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Abstract

We present a Hoare logic for distributed systems composed of processes which communicate
asynchronously via (unbounded) FIFO buffers. The calculus is based on an assertion language
which allows the specification of the communication interface of a process at a high level
of abstraction. As such our formalism serves well as a basis for refinement and top-down
development of distributed systems composed of asynchronously communicating processes.
Moreover, we show that the first-order logic underlying the interface-specification language is
decidable, which makes (semi-) automated verification more feasible.

1 Introduction

Hoare logics have been used successfully for reasoning about correctness of a variety of distributed
systems [AdB94, AFdR80, HdR86, OG76, Pan88, Zwi88]. In general, proof systems for distributed
systems based on some kind of Hoare logic formalize reasoning about communication and ‘syn-
chronization in terms of sequences of communication events called histories.

Distributed systems based on synchronous communication allow an elegant compositional proof
theory [Zwi88) essentially because there exists a simple logical formulation of the compatibility of
the local histories of the processes of a system: The local histories are compatible, that is, they can
be combined into a global history of the entire system, if they can be obtained as the projection
of some sequence of communication events.

On the other hand distributed systems based on asynchronous communication do not allow such a
simple criterion: to check the compatibility of the local histories one has in general to consider all
possible interleavings [Pan88]. As such its logical formulation involves quantification over histories,
and this will obviously complicate the reasoning process.

The recent book on program correctness by Francez [Fra92] contains a section on non-deterministic
processes which communicate asynchronously via FIFO buffers, featuring a proof system that uses
a logic based on input/output variables instead of histories. A buffer is logically represented by an
input variable which records the sequence of values read from the buffer and by an output variable
which records the sequence of values sent to the buffer. The difference between input/output
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variables and histories is that in the former information of the relative ordering of communication
events on different buffers is lost. However, it can be shown that this logic is incomplete for
non-deterministic processes; in general, the information expressible by input/output variables
only is insufficient to obtain a complete specification of an entire system by composing the local
specifications of its constituent processes. As a consequence not all valid correctness formulas are
derivable.

In [dBvH94] however, we showed that, provided the programming language is restricted to deter-
ministic processes, a complete compositional proof system can be based on input /output variables
only.

So naturally the question arises what is the minimal information we need to add to the in-
put/output variables to obtain a compositional proof system for asynchronously communicating
non-deterministic processes. Here the notion of minimal information is defined with respect to
the semantic interpretation of a program as a state-transformation, a state being an assignment
of values to the program variables.

From a semantical point of view the determination of the minimal information needed to char-
acterize a notion of observables compositionally gives rise to a fully abstract semantics. For
asynchronously communicating processes it is well-known that histories are not fully abstract
([Jon89)); for example, the order between inputs (outputs) on different channels is irrelevant with
respect to observing the final values of the program variables. Thus the abstraction level of a proof
system for asynchronously communicating processes based on histories does not coincide with the
appropriate abstraction level of the programming language. With respect to program refinement
and top-down program development however it is crucial to be able to specify a program at the
right level of abstraction, such that the specification itself does not give rise to irrelevant design
choices.

In this paper we introduce a Hoare logic based on an assertion language which allows the speci-
fication of the communication interface of a process at the right level of abstraction in the sense
that no irrelevant information is included. An interface specification will consist of two separate
parts; a data component and a control component. The data component specifies the FIFO buffers,
that is, the sequences of values read from a channel and sent to a channel, respectively. These
FIFO buffers are described in terms of input/output variables, as explained above. The control
component specifies the relevant order of the communication events in terms of a abstract history.
An abstract history describes the reactive behavior of a process in terms of the number of inputs
(for each channel) it needs in order to be able to produce a certain number of outputs, abstracting
from the values communicated. Mathematically, such an abstract history can be formalized by a
function which takes as input a multiset of channel names and outputs again a multiset of channel
names. The number of occurrences of a channel name in the argument then corresponds to the
number of required input actions on that channel, whereas the number of occurrences of a channel
name in the resulting multiset corresponds to the number of outputs generated on that channel.
The distinction between the data and control component of an interface specification introduces
a nice separation of concerns which will in general simplify the reasoning process. Moreover, we
show that the logic underlying the control component can be formalized in a first-order logic of
multisets, and we show that this logic is decidable, which makes (semi-) automated verification
more feasible.

This paper is organized as follows: In the following section we introduce the programming lan-
guage. The proof system is discussed in section 3, and in section 4 we discuss the first-order logic
underlying the control component of an interface, and show its decidability. Finally, section 5
contains some conclusions and perspectives.



2 The programming language

In this section, we define the syntax of the programming language. The language describes the
behaviour of asynchronously communicating processes. Processes interact only via communication
channels which are implemented by (unbounded) FIFO-buffers. A process can send a value along
a channel or it can input a value from a channel. The value sent will be appended to the buffer,
whereas reading a value from a buffer consists of retrieving its first element. Thus the values will
be read in the order in which they have been sent. A process will be suspended when it tries to
read a value from an empty buffer. Since buffers are assumed to be unbounded sending values can
always take place.

We assume given a set of program variables Var, with typical elements z,y,.... Channels are

denoted by ¢, ¢y, ¢z, . . .; the set of channels is denoted C.

Definition 2.1 The syntax of a statement S which describes the behaviour of a sequential process,
is defined by '

S = zx:=e
| clle
| 51; 52

I ﬂi[bi;ci??mi — Sz]

l *ﬂi[bi;ci??xi - Si]

In the assignment statement z := e we restrict for technical convenience to arithmetical expressions
e. Sending a value of an (arithmetical) expression e along channel c is described by c!le , whereas
storing a value read from a channel ¢ in a variable z is described by c??z. Sequential composition
is denoted by ;. The execution of a guarded command [;[b;; c;?7z; — S;] consists of the selection
of a non-empty buffer ¢; for which the corresponding boolean guard b; is true, subsequently a
value is read from the buffer and stored in z;, and control is passed on to the statement S;. If
there exists no non-empty buffer ¢; for which the corresponding boolean b; is true the execution
of the guarded command suspends; in case all the boolean guards are false the execution fails.
The iterative construct *|;[b;; ¢;?7z; — S;] consists of repeatedly executing the guarded command
Ji[bi; ¢i??72; — S;] until all the boolean guards b; are false. In the following some examples will
be given using boolean guards b — S it is easy to extend the syntax and the semantics of the
programming language to include such boolean guards.

Definition 2.2 A parallel program P is of the form S || ... || S»], where we assume the following
restrictions: The statements S; do not share program variables, channels are unidirectional and
connect exactly one sender and one receiver.

3 The proof system

3.1 Assertion Language

A compositional proof system for asynchronously communicating processes can be obtained by
specifying the interface of a process in terms of a local history which consists of a sequence of



communication records. A communication record c!'v indicates that the value v has been sent
along channel ¢, and ¢??v, on the other hand, indicates that the value v has been read from
channel ¢. The local history of a process itself can be described as the projection of a global
history which satisfies the requirement that at any point the number of inputs on a channel does
not exceed the number of preceding outputs on the same channel and that the values are read in
the order in which they are sent.

Let us illustrate the above informally described proof methodology.

Example 3.1 Consider the sequential processes

S1 = [eM?z = y|true = c?7y];dN0
and

Sy = 05 [d?7z — c!l1].

After termination of [S; || S2] we have that y = 0, since the selection of the branch c?7z — ¢??y
leads to deadlock. This can be proved by deriving locally the postcondition

p1 = Vau,v[s1 = {c?7u,c??v,d!0) = y = v] V Vu[s; = (c??u,d!0) = y = u]

for S; and the postcondition
p2 = Jufse = {(c0,d??u, c!!1)]

for S5. Here s; and s, are history variables which denote sequences of communication events. Let
compat(sy,ss) be the compatibility predicate which expresses that there exists an interleaving of
s; and sy such that at any point the number of inputs on a channel does not exceed the number
of preceding outputs on the same channel and that the values are read in the order in which they
are sent. Then we have that p; A ps A compat(s;, s2) implies y = 0. This follows from the fact that
there exists no compatible interleaving of the sequences {(c??u, ¢??v,d!0) and (c!!0,d??u, c!'1).

Note that a history as defined above records the order of the communications on different channels.
But we are primarily interested in observing the final values of the program variables, and it can be
shown that history variables encode too detailed information about the flow of control of a process.
For example, with respect to the final values of the program variables, the order between outputs
on different channels is irrelevant. This can be formalized by a fully abstract semantics, which
introduces certain abstractions from the order of communications (see also [Jon89, Jos92]): inputs
and outputs on different channels can be swapped, and the order between an output followed by
an input can be reversed.

A necessary requirement of top-down program development is a specification language which allows
the description of a program at the right level of abstraction, such that the specification itself does
not give rise to irrelevant design choices. Therefore the above proof methodology, since it is based
on the description of the communication interface in terms of sequences of communication records,
is not appropriate as a basis for program refinement.

As an example of this observation, consider an implementation of S; satisfying {s = €}S1{s =
{c!'5,d"3)}, so initially s is empty and upon termination s contains the communication records c!!5
and d!'3, in that order. Clearly, S = c!!5;d!'3 is a correct implementation of the specification. How-
ever it can be shown that S’ = d!'3; c!!5 is semantically indistinguishable from S, in the sense that
there exists no context which, when applied to S, gives rise to a different state-transformation then
when applied to 5. But S’ does not satisfy the above (interface) specification. Thus we conclude
that the specification includes irrelevant information with respect to the observable behavioural
properties of programs. This would prohibit an efficient implementation in the case of two envi-
ronmental processes S» and S3 which are given by S = d?7z;e!!l(z +1) and S3 = e??y;c?7z. Note



that Sg needs input from S, before it can read channel c; therefore there is no point for S; in
sending over channel c first: '

To obtain a more appropriate level of abstraction one could simply introduce in the assertion
language a binary predicate on histories R(s1, $2) which expresses that s is a permutation (allowed
by the fully abstract semantics) of s;. Thus we would have, for example, the following axiom for
calculating the weakest precondition of an output cle:

{3s'[p[s’ - clle/s] A R(s', s)]}ce{p}

where s’ is a new history variable, and s’ - c!le denotes the result of appending the communication
event c!lv, with v the value of e, to the sequence denoted by s': substitution of a term ¢ for a variable
 in an assertion p is denoted by p[t/z]. However the obvious disadvantage of this approach is that
to express the predicate R(s1, s2) one needs either quantification over (finite) sequences of histories
or the introduction of recursively defined predicates, since it involves the transitive closure of a
relation s; — so, which expresses that sz can be obtained from s; by swapping two elements (as
allowed by the fully abstract semantics). As such it highly complicates the reasoning process.

A more manageable and direct description of the interface of a local process can be based on the
following observation. Let s be a sequence of communication records, and [s] denote the set of
permutations of s resulting from input and output swaps (on different channels). In the following,
let I,0 denote functions (also called streams) from C to IN*. Let, for arbitrary s, IO, be a function
which transforms input streams into output streams, such that JO,(I) = 0 iff there exists a prefix
s' of s ending in an output which is not immediately followed in s by another output, such that I
records for each (input) channel the sequence of values read in s’ and 0 records for each (output)
channel the sequence of values sent in s’. (In case s does not contain outputs we define JO,(I) =0
iff I records for each input channel of s the sequence of values read and 0 assigns to each output
channel the empty sequence.) We then have that s’ € [s] iff IOy = IO, and the projection of
s and s’ onto any input channel gives the same result (this last condition takes care of trailing
inputs, namely those inputs which are not followed by any output). Thus the function 10, (with
the additional information about trailing inputs) is a canonical representative of the equivalence
class {s]. '

Example 3.2 Consider the history s = (c?70,¢??1,d!10,e!10, f?70,€!'1). Then with the output
e!0 of s there corresponds a pair (I, 0) such that I(¢) =(0,1), I(f) = ¢, and 0(d) = (0), 0(e) = (0)
(here € denotes the empty sequence). With the last output e!!l there corresponds a pair (1,0)
such that I(c) = (0,1), I(f) = (0), and 0(d) = (0), O(e) = (1). : :

Our proof theory is based on the following representation of the above defined canonical repre-
sentative of the equivalence class [s] of a sequence of communication records s. We introduce
input/output variables ¢?? and c!! which record the values read from the input chanpel ¢ and the
values sent to the output channel c, respectively. Note that these input/output variables abstract
from the order of the communications on different channels. We denote the set of variables c?? and
c!! by T resp. O; their union is denoted ZO. Moreover, the set of variables c?? where c is an input
channel of process i, and the set of variables c!! where ¢ is an output channel of process ¢, will be
denoted by Z; and O;, respectively. The union of Z; and O; we denote by ZO;. The additional
information about the relevant ordering between communications on different channels can be
described as a function h which transforms multisets of channel names, i.e. A € P (C) = Pmn(C),
where P,,,(C) denotes the set of all finite multisets of elements of C. Typical multisets will be
represented by I, 0. The idea is that the argument I in h(I) = O contains the number of inputs
which are necessary for the outputs of O to take place. For example, h({c,c}) = {d,d} indicates
that the process needs at least two inputs on ¢ two produce two outputs on d. Thus the number
of occurrences of a channel ¢ in I (O) corresponds to the number of input (output) actions on c.



It is not difficult to see that indeed we can thus represent IO, as a function h € Pn(C) = Pr(C)
and a function which assigns to each input/output variable a sequence of values. An element of
Pm(C) = Pin(C) we call an abstract history.

Example 3.3 Consider the process ¢??x;d!'0; c??y; e!!l. Its abstract history consists of the pairs
(0,0), ({c}, {d}), {{c, ¢}, {d, e}). Thus the pair ({c, c}, {d,e}) for example indicates that the process
needs two inputs on ¢ to output once on d and e. The pair (0,0) indicates that the process is not
able to output when no inputs are given. Assuming that first 0 and then 1 has been read from ¢
we have that the input variable c?? denotes the sequence (0, 1), and the output variables d!! and
e!! denote the sequences (0), (1), respectively.

Together with the information of its input/output variables the abstract history determines the
communication interface of a local process. Note that the input/output variables thus can be
considered as the data component of the communication interface, whereas the control component,
which specifies the relevant order between the communication events, is described by the abstract
history. »

The local proof system formalizes reasoning about the correctness of a process in terms of its
communication interface as specified by its abstract history and its input/output variables as
defined above. Therefore we assume given a many-sorted assertion language (defined formally in
the full paper) which, besides the usual vocabulary for describing properties of integers, includes a
variable h which denotes an abstract history; input/output variables ¢??, c!!, along with sequence
operations like append, prefixing etc; the set C of channel names as constants, and variables
which range over multisets of channel names. We include the relation C of multiset-inclusion, the
operation N of multiset-intersection, and for each channel name c the unary multiset operation Se,
which consists of adding a copy of c. In order to reason about the abstract history h we introduce
terms of the form h;, where i denotes the index of a local process. A term h; denotes the projection
of the (global) history h onto the input/output variables of the process :. Formally, the meaning
of a term h; is given by the following formula

VIVO[hi(I) = 0 « 3r'30'h(I') = O' A\ I=T'NT; A0 =0' 0 O]

where I,I',0,0’" are multiset variables. Note that for this notion of projection to be well-defined
we have to require that

VIVI'INT; =I'nT; = k(I)NO; = h(I') N O]

Finally, we also include expressions of the form h(e;) := ez, where e; and e are multiset expres-
sions, the meaning of which is given by the formula

VI[I ?é e; — (h(el) = 62)(1) = h(I) AN =€ — (h(el) = 62)(1) = 62]

This notation for describing an update to the abstract history is derived from the axiomatization
of assignments to arrays (see [Gri87]).

In the assertion language quantification is only allowed over integer variables and variables ranging
over multisets of channel names. Assertions will be denoted by p,gq,.. ..

Definition 3.4 Local correctness formulas are of the form

{p}S{g},

where it is implicitly assumed that the free integer variables of p and ¢ are included in the program
variables of S, and p and q only refer to the input/output variables of S. These syntactical

6



conditions ensure that local specifications are free from interference (occurrences of the abstract
history variable h will be interpreted at this level as the local history of S, only when combining
the local specifications we substitute h by h;, see rule 5).

Global correctness formulas are of the form

{p}P{q}.

Both type of correctness formulas are provided with a partial correctness interpretation: for ex-
ample, {p}S{g} is valid if every terminating computation of 5 starting in a state satisfying pre-
condition p results in a state satisfying postcondition g.

3.2 Axioms and Rules

Next we discuss the axioms and rules of the proof system. We have the following well-known
axiom for the assignment:

Axiom 1 (assignment) {ple/z]}z := e{p}

Here ple/z] denotes the result of substituting occurrences of z in p by e. Simultaneous substitution
of e1,...en for the variables z1,...,Z, in p will be denoted by ple1/Z1,. -, en/Znl.

An input statement ¢??z is axiomatized by a multiple assignment to the input variable c??, the
variable z, and a distinguished multiset variable I. The variable I indicates the number of inputs
which have been executed so far. So if, for example, I = {c,¢,d} holds in the current state,
this means that until now, the process has read twice from channel ¢ and once from d. The
assignment to the input variable c?? models the operation of appending the value read to ¢?? and
the assignment to the variable z models the storage of the value read in the local memory. The
value read is represented by a new integer variable v. Since the value of v is not known locally,
the variable v is universally quantified.

Axiom 2 (input) {¥v[p[v/z,c?? - v/e??, S.(1)/ 1|}z {p}

Here the operation of appending an element to a sequence is denoted by ‘. Note that S.(I)
denotes the result of adding a copy of ¢ to I. Observe that an input statement does not affect the
abstract history.

An output statement c!le is axiomatized by a multiple assignment to the output variable c!!, the
abstract history variable h, and a distinguished multiset variable O, which indicates the number
of outputs which have been executed so far. The assignment to the output variable ¢! models the
operation of appending the value sent to c!! and the assignment to the abstract history records the
causal dependencies between the outputs executed so far and the inputs that have been executed
until now, and which are represented by the multiset variables I and O, respectively.

Axiom 3 (output)
(VI'[I C I' = plet! - efclt, (R(I') := Sc(0))/h, Sc(0)/O]] }e!le{p}

Here I’ denotes a new multiset variable. Note that we update the abstract history for an arbitrary
I’ which contains I, where I records the number of inputs which have been executed so far. This
corresponds with the monotonicity property that if a multiset I of inputs enables a multiset O of



outputs then any I’ D I enables O. The monotonicity property allows abstraction from the order
between an output and a subsequent input as illustrated in example 3.5.

The following rules for sequential composition, the guarded statement and the guarded iteration

are the usual ones.

Rule 1 (sequential composition)

{p}Si{r}, {r}S2{q}
{p}S1; S2{q}

Rule 2 (guarded statement)

{p Ab;}ei??zi; Si{q}
{p}:lbs; iz — Sil{a}

Rule 3 (guarded iteration)

{p}ibs; i — Si{p}
{p} * [i[bi; €:772: — Si{p A A\, —bi}

Moreover we have the following consequence rule.

Rule 4 (Local consequence rule)

Er—p, {P}S{d}, Ed
{r}S{q}

We have the following rule for parallel composition.

Rule 5 (parallel composition)

{pi A Init;}S:{d}, (G AYI'R(I) #0->T' CI) = g
{A:pilhi /RS I - I Snl{A; qilhg/h]}

Here Init; denotes the assertion A= QAT =0A0 =0A A 4rc7.(c?? =€) A Asyeo, (¢ =¢€). (In
h = 0 the function which assigns to each multiset the empty multiset is denoted by 0, whereas in
I =0(0 = 0), 0 denotes the empty multiset. The empty sequence is denoted by €.) The additional
information expressed by VI'[h(I') # § — I' C I] ensures that the choices for the input set in
the output axiom are consistent with the final set of inputs. It is implicitly assumed that p; and
g; do not contain the logical variables I and O (these variables are only used locally to generate
the abstract history, globally they are irrelevant). When combining the local specifications in the
conclusion of the rule we substitute the abstract history variable h by its corresponding projection.

We now arrive at a suitable point to illustrate the use of the output axiom.

Example 3.5 Let S; = c!'0;d??z and S2 = [true — ¢!'0; d??2]d??z — ¢!10]. It is not difficult to
see that S; and S, are observationally equivalent, that is in every context they give rise to the same
state-transformation. Using the above calculus we can derive the postcondition 3I'[@ C I’ Ah =
{(I',{c})}} A I = {d} for S;. Thus using the additional information VI'[R(I') # @ — I' C I] we
derive the postcondition h = {{0, {c})} V h = {{{d},{c})}, which is also satisfied by S;. In other
words, S1 and S, are provably equivalent.



The following rule allows to strengthen the postcondition of a program with the information that
the sequence of values read from a channel is a prefix of the sequence of values sent.
Rule 6 (FIFO rule)

{p}P{q}

{p}P{gAc?? X}

Here < denotes the prefix relation on sequences.

Next we introduce a rule which allows to strengthen the postcondition of a program with additional
information about the global history.

Rule 7 (Compatibility predicate)

{p}P{q}
{p}P{q A compat(h)}

Here the compatibility predicate compat(h) is defined as follows:

VI(I#0ARI)#0 -3 C I(I Ch(I'))

It roughly expresses that each input of 2 must be generated by a proper subset. In the full paper
we show on the basis of a formally defined semantics that this requirement ensures that there exists
an execution of P which complies with the condition that on each channel, each value should be
written before it is read. This is best explained by a simple example.

Example 3.6 Consider again the sequential processes
Sy = [z = ??yltrue — c?7y]; d!0

and
Sy = cll0; [d?72 — 1]

After termination of [S; || Sa] we have that ¥ = 0. This can be proved by deriving locally the
postcondition
= (h={{{c,c}, {dN} AVu,v[c?? = (u,v) =y =]V
(h={{{c}, {aN} A Vu[e?? = (u) = y = u])

for S; and the postcondition

po = (h = {(0,{c}), ({d}, {c,ch}n el = (0,1))

for So. Then we have that (p; A ps A compat(h) Ac?? < c!!) — y = 0. This can be seen as follows:
we consider the following two cases. Let hy denote the local history of S; and hs the local history
of 522

1. hy = {{{c,c},{d})}: there are a number of possible global histories that obey the projection
restriction, i.e. are such that their respective projections yield h; and hy. We only list a few
below:

o h={(0,{c}),{{d}, {c,c}), {{c,c}, {d}}}
e h= {({C, C}v {C7 d}>v <{d}7 {Cv c}>}



e h= {<{c’ C}, {C’ d}>’ <{d}’ {c’ c})» (0» {c})}
o h={(0,{c}), ({c.c,d},{c,c.d})}
o h={{{c,c},{c,d}), ({c,c.d}, {c,c,d}), (0, {c}), {{d}, {c, c}), {{e, e}, {dh)}

None of these possible global histories is compatible. For instance, in the first case the pair
{{c,c}, {d}) has no predecessor as described in the definition of compat because the multiset
{c,c} cannot be generated. Note that {d} generates {c,c}, but {d} € {c,c}. Without
this requirement that {c,c} should be generated by a proper subset we thus would allow
circularities: {d} generates {c,c} and {c,c} in its turn generates {d}.

2. hy = {{{c},{d})}: again we list some representative possible global histories:
e h= {<®> {c}>7 ({d}v {Cv C}), <{C}’ {d}>}
o b= {{ch{c.d}), {d} {e.ch)}
o h= {(0, {C}), ({C, d}7 {C, < d}>}
e h= {<{C}, {cv d})? ({C, d}7 {c7 ¢ d}>’ (0’ {C}>}

Out of these possible A’s, for instance the last one listed here fulfils the compat-demands.

Therefore we conclude that compat(h) implies that the first disjunct of p; should be discarded of,
and hence from Vu[c?? = (u) = y = 4], c!! =(0,1) and ¢?? < c!! we conclude y = 0.

We conclude the exposition of the proof system with the global consequence rule and the substi-
tution rule.

Rule 8 (global consequence rule)

Ep—=p, {pIP{d}, Ed —4q
{p}P{q}

Rule 9 (Substitution rule)

{r}P{q}
{p[z/=]} P{q}

where z is a variable not occurring in P or ¢, and z is a variable of the same sort as z.

4 Multiset Logic

In this section, we look a bit closer at the subset of the logic that is needed in order to formalize
reasoning about multisets. Formally, we introduce the following logic of multisets: Consider a
structure {Pm(C), Sey;s -y e, r <, U, N, 0), where P, (C) denotes the set of multisets of elements of
the finite set C = {c¢1,...,¢n}; Se,, for ¢; € C, denotes the —unary— c;-successor function; <
is the subset-relation between multisets and @ denotes the empty multiset. Furthermore, we add
two binary operators on multisets: the least upperbound (lub, denoted by U) and the greatest
lowerbound (glb, denoted by N). Note that the glb of two elements of P,,(C) corresponds with
the usual multiset intersection, whereas the least upperbound of two multisets z and y of P, (C)
corresponds to the multiset which contains for each element the maximal number of occurrences
in z and y. Hence the least upperbound operation differs from the operation of multiset addition,
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which adds the number of occurrences: consider for instance the multisets {c,d} and {c,c,d}.
Their least upperbound is {c, ¢, d} whereas their multiset addition is {c,c,c,d}.

Given multiset variables z,y, ... ranging over Py, (C), terms and formulas in this logic are given by
tu=0]z|S,(t) | t1Utz|tiNty
pu=ti=ta|t1 Sta | ]w1 A2 ] Jziep].

The logic of multisets includes for each successor function its logic of discrete time, and consists
of the following set T of axioms.

Firstly, we have the axioms concerning the ordering relation:

MS-REFL Vz[z < z]
MS-ANTISYM VaVylz<yAy<z—=z=1y]
MS-TRANS VaVyVzlr <y Ay <z =z < 2]
MS-LEASTEL  Vz[0 < 2]
MS-LUB Vavy[z < (zUy) Ay < (zUY)

AVzlz < zAy<z— (zUy) < 2]
MS-GLB VaVy[z > (zny) Ay > (zNy)

AVzjz > zAy 22— (zNy) > 2]]

.

Then, we have axioms concerning the successor functions:

MS-INJ Vavy[Se.(z) = Se.(y) = = = y]
MS-IMMSUC . Vz[z < Sc.(z) Az # S, (2)
AJylz SyAy < S (@) Az # YAy # Se(a)]]
MS-PRED  Va[Se (D) < & - 3y(Se(v) = ]
MS-SUCDIFF  Va[S..(z) # Se, ()] (for i # 7)
- MS-COMM . Vz[S,(S;(2)) = S, (S (x))] (successors commute)

The following axiom allows to factorize a term ¢ without occurrences of the U and N operations
into a union of terms ¢;, where t; only contains the S, successor function (from here on, Ski(z)
denotes the term resulting from applying S, k; times to x):

MS-SPLIT Va[Sh - Sk (@) = U, S5 (@)

Next we have an axiom (actually a family of axioms for n,m > 0 and each successor function
S..) which states in a sense that terms which only contain the successor operation S.; are totally
ordered:

.

MS-TOT VzVy[ST(z) <z UST(y) Vv ST (y) SyU ST ()]

Note that the occurrence of z in the right hand side of ST, (z) < xU S} (y) causes the inequality to
be valid automatically for the non-c; elements of z. In this way, z serves as a ‘mask’ which filters
out the irrelevant ordering information.

The following axiom allows to reduce basic formulas of the form S7,(z) < U, Sk (y) to a conjunc-
tion of formulas ti < t5, where t{ and t} contain only the S, successor function:

11



MS-COMP Vavy[ S (2) < U; S5 () = Ay (Sec(z) < U 85T (y))
A(STH (2) Sz U ST ()]

Finally we have an axiom which allows to distribute existential quantification over a conjunction
of formulas which do not share occurrences of the same successor function: let Succ(¢) denote the
set of successor functions occurring in ¢. '

MS-CONSPLIT 3z[p1 A 2] +— (3z[¢1] A Fz[2])
(provided Succ(¢1) N Suce(z) = 0)

We have the following theorem:

Theorem 4.1 The theory T admits elimination of quantifiers, i.e. for any formula ¢ there exzists
a quantifier free formula ¥ such that T & ¢ < 1; hence T is complete, and thus the theory of the
structure (Pm(C), Seys s e s <, U, N, P) is decidable. '

The proof is given in the full paper. Globally, we proceed as follows: it suffices to show that for
any quantifier free formula ¢ the formula 3¢ is equivalent (with respect to the above axioms) to
a quantifier free formula. So let ¢ be a quantifier free formula. It is not difficult tq,transform,
using the axioms, ¢ into a equivalent formula ¥ which is constructed from basic formulas of the
form S™(t) < tU ST(t'), where ¢ and t' are either a variable or the constant @. - Transform the
resulting formula ¢ into disjunctive normal form, and distribute the 3z over the disjunction. Now
each disjunct is of the form 3z A, ¢;, where each ¢; is a conjunction of basic formulas which
only contain the successor function S,. Using the last axiom we can distribute the 3z over
the conjuncts ¢;. Thus we obtain formulas 3z¢;, where ¢; only contains the successor function
S.,. But to these formulas we can apply the well-known theorem which states that the theory
of one successor function admits elimination of quantifiers. Note that indeed our axioms contain
for each successor function S, the standard theory of one successor function, consisting of the
axioms MS-REFL, MS-ANTISYM, MS-TRANS, MS-LEASTEL, MS-IMMSUC, MS-PRED and
MS-TOT.

5 Conclusion and Future Work

The present paper presents a proof methodology which supports reasoning about the correctness
of asynchronously communicating processes at an abstraction level at least as high as that of the
programming language.

In the full paper we have proved that the proof system is sound, i.e. every derivable correctness
formula is valid, and (relative) complete, i.e. every valid correctness formula is derivable. The
formal justification is given with respect to a formally defined fully abstract semantics. Due to a
close correspondence of the proof rules and the semantics, the proofs of soundness and completeness
are fairly straightforward.

Because of its high level of abstraction the proof system provides a suitable basis for top-down
program development along the lines of a refinement calculus as defined in [Bac80]. Such a
refinement calculus for asynchronously communicating processes we are currently investigating.

Additionally, to study the practical usage of the presented proof methodology we plan to investigate
some case studies.
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Exploiting the fact that our multiset logic is decidable, we can transform our rules in a format
amenable for use by verification tools; in particular, we use PVS (Prototype Verification Sys-
tem, see [SOS92]) to study the impact of automated theorem proving techniques in our setting.
PVS allows for interactive generation of proofs, defining of strategies and decision procedures for
arithmetic, thus alleviating the user from trivial but tedious tasks.

In this way, using the proof system from [dBvH94|, we already verified the problem of determining
a network topology by means of a so-called heartbeat algorithm (see also [And91]). The algorithm
entails for each participating process to repeatedly 'send and receive information about network
links to its direct neighbours, which finally leads to a complete picture of the networks topology.
(The topology information can be used by the processes for instance to route their messages
efficiently along the links of the network.) '

Finally, we are currently investigating the decidability of the extension of our multiset logic with
the operation of multiset addition, denoted by & and defined by:

T80 =z
z® Sc;(y) = Sci (1: @ y)
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