because the execution of a send-statement does not depend
on the environment.

In order to reason about programs, we expand them by (assignments to) auziliary variables. These
variables are not allowed to affect the flow of control of the original program. They are used only
to reason about dynamic control properties. Related with the notion of auxiliary variables is that
of a bracketed section. Bracketed sections are used to render several (typically two) sequentially
composed statements atomic, so that it is irrelevant whether an invariant holds in between.

Definition 2.1 The syntax of a bracketed statement S which describes the behaviour of a sequen-
tial process, is defined by

S == skip
| z:=e
| ey =)
| (Mzy =)
| 51,5
| licalbg: — Si)

| *licalbg: = Si

1
Here bg; is either a simple boolean guard as before, or it is a bracketed guard of the form
(bi;¢??zi;y; = e;). The symbols “(” and “)” mark the region of a bracketed section, which
typically consists of an IO statement and an assignment (in case of a guarded conditional or it-
eration the boolean guard is also included). The auxiliary variables of a bracketed statement are
those variables which occur at the lefthandside of an assignment in a bracketed section. We require
that the auxiliary variables do not occur outside bracketed sections and that they do not occur in
the boolean expressions.

Non-bracketed IO-statements can be viewed as special cases of bracketed statements. For example,
¢?7z can be identified with (c??z;y := y), for some auxiliary variable y. Hence we will only consider
statements in the sequel in which every receive-statement and every send-statement is contained
within a bracketed section.

Definition 2.2 A parallel program is of the form [S; || ... | S»] with the following restrictions: The
statements S; do not share program variables, channels are unidirectional and connect exactly one
sender and one receiver. Formally we assume a partitioning of the set Pvar of program variables
into sets Pvar; (here i ranges over the natural numbers.) Also, we assume a partitioning of the
set IOvar = {c??,c!! | ¢ € C} of input/output variables into sets JOvar;. Let Puvar(S) be the set
of program variables of S and let IOvar(S) be the set of those input /output variables for which
there occurs a corresponding input/output statement in S, e.g. JOvar(c??z) = {c??}. We then
impose on any program P = [S; || ... || Sn] the syntactic restriction that Pvar(S;) C PVar; and
IOvar(S;) C I0var;.

2.2 Semantics

We first define the notion of a state:

Definition 2.3 A state assigns values to all program variables and all input/output variables.
Define

% = (Pvar U IOvar) — (Val U Val®),

where Val denotes some domain of values and Val* denotes the set of all finite sequences over Val.
We impose the restriction that program variables are mapped to values; and that input/output
variables are mapped to sequences of values. Elements of £ are called states and denoted by o,

In the sequel o(e) and o(b) denote the value of the expressions e and b in state o, respectively.
In particular, o(z), for z € Pvar, denotes the value of the program variable z in o, and similarly,
o(c??) and o(c!), ¢ € C, denote the value of the input/output variables c?? and c!! in . The idea
is that o(c??) denotes the sequence of values received along channel ¢, whereas o(c!!) denotes the
sequence of values sent along channel ¢. The state which results from assigning the value v to the
program variable z in o is denoted by o{v/z}. Similarly, the state which results from assigning
the sequence s of values to the input/output variables c??, c!! is denoted by o{s/c??} and o{s/c!},
respectively. As usual, we denote by o{v1/y1,...,vn/yn} the result of the simultaneous assignment
ofvitoy;ine (1 =1,...,n).

We will use the following operations on sequences: f(s), which is only defined if sequence s is
not empty, denotes the first element of s; s - v denotes the result of appending the value v to s
(similarly, v - s denotes the result of prefixing v to s); and s — s’, which is only defined when s’ is
a prefix of s, denotes the suffix of s determined by s’. The empty sequence is denoted by €. For
technical convenience we introduce o(c) as an abbreviation of o(c!!) — (c??), i.e. the values sent,
but not yet received along channel c.

To formally define the semantics of our programming language, we introduce a fictitious statement

FE to denote termination.

Definition 2.4 The relation ==>C Stat x ¥ x T x Stat is defined as the smallest relation satisfying
the following, where we denote (S,0,0’,5') €= by S (22) g,

1. skip 22 E
2. z:=¢€ <%> E,

where o' = o{o(e)/x}.

(aa

3. {cNe;y =€) = E,
where o/ = o{a(c!!) - o(e)/c!,a(e’)/y}-

(':r a’)
4. (Mx;y :=e) = E,
provided o(c) # e. Here o' = o{0(c??) - v/c??,v/z,0(e)/y}, where v = f(o(c)).

5. 16 51 22 S then 5138, 22 87,5,
We identify E;S with S.

6. HtGA[bgz — S] <°' 2 S‘i»
provided bg; = b;, o(b;) = true and o = o'; or bg; = (b;; c;??xi;y; = ei), o(bi) = true,
o(c;) # €, and o'=0{0(c;??) - v/c;??,v/zi,0(e:)/ys}, where v = f(a(ci)).

7. *licalbg: = Si| = 2g) Si;*lier[bg; — Sil, '
provided bg; = b;, o(b;) = true and 0 = o'; or bg; = {(b;;¢;?7Ti;ys 1= e;), o(b;) = true,
o(c:) # €, and o'=0{o(c;??) - v/c;??,v/xi,0(e:) [y}, where v = f(o(cs)).

8. *licalby; — 5 L2 E,
prov1ded for the boolean part b; of bgi, o(b;) = false for all i € A.

We define the semantics of a statement S as the set of (finite) sequences, so-called reactive se-
quences, of elements of £ x I generated by the above transition relation (such sequences are
introduced in [5] as a general model for asynchronous communication).

Definition 2.5 For w = (01,0})---{0n,0%) € (Ex Z)*, S = E holds if there exist statements

Si,...,Sp suchthat $; =5, S, =F and,for1 <i<n,S; <a”6) S,.H For any statement S with
Puar(S) C Pvar,, and IOvar(S) C IOvary,, the semantics M(S5).C (£ x Z)* is defined by

M(S)={w| S => E and w is m-connected}

where sequence {(01,0}) -+ - (0n,0%) is m-connected if for all 1 <4 < n, ;41 and o] agree on all the
variables in Pvarm, and IOvar,,. By M(S)(c) we denote the set of sequences (01,07) - - - {(0n,07)
with ¢ = o1. As a special case we define M(E) = {e}.

A sequence in set M(S) represents a computation of S in some environment. The environmental
steps in a sequence (01,01) - - - (0n, 0%,) are represented by the “gaps” (07}, 0i+1). The requirement of
m-~-connectedness guarantees that the env1ronment does not affect the (program and input/output)
variables controlled by S.

Definition 2.6 For any program P = [S; || ... || Sx], the semantics M(P) C £ x ¥ of P is defined
by

M(P) = ap(M(S) || .. | M(Sa),

where the abstraction operator ap returns the set of pairs (¢,0') of initial and final states of all
connected sequences, such that for all channels ¢ in the program a(c??) < o(c!!) holds. An element
(o1,0)) -+ {on,0h) of (£ x T)* is called connected if o] = 0341, for 1 < ¢ < n. The semantic
operator || denotes the usual operation of interleaving. By M(P)(c) we denote the set of states o’

such that {o,0') € M(P). (Thus, if 6(c??) is not a preﬁx of a(c!!) for some channel ¢ in program
P, then M(P)(c) = 0 holds.)

3 Proof system

In this section we present axioms and proof rules for formally reasoning about programs.

3.1 Correctness formulas

We assume given some logic to reason about properties of states. The vocabulary of the logic
includes the set of program variables and input/output variables, and function /predicate symbols
describing operations/relations on the domain Val of values and the domain Val® of sequences
(of values). Assertions of the underlying logic are denoted by p,q,.... By ¢ = p we denote that
assertion p holds in o. Validity of an assertion p is denoted by = p.

Local correctness formulas are of the form

I:{p}S{q},

for assertions p,q,] and statement S. Here, I is an assertion which describes certain invariant
.properties of computations of S starting in a state satisfying p. W.r.t. a local correctness formula
I:{p}S{q}, it is implicitly assumed that PVar(S,p,q) S Pvary, and IOvar(S,p,q) C IOvar,, for
some n. Invariant I may refer to arbitrary input/output variables, but is allowed to refer only to
those program variables of S which occur as auxiliary variables. Informally, I : {p}S{q} is valid iff

every terminating computation of S in a parallel environment, which guarantees I at
each interleaving point, preserves I and results in a state satisfying postcondition g, if
initially p holds. ' :

Global correctness formulas are of the form

{p}P{a},

for assertions p,q and program P. The correctness formula {p}P{q} holds if every terminating
computation of P in a state satisfying precondition p results in a state satisfying postcondition g.

We now turn to the formal semantics of correctness formulas:
Definition 3.1 Let M<(S) denote the prefix closure of M(S), ie. it consists of M (S) plus
all the prefixes of sequences of M(S). We define = I : {p}S{q} iff for every sequence w =

(o1,0}) - (0n,0h) € M<(S), such that 01 = pand o; | I, for 1 < i < 7, we have that o] =1,
for 1 <4 < n; and if w € M(S) then o}, = q.

Invariant I in local correctness formula I : {p}S{q} thus provides for a kind of assumption/commitment
style specification.

Definition 3.2 For global correctness formula {p}P{q}, = {p}P{q} holds iff for all (s,0’) €
M(P) with o = p we have that ¢’ |= ¢ is satisfied.

This is the standard partial correctness interpretation of correctness formulas in Hoare logics.

3.2 Axioms and rules

Next we discuss the axioms and rules of the proof system. We have the following axioms for the
skip statement and assignments:

Axiom 1 (skip) I : {p}skip{p}
Axiom 2 (assignment) I:{ple/z|}z = e{q}

Here ple/z] denotes the result of substituting all free occurrences of z in p by e. Hereafter,
simultaneous substitution of ey, ...,e, for all free variables z1,...,z, in p will be denoted by
ple1/x1,...,€n/xn). Since the invariant I does not refer to program variables (except for the
auxiliary variables, but these occur only in bracketed sections for which we have different rules,
see below), I is on purely syntactic grounds preserved by the skip statement and assignments.

The following axiomatization of the input/output statements closely mirrors their semantics. (The
sequence term c stands for the term c!! — ¢??, i.e. it represents the contents of the channel c¢. The
term f(c) denotes the first element of c.) '

(IAp) = (IAg)c!-e/c! e /x]

Rule 1 (output) T {p}{cle;z:=) {q}

(IApAc#e) = (IAQIf(e)/z,c?? - f(c)/c??,e/y]
I:{p}{(c??z;y := e){q}

Rule 2 (input)

The following rules for sequential composition, the guarded statement and the guarded iteration
are the usual ones, except for the addition of invariant I.

I:{p}Si{r}, I:{r}S={q}
I: {p}S1;S2{q}

Rule 3 (sequential composition)

In the following rule we assume that bg; = b; for ¢ € A;; and bg; = (bs;¢;77x55y: = e;) for
1€ A~ A;p.

Rule 4 (guarded conditional)
I: {p/\ bi}Si{q} (1 € Al), I: {p/\ bi}(ci??xi;yi = 6{);Si{q} (’L €A~ Al)
I: {p}licalbg: = Si]{q}

I: {p}licalbg: = Sil{p}
* licalbgs = Sil{p A Ajca b}

Rule 5 (guarded iteratidn) 1)

Moreover we have the following consequence rule.

IAp) = p, I:{p}5{¢}, UAd)—4¢
I {p}S{q}

Rule 6 (Local consequence rule)

Note that the assumption/commitment style of specification inherent in the interpretation of the
invariant does not allow a weakening of the invariant in the above consequence rule.

We have the following rule for parallel composition:

I: {pi}Si{qi} i=1,..,n
i PSS ANZ, 4}

Rule 7 (parallel composition) TAA

We conclude the exposition of the proof system with the global consequence rule, the auxiliary
variables rule, the FIFO rule and the elimination rule.

p=p, {P}P{d}, ¢ — g
- {p}P{q}

Rule 8 (global consequence rule)

{p}P'{q}
{r}P{q}

Rule 9 (quziliary variables rule)

where P is obtained from P’ by deleting all assignments to the auxiliary variables. It is assumed
that the postcondition g does not refer to the auxiliary variables of P,
Rule 10 (FIFO rule)

{pAc?? < c}P{q}
{p}P{a}

where channel ¢ occurs in program P, and “<” denotes the prefix relation on sequences.

Rule 11 (. elimination rule) 'T%lp%%‘}_

provided z is a variable not occurring in P or g.

By F I:{p}S{q}andt {p}P{q} we denote the derivability of the correctness formulas I : {p}S{q}
and {p} P{q}, respectively, in the above proof system, using as additional axioms all valid assertions
of the underlying logic. '

4 Soundness

In this section we show validity of every derivable correctness formula.

We start with local correctness formulas:

Theorem 4.1 For every local correctness formula I : {p}S{q} we have that

HI:{p}S{q} implies = I : {p}S{q}.

Proof By straightforward induction on the length of the derivation. The basis of induction (for
axioms) should be obvious. For the induction step, we treat the following cases:

S = {c??x;y := e): Suppose that the last step in the proof had been the application of the input
rule. We are given that (I ApAc # €) = (I Ag)[f(c)/z,c?? - f(c)/c??,e/y] holds. Let
(o,0"y € M(S) be such that ¢ = p and ¢ |= I. By definition of the transition relation

it follows that o(c) # € and o' = o{a(c??) - v/c??,v/x,0(e)/y} withwv = f(o(c)). So
we have that ¢ = I ApAc # € and thus by the validity of the above implication, o =
(I A Q)lf(c)/xz,c?? - f(c)/c??,e/y). The latter is equivalent to ¢’ = I Ag (assuming the
substitution lemma of the underlying logic), which had to be proved.

S = S1;S,: Suppose that the last step in the proof had been the application of the sequential
composition rule. Then, I : {p}Si{r} and F I : {r}S2{g} both hold, for some assertion
r. ;From the induction hypothesis, we obtain that = I : {p}S1{r} and = I : {r}S2{q} are’
both satisfied. Choose w = (61,0%) -+ {0n,0%) € M<(S1;S2) such that o1 Epand o; = I,
for 1 <4 < n. Then either w € M<(S1) and so, by the validity of I : {p}Si{r}, o} = I, for
1<i < n;orw=wws, withw; € M(S1) and we € M<(S2). Let k be the length of w;. By
the validity of I : {p}S1{r} we have that o/ |= I, for 1 < ¢ < k, and 0}, |= 7. By the syntactic
restrictions on local correctness formulas and the definition of the semantics M we have that
o and ok41 agree on all the program variables and the input/output variables of r. So we
have that or41 | 7. The validity of I : {r}Sz2{q} then gives us o} |= I, for k£ <1 < n, and if
wy € M(S2) then o), = q.

Next we show the validity of every derivable global correctness formula.

Theorem 4.2 For every global correctness formula {p}P{q} we have that

+ {p}P{q} implies = {p}P{g}.

Proof By induction on the length of the derivation. We concentrate on application of the parallel
composition rule. (The other rules are standard.)

Let P=[S; || ... || Sn]. Assume that the last step in the proof of {p} P{q} has been the application
of the parallel composition rule. So {p}P{g} equals {I A Al_, p:i}[S1 || - || Sal{I A ALy @}
for some assertions pi,...,Pn,q1s---,dn and I such that b I : {p;}Si{g:}, 1 £ ¢ < m. By the
soundness of the local proof system we derive that = I : {p;}Si{¢:}, 1 < i < n, from which we

have to prove that = {I A A, pi}[S1 || - || SaJ{I A Al-; ¢:} bolds. Choose states 0,0’ such

that o = I A Ay p: and (0,0") € M(Sy || ... || S). We have to show o’ = I A A, gi- By the

semantics of [S1 || ... || Sn] there exist w; € M(S;), for i = 1,...,n, and a (connected) sequence
!

w = {0y,02)...(0n-1,0n) such that o1 = 0,0, = ¢’ and w is an interleaving of wy, .., Wn. Since
o | p; and the computation steps of the other components do not affect the variables of p; we
have that p; holds also in the initial state of w;. If, for example, the first computation step of w,
(01, 02), is-executed by S;, j # i, then, since p; does not refer to the (program and input/output)
variables of S;, we have that o2 = p;. Now let w' be a prefix of w such that I holds in every state
of w', say w' = (01,02) - {0k—1,0%). Let (0k,0k+1) be a computation step of S; and w} be the
prefix of w; corresponding to the computation steps of S; in w’ - (0%, or+1)- It then follows by the
validity of |= I : {p:}S:{q:} that ox41 £ I. Thus by induction we have that ¢’ |= I. It remains
to show that o’ = AL, ¢;- Take any of the ¢;. From the validity of |= I : {p:}S:{q:}, and the
fact that I holds in all states of w; (as shown above), it then follows that g; holds in the last state
of w;. Because ¢; only refers to the variables of Pvar; and IOvar;, which are not affected by the
subsequent (if any) computation steps of the other components, we infer that ¢; holds in the last
state of w, i.e. o' k= ¢;. Because this holds for any ¢; we conclude ¢’ = Al_; g;, which completes
the proof. 0

10

5 Completeness

We prove (relative) completeness of our proof system in the sense that all valid global correctness
formulas about unbracketed programs can be derived using the axioms and rules. That is, for every
P,p and ¢, with P unbracketed: = {p}P{q} implies - {p} P{q}. Let us thus fix some unbracketed
program P = [S1 || ... || Sn]. We extend P so that every input and output statement in 'S; is put
in a bracketed section together with a corresponding assignment to a fresh auxiliary variable h;.
This variable h; ranges over sequences of the names of the input/output variables local to S;. In
order to distinguish in the underlying logic between the input/output variables ¢?? and ¢!, which
denote sequences of values, and their “names”, we introduce c??,c!! to denote the names of the
variables c??, ¢!!. Formally, we define the extension of S by induction on S;:

(skip)' - = skip

(r:=¢) = z:=e

(clle)’ = (cle;h; :=h;-c!l)
(c??x) = (c??z;h; = hi-c?7)
(515 S2) = S1;83

(licalg: = Si)) = licalbg: = Sl
(*licalgi = Si])) = +liealbg: = 51,

where bg; is the same as g; if g; is a pure boolean guard, and where bg; is the same as (bi; 7?5 hy =
hi-c;?7) if g; is bs; ¢;?7. In the above, the assignment h; := = hi-¢;?7 consists of appending the name
¢;77 to the sequence h;. Note that h; abstracts from the values sent or received (these are already
recorded by the input/output vanables) it only records when an input/output along a channel
occurred.

The extended program we denote by P’ = [S] || ... || Syl

Definition 5.1 The (history) variables hi,...,h, are compatible in a state o if there exists an
interleaving h of the o(h;) such that in all prefixes of h, the number of inputs on every channel in
program P is less than or equal to the number of outputs on that channel. The compatibility of
ki, ..., hs is denoted by Compat(h, ..., hn).

Now consider the following invariant used in the rest of the proof:

I =Compat(hy,...hn) A\ |hilerr =22IA N\ [hilew = |et]
1<i<n 1<ign

c??€lI(S;) cNeO(S;)

Here |h;|c72 gives the number of occurrences of ¢?? in h;, similarly for |.|oy. Furthermore, I(S) and
O(S) denote the set of input and output variables of S.

The invariant I thus requires that the number of occurrences of ¢?? (¢!!) in a history h; is the same
as the number of values received (sent) along channel c.

We now give a semantic charactenzat:on of the strongest postcondition given a statement S and
_precondition p:

Definition 5.2 Let S be such that its (program and input/output) variables are among Pvar;
and IOvar;. We define o = SP(p, S) iff there exists (01,07)...{0n,05) € M(S) such that o1 = p
and o, o/, agree on the (program and input/output) variables of Pvar; and IOvar;.

11

The program variables and input/output variables of SP(p,S) are among those of Pvar; and
IOvar;, because for any pair of states o and ¢’ such that o and ¢’ agree on the variables of Puvar;
and IOvar;, we have that ¢ = SP(p,S) implies ¢’ = SP(p,S). We assume the underlying logic
to be sufficiently expressive to encode the above notion of strongest postcondition.

The following lemma is needed to establish completeness of our proof system:

Lemma 5.3 For any bracketed substatement S of S., 1 <i < n, and assertion p, we have

I1:{p}S{SP(p,S)}.

Proof: The proof proceeds by induction on S and consists of a slight generalization of the com-
pleteness proof of the standard Hoare logic for sequential programs. We treat one case only:

S = {c??z; h; := h; - c?7): To show the derivability of I : {p}S{SP(p, S)}, for any p, it suffices to
prove the validity of (I ApAc# €) = (IASP(p, S))[f(c)/z,c??- f(c)/c??, hi-c??/h;]. To this end
let o = I ApAc# e It follows that (0,0") € M(S), for ¢’ = o{v/z,0(c??) -v/c??,o(h;) - ??/hi}
with v = f(o(c)). By the definition of SP(p, S), it follows that ¢’ |= SP(p,S). Moreover from
o k= I, the definition of I, and the semantics of S it follows in a straightforward manner that
o' = I. (The main point is that o = I A ¢ # € implies that |o(h;)|cz2 < |o(hys)|cn, assuming the
jth component controls c!!; and this implies that in the compatible interleaving h of the histories
o(h1),...,0(h,) there occurs an unmatched ¢!!, and so h - c?? is a compatible interleaving of
o(h1),...,0(hs) - ¢??,...,0(hn).) Therefore, by the substitution lemma of the underlying logic,
o = (I ASP(p, S)f(c)/z,c?? - f(c)/c??, hi- c?7/h;], which had to be proved.

a
Now suppose that &= {p}[S1 || .. || S»]{g} holds. We may assume that p and ¢ do not contain
occurrences of the auxiliary variables h;. We have to show that = {p}[S; || ... || Sn]{q} is true.

By @; we denote the (list of) variables (both program variables and input/output variables) of 5,
for i € {1,...,n}. In order to “split” the given global precondition p into local preconditions p;,
we introduce for each i a list ©; of fresh “freeze” variables corresponding to those of @;. Given the
assertion p = p[%1/41,...,Un/%xs] we can split p into the local assertions p; = p A 4; = ;.

Using lemma 5.3, we have foralli =1,...,n

F I {pi}Si{SP(p:i, S))}-

Hence, using the rule of parallel composition, we derive

A ARSI L STHIA P\ SPp:, 5D}

=1 . =1

It is not difficult, but slightly tedious, to prove that |= (I A AL, SP(p;, S;)) — ¢. The main idea
is the following: o &= SP(p;, S;), for 1 <14 < n, implies the existence of w; € M(S]), such that the
initial state of w; satisfies p; and ¢ and the final state of w; agree on the variables of Pvar; and
IOvar;. Moreover ¢ k= I implies the existence of a compatible interleaving h of the local histories
o(h;). On the basis of h one then can define a connected interleaving of the local computations
w; with final state ¢ and an initial state which satisfies A\, p;. Here we have to make use of that
fact that for any w, if w agrees with some w’ € M(S!) w.r.t. the variables of Pvar; and IOvar;
then also w € M(S}), so we can vary arbitrarily in w; the values of the variables not controlled
by S!. Moreover the freeze variables 9;, i = 1,...,n, fix the initial state of the interleaving of the

12

computations w;. The connected interleaving of the local computations w; thus corresponds with
a computation of P’ which starts from a state satisfying A;_, p:. Now since Ni, pi clearly implies
p and we are given the validity of {p}P{g} (from which follows the validity of {p}P'{q}), we thus
obtain that o |= ¢.

Applying the consequence rule yields

FA{IA A p3ISt - 1l Sala}

i=1

Next we apply the auxiliary variables rule to obtain

F{IA A pi}So Il - Nl Snl{d}

=1

(Postcondition g does not refer to the auxiliary variables.)

Let fifo be the conjunction of the assertions c?? < c!!, where c is 2 channel occurring in p, g or the
program P. Furthermore, let h be a list of the variables hi,...,hn and 7 be a list of the variables
of 7;, 1 < i < n. It is easy to check that p A fifo implies 3h,5.I A\, pi. Thus an application of the
elimination rule, the consequence rule and the FIFO rule, in that order, yields

F{p}P{q}

5.1 Discussion

The compositional proof system of [17] can be “extracted” from the above completeness proof
simply by fixing the history variables as the auxiliary variables in the proof system and by fixing
the above invariant I. The input/output statements then are axiomatized as multiple assign-
ments including an update to the (local) history. For example, consider a statement of the form
{(c??z; h; = h; - c?7). To derive a correctness formula

I: {p}{c??z;h; == hi - c?"){q}
we have to establish the validity of

(IApAc#e) = (IAQIf(e)/xz,c??- f(c)/c?? hi- c??/hi]. (1)
This implication is equivalent with

p = Yo.q[v/z,c?? - v/c??, hi - €77/ hi] _ (2)

This can be proved as follows: First we assume the validity of (1). Let o = p. Since pis local, i.e.
it refers only to the (program and input/output) variables of Pvar; and IOvar;, for some 1, and
since I refers only to the length of c!!, it follows that for any value v, there exists a state o’ such
that o, o’ agree on the variables of Pvar; and IOvar;, f(o'(c)) = v, and o' =TI Ac# eAp. (From
the validity of (1) it then follows that o’ k= (I Ag)[f(c)/=,c??- f(c)/c??, hi-c??/hi], and thus ¢’ |=
qlv/z,c??-v/c??, h;-c??/h;). The assertion g is assumed also to refer only to the variables of Pvar;
and IOvar;, and so, since v is arbitrary, we may conclude that o = Vv.q[v/z,c??-v/c??, hi-c?7/hi].

13

Conversely, let o |= I A c # € A p, assuming the validity of (2). By definition of I and the validity
of (2) it then immediately follows that & E(IAQf(c)/z,c??- f(c)/c??, hi-c?7/hy).

The implication (2) corresponds with the axiom for the input statement in the compositional proof
system of [17]. The invariant I then can be removed from the local correctness formulas, which thus
will reduce to the standard Hoare triples of the form {p}S{q}. The rule for parallel composition
then boils down to '

{p:}Si{@}, 1<i<n

{ApdSil- 1S HA o}

where I denotes the invariant used in the above completeness proof.

The above observation is analogous to the results of [4], where, for example, a completeness proof
is given for the Apt, Francez and de Roever proof method [3], for systems based on synchronous
communication, which incorporates the compositional proof system of [22]. The advantage of
the proof system presented in this paper is that it allows more flexible reasoning patterns using
auxiliary variables other than history variables.

6 Example

We now demonstrate the appIicability of our proof system by proving correct a distributed program
for leader election. :

Consider program P=[S; || ... || Sn] with

Si=z; = 0; y; :=0; ¢;!(z;,0);
*lyi# 0055177 (yi, hops); [zi=y = 2z; == Lyy; := 005 ¢i!(o00, hop; + 1)
O
x; > y; — skip
O
z; <y; = ¢;Wys, hop; + 1)

]

Figure 1: Distributed Leader Election

In this program, there are n+1 processes, n > 1 arranged in a ring, with channel ¢; connecting
S; to S;;1. Addition and subtraction involving such indices i is done modulo n+1. Each process
S; has a-local variable z; (all indices are explicit, for readability). Distinct variables z; and z;
represent distinct integer values. Here “co” denotes a value larger than all integers. In addition,
each process has a local variable z; whose initial value is irrelevant. Upon termination, it is required
that there exists ezactly one index ig, such that z;, =1, and z; = 0, for all j # ip. The idea is to
choose as the “leader” S;, such that z,,=maz{zi | 1 < k < n}, i.e., the index of the process with
the largest value of z;. :

Each process sends its value z; to the right, and propagates to the right any received value z larger
than its own z;. The maximal value z;, is the only one to traverse the whole ring. When it arrives
back to its origin, a “co” message is sent around the ring to terminate all other processes. The

14

second component hop in message (z, hop) records the number of hops, i.e., the distance that x has
traversed in the ring. (This component as well as the variables hop;, ¢ = 1,...,n, have been added
only to simplify the correctness proof. Strictly speaking, they are not needed.) It is assumed that
for =0, ---, n, £; < oo holds, and that co and pairs such as (z, hop) can be encoded as natural
numbers to conform to the syntax of programs.

The correctness assertion we want to establish is:

AN (e =enzi=Xi #F o ANjo(f #1= X; # Xi))}
(%) F P
(Vi =1A N (G #i= (2 =0A X > X))}

For this example, there is no need to introduce bracketed sections.

Let p;=c;_1?7?=ci!'=e A z;=X;#00 A /\;‘=0(j #£1=> X; # Xi), for i = 1,...,n; and let
I=AL_; ¢;?? < ¢;!! We construct local correctness assertions for each S;. We have:

{c,--ﬂ?:c,-!!:e/\zi=Xi;éoo/\/\?=0(j;éi¢Xj;éXi)}
()Y FI: z:=0 .
{Z.L'=0/\Ci_.1??=ci!!=€/\$i=Xi7600/\/\?=0(j;é2‘$Xj¢Xi)}

as a consequence of (assignment), and

{zi=0/\ci_1??=c,~!!=e/\xi=Xi#oo/\/\;=o(j#i=>Xj;ﬁX,-)}
(2)FI: y;:=0 C
{yi=0/\zi=0/\Ci_1??=c-i”=6/\xi=Xi91:00/\/\?=0(j;éiﬁX]‘#Xi)}

as a consequence of (assignment), and

{y,-:O/\zi:O/\ci_l??:ci!!=e/\a:,~ = X; #OO/\/\;-L:O(j ;éi=>Xj #XJ}
3) FI: c'(:,0)
{y,’ =0Az;=0A¢1 77 = engl! =< ((L‘i,O) >AL; =X, oo /\/\;;O(j F#i= Xj # X,)}

as a consequence of (output).
To proceed we, obviously, need a loop invariant L;. It comprises a number of conjuncts formulated
below. (We have named these conjuncts for convenience.) For a sequence h and value z, z € h

denotes that z occurs in h; h[i] denotes the i element of h, provided that 1< ¢ <| h | holds; and
last(h) denotes h[| h [].

Define L; by the conjunction of

(A) zi=Xi#00 A (z:=0 V zi=1) A N]_o(§ #1 = X; # X).
(B) z=1 = y;=c0. ’

(C) (3hop. (zi, hop)€ ¢;—177) & z=1.

(D) Vz, hop. ((z, hop)€ ¢;!! = z>x;).

(E) Yhop.((c0, hop) € ;! = (hop #0
A ({00, hop — 1) € ¢;2177 V (23, hop — 1) € ¢;-177))).
(F) Yz, hop. ((z, hop)€ ¢;!! = (x=z; A hop=0)
V (z=00 A hop>0)
V ((z, hop — 1) € ¢;-177 A hop>0)).

(G) y; = o0 = 3hop > 0. ((xi, hop) € ¢i—17? V (00, hop) € ¢;i—177).

15

The loop invariant is established indeed:

(4) (yi=0 A z;=0 A Ci-l?? =e Agll=< (.’E,;,O) >
A zi=Xi#00 A Nj_o(J # 1 2> Xi# X))
= L,‘.

We show in some detail that L; serves as an invariant for the loop in S;. First, we introduce
assertion ALT;, holding prior to the branching points in S;. It also comprises several numbered
conjuncts. ALT; is the conjunction of (A), (D), and
(B') 2:=0,
(C") Vhop, k. (1< k <] ¢i=1?7? | = (@i, hop) # ci-177[k]),
(E'} Vhop. ({(o0, hop)€ c;!!

= (hop#0

A Fk.(1<k<lc;_1 72 A ((00, hop—1)=c;_1 7?[k]V(z:, hop—1)=c;—17?[k]))),

(F') Vz,hop. (z, hop)€ ¢!t = (z==z; A hop=0)
V (z=00 A hop>0)
v 3k. (1<k<|ei—1??| A (z, hop—1)=ci_1??[k} A hop>0),

(G') yi =00 = Jhop > 0.3k.(1<k <|cim1?7]
A ((z:, hop)=c;—17?[k] V (00, hop)=ci-17?[k])),

(H') ¢i—177 # € A last(ci—17?)=(yi, hop;) A hop;20.
We note that
(5) F {Ll ANy 75 OO} ci_l??(yi,hopi) {ALT,}

is obtained via (input). We next consider the separate directions.
For the first direction we reason as follows:

{ALTl Nz, = yi}
(6) b z =1
{(A)Azi=1A(C")A(D)A(E)A(F)A(G'Y A (H') Azi = yi}-
{(A) Az =LA (C)YN(D)A(E)A(F)YN(G')A(H') Nzi = yi}
(MY F y; =00
{(A)Azi= 1Ay;=0oA(C")A(D)A(E")A(F")Aci-1?7#enlast(ci-177)=(z:, hop;)Ahop; >0}.

{(A)nz= 1AY; =00 A(CYA(D)A(E)A(F")Aci—1 77 #eNlast(c;_1 ??)=(zs, hop;)Ahop; >0}
(8) + ¢;!(o0, hop; + 1)
{L:}

Thus, the first direction re-establishes L;. The second direction also re-establishes L;, since we
have

(9) v {ALT; A z:>y:} skip {L;}.

Finally, we have

16

(10) {ALT¢ A xi<yi} ci!!(yi, hopr{-l) {L-,,}

Therefore, the third direction re-establishes L;, too.

By combining the above local correctness assertions, we obtain that + I : {p;}S:{g:} holds for
g=(LiAy;=00),i=1,...,n ,

Application of the parallel composition rule then yields - {I A AL, pi} P {I A ANy ai}- By
repeatedly applying the FIFO rule, we obtain that - {A;_; pi} P {IA A, ¢:} bolds.

We now derive correctness formula (*) to be established for the leader election program by ap-
plication of the global consequence rule. It suffices to prove that I A Ai, ¢; implies {\/[_; (2 =
LA NG #i= (7= 0AX: > X))}

To do so, assume I A Al ¢; holds. Since g; has been defined as L; A y; = oo and L; has been
defined as the conjunction of (A), -+, (G), for all i=1, - --, n, we get from clause (G) that

(i) for all i = 1,---,n, there exists some hop>0 with (x:, hop) € ¢;=177 V (00, hop) € ¢;—177.
;From this we derive by reductio ad absurdum that
(ii) for some j =1,---,n, and for some hop=0, (zj,hop) € ¢;—177 holds.

Suppose that (ii) is not the case. Then, for all j =1,---,n, and for all hop>0, (z;,hop) & ¢;—17?
holds. Consider an arbitrary k¥ €{1, ---,n}. From (i) we obtain that there exists some hopy>0,
such that (0o, hopo) € ck—-177. From I, (00, hopo) € ck—1!! is obtained. Then (E) implies that for
some hop, with hopo > hopy > 0, (zk—1,hop1) € ck—27? V (00, hop1) € ck—277 is true. Because (ii)
is assumed to be false, (0o, hop;) € ck—27? follows. By repeating this process ad infinitum we find
an infinite decreasing sequence hopy > hopy > --- of natural numbers, which is impossible. We
conclude that (ii) is satisfied.

Now, consider an arbitrary io€{1, ---, n} such that for some hop>0, (zs,, hop) € ci,—177 holds.
From (C) we obtain that z;,=1 is true; I implies that for some hop>0, (24, hop) € ciy—1!! holds.
Then, ;,>%:,—1 follows from (D). From (A) and (F) we obtain that for some hop20, (24, hop) €
Cip—2?? . Continuing this way, we get (ziy, hop) € ¢;,—177 = A, <<, Tio 2 7;- Together with (A)
this proves uniqueness of i; and hence the righthandside of the implication we wished to prove.

Consequently, correctness of the distributed leader election program follows from rule (Conse-
quence). This concludes our proof, and hence this section.

7 Reasoning about non-terminating processes

The proof system presented in Section 3 allows for the verification of partial correctness properties
of programs, i.e. properties which hold upon termination. In this section we discuss briefly how
to extend the proof system in order to reason about non-terminating processes. The main idea is
to extend the global correctness formulas with an invariant which describes properties which hold
throughout any computation, i.e. we have global correctness formulas of the form I : {p}P{q},
where I is an assertion which is allowed to refer only to the input/output variables and the auxiliary
variables of P. Intuitively, I : {p}P{q} is valid iff

I holds throughout any computation of P which starts in a state satisfying p and I,
and upon termination ¢ holds.

17

In order to define formally the semantics of these extended global correctness formulas, we introduce
the following semantics of a statement S:

Definition 7.1 Let, for w = {01,01) - (On,0), S = hold if there exist Si,...,S, such that

S; (U_"—;;,UJ Sip1, for 1 <4 < n, and S=S;. For § with Pvar(S) C Pvary, and IOvar(S) C I0varm,
we define

M=(S)={w| S = and w is m-connected}

- Thus M*(S) includes the prefixes of non-terminating computations of 5. The semantics M*(P) C
(T x £)* of program P is defined as follows:

Definition 7.2 For any program P = [S1 || ... || Sn] we define
M=(P) = BM®(S1) || ... | M*(Sn))

where the abstraction operation (3 simply selects all the connected sequences which start in a state
o such that o(c??) is a prefix of (c!!), for every channel c in program P.

For states o, M*(S)(c) and M>(P)(o) are defined in the obvious way.

The semantics of local correctness formulas I : {p}S{q} are defined as before, but now w.r.t.
M=(S).

We next define the semantics of global correctness formulas.

Definition 7.3 For any program P, the correctness formula I : {p}P{q} is valid iff for any
w = {01,0}) - {on,0%) € M®(P) we have that oy = pA I implies o; = I, for 1 < ¢ <n, and if
(01,0!) € M(P) then o, = q.

Note that in the above definition the condition ¢} = I, for 1 < ¢ < n, amounts to requiring that
I holds in every state of w = (01,01) - {on,00), since w is connected (that is, o = 0441, for
1<i<n). ‘

The local proof system remains as before. The rule for parallel composition however now becomes:

I: {pi}Si{qi}, 7= 1, vy T
{A;pi}IS1 || - I Snl{As ai}

Rule 12 (parallel composition) 7

Furthermore we have the following versions of the global consequence rule, the auxiliary variables
rule, and the FIFO rule.

I-I, (I'Ap)y=32(I Ap), I:{p}P{q}, UNg) = ¢
I':{p'}P{d'}

Rule 13 (global consequence rule)

In the above rule % is a list of variables which do not occur in the assertions I’, p’, ¢’ or the program
P. Note that the above consequence rule additionally allows for the elimination of variables in the
invariant and the precondition.

18

I:{p}P'{q}
I:{p}P{q}

Rule 14 (auziliary variables rule)

where P is obtained from P’ by deleting all assignments to the auxiliary variables. It is assumed
that the postcondition ¢ and the invariant I do not refer to the auxiliary variables of P’.

Rule 15 (FIFO rule)

I:{pnc?? <c}P{q}
I:{p}P{q}

where channel ¢ occurs in program P. As before, in the above rule “<” denotes the prefix relation
on sequences.

Soundness of the above proof system follows by a straightforward induction on the length of the
proof. We sketch the completeness proof: We first introduce the following notion of a strongest
(local) invariant.

Definition 7.4 Let S be a (bracketed) statement and p be some local assertion. Let I (p,S) be
such that o = I(p, S) iff o |= p or there exists a computation {(01,07) -+ (on,0n) € M>(S8), such
that oy |= p; and o and o, agree on the input/output variables and the auxiliary variables of S.

Roughly, I(p,S) characterizes the set of all reachable states of computations of § starting in a
state satisfying p. Note that the variables of I(p, S) are among the input/output variables and the
auxiliary variables of S since for any states o, o', such that o and o' agree on those variables of
S, we have that o = I(p, S) implies ¢’ = I(p, S).

We have the following lemma, corresponding to lemma 5.3:

Lemma 7.5 For any statement S and local assertion p, we have

+ I(p,S) : {p}S{SP(p,S)}

where SP(p, S) is defined as in the completeness proof of the proof system for partial correctness.

Proof The proof proceeds by induction on the complexity of 5. We treat the following cases:

S = (c?z;y := e): It suffices to show the validity of (I(p,S) ApAc # €) = (I(p,5) A
SP(p, S))[f(c)/z,c?? - f(c)/c??,e/y]. Nota that since p implies I(p, S) the above implication is
equivalent to ((p A ¢ # €) = (I(p,S) A SP(p,S))[f(c)/x,c?? - f(c)/c??,e/y], the validity of which
is easy to verify.

S = S;; So: By the induction hypothesis we have that

F I(p, 51) : {p}S1{SP(p, 51)}

and

F I(SP(p, S1), S2) : {SP(p, 51)}S2{SP(SP(p,S1),Sz2)}-

19

To obtain the desired result we need the following derived rule: For any statement S, if - I :
{p}S'{q}, where I refers only to the (program and input/output) variables of §/, then - I' :
{p A I}S'{q}, for any I' such that = I — I'. The proof of this rule follows by a straightforward
induction on S’. Moreover, it is easy to verify the validity of the implications I(p, S1) — I(p, S1; S2)
and I(SP(p, S1),S2) = I(p, S1; S2). So we derive that

F I(p, S15S2) : {p A I(p, $1)}S1{SP(p, 51)}
an'd
F I(pv Sl;S2> : {SP(]), Sl) /\I(SP(pv Sl)as2)}s2{SP(SP(pv Sl)aSZ)}‘

Next we observe that for any statement S’ and local assertion g we have that ¢ implies I(g, S').
So by the local consequence rule and the rule for sequential composition we, finally, derive

b I(p,S1; S2) : {p}S1; S2{SP(p, 51;52)}

S = *i[(b;;c:?7ziyi = e;) = Ri]: Let T be a list of the variables of S and Z some fresh
corresponding variables. Let R be the statement obtained from S by replacing the booleans b; by
b; A ~(z =). For any given p let p’ = 32SP(p, R). By the induction hypothesis we derive that
- I(p' Ab;, R : {p Ab}R{SP(p' Abi,R})}, where R; = ¢;?7x;;y; == e;; Ri. Since I(p' A b, R.)
‘implies I(p, S), it follows as described in the case above that - I(p, S) : {p' AbYRI{SP(p' Ab;, R;)}.
Now it is not difficult to verify that SP(p’ A b;, R:) implies p’. Thus we have shown that p’ is an
invariant of S, so we derive that - I(p,S) : {p'}S{p' A A\, ~b:i}. Applying the consequence rule,
using the validity of the implications p — p’ and p' A A, ~b; = SP(p,S), we conclude that
- 1(p,S) : {p}S{SP(p,S)}.

0

Now let P =[S; || -+ || S»] be a program without bracketed sections, for which I : {p}P{q}is a
valid correctness formula. We extend P with history variables, which we assume not to occur in
P, p or q. This extended program we denote by P’ =[S || --- || S,]. We now split the conjunction
of the given precondition p and invariant I into the following local assertions pi: Let 4; be the
(program and input/output) variables of S (i = 1,...,n): We define p; = (pA DB/a)|Av; = 4; (T
denotes the union of 7;, = 1,...,n, similarly for @).

By the above lemma we have
EI(p;, S7) : {pi}Si{SP(P, S))}, i=1,...,m.

In order to proceed we need the following derived rule: If + I : {p}S{q} and - I' : {p'}S{¢'} then
FIAI : {pAp'}S{gAq}. This rule follows by a straightforward induction on the complexity of
S. Moreover, it is also easy to verify that, for any S and local p, I : {p}S{SP(p, S)}, where I
does not contain variables of S.

So for I' = (A, I(p}, S!)) AI", where I” denotes the invariant defined in the completeness proof
for partial correctness, we obtain

I': {pl}SI{SP(p},S))}, fori=1,...,n

Next we apply the parallel composition rule

A PHST - I SR SP(w;, S0}

i=] i=1

20

Since we are given the validity of I : {p} P{q}, it follows in a similar manner as in the completeness
proof for partial correctness that ’

=" A N SP®,S)) = a ' (3)

i=1
Next we argue that
I 1 ' (4)

Choose state o such that o = I’ holds. Therefore, for 1 < i < n, ¢ }= p} or there exists a
computation w; € M>(S!), such that the initial state of w; satisfies p} and o and the final state of
w; agree on the input/output variables and the auxiliary variables of S;. Moreover, since ¢ E=I",
we can define a connected interleaving of the local computations w; with final state o and an
initial state which satisfies A]_, p; (again using that we can vary the values of the variables not
controlled by S!). Thus, since clearly A, p; implies p A I, we have that ¢ is an intermediate
state of a computation of P’ which starts in a state satisfying p and I. And so, by the validity of
I : {p}P{q} (which implies the validity of I : {p}P'{q}), we have that ¢ = I.

Moreover it is not difficult to check that

= (I Ap A fifo) = 35(I' A \ 1) | (5)

i=1

where 7 is a list of the newly introduced freeze variables and history variables and fifo is a conjunc-
tion of assertion ¢?? < ¢!, for channels ¢ occurring in P. So by an application of the consequence
rule using (3), (4) and (5) above, and an application of the FIFO rule we obtain

HI:{p}P'{q}

;From which we derive by an application of the auxiliary variables rule our desired result

FI:{p}P{q}

We conclude this section with the observation that the above completeness proof embodies a
compositional proof method for reasoning about non-terminating processes. As in the case of
partial correctness, this proof method can be extracted from the above completeness proof by
fixing the auxiliary variables as the history variables and axiomatizing the input/output statements
as multiple assignments including an update to a history variable. Moreover when restricting to
history variables as auxiliary variables the above completeness proof shows that we can restrict
to local correctness formulas I : {p}S{q}, where I is a local assertion, i.e. I refers only to the
input/output variables and the auxiliary variables of S. The corresponding parallel composition
rule

Ii : {pz}Sl{q,} 1= 17 4
AL {ApHS - 1 S @)
=1 =1 =1

as shown above can be derived in the original proof system.

21

8 Reasoning about deterministic processes

So far, we have seen how to reason about terminating and non-terminating processes by means
of invariants. These invariants in general express properties of both input/output variables and
auxiliary variables (which include history variables).

In this section, we show how we can limit the expressiveness of the invariants to properties of
merely the input/output variables, provided we restrict our programming language to determin-
istic processes only. Since auxiliary variables are no longer needed, we can discard the notion of
bracketed sections as well. :

To define deterministic processes, we replace the guarded conditional and the guarded iteration in
definition 2.1 by if b then S; else S; fi and while b do S od respectively. The resulting language is
capable of expressing non-trivial programs. For example, the distributed algorithm for leader elec-
tion discussed in Section 6 can be formulated as a parallel composition of deterministic processes,
in fact its correctness proof did not require the introduction of auxiliary variables. Intuitively, the
successful execution of a deterministic process in a parallel environment depends heavily —even
more so than for nondeterministic processes— on the behaviour of its environment. For instance
a process waiting on some input can only check one input channel at a time, and as long as this
channel remains empty, it is idle while waiting. Therefore we enhance the programming language
with three new constructs which allow for more flexibility. Let us give the formal definition of the
language:

Definition 8.1 The syntax of a deterministic (sequential) statement S in our programming lan-
guage is defined by

S == skip

T:=e

c??x | clle

51552

if b then S else S, fi
while b do S od

if ¢??z then S; else Ss fi
while ¢??z do S od
repeat S until ¢??z

The execution of a statement if ¢??x then S; else S, fi consists of receiving a value from channel
¢, in case its corresponding buffer is non-empty, recording it in z and proceeding with S;. In
case the buffer is empty control moves on to Sz. The execution of a statement while ¢??z do S od
consists of alternatingly reading a value from channel ¢ and executing S until the corresponding
buffer is empty. Finally repeat S until ¢??z models a form of busy waiting: repeat S for as long
as no value can be read from channel c. Note that, intuitively speaking, ¢??z is equivalent to
repeat skip until ¢??z; this corresponds to the “idle waiting” inherent in c??z as discussed above
(however semantically speaking, there is a difference as discussed later in this section.)

;From a semantic point of view, we can proceed in a similar way to that of definition 2.4. However
in order to reason compositionally about parallel processes it is also necessary to record tests that
“fail”, i.e. tests within a compound construct (the last three constructs in our syntax) which are
-executed when the corresponding buffer is empty. We represent such a test on an empty buffer
by the special value L ¢ Val, which will be appended to the input variable under consideration.
For example, the sequence (1,2,3, 1,4, 5) representing the values received from a channel indicates
that after 1,2 and 3 have been received the process tested the contents of the channel when it was
empty. Subsequent receive.operations on the channel resulted in the values 4 and 5.

22

As a consequence, our set of states now is defined by £ = (PVar U IOVar) — (ValU Val’), where
Val’} denotes the set of finite sequences over Val, = Val U {L1}. As before, it is required that
programming variables are mapped into Val, and that input/output variables are mapped into
Val’; . Furthermore, given a sequence s € Val’; , the subsequence of s consisting of elements of Val
only—s with all appearances of 1L removed—we denote by 7 1(8). Then, we have that the value
o(c) of the buffer corresponding to a channel ¢ in a state o, that is, the sequence of values sent
along ¢ but not yet received, is given by o(c!!) — 71(0(c?7)). For example, if o(c!!) =(1,2,3) and
o(c??) = (1, L,2) then o(c) = (3)-

As an example, we state the following two semantic clauses for the conditional input statement:

if 27z then S, else S, fi ‘23 81,
provided o(c) # e. Here o' = o{c(c??) - v/c??,v/z}) and v = f(a(c))).

if 77z then S, else S, fi 22/ 5,
provided o(c) = €. Here o' = o{c(c??) - L/c??}).

The axioms and rules are for the most part simplifications of the earlier axioms and rules, leaving.
out the references to the auxiliary variables. For instance, the rule for the input statement now
becomes: ,

Rule 16 (input)

(IApAc#e) = (IAQI[f(c)/z,e??- fe)/c??]
I:{p}c??2{q}

With respect to the three novel language constructs, we have the following rules:

‘Rule 17 (input conditional)

I:{p}e??z;S1{q}, UApAc=e€) = (IAT)[c?? - L/[c?7], I: {r}S2{q}
T {p}if c?7z then S else S; fi{q}

Rule 18 (input while loop)

I:{p}e??e;S{p}, IApAc=e) = (I AQ)c?- el
I : {p}while c??z do S od{q}

Rule 19 (repeat)

I:{p}S{r}, UnrAc=e) = I Ap)c??-L/c??], I:{r}c??z{q}
T : {p}repeat S until c??z{q}

Soundness of the above proof system follows by a straightforward induction on the length of the
proof. We sketch the completeness proof which follows closely the completeness proof of [1]. Let
{p}P{q} be a valid correctness formula, where P = [$; || --- || Sn). Now we introduce local
correctness formulas based on the following reachability predicates as defined in [1].

Definition 8.2 A state o is called reachable if there exists a computation of P starting in a state
satisfying p which passes through a state ¢’ such that the control of each component is at a location
outside a bracketed section, and ¢ and ¢’ agree on the input/output variables of P. Let I’ be an
assertion such that o = I’ iff there exists reachable state ¢’ such that o and o' agree on the
input/output variables of P.

23

Definition 8.3 For any substatement S of S;, let pre(S) and post(S) be a (local) assertion such
that o [= pre(S) (o k= post(S)) iff there exists a computation of P starting in a state satisfying p
which passes through a state o’ such that the the ith component of P is just about to execute S
(has just terminated S) and o and ¢’ agree with respect to the variables of S;.

We have the following key lemma:

Lemma 8.4 The local correctness formulas I' : {pre(S;)}Si{post(S;)} are derivable.

Proof The proof proceeds by induction on the complexity of S;. The main case of the proof is
that of a statement S = c??z. The validity of the implication (I’ A pre(S) Ac # €) = (I' A
post(S))[f(c)/z,c?? - f(c)/c??] follows from the merging lemma. This lemma states that the local
run of a component in a computation of P can be replaced by another local run of that component
as long as they behave the same w.r.t. the input/output variables. The merging lemma itself
follows from the fact that the input/output variables completely determine the behaviour of a
deterministic process (since they record failed tests). m]

Application of the parallel composition rule then gives us the derivability of

{r /\ /\ pre(Si)}P{I' A |\ post(S:)}.

=1

It is easy to verify, using the above mentioned merging lemma, the validity of the assertion (I'A
A\; post(S;)) — q. Moreover, it also easily follows that = (p A Acerovarpy€?? < clt) = I'. Thus
by the consequence rule and the FIFO rule we obtain the derivability of

F {p}P{q}.

It is worthwhile to mention the difference between the above completeness proof and the ones
given before. In the completeness proof of the system for proving partial correctness properties we
introduced so-called generic local correctness formulas of the components of a program, i.e. these
formulas are defined independently of the particular given program. As such these local correctness
can be used in any program. This is to be contrasted with the latter completeness proof where the
local correctness formulas are defined in terms of the given program.

9 Conclusion

We have studied compositional Hoare logics for distributed systems in which communication is
asynchronous.-In particular, we have presented three sound and (relative) complete proof systems:
one for reasoning about partial correctness properties of programs, one for reasoning about non-
terminating programs, and one for reasoning about programs in which only deterministic processes
are allowed. We have applied the first proof system to a distributed leader election program,
in order to demonstrate the applicability of our method. It has been argued that our method
is preferable over other methods presented in the literature for reasoning about asynchronously
communicating systems. In the future we intend to apply our method to larger programs, using
interactive proof checkers like [16].

24

References

[1] K.R. Apt. Formal Justification of a Proof System for Communicating Sequential
Processes. Journal of the ACM, Vol. 30, pp. 197-216, 1983.

[2] K.R. Apt. Ten Years of Hoare ’s Logic: A Survey-Part I. Journal of the ACM, Vol.
3, No. 4., pp. 431-483. ,

[3] Apt K. R., Francez N., and de Roever W.-P., A proof system for communicating
sequential processes. Journal of the ACM, Vol.2, No. 3, pp. 359-385 (1980).

[4] F.S. de Boer. Compositionality and Completeness of the Inductive Assertion Method
for Concurrent Systems. Proceedings of IFIP Working Conference on Programming
Concepts, Methods and Calculi, San Miniato, Italy, 1994.

[5] F.S. de Boer, J.N. Kok, C. Palamidessi, and J.J.M.M. Rutten. The failure of failures:
Towards a paradigm for asynchronous communication. Proceedings of Concur 91,
LNCS 527, pp. 111-126, Amsterdam, The Netherlands, 1991.

[6] F.S. de Boer and M. van Hulst. Partial correctness of asynchronously communicating
processes. Proceedings of MFCS’94, 1994.

[7] F.S. de Boer and M. van Hulst. A compositional proof system for asynchronously com-
municating processes. Proceedings of Mathematics of Program Construction, (MPC),
1995. ‘

[8] L. Bougé. On the ezistence of symmetric algorithms to find leaders in networks of
. communicating sequential processes. Acta Informatica, Vol. 25, pp. 179-201, 1988.

[9] T. Camp, P. Kearns, and M. Ahuja. Proof rules for Flush Channels. IEEE Trans. on
Softw. Eng., Vol. 19, No. 4, pp. 366-378, 1993.

[10] N. Francez. Program Verification. Addison Wesley, 1992.

[11} N. Francez and F. A. Stomp. A proof system for asynchronously communicating
processes. Technical Report 722, The Technion, Department of Computer Science,
1993.

12] N. Francez and F. A. Stomp. A proof system for asynchrohously communicatin,
g
processes. Technical Memorandum, AT&T Bell Laboratories, December 1994.

[13] B. Jonsson B. A model and proof system for asynchronous networks. Proceedings of
the 4t» ACM Annual Symp. on Principles of Distr. Comp., pp. 49-58, 1985.

[14] G. Levin and D. Gries. Proof techniques for communicating sequential processes. Acta
Informatica 15, pp. 281-302, 1981.

[15] S. Owicki and D. Gries. An aziomatic proof technique for parallel programs. Acta
Informatica 6, pp. 319-340, 1976.

[16] S. Owre, J. Rushby and N. Shankar. PVS: A Prototype Verification System. Pro-
ceedings of the 1th Conference on Automated Deduction, Lecture Notes in Artificial
Intelligence, Vol. 607, Springer-Verlag, pp. 748-752, 1992.

-[17] P.K. Pandya. Compositional Verification of Distributed Programs. PhD thesis, Tata
Institute of Fundamental Research, Homi Bhabha Road, Bombay 400 005, INDIA,
1988.

[18] P.K. Pandya and M. Joseph. P-A logic - A Compositional Proof System for Distributed
Programs. Distributed Computing 5, pp. 37-54, 1991.

25

[19] F.B. Schneider. Proof Rules for Meséage Passing, Logics and models of concurrent

systems. NATO ASI Series, Vol. F 13, Springer-Verlag, 1985. LNCS 190, pp. 234-254,
1982.

[20] R.D. Schlichting and F.B. Schneider. Using message passing for distributed program-
ming, Proof rules and disciplines. Journal of the ACM, Vol. 6, No. 3, pp. 402-431,
1984.

[21] P. Zhou and J. Hooman. A proof theory for asynchronously communicating real-time
systems. Proceedings of the 13t* Real-Time Systems Symp., 1992.

[22] J. Zwiers. Compositionality, Concurrency and Partial Correctness. LNCS 321, 1989.

26

