
Scheduling interval orders with release dates and deadlines

Jacques Verriet

Department of Computer Science, Utrecht University,

P.O. Box 80.089, 3508 TB Utrecht, The Netherlands.

E-mail: jacques@cs.ruu.nl

Abstract

We study the problem of scheduling unit-length tasks with release dates and deadlines

subject to precedence constraints and unit communication delays. Two polynomial-time al-

gorithms are de�ned: one constructs schedules for graphs with uniform release dates, the other

for graphs with arbitrary release dates. They have a special structure: unlike most scheduling

algorithms, they do not consider individual tasks, but pairs of tasks. It is proved that the

algorithms �nd minimum-lateness schedules for interval orders on an arbitrary number of

processors.

1 Introduction

Finding a shortest schedule for a precedence graph is a very di�cult problem: deciding whether a
schedule for a set of tasks of length at most D exists on an arbitrary number of processors is an
NP-complete problem, even without precedence constraints. The problem remains NP-complete
if all task lengths are equal and the number of processors is arbitrary [11]. Only for special
classes of precedence relations there are polynomial-time algorithms that �nd minimum-length
schedules [8, 10].

In real computer architectures, a large delay occurs between the execution of dependent tasks
on di�erent processors. If these communication delays are taken into account, �nding a schedule
of minimum length is computationally intractable, even under tree precedence constraints [9]. For
interval orders, however, Ali and El-Rewini [1, 2] de�ned a polynomial-time algorithm that takes
communication delays into account and �nds a minimum-length schedule.

In this report we consider the problem of scheduling unit length tasks subject to precedence
constraints, communication delays and individual release dates and deadlines. On one hand, this
is a generalisation of scheduling precedence graphs with release dates and deadlines [6, 7]. On the
other, scheduling with a uniform deadline subject to communication delays [2, 3, 9] is a special
case of this problem.

The problem has been considered by Verriet [12]. His algorithms have the same structure as
those of Garey and Johnson [6, 7] for scheduling without communication delays: �rst the individual
deadlines are modi�ed, and second the tasks are scheduled by a list scheduling algorithm applied to
the set of tasks ordered by non-decreasing modi�ed deadlines. The precise deadline modi�cations
of Verriet [12] and Garey and Johnson [6, 7] of a task u depend on the subgraph of successors
of u, but not on the predecessors of u. For the case of two processors without communication
delays [6, 7], this turns out to be su�cient: the algorithms �nd minimum-lateness schedules. In
case of two processors with communication delays, Verriet was only able to solve the problem for
graphs satisfying the least urgent parent property. This restriction is closely related to the two
basic patterns in which communication delays have an impact on scheduling.

1

Successor pattern If u has immediate successors v1; : : : ; vk, then at most one of these can be
executed immediately after u. It is unknown which one.

Predecessor pattern If u has immediate predecessors w1; : : : ; wl, then only one can be executed
immediately before u. Which predecessor is unknown.

Restriction to (series-parallel) graphs with the least urgent parent property answers the question
associated with the predecessor pattern at the beginning. The question corresponding to the suc-
cessor pattern is dealt with in the deadline modi�cation stage.

In this report we will take both patterns into account using a di�erent approach to the deadline
modi�cation. We will assign a deadline to pairs (wi; wj) of immediate predecessors of u. Either
wi or wj has to be completed before this deadline. Hence if (wi; wj) has a deadline strictly smaller
than the deadlines of both wi and wj , one of these should be scheduled earlier than required by
its own deadline.

After some preliminary de�nitions we will present two algorithms: one �nds schedules for
graphs with a uniform release date, the other for graphs with arbitrary release dates. They �rst
compute a deadline for every pair of tasks, after which every task is assigned a starting time using
a list scheduling algorithm. We will show that application of these algorithms to interval orders
yields minimum-lateness schedules, even for an arbitrary number of processors.

2 Preliminary de�nitions

We will consider precedence graphs in which every task has unit processing length. Each task has
to be executed without interruption on one processor. An edge (u; v) denotes a data dependency
between nodes u and v: to be able to execute v, the result of the computation of u must be known.
If u and v are executed on di�erent processors, it is necessary to send data from one processor to
another. This takes unit time during which both the sending and the receiving processor can ex-
ecute another task. If u and v are executed on the same processor, no communication delay occurs.

Throughout this report, G will denote a precedence graph in which every task u has a deadline
D(u) and possibly a release date R(u). Both are assumed to be non-negative integers. If a task
has only a deadline, its release date is considered zero.

We will assume G contains n nodes and e edges. Let u; v be nodes of G. If (u; v) is an edge
of G, v is called a child of u and u a parent of v. If a directed path from u to v exists, u is a
predecessor of v and v a successor of u. This is denoted by u � v. A node u is a successor (child)
of a set of nodes V if some task of V is a predecessor (parent) of u. Succ(u) denotes the set of
successors of u. A source is a node without predecessors, a node without successors is called a sink.

A schedule for a graph G on m processors is a list of subsets of G which are called time slots.
A schedule S = (S0; : : : ; Sl�1) is valid for G if the following properties are satis�ed.

1.
Sl�1

t=0 St = G.

2. St \ St0 = ; for all t 6= t0.

3. jStj � m for all t.

4. If u � v, u 2 St and v 2 St0 , then t < t0.

5. If u 2 St, then St+1 contains at most one child of u.

6. If u 2 St+1, then St contains at most one parent of u.

2

Note that these properties do not contain information about the assignment of processors. It
is easy to assign a processor to every task: if S is a valid schedule for G on m processors, a correct
assignment can be found in O(minfmn; n+ eg) time.

Let S be a schedule on m processors for a graph G. If a node u is an element of time slot
St, it is said to be scheduled at time t. u does not violate its release date if R(u) � t. u is
said to meet its deadline if its execution is �nished at time D(u). So u meets its deadline if it
is scheduled at time t, such that D(u) � t + 1. If D(u) � t, u is called late and its lateness is
t+ 1�D(u). The lateness of a task meeting its deadline is 0. The lateness of a schedule S is the
maximum lateness of a task scheduled in S. S is optimal if no other schedule for G on m proces-
sors has lateness less than S. S is called 0-optimal if no task violates its release date or its deadline.

A partial schedule for a graph G on m processors is a schedule S = (S0; : : : ; Sl�1) that satis�es
Properties 2, 3, 4, 5 and 6 and the following.

10. If v 2
Sl�1

t=0 St and u � v, then u 2
Sl�1

t=0 St.

Let S = (S0; : : : ; Sl�1) be a partial schedule of a graph G on m processors. An unscheduled
node u of G is called available at time t with respect to S if t � R(u) and (S0; : : : ; St�1; St [
fug; St+1; : : : ; Sl�1) is a partial schedule of G on m processors.

3 Interval orders

In this report we will consider a special class of graphs: the interval orders. Papadimitriou and
Yannakakis [10] de�ned these in the following way. An interval order is a partial order (V;�),
such that every element v of V can be assigned a closed interval Iv in the real line such that for
all v1; v2 in V

v1 � v2 if x < y for all x 2 Iv1 ; y 2 Iv2 .

The incomparability graph of a partial order (V;�) is an undirected graph (V;E), such that
(u; v) 2 E if u 6� v and v 6� u for all u; v 2 V . A chordal graph is an undirected graph in
which every cycle (u1; : : : ; uk) of length k � 4 has a chord, that is an edge (ui; uj) such that
jj � ij 6= 1; k � 1. The two following results were proved by Papadimitriou and Yannakakis [10].

Lemma 3.1. Let (V;�) be a partial order. If the incomparability graph of (V;�) is a chordal

graph, then for all u; v 2 V

Succ(u) � Succ(v) or Succ(v) � Succ(u):

Lemma 3.2. Let (V;�) be a partial order. (V;�) is an interval order if and only if its incompa-

rability graph is a chordal graph.

From the preceding two lemmas it follows that if (V;�) is an interval order, then Succ(u) �
Succ(v) or Succ(v) � Succ(u) for all u; v 2 V . This result can be generalised.

Proposition 3.3. Let (V;�) be an interval order. Let U be a non-empty subset of V . There is a

task u in U such that

Succ(u) =
[
v2U

Succ(v):

Proof. By easy induction on the number of elements of U .

Figure 1 contains a graph that does not satisfy the condition stated in Proposition 3.3. Hence
it cannot be an induced subgraph of the transitive closure of an interval order. As a result, the
class of interval orders is not a subclass, nor a superclass of the outforests or the inforests. It is,
however, a superclass of the level orders which were considered by Dolev and Warmuth [5].

3

Figure 1: A forbidden subgraph for interval orders

4 Scheduling with deadlines

In this section an algorithm for scheduling with deadlines on an arbitrary number of processors is
de�ned. This algorithm is similar to the one presented by Garey and Johnson [6] for scheduling
with deadlines on two processors without communication delays and the one de�ned by Verriet [12]
for scheduling subject to unit communication delays. It consists of two steps. First the deadlines
are modi�ed, such that they are consistent with the precedence constraints. The modi�ed dead-
lines are used to assign a starting time to every task.

The algorithm de�ned by Verriet [12] does not use all knowledge of the deadlines and the
structure of 0-optimal schedules: its deadline modi�cation part only considers a task and its
successors. Therefore a task with modi�ed deadline d has at most one successor with modi�ed
deadline d+1. However, since the predecessors of a task are not considered, a task with modi�ed
deadline d + 1 can have several parents with modi�ed deadline d. Because of the asymmetric
deadline modi�cation, it is possible to construct an interval order for which this algorithm does
not construct a 0-optimal schedule even if such a schedule exists.

To de�ne an algorithm that �nds 0-optimal schedules, extra information is needed. Let u be
a task of a graph that has to be scheduled on m processors. Suppose v1; : : : ; vk are successors of
u with deadlines D(v1) � : : : � D(vk). Because of communication delays, only one successor of u
can be executed immediately after u. So, in order to meet every deadline, u has to be completed
at time D(vk)� 1�

�
k�1
m

�
.

Suppose two tasks u1, u2 have l = km+1 common successors v1; : : : ; vl with deadlines D(v1) �
: : : � D(vl). In order to meet its deadline, u1 must be completed at time � D(vl) � 1�

�
l�1
m

�
=

D(vl)�1�k. The same holds for u2. If both tasks are scheduled at time D(vl)�2�k, one of their
common successors violates its deadline, because the �rst task of v1; : : : ; vl cannot be executed
until time D(vl)� k. So either u1 or u2 has to be scheduled at time � D(vl)� 3� k.

In order to use this knowledge, we will consider pairs of tasks instead of individual tasks. A
pair of (not necessarily di�erent) tasks will be assigned a deadline. Let (u1; u2) be a pair with
deadline d. (u1; u2) meets its deadline if u1 or u2 is completed at time d. The computation of a
modi�ed deadline for every task and every pair of tasks is done by the algorithm shown in Figure 2,
which uses the following de�nitions.

Let G be a graph. Let D = maxuD(u) and d � D. N(u1; u2; d) denotes the number of
common successors of u1 and u2 with deadlines � d. P (u1; u2; d) = maxf0; jV j � 1g, where V is a
set of tasks, such that V satis�es the following properties and no other set of tasks that satis�es
these properties contains more tasks than V .

1. V � Succ(u1) \ Succ(u2).

2. D(v) = d+ 1 for all v 2 V .

3. D(v1; v2) = d for all v1 6= v2 in V .

It is clear that, in order to meet every deadline, at most one element of V can be executed at time �
d. For individual tasks we use shorthand notations: N(u; d) = N(u; u; d) and P (u; d) = P (u; u; d).
Dmin(u1) denotes the smallest deadline D(u1; u2) for all tasks u2 such that D(u2) = D(u1).

The following lemma shows the consistency of the modi�ed deadlines: it is proved that if every
task meets its original deadline, then no modi�ed deadline is violated.

4

Deadline modification()
1 let (u1; : : : ; un) be a topologically sorted list of tasks of G
2 for i = n downto 1
3 do for d = 1 to D

4 do if N(ui; d) + P (ui; d) � 1
5 then D(ui) = min

�
D(ui); d� 1�

�
1

m
(N(ui; d) + P (ui; d)� 1)

�	
6 D(ui; ui) = D(ui)
7 Dmin(ui) = D(ui)
8 for j = n downto i+ 1
9 do for d = 1 to D

10 do if N(ui; uj ; d) + P (ui; uj ; d) = km+ 1 and
11 D(ui) = D(uj) = d� 1� k for some k
12 then D(ui; uj) = D(ui)� 1
13 D(uj ; ui) = D(ui)� 1
14 Dmin(ui) = D(ui)� 1
15 Dmin(uj) = D(uj)� 1
16 else D(ui; uj) = min fD(ui); D(uj)g
17 D(uj ; ui) = min fD(ui); D(uj)g

Figure 2: The deadline modi�cation algorithm

Lemma 4.1. Let G be a graph. Let S be a valid schedule for G. If in S no task violates its

original deadline, then every task and every pair of tasks meets its modi�ed deadline.

Proof. Let G be a graph. Let S be a valid schedule for G. Suppose in S every task is completed
before its original deadline.

1. Let u be a task such that every successor and every pair of successors of u meets its modi�ed
deadline. Let d � maxuD(u). Assume N(u; d) + P (u; d) � 1. At least N(u; d) + P (u; d)
successors of u are completed at time d. At most one of these tasks is executed immediately
after u, so u is scheduled at time � d� 2�

�
1

m
(N(u; d) + P (u; d)� 1)

�
. So u is completed

before its modi�ed deadline.

2. Let (u1; u2) be a pair of tasks, such that u1, u2, and all successors and pairs of successors of u1
or u2 meet their modi�ed deadlines. If D(u1; u2) = minfD(u1); D(u2)g, then (u1; u2) meets
its modi�ed deadline. So we may assume D(u1; u2) 6= minfD(u1); D(u2)g. In that case,
D(u1) = D(u2) = d�1�k for some d and k, such that N(u1; u2; d)+P (u1; u2; d) = km+1.
So km+ 1 common successors of u1 and u2 are completed at time d. A common successor
of u1 and u2 is scheduled at time � d�1�k. Therefore either u1 or u2 is completed at time
d� 2� k. Consequently, (u1; u2) meets its modi�ed deadline.

We will prove some properties of graphs that have to be scheduled onm processors in which ev-
ery task and every pair of tasks has a modi�ed deadline. For these graphs the following statements
are true.

If N(u; d) + P (u; d) � 1, then D(u) � d� 1�
�
1

m
(N(u; d) + P (u; d)� 1)

�
. (1)

If N(u1; u2; d) + P (u1; u2; d) = km+ 1 and D(u1) = D(u2) = d� 1� k for some k,
then D(u1; u2) = d� 2� k. Otherwise, D(u1; u2) = minfD(u1); D(u2)g.

(2)

5

Lemma 4.2. Let G be a graph in which every pair of tasks has a modi�ed deadline. Let u1; u2 be

two tasks of G.

If N(u1; u2; d) + P (u1; u2; d) � km+ 1, then D(u1; u2) � d� 2� k. (3)

Proof. Let G be a graph such that every pair of tasks of G has a modi�ed deadline. Let u1 6= u2 be
tasks of G. SupposeN(u1; u2; d)+P (u1; u2; d) � km+1. Clearly,N(u1; d); N(u2; d) � N(u1; u2; d)
and P (u1; d); P (u2; d) � P (u1; u2; d). From (1),

D(u1); D(u2) � d� 1�

�
1

m
(N(u1; u2; d) + P (u1; u2; d)� 1)

�
: (4)

Case 1. N(u1; u2; d) + P (u1; u2; d) � km + 2. Substitution in (4) yields D(u1); D(u2) �
d� 2� k. Using (2), we obtain D(u1; u2) � d� 2� k.

Case 2. N(u1; u2; d) + P (u1; u2; d) = km + 1. Using (4) yields D(u1); D(u2) � d � 1 � k.
With (2), if D(u1) or D(u2) is smaller than d�1�k, then D(u1; u2) � d�2�k. Otherwise,
from (2), D(u1; u2) = d� 2� k.

Lemma 4.3. Let G be a graph in which every pair of tasks has a modi�ed deadline. Let u1; u2 be

tasks of G. Let V be a set of common successors of u1 and u2. If D(v1; v2) � d for all v1 6= v2 in

V , then N(u1; u2; d) + P (u1; u2; d) � jV j � 1.

Proof. Let G be a graph such that a modi�ed deadline has been computed for every pair of tasks
of G. Let u1; u2 be tasks of G. Let V be a set of common successors of u1 and u2. Suppose
D(v1; v2) � d for all v1 6= v2 in V . Every task in V has a deadline at most d + 1. De�ne
V0 = fv 2 V j D(v) � dg and V1 = fv 2 V j D(v) = d + 1g. Obviously, N(u1; u2; d) � jV0j and
P (u1; u2; d) � jV1j � 1. Therefore N(u1; u2; d) + P (u1; u2; d) � jV0j+ (jV1j � 1) = jV j � 1.

Lemma 4.4. Let G be a graph in which every pair of tasks has a modi�ed deadline. Let (u1; u2)
be a pair of tasks such that D(u1; u2) = D(u1)� 1 = D(u2)� 1. Let v 6= u1; u2. If D(v) = D(u1)
and Succ(u1) \ Succ(u2) � Succ(v), then D(u1; v) = D(u2; v) = D(u1; u2).

Proof. Let G be a graph. Suppose every pair of tasks of G has a modi�ed deadline. Let (u1; u2)
be a pair of tasks such that D(u1; u2) = D(u1) � 1 = D(u2) � 1. Let v 6= u1; u2 be a task such
that Succ(u1) \ Succ(u2) � Succ(v) and D(v) = D(u1). D(u1; u2) = D(u1) � 1 = D(u2) � 1, so
N(u1; u2; d)+P (u1; u2; d) = km+1 and D(u1; u2) = d�2�k for some k and d. Since Succ(u1)\
Succ(u2) � Succ(v), N(u1; v; d) + P (u1; v; d); N(u2; v; d) + P (u2; v; d) � km + 1. From (3),
D(u1; v); D(u2; v) � d � 2 � k. Because D(u1; v); D(u2; v) � D(v) � 1, D(u1; v) = D(u2; v) =
D(v)� 1. Therefore D(u1; v) = D(u2; v) = D(u1; u2).

P (u1; u2; d) is de�ned in terms of sets of common successors of u1 and u2. Therefore its
de�nition does not allow an e�cient method of determining P (u1; u2; d). For interval orders, an
alternative de�nition can be used. This formulation allows us to compute P (u1; u2; d) in linear
time.

Lemma 4.5. Let G be an interval order in which every pair of tasks has a modi�ed deadline. Let

u1; u2 be tasks of G. If P (u1; u2; d) � 1, then

P (u1; u2; d) = jfv1 j u1; u2 � v1 & D(v1) = d+ 1 & 9v2 [D(v2) = d+ 1 & D(v1; v2) = d]gj � 1:

Proof. Let G be an interval order in which every pair of tasks has a modi�ed deadline. Let
u1; u2 be tasks of G. Suppose P (u1; u2; d) � 1. In that case, P (u1; u2; d) = jVP j � 1, where VP
is a largest subset of Succ(u1) \ Succ(u2) such that every task in VP has deadline d + 1 and
every pair of di�erent tasks has deadline d. De�ne V = fv1 2 Succ(u1) \ Succ(u2) j D(v1) =
d + 1 & 9v2[D(v2) = d+ 1 & D(v1; v2) = d]g. jVP j � 2, so for every task v1 in VP D(v1; v2) = d

6

for some v2 with deadline d + 1. So VP � V . Since G is an interval order, we may assume
VP = fv1; : : : ; vkg, such that Succ(v1) � : : : � Succ(vk). Suppose V 6� VP . Let v be a task of
V nVP . v is a common successor of u1 and u2.

Case 1. Succ(v1) � Succ(v). Clearly, Succ(v1) \ Succ(vi) � Succ(v) for all i, 2 � i � k.
From Lemma 4.4, D(vi; v) = d for every i, 1 � i � k. So VP [fvg is a set of common
successors of u1 and u2 with deadline d + 1, such that every pair of di�erent tasks has
deadline d. Contradiction.

Case 2. Succ(v) � Succ(v1). v is a task of V , so there is a task v0 such that D(v0) = d + 1
and D(v; v0) = d. Assume v0 6= v1. Because Succ(v) \ Succ(v0) � Succ(v1), D(v1; v) = d

with Lemma 4.4. Furthermore, Succ(v1)\Succ(v) � Succ(vi) for all i, 2 � i � k. Applying
Lemma 4.4 yields D(vi; v) = d for all i, 1 � i � k. As a result, VP is not a largest subset
Succ(u1) \ Succ(u2) such that every pair of di�erent tasks has deadline d and every task
deadline d+ 1. Contradiction.

So V = VP and P (u1; u2; d) = jV j � 1.

Corollary 4.6. Let G be an interval order in which every pair of tasks has a modi�ed deadline.

Let u1; u2 be tasks of G. P (u1; u2; d) =

max f0; jfv1 j u1; u2 � v1 & D(v1) = d+ 1 & 9v2 [D(v2) = d+ 1 & D(v1; v2) = d]gj � 1g :

Proof. Let G be an interval order in which every pair of tasks has a modi�ed deadline. Let
u1; u2 be tasks of G. De�ne V = fv1 2 Succ(u1) \ Succ(u2) j D(v1) = d + 1 & 9v2[D(v2) =
d + 1 & D(v1; v2) = d]g. Using Lemma 4.5, we may assume P (u1; u2; d) = 0. In that case,
D(v1; v2) = d+ 1 for all common successors v1; v2 of u1 and u2 such that D(v1) = D(v2) = d+1.
Hence jV j � 1. So P (u1; u2; d) = maxf0; jV j � 1g.

Let G be an interval order. We will assume G is a transitive closure. For every pair of tasks
(u1; u2) linear time is required to compute N(u1; u2; d) for all d, because we may assume d � n.

When the deadline modi�cation algorithm considers a pair of tasks (u1; u2), the modi�ed
deadlines of all successors and pairs of successors of u1 and u2 have already been calculated. So,
from that time on, P (u1; u2; d) does not change anymore. Hence, from Corollary 4.6, we conclude
P (u1; u2; d) = maxf0; jV j � 1g, where V = fv 2 Succ(u1)\ Succ(u2) j D(v) = d+1 & Dmin(v) =
dg. So P (u1; u2; d) can be computed in linear time for all d. Note that this does not hold for
arbitrary graphs.

Computing the modi�ed deadlines of the individual tasks clearly takes O(n2) time. The cal-
culation of a deadline of a pair of tasks takes linear time for each pair, so O(n3) time for all pairs.
Coppersmith and Winograd [4] showed that computing the transitive closure of a directed acyclic
graph takes O(n2:376) time. Therefore the modi�ed deadlines are computed in O(n3) time.

To de�ne the list scheduling algorithm, a notion of priority is required. Let u1 and u2 be two
tasks of an interval order G. u1 has a higher priority than u2, if D(u1) < D(u2) or D(u1) = D(u2)
and Succ(u1) % Succ(u2). A list of tasks ordered by non-increasing priority will be called a
priority list.

The list scheduling part does not consider pairs of tasks. It is shown in Figure 3.
The priority list used by the list scheduling algorithm has length n. It is traversed once for each

time slot. The length of the schedule for G is at most n, so this takes O(n2) time. Therefore the
list scheduling algorithm can be implemented such that the availability of a task can be checked
in constant time. Hence it constructs a schedule in O(n2) time.

The list scheduling algorithm constructs a 0-optimal schedule for an interval order with dead-
lines if a 0-optimal schedule exists.

7

List scheduling algorithm()
1 assume L = (u1; : : : ; un) is a priority list
2 t = 0
3 while L contains unscheduled tasks
4 do for i = 1 to n

5 do if ui is unscheduled and available at time t
6 then schedule ui at time t
7 t = t+ 1

Figure 3: The list scheduling algorithm

Theorem 4.7. Let G be an interval order in which every pair of tasks has a modi�ed deadline.

Let L be a priority list. If a 0-optimal schedule for G on m processors exists, then in the schedule

for G on m processors constructed by the list scheduling algorithm using L every pair of tasks

meets its deadline.

Proof. Let G be an interval order such that every pair of tasks of G has a modi�ed deadline. Let
L be a priority list. Suppose there is a 0-optimal schedule for G on m processors. Let S be the
schedule for G on m processors constructed by the list scheduling algorithm using L. Suppose in
S not every pair of tasks meets its deadline. Assume St is the �rst time slot containing a task in
a pair violating its deadline. Let u1 be this task and let (u1; u2) be this pair. (u1; u2) violates its
deadline. So D(u1; u2) � t. There are three possibilities: D(u1) � t, D(u2) � t or D(u1; u2) = t

and D(u1) = D(u2) = t+ 1.

Case 1. D(u1) � t. Because a 0-optimal schedule for G exists, there are at most mt tasks
with deadline � t. Hence there is a time slot before St that is idle or contains a task with
deadline � t + 1. Let St0�1 be the last such time slot. De�ne G1 =

St�1

i=t0 Si [fu1g. G1

contains m(t � t0) + 1 tasks with deadline at most t. No task of G1 was available at time
t0�1. Let u be a source of G1. u was not available at time t

0�1, because one of the following
statements is true.

1. St0�1 contains a parent of u.

2. St0�2 contains two parents of u.

3. St0�2 contains a parent u
0 of u and St0�1 contains another child of u0.

Hence every task in G1 has a predecessor in St0�2 [St0�1.

Case 1.1. Every task in G1 is a successor of St0�1. De�ne Q = St0�1 \ fv 2 G j D(v) � tg.
Because every task in G1 has deadline � t, every task in G1 is a successor of Q. Because
of communication delays, at most jQj successors of Q are scheduled at time t0. Since
Q contains less than m tasks, t = t0. As a result, Q contains a parent w of u1. Hence
N(w; t) � 1. From (1), D(w) � t�1 = t0�1. So w is not completed before its deadline.
Contradiction.

Case 1.2. Not every task of G1 has a predecessor in St0�1. De�ne V = fw 2 St0�2 [
St0�1 j w is a parent of G1g. From Proposition 3.3, V contains a task w1 such that
G1 � Succ(w1). De�ne V

0 = V nfw1g.

Case 1.2.1. Every task in G1 has a predecessor in V 0. With Proposition 3.3, V 0

contains a task w2 such that G1 � Succ(w2). Hence w1 and w2 have � m(t� t0)+1
common successors with deadlines� t. SoN(w1; w2; t)+P (w1; w2; t) � m(t�t0)+1.
From (3), D(w1; w2) � t � 2 � (t � t0) = t0 � 2. So (w1; w2) violates its deadline.
Contradiction.

8

Case 1.2.2. Not every task in G1 has a predecessor in V 0. Let v be a task in G1

without a predecessor in V 0. Assume v is a source of G1. V contains a parent of v.
V 0, however, does not. So w1 is a parent of v. Not every task in G1 is a successor
of St0�1, so w1 2 St0�2. Because St0�2 does not contain another parent of v, St0�1
contains another child v0 of w1. v

0 is scheduled before v, so v0 occurs before v in L.
Thus D(v0) � D(v). As a result, N(w1; t) � m(t� t0) + 2. From (1),

D(w1) � t� 1�
�
1

m
(m(t� t0) + 1)

�
= t� 1� t+ t0 � 1
� t0 � 2:

So w1 is late. Contradiction.

Case 2. D(u2) � t. Similar to Case 1.

Case 3. D(u1) = D(u2) = t+1 and D(u1; u2) = t. Assume Succ(u1) � Succ(u2). Let U be
the set of tasks with priority as least as high as u1. jU j � 2, since u1; u2 2 U . Let v1; v2 be
two tasks of U . Clearly, D(v1); D(v2) � D(u1) = t + 1. If D(v1) � t or D(v2) � t, then,
from (2), D(v1; v2) � t. We will assume D(v1) = D(v2) = t+1. Since the priority of v1 and
v2 is at least as high as that of u1, Succ(u1) \ Succ(u2) � Succ(v1); Succ(v2). By applying
Lemma 4.4 twice, we obtain D(v1; v2) = t. So, in order to meet every deadline, at most one
task of U can be scheduled at time � t. Since a 0-optimal schedule for G exists, U contains
at most mt+ 1 tasks. Therefore there is a time slot before St that contains at most m� 1
tasks with priority as least as high as u1. Let t

0 � 1 be the last such time before t. De�ne
G2 =

St�1

i=t0 Si [fu1; u2g [fv 2
S

i�t Si j v � u2g. G2 contains at least m(t � t0) + 2 tasks
and every pair of di�erent tasks of G2 has deadline � t. No task of G2 was available at
time t0 � 1. Let u be a source of G2. u was not available at time t0 � 1, because one of the
following three conditions is satis�ed.

1. St0�1 contains a parent of u.

2. St0�2 contains two parents of u.

3. St0�2 contains a parent u
0 of u and St0�1 contains another child of u0.

Thus every task in G2 has a predecessor in St0�2 or St0�1.

Case 3.1. Every task in G2 is a successor of St0�1. De�ne Q = St0�1 \ fv 2 G j D(v) � tg.
Since every task in G2 has deadline � t + 1, every task in G2 is a successor of Q. S
is a valid schedule, so at most jQj � m � 1 successors of Q are executed at time t0.
Therefore t = t0. From Proposition 3.3, Q contains a predecessor w of both u1 and u2.
Hence N(w; t+1) � 2. With (1), D(w) � (t+1)� 2 = t� 1 = t0 � 1. So w violates its
deadline. Contradiction.

Case 3.2. Not every source of G2 has a parent in St0�1. De�ne V = fw 2 St0�2 [St0�1 j
w is a parent of G2g. With Proposition 3.3, V contains a task w1 such that every task
of G2 is a successor of w1. Let V

0 = V nfw1g.

Case 3.2.1. Every task in G2 is a successor of V
0. From Proposition 3.3, V 0 contains

a task w2 such that G2 � Succ(w2). Hence every task in G2 is a common successor
of w1 and w2. It is easy to see that D(v1; v2) � t for all v1 6= v2 in G2. Applying
Lemma 4.3, we getN(w1; w2; t)+P (w1; w2; t) � m(t�t0)+1. From (3),D(w1; w2) �
t� 2� (t� t0) = t0 � 2. So (w1; w2) violates its deadline. Contradiction.

Case 3.2.2. Not every task in G2 is a successor of V 0. Let v be a task of G2 that
has no predecessor in V 0. Assume v is a source of G2. V contains a parent of
v. V 0, however, does not. So w1 is a parent of v. Because v is a not successor
of St0�1, w1 is scheduled at time t0 � 2. Since v was not available at time t0 � 1
and St0�2 contains only one parent of v, St0�1 contains another child v0 of w1.
v0 is scheduled before v, so v0 occurs before v in L. Therefore D(v0) < D(v) or

9

D(v0) = D(v) and Succ(v0) � Succ(v). Every pair consisting of two di�erent tasks
of G2 [fv0g has deadline � t. Applying Lemma 4.3 to w1 and G2 [fv0g yields
N(w1; t) + P (w1; t) � m(t� t0) + 2. From (1),

D(w1) � t� 1�
�
1

m
(m(t� t0) + 1)

�
= t� 1� t+ t0 � 1
� t0 � 2:

So w1 is not completed before its deadline. Contradiction.

Corollary 4.8. Let G be an interval order for which a 0-optimal schedule exists on m processors.

The above-mentioned algorithm �nds a 0-optimal schedule for G on m processors.

Proof. Obvious.

Let G be an interval order in which every task u has an original deadline D0(u). Let D1(u)
and D1(u1; u2) denote the deadlines of u and (u1; u2) computed by the deadline modi�cation
algorithm. Let S be an optimal schedule for G on m processors. Suppose its lateness is l. De�ne
D0
0(u) = D0(u) + l for every task u in G. Let G0 denote the interval order G in which every task

has deadline D0
0(u). In S every task u meets its modi�ed deadline D0

0(u). So the above-mentioned
algorithm �nds a schedule for G0 in which every task u is completed at time D0

0(u). First it
computes modi�ed deadlines D0

1(u) and D0
1(u1; u2). It is easy to see that D0

1(u) = D1(u) + l for
every task u in G and D0

1(u1; u2) = D1(u1; u2)+ l for every pair of tasks (u1; u2). So every priority
list used to construct a 0-optimal schedule is a priority list with respect to deadlines D1(u) as well.
The availability of a task is independent of its deadline, so the schedule constructed by the list
scheduling algorithm only depends on the precedence constraints and the priority list. Hence in
the schedule for G constructed by the algorithm above on m processors every task u is completed
at time D0

0(u) = D0(u) + l. So this schedule is optimal.

Corollary 4.9. Let G be an interval order in which every task has been assigned a deadline. The

schedule for G on m processors constructed by the above-mentioned algorithm is optimal.

Proof. Obvious.

5 Scheduling with release dates and deadlines

Scheduling with release dates and deadlines can be done in a similar manner to scheduling with
only deadlines. The algorithm presented in this section also consists of two parts. The �rst
modi�es every release date and every deadline, the second does the actual scheduling.

The modi�cation of the release dates is very simple. In every valid schedule for a graph a task
is scheduled after all its predecessors. Hence the release date of a task may exceed those of its
predecessors. Therefore the release dates can be modi�ed as follows.

As long as there are nodes without a modi�ed release date, select such a node u whose parents
have been assigned a modi�ed release date. Assume v1; : : : ; vk are the parents of u. Then

R(u) = max

�
R(u); max

1�i�k
R(vi) + 1

�
:

It is obvious that in every valid schedule not violating any original release date no task is
scheduled before its modi�ed release date.

The modi�cation of the deadlines is more involved. Three de�nitions are needed. Let G be a
graph in which every task has a deadline and a (modi�ed) release date. For all nodes u in G and
integers r; d such that R(u) � r � D(u) � d

G(u; r; d) = fv 2 G j D(v) � d & (v 2 Succ(u) _R(v) � r) & u 6= vg :

10

For all nodes u in G and integers r; d such that R(u) � r � D(u) � d and d > r + 1

H(u; r; d) = fv 2 G j D(v) � d & (v 2 Succ(u) _ R(v) > r + 1)g :

For all nodes u1; u2 in G and integers r; d such that R(u1); R(u2) � r � D(u1); D(u2) � d

G(u1; u2; r; d) = G(u1; r; d) \G(u2; r; d):

Note that G(u; r; d) = G(u; u; r; d). The sets G(u; r; d), H(u; r; d) and G(u1; u2; r; d) will be
used to de�ne the deadline modi�cation. A set G(u; r; d) contains tasks that have to be completed
before time d and cannot start execution until time r or after the execution u is completed.
Therefore if G(u; r; d) is su�ciently large, u has to be executed before all tasks of G(u; r; d) in
order to meet its deadline. Something similar holds for H(u; r; d) and G(u1; u2; r; d).

To be able to consider pairs of tasks in the deadline modi�cation algorithm, P (u1; u2; r; d) is
de�ned. Let r; d be integers such that R(u1); R(u2) � r � D(u1); D(u2) � d. P (u1; u2; r; d) =
maxf0; jV j � 1g, where V is a set of tasks satisfying the following properties and V contains at
least as many tasks as any set satisfying these properties.

1. V � G(u1; u2; r; d+ 1)nG(u1; u2; r; d).

2. D(v1; v2) = d for all v1 6= v2 in V .

In order to to meet every deadline, at most one task of V can be executed at time � d. Like in
the previous section we use shorthand notations: P (u; r; d) = P (u; u; r; d).

The deadline modi�cation algorithm has a loop structure similar to the deadline modi�ca-
tion part of the algorithm by Verriet [12] for scheduling with non-uniform release dates. Let
D = maxuD(u) and R = maxu R(u). The following notation is introduced: Dmin(u1) denotes
the smallest deadline D(u1; u2) for a task u2 such that D(u2) = D(u1). The deadline modi�cation
algorithm is shown in Figure 4.

The following lemma shows the consistency of the modi�ed deadlines.

Lemma 5.1. Let G be a graph. Let S be a valid schedule for G. If no task of G violates its

original deadline, then every task and every pair of tasks meets its modi�ed deadline.

Proof. Let G be a graph. Let S be a valid schedule forG. Suppose in S every task meets its original
deadline. During the execution of the deadline modi�cation algorithm, a number of deadlines get
changed. Let l be the number of times a deadline is decreased. LetDi(u) andDi(u1; u2) denote the
deadline of u and (u1; u2) after the i

th modi�cation. LetD0(u) denote the original deadline of u and
D0(u1; u2) = minfD0(u1); D0(u2)g. Let Gi(u; r; d), Hi(u; r; d), Gi(u1; u2; r; d) and Pi(u1; u2; r; d)
denote G(u; r; d), H(u; r; d), Gi(u1; u2; r; d) and P (u1; u2; r; d) after the i

th modi�cation. Clearly,
every deadline D0(u) and D0(u1; u2) is met. Suppose no deadline Di(u) or Di(u1; u2) is violated.
Exactly one deadline is decreased by the i+ 1th modi�cation. This deadline is changed, because
Line 6, 10, 16, 17, 20 or 21 of the deadline modi�cation algorithm is executed.

Case 1. Line 6 is executed. For some task u Di+1(u) = d �
�
1

m
(jGi(u; r; d)j+ Pi(u; r; d))

�
such that jGi(u; r; d)j + Pi(u; r; d) � m(d � r). If Pi(u; r; d) = 0, let G0 = Gi(u; r; d).
Otherwise, Pi(u; r; d) = jV j � 1, where V is a largest subset of Gi(u; r; d + 1)nGi(u; r; d)
such that Di(v1; v2) = d for all v1 6= v2 in V . Let G0 = Gi(u; r; d) [V 0, where V 0 is the
subset of V containing the tasks that are completed at time d. Because every task v of V is
completed at time Di(v) and either v1 or v2 is completed at time Di(v1; v2) for all v1; v2 in
V , jV 0j = jV j � 1. Hence jG0j = jGi(u; r; d)j+ Pi(u; r; d).

Case 1.1. jGi(u; r; d)j+Pi(u; r; d) > m(d�r). G0 contains� m(d�r)+1 tasks that are com-
pleted at time d. One of them is scheduled at time� d�

�
1

m
(jGi(u; r; d)j+ Pi(u; r; d))

�
�

d � (d � r + 1) = r � 1. This is a successor of u. So u is completed at time
� d�

�
1

m
(jGi(u; r; d)j+ Pi(u; r; d))

�
. Hence u is �nished at time Di+1(u).

11

Deadline modification()
1 assume (u1; : : : ; un) contains all tasks ordered by non-decreasing modi�ed release dates
2 for d = D downto 1
3 do for i = 1 to n such that D(ui) � d

4 do for r = R(ui) to R

5 do if jG(ui; r; d)j+ P (ui; r; d) � m(d� r)
6 then D(ui) = min

�
D(ui); d�

�
1

m
(jG(ui; r; d)j+ P (ui; r; d))

�	
7 D(ui; ui) = D(ui)
8 Dmin(ui) = minfDmin(ui); D(ui)g
9 if d > r + 1 and jH(ui; r; d)j+ P (ui; r + 2; d) � m(d� (r + 2)) + 2
10 then D(ui) = min

�
D(ui); d� 1�

�
1

m
(jH(ui; r; d)j+ P (ui; r + 2; d)� 1)

�	
11 Dmin(ui) = minfDmin(ui); D(ui)g
12 for j = 1 to n

13 do if R(uj) � r and D(uj) � d and

14 jG(ui; uj ; r; d)j+ P (ui; uj ; r; d) � m(d� r) + 1 and
15 D(ui) = D(uj) = d�

�
1

m
(jG(ui; uj ; r; d)j+ P (ui; uj ; r; d))

�
16 then D(ui; uj) = D(ui)� 1
17 D(uj ; ui) = D(ui)� 1
18 Dmin(ui) = D(ui)� 1
19 Dmin(uj) = D(uj)� 1
20 else D(ui; uj) = minfD(ui); D(uj)g
21 D(uj ; ui) = minfD(ui); D(uj)g

Figure 4: The deadline modi�cation algorithm

Case 1.2. jGi(u; r; d)j+Pi(u; r; d) = m(d�r). Let G00 = G0[fug. G00 contains m(d�r)+1
tasks, all of which are completed at time d. So one of these tasks is scheduled at time
� d �

�
1

m
jG00j

�
� r � 1. This is either u or a successor of u. So u is executed before

time Di+1(u) = r.

Case 2. Line 10 of the deadline modi�cation algorithm is executed. There is a task u such
that Di+1(u) = d� 1�

�
1

m
(jHi(u; r; d)j+ Pi(u; r + 2; d)� 1)

�
, d > r + 1 and jHi(u; r; d)j+

Pi(u; r + 2; d) � m(d � (r + 2)) + 2. Every task of Hi(u; r; d) is scheduled at time �
d � 1. If Pi(u; r + 2; d) = 0, let H = Hi(u; r; d). Otherwise, Pi(u; r + 2; d) = jV j � 1
for some V � Gi(u; r + 2; d + 1)nGi(u; r + 2; d) such that every pair of di�erent tasks of
V has deadline d. Let H = Hi(u; r; d) [V 0 where V 0 contains every task of V that is
completed at time d. jV 0j = jV j � 1, so jH j = jHi(u; r; d)j + Pi(u; r + 2; d). Hence H

contains � m(d � (r + 2)) + 2 tasks that are completed at time d. Let v1; v2 be two tasks
of H scheduled at time t1 and t2 such that t1 � t2 and all other tasks of H are scheduled
at time � t2. De�ne H 0 = Hn fv1g. It takes at least

�
1

m
jH 0j

�
� d � r � 1 time slots to

schedule every task of H 0. v2 is a task of H 0 which is scheduled in the earliest time slot
containing a task of H 0. So t2 � d �

�
1

m
jH 0j

�
� r + 1. So v2 is a successor of u. Since

t1 � t2, v1 is also a successor of u. Because of communication delays, u is scheduled at time
� t2� 2 � d� 2�

�
1

m
(jH j � 1)

�
. Since jH j = jHi(u; r; d)j+Pi(u; r+2; d), u is completed at

time d� 1�
�
1

m
(jHi(u; r; d)j+ Pi(u; r + 2; d)� 1)

�
. So u does not violate deadline Di+1(u).

Case 3. Line 16 is executed. Di+1(u1; u2) = Di(u1)� 1, jGi(u1; u2; r; d)j+ Pi(u1; u2; r; d) �
m(d � r) + 1 and Di(u1) = Di(u2) = d �

�
1

m
(jGi(u1; u2; r; d)j+ Pi(u1; u2; r; d))

�
for some

pair of tasks (u1; u2). If Pi(u1; u2; r; d) = 0, let G0 = Gi(u1; u2; r; d). Otherwise, let G0 =
Gi(u1; u2; r; d)[V

0, where V is a largest subset of Gi(u1; u2; r; d+1)nGi(u1; u2; r; d) such that
Di(v1; v2) = d for all v1 6= v2 and V

0 contains every task of V that is scheduled at time� d�1.
Since every task v in V is scheduled before time Di(v), Pi(u1; u2; r; d) = jV j � 1 = jV 0j.
G0 contains jGi(u1; u2; r; d)j + Pi(u1; u2; r; d) � m(d � r) + 1 tasks that are completed at

12

time d. So the �rst task that is completed is scheduled at time � d� d 1

m
(jGi(u1; u2; r; d)j+

Pi(u1; u2; r; d))e � r�1. This is a common successor of u1 and u2. So u1 or u2 is scheduled at
time� d�1�d 1

m
(jGi(u1; u2; r; d)j+Pi(u1; u2; r; d))e. So (u1; u2) meets deadlineDi+1(u1; u2).

Case 4. Line 17 is executed. Similar to Case 3.

Case 5. Line 20 is executed. Obvious.

Case 6. Line 21 is executed. Obvious.

So all deadlines Di+1(u) and Di+1(u1; u2) are met. Therefore no modi�ed deadline Dl(u) or
Dl(u1; u2) is violated.

In the following lemmas we prove some properties of graphs in which every pair of tasks has
a modi�ed deadline that have to be scheduled on m processors. For these graphs the following
statements are true.

If jG(u; r; d)j+ P (u; r; d) � m(d� r), then D(u) � d�
�
1

m
(jG(u; r; d)j+ P (u; r; d))

�
. (5)

If jH(u; r; d)j+ P (u; r + 2; d) � m(d� (r + 2)) + 2,
then D(u) � d� 1�

�
1

m
(jH(u; r; d)j+ P (u; r; d)� 1)

�
.

(6)

If jG(u1; u2; r; d)j+ P (u1; u2; r; d) � m(d� r) + 1 and
D(u1) = D(u2) = d�

�
1

m
(jG(u1; u2; r; d)j+ P (u1; u2; r; d))

�
,

then D(u1; u2) � D(u1)� 1. Otherwise, D(u1; u2) = minfD(u1); D(u2)g.
(7)

Lemma 5.2. Let G be a graph in which every pair of tasks has a modi�ed deadline. Let u1; u2 be

two tasks of G.

If jG(u1; u2; r; d)j+ P (u1; u2; r; d) � m(d� r) + 1, then D(u1; u2) � r � 2. (8)

Proof. Let G be a graph in which every pair of tasks has a modi�ed deadline. Let u1 and
u2 be di�erent tasks of G. Suppose jG(u1; u2; r; d)j + P (u1; u2; r; d) � m(d � r) + 1. Obvi-
ously, jG(u1; r; d)j + P (u1; r; d); jG(u2; r; d)j + P (u2; r; d) � jG(u1; u2; r; d)j + P (u1; u2; r; d). So
D(u1); D(u2) � d�

�
1

m
(jG(u1; u2; r; d)j+ P (u1; u2; r; d))

�
� r � 1.

Case 1. D(u1) = D(u2) = d�
�
1

m
(jG(u1; u2; r; d)j+ P (u1; u2; r; d))

�
. From (7), D(u1; u2) �

D(u1)� 1. So D(u1; u2) � r � 2.

Case 2. minfD(u1); D(u2)g < d�
�
1

m
(jG(u1; u2; r; d)j+ P (u1; u2; r; d))

�
. Applying (7) yields

D(u1; u2) = minfD(u1); D(u2)g. Hence D(u1; u2) � r � 2.

Lemma 5.3. Let G be a graph in which every pair of tasks has a modi�ed deadline. Let u1, u2
be tasks of G. Let V be a set containing tasks with release date � r and common successors of u1
and u2. If D(v1; v2) � d for all v1 6= v2 in V , then jG(u1; u2; r; d)j+ P (u1; u2; r; d) � jV j � 1.

Proof. Let G be a graph such that every pair of tasks of G has a modi�ed deadline. Let u1, u2 be
tasks of G. Let V be a set containing tasks with release date � r and common successors of u1
and u2. Suppose D(v1; v2) � d for all v1 6= v2 in V . Every task in V has a deadline � d+1. De�ne
V0 = fv 2 V j D(v) � dg and V1 = fv 2 V j D(v) = d + 1g. Obviously, V0 � G(u1; u2; r; d) and
P (u1; u2; r; d) � jV1j � 1. Hence jG(u1; u2; r; d)j+ P (u1; u2; r; d) � jV0j+ (jV1j � 1) = jV j � 1.

Lemma 5.4. Let G be a graph in which every pair of tasks has a modi�ed deadline. Let u be

a task of G. Let V be a set containing tasks with release date � r + 2 and successors of u. If

D(v1; v2) � d for all v1 6= v2 in V , then jH(u; r; d)j+ P (u; r + 2; d) � jV j � 1.

13

Proof. Let G be a graph in which every pair of tasks has a modi�ed deadline. Let u be a task of G.
Let V be a set containing tasks with release date � r+2 and successors of u. Suppose D(v1; v2) � d

for all v1 6= v2 in V . From (7), D(v) � d + 1 for all v in V . De�ne V0 = fv 2 V j D(v) � dg
and V1 = fv 2 V j D(v) = d + 1g. Clearly, V0 � H(u; r; d) and P (u; r + 2; d) � jV1j � 1. Hence
jH(u; r; d)j+ P (u; r + 2; d) � jV0j+ (jV1j � 1) = jV j � 1.

Lemma 5.5. Let G be a graph in which every pair of tasks has a modi�ed deadline. Let (u1; u2)
be a pair of tasks such that D(u1; u2) = D(u1)� 1 = D(u2)� 1. Let v 6= u1; u2. If D(v) = D(u1)
and Succ(u1) \ Succ(u2) � Succ(v), then D(u1; v) = D(u2; v) = D(u1; u2).

Proof. Let G be a graph. Suppose that every pair of tasks of G has a modi�ed deadline. Let
(u1; u2) be a pair of tasks such that D(u1; u2) = D(u1) � 1 = D(u2) � 1. Let v be a task
of G di�erent from u1 and u2, such that D(v) = D(u1) and Succ(u1) \ Succ(u2) � Succ(v).
D(u1; u2) = D(u1)�1, so jG(u1; u2; r; d)j+P (u1; u2; r; d) � m(d�r)+1 for some r and d. Because
Succ(u1)\Succ(u2) � Succ(v), also jG(u1; v; r; d)j+P (u1; v; r; d); jG(u2; v; r; d)j+P (u2; v; r; d) �
m(d�r)+1. From (8), D(u1; v); D(u2; v) � r�2. Since D(u1; v); D(u2; v) � D(v)�1, D(u1; v) =
D(u2; v) = D(u1; u2).

Because P (u1; u2; r; d) is de�ned in terms of subsets of G(u1; u2; r; d + 1)nG(u1; u2; r; d), its
de�nition does not allow an e�cient method of calculating P (u1; u2; r; d). For interval orders, we
will derive a new formulation which allows us to determine P (u1; u2; r; d) in linear time.

Lemma 5.6. Let G be an interval order in which every pair of tasks has a modi�ed deadline.

Let u1; u2 be tasks of G. Let r; d be integers such that R(u1); R(u2) � r � D(u1); D(u2) � d. If

P (u1; u2; r; d) � 1, then P (u1; u2; r; d) =

jfv1 2 G(u1; u2; r; d+ 1) j D(v1) = d+ 1 & 9v2 [D(v2) = d+ 1 & D(v1; v2) = d]gj � 1:

Proof. Let G be an interval order in which every pair of tasks has a modi�ed deadline. Let
u1; u2 be tasks of G. Let r; d be integers such that R(u1); R(u2) � r � D(u1); D(u2) � d. De-
�ne V = fv1 2 G(u1; u2; r; d+ 1) j D(v1) = d+ 1 & 9v2 [D(v2) = d+ 1 & D(v1; v2) = d]g. Sup-
pose P (u1; u2; r; d) � 1. P (u1; u2; r; d) = jVP j � 1, where VP is a largest subset of G(u1; u2; r; d+
1)nG(u1; u2; r; d) such that every pair of tasks of VP have deadline d. Obviously, VP � V . Because
G is an interval order, we may assume VP = fv1; : : : ; vkg such that Succ(v1) � : : : � Succ(vk).
Suppose V is not a subset of VP . Let v be a task of V nVP .

Case 1. Succ(v1) � Succ(v). Succ(v1) \ Succ(vi) � Succ(v) for all i, 2 � i � k, since
Succ(v1) � Succ(vi). With Lemma 5.5, D(vi; v) = d for all i, 1 � i � k. As a result,
VP [fvg is a subset of G(u1; u2; r; d + 1)nG(u1; u2; r; d) such that every pair of tasks has
deadline d. Contradiction.

Case 2. Succ(v) � Succ(v1). Since v 2 V , D(v; v0) = d for some v0 such that D(v0) = d+1.
Assume v0 6= v1. Succ(v) \ Succ(v0) � Succ(v1), so, from Lemma 5.5, D(v1; v) = d.
Furthermore, Succ(v1)\Succ(v) � Succ(vi) for all i, 2 � i � k. Using Lemma 5.5, we obtain
D(vi; v) = d for all i, 1 � i � k. So VP [fvg is a subset of G(u1; u2; r; d+ 1)nG(u1; u2; r; d)
such that every pair of tasks has deadline d that is larger than VP . Contradiction.

Consequently, V = VP and P (u1; u2; r; d) = jV j � 1.

Corollary 5.7. Let G be an interval order in which every pair of tasks has a modi�ed deadline.

Let u1; u2 be tasks of G. Let r; d be integers such that R(u1); R(u2) � r � D(u1); D(u2) � d.

P (u1; u2; r; d) =

max f0; jfv1 2 G(u1; u2; r; d+ 1) j D(v1) = d+ 1 & 9v2 [D(v2) = d+ 1 & D(v1; v2) = d]gj � 1g :

14

Proof. Let G be an interval order in which every pair of tasks has a modi�ed deadline. Let u1; u2
be tasks of G. Let r; d be integers such that R(u1); R(u2) � r � D(u1); D(u2) � d. De�ne
V = fv1 2 G(u1; u2; r; d + 1) j D(v1) = d + 1 & 9v2[D(v2) = d + 1 & D(v1; v2) = d]g. From
Lemma 5.6, we may assume P (u1; u2; r; d) = 0. In that case, D(v1; v2) = d + 1 for all tasks
v1; v2 2 G(u1; u2; r; d+1)nG(u1; u2; r; d). Hence jV j � 1. So P (u1; u2; r; d) = maxf0; jV j � 1g.

Now we will analyse the complexity of the deadline modi�cation algorithm. Let G be a graph
in which every task has been assigned a deadline. If every release date is zero, we may assume that
the maximum deadline is bounded by n. In general, this is not the case, so some release dates and
deadlines may be quite large. As a result, the deadline modi�cation algorithm has to consider a
lot of triples (u; r; d) and quadruples (u1; u2; r; d). Furthermore, the sets G(u; r; d), H(u; r; d) and
G(u1; u2; r; d) might change during the deadline modi�cation. So some triples or quadruples need
to be considered more than once. However, we will show that no triple and no quadruple has to
be taken into account twice and that only O(n) values of r and d need to be considered.

It is not di�cult to see that this loop structure allows every triple (u; r; d) and every quadruple
(u1; u2; r; d) to be considered only once. The values of jG(u; r; d)j + P (u; r; d) and jH(u; r; d)j +
P (u; r+2; d) and the modi�ed deadline imposed on u do not depend on the original deadline of u.
In addition, jG(u1; u2; r; d)j+P (u1; u2; r; d) and the deadlines computed for (u1; u2) and (u2; u1) are
independent of the (original) deadlines of u1, u2 and (u1; u2). So, as long as jG(u; r; d)j+P (u; r; d),
jH(u; r; d)j + P (u; r + 2; d) and jG(u1; u2; r; d)j + P (u1; u2; r; d) remain unchanged, an extra con-
sideration of the triple (u; r; d) or the quadruple (u1; u2; r; d) does not result in a modi�cation that
has not already occurred in the �rst consideration.

jG(u; r; d)j, jH(u; r; d)j and jG(u1; u2; r; d)j can only change if a node w exists whose original
deadline is greater than d and whose modi�ed deadline is at most d. P (u; r; d), P (u; r + 2; d)
and P (u1; u2; r; d) only get modi�ed if the deadline of a pair of tasks (w1; w2) is decreased, such
that its modi�ed deadline is at most d. Since the outer loop considers the values of d in de-
creasing order, the modi�cations causing jG(u; r; d)j + P (u; r; d), jH(u; r; d)j + P (u; r + 2; d) or
jG(u1; u2; r; d)j+ P (u1; u2; r; d) to change have already occurred. So no triple or quadruple needs
to be considered more than once.

Furthermore, it is not di�cult to see that only O(n) values of r have to be considered. For
�xed u and d at most n+2 values of r need to be taken into account, namely D(u), D(u)� 2 and
the release dates of the nodes v for which R(u) � R(v) � D(u). Suppose r is a value, not one
of the at most n + 2 indicated ones, which causes D(u) to be modi�ed. In that case, d � r and
jG(u; r; d)j+P (u; r; d) � m(d�r) or d > r+1 and jH(u; r; d)j+P (u; r+2; d) � m(d� (r+2))+2.
Suppose d � r and jG(u; r; d)j+P (u; r; d) � m(d�r). Let r0 be the smallest release date exceeding r
orD(u), whichever is the smallest. Since r0 > r, jG(u; r0; d)j+P (u; r0; d) = jG(u; r; d)j+P (u; r; d) �
m(d� r) > m(d� r0). So the same modi�cation will occur when (u; r0; d) is considered.

Otherwise, suppose d > r + 1 and jH(u; r; d)j+ P (u; r + 2; d) � m(d� (r + 2)) + 2 for some r
that is not one of the restricted set of values. Let r0 be the smallest of the smallest release date
exceeding r and D(u)� 2. r0 > r, so jH(u; r0; d)j+ P (u; r0 + 2; d) = jH(u; r; d)j+ P (u; r + 2; d) �
m(d� (r + 2)) + 2 > m(d� (r0 + 2)) + 2. So the same modi�cation occurs when considering one
of the indicated values.

If we assume that initially D(u1; u2) = minfD(u1); D(u2)g for all tasks u1 and u2, the deadline
of a pair of tasks (u1; u2) has to be modi�ed only when the deadline of u1 or u2 has changed. So
only O(n) values of r need to be considered during the deadline modi�cation.

It is more complicated to show that only O(n) values of d have to be considered. Three extra
constraints are introduced to prove this. For all tasks u1; u2 (1) If u1 is a parent of u2, thenD(u1) �
D(u2); (2) D(u1; u2) � minfD(u1); D(u2)g; and (3) initially, D(u1; u2) = minfD(u1); D(u2)g.
The next value of d that will be considered is the largest deadline (of a task or a pair of tasks)
that has not been considered earlier. Suppose no tasks and pairs of tasks with deadline d remain

15

after considering all triples (u; r; d) and all quadruples (u1; u2; r; d). Some task or pair of tasks
with deadline d was the last to get its deadline changed.

Suppose (u1; u2) had deadline d and when its deadline was changed, no other pair and no task
had deadline d. jG(u1; u2; r; d)j+P (u1; u2; r; d) � m(d�r)+1 for some r. Every common successor
of u1 and u2 has a deadline > d, so G(u1; u2; r; d) does not contain any common successors of u1
and u2. (u1; u2) is the only pair having deadline d. Consequently, P (u1; u2; r; d) = 0. Therefore
G(u1; u2; r; d) contains at least m(d � r) + 1 tasks with release dates � r and deadlines � d � 1.
These have to be executed in the interval [r; d � 1], which is impossible. Hence no 0-optimal
schedule exists.

Otherwise, assume a task u with deadline d was the last to get its deadline modi�ed. When
D(u) was decreased, no other task or pair of tasks had deadline d. D(u) is changed, because
jG(u; r; d)j+P (u; r; d) � m(d� r) or d > r+1 and jH(u; r; d)j+P (u; r+2; d) � m(d� (r+2))+2
for some r. Suppose jG(u; r; d)j+ P (u; r; d) � m(d � r). Since u has deadline d and there are no
other tasks or pairs of tasks with deadline d, G(u; r; d) does not contain any successors of u and
P (u; r; d) = 0. So G(u; r; d) contains � m(d� r) > m(d� r � 1) tasks with release dates � r and
deadlines � d� 1. Only m(d� r � 1) tasks can be executed in the interval [r; d� 1]. As a result,
no valid schedule for G is 0-optimal.

Suppose d > r + 1 and jH(u; r; d)j+ P (u; r+2; d) � m(d� (r + 2)) + 2. There are no pairs of
tasks with deadline d, so P (u; r + 2; d) = 0. Because every successor of u has deadline � d + 1,
H(u; r; d) contains at least m(d�(r+2))+2 tasks with release dates � r+2 and deadlines � d�1.
These must be executed in the interval [r+2; d�1], which can contain at most m((d�1)� (r+2))
tasks. Consequently, no 0-optimal schedule exists.

So the deadline modi�cation can be terminated if after considering all triples (u; r; d) and
all quadruples (u1; u2; r; d) for some d, no task or pair of tasks with deadline d remains. Since
D(u1; u2) = minfD(u1); D(u2)g or D(u1; u2) = minfD(u1); D(u2)g � 1 for all tasks u1 and u2,
only O(n) values of d have to be considered by the deadline modi�cation algorithm.

Because of the extra constraints, the deadline of the pair (u1; u2) has to be changed only when
either D(u1) or D(u2) is changed. It is not di�cult to see that at most one deadline of a task gets
modi�ed for �xed u; d. Let r0 be the smallest value of r such that jG(u; r; d)j+P (u; r; d) � m(d�r)
or jH(u; r; d)j + P (u; r + 2; d) � m(d � (r + 2)) + 2 and d > r + 1. If jG(u; r0; d)j+ P (u; r0; d) �
m(d � r0), then D(u) = d �

�
1

m
(jG(u; r0; d)j+ P (u; r0; d))

�
� r0. So D(u) � r0. Therefore

D(u) can only be changed when considering a value r � r0. Since the values of r are selected in
increasing order, no other modi�cation of D(u) occurs.

Otherwise, if d > r0 + 1 and jH(u; r0; d)j + P (u; r0 + 2; d) � m(d � (r0 + 2)) + 2, then
D(u) = d � 1 �

�
1

m
jH(u; r0; d)j+ P (u; r0 + 2; d)� 1

�
� r0. Therefore all other values of r for

which the algorithm modi�es the deadline of u have been considered earlier.
So for �xed u and d at most one modi�cation of a deadline of an individual task occurs. Con-

sequently, O(n) deadlines of pairs get modi�ed for every u and d. Hence O(n3) times a deadline
is changed.

When the deadline modi�cation part considers a triple (u; r; d) or a quadruple (u1; u2; r; d),
no task with deadline � d + 1 will be taken into account afterward. The same holds for pairs
consisting of two tasks with deadlines � d + 1. Therefore the deadline of a pair of two tasks
whose deadline is d + 1 remains unchanged. So P (u; r; d) and P (u1; u2; r; d) do not change after
the deadline modi�cation algorithm considers the �rst task or pair of tasks with deadline d.

From Corollary 5.7, if G is an interval order, then P (u1; u2; r; d) = maxf0; jV j � 1g, where V
is the set of tasks v that are common successors of u1 and u2 or have release date � r such that
D(v) = d + 1 and Dmin(v) = d. As a result, P (u1; u2; r; d) can be computed in O(n) time. The
same, obviously, holds for the sets G(u; r; d), H(u; r; d) and G(u1; u2; r; d). Since O(n

3) deadline
modi�cations occur, the deadline modi�cation algorithm determines the modi�ed deadlines in
O(n4) time.

Because of the general de�nition of availability, it is possible to use an algorithm similar to

16

the algorithm for scheduling to meet deadlines only. We use the same de�nition of priority as in
the previous section. One extra notation is introduced: R0 denotes the smallest release date of an
unscheduled task. Figure 5 shows the list scheduling algorithm.

List scheduling algorithm()
1 assume L = (u1; : : : ; un) is a priority list
2 t = 0
3 while L contains unscheduled tasks
4 do R0 =1
5 for i = 1 to n

6 do if ui is unscheduled and available at time t
7 then schedule ui at time t
8 else R0 = minfR0; R(ui)g
9 t = maxft+ 1; R0g

Figure 5: The list scheduling algorithm

For every time slot the priority list is traversed to �nd available tasks. This requires O(n) time
for every time t. So the algorithm uses O(nT) time to assign a starting time to every task, where
T is the number of values of t considered by the algorithm.

If, during the execution of the algorithm, t never increases by more than 1, the constructed
schedule has length O(n), so T = O(n). Suppose t1; : : : ; tk and t

0
1; : : : ; t

0
k are values of t considered

during the assignment of starting times, such that t0i is the last value considered before ti and
t0i � ti�2 for all i, 1 � i � k. De�ne Vi = fu 2 G j ti�1 � R(u) < tig, where t0 = 0. Only O (jVij)
values of t are considered during the assignment of starting times to the tasks of Vi. So the total
number of values of t considered by the algorithm is O(n). So assigning starting times takes O(n2)
time.

The list scheduling algorithm constructs 0-optimal schedules for interval orders if such schedules
exist.

Theorem 5.8. Let G be an interval order in which every pair of tasks has a modi�ed deadline.

Let L be a priority list. If a 0-optimal schedule for G exists on m processors, then every pair of

tasks meets its deadline in the schedule on m processors for G constructed by the list scheduling

algorithm using L.

Proof. Let G be an interval order in which every pair of tasks has a modi�ed deadline. Let L be
a priority list. Assume a 0-optimal schedule for G exists on m processors. Let S be the schedule
on m processors for G constructed by the list scheduling algorithm using L. Suppose in S not
every pair meets its deadline. Let St be the �rst time slot containing a task in a pair violating its
deadline. Assume (u1; u2) is a pair violating its deadline such that u1 2 St and u2 is scheduled
at time � t. In that case, D(u1; u2) � t. There are three possibilities: D(u1) � t, D(u2) � t or
D(u1) = D(u2) = t+ 1 and D(u1; u2) = t.

Case 1. D(u1) � t. Since a 0-optimal schedule for G exists, there are at most mt tasks with
deadline � t. Therefore there is a time slot before St that is idle or contains a task with
deadline � t + 1. Let St0�1 be the last such time slot. De�ne G1 =

St�1

i=t0 Si [fu1g. All
tasks in G1 have a deadline at most t. No task of G1 was available at time t

0 � 1. Let u be
a source of G1. u was not available at time t0 � 1, because one of the following conditions is
satis�ed.

1. u has a release date � t0.

2. St0�1 contains a parent of u.

17

3. St0�2 contains two parents of u.

4. St0�2 contains a parent u
0 of u and St0�1 contains another child of u0.

Hence every task in G1 has a release date � t0 or is a successor of St0�2 [St0�1.

Case 1.1. Every task in G1 with release date � t0 � 1 is a successor of St0�1. De�ne
V = fw 2 St0�1 j w is a parent of G1g. If V = ;, then every task in G1 has release
date � t0. In that case, G1 contains m(t� t0)+1 tasks that have to be scheduled in the
interval [t0; t], which is impossible. So we may assume V 6= ;. From Proposition 3.3,
V contains a task w1 such that fw 2 G1 j R(w) � t0 � 1g � Succ(w1). Clearly,
G1 � G(w1; t

0; t). Therefore jG(w1; t
0; t)j � m(t� t0) + 1. With (5),

D(w1) � t�
�
1

m
(m(t� t0) + 1)

�
= t� (t� t0 + 1)
= t0 � 1:

So w1 is not completed before its deadline. Contradiction.

Case 1.2. G1 contains a task that is no successor of St0�1 and has a release date � t0 � 1.
De�ne V = fw 2 St0�2 [St0�1 j w is a parent of G1g. Proposition 3.3 states that V
contains a task w1 that is a predecessor of every task in G1 with release date � t0 � 1.
De�ne V 0 = V nfw1g.

Case 1.2.1. Every task in G1 with release date � t0 � 1 is a successor of V 0. Using
Proposition 3.3, we �nd that V 0 contains a task w2 that is a predecessor of every task
in G1 with release date � t0�1. Therefore G1 � G(w2; t

0; t). Also G1 � G(w1; t
0; t),

so G1 � G(w1; w2; t
0; t). Hence jG(w1; w2; t

0; t)j + P (w1; w2; t
0; t) � m(t � t0) + 1.

From (8), D(w1; w2) � t0 � 2. So (w1; w2) violates its deadline. Contradiction.

Case 1.2.2. G1 contains a task with release date � t0�1 that is not a successor of V 0.
Let v be such a task. Assume v is a source of G1. V

0 does not contain a parent of
v. V , however, does. So w1 is a parent of v. Since G1 contains a task that has a
release date � t0 � 1 and is no successor of St0�1, w1 is scheduled at time t0 � 2.
St0�2 does not contain another parent of v, so St0�1 contains another child v0 of
w1. v

0 is scheduled before v, so v0 occurs before v in L. Hence D(v0) � D(v) � t.
So G1 [fv0g � H(w1; t

0 � 2; t). So jH(w1; t
0 � 2; t)j+ P (w1; t

0; t) � m(t � t0) + 2.
From (6),

D(w1) � t� 1�
�
1

m
(m(t� t0) + 1)

�
= t� 1� (t� t0 + 1)
= t0 � 2:

So w1 is late. Contradiction.

Case 2. D(u2) � t. Similar to Case 1.

Case 3. D(u1) = D(u2) = t + 1 and D(u1; u2) = t. Assume Succ(u1) � Succ(u2). Let
U be the set of tasks containing all tasks whose priority is at least as high as that of
u1. U contains at least two tasks, because u1; u2 2 U . Let v1 and v2 be two tasks of
U . If D(v1) � t or D(v2) � t, then D(v1; v2) � t. So we will assume D(v1) = D(v2) =
t+ 1. Succ(u1) � Succ(v1); Succ(v2), so, using Lemma 5.5 twice, we get D(v1; v2) = t. So
D(v1; v2) � t for every v1 6= v2 in U . In order to meet every deadline, at most one task
of U may be executed at time � t. Since a 0-optimal schedule for G exists, U contains at
most mt+1 tasks. Consequently, there is a time slot before St that contains at most m� 1
tasks whose priority is at least as high as that of u1. Let t

0� 1 be the last such time. De�ne
G2 =

St�1

i=t0 Si [fu1; u2g [fv 2
S

i�t Si j v � u2g. G2 contains at least m(t � t0) + 2 tasks
whose priority is at least as high as that of u1. No task of G2 was available at time t0 � 1.
Let u be a source of G2. u was not available at time t0 � 1, because one of the following
conditions is satis�ed.

18

1. u has a release date � t0.

2. St0�1 contains a parent of u.

3. St0�2 contains two parents of u.

4. St0�2 contains a parent u
0 of u and St0�1 contains another child of u0.

So every task of G2 with release date � t0 � 1 has a predecessor in St0�2 or St0�1.

Case 3.1. Every task in G2 with release date � t0 � 1 is a successor of St0�1. De�ne
V = fw 2 St0�1 j w is a parent of G2g. If V = ;, then every task in G2 has release
date � t0. In that case, G2 contains � m(t � t0) + 2 tasks with priority as least as
high as u1. Applying Lemma 5.5 twice, we obtain D(v1; v2) � t for every v1 6= v2 in
G2. So m(t � t0) + 1 tasks of G2 have to be executed in the interval [t0; t], which is
impossible. Hence we may assume V 6= ;. From Proposition 3.3, V contains a task
w1 such that fw 2 G2 j R(w) � t0 � 1g � Succ(w1). Using Lemma 5.3, we obtain
jG(w1; t

0; t)j+ P (w1; t
0; t) � jG2j � 1 = m(t� t0) + 1. With (5),

D(w1) � t�
�
1

m
(m(t� t0) + 1)

�
= t� (t� t0 + 1)
= t0 � 1:

So w1 is not �nished before its deadline. Contradiction.

Case 3.2. G2 contains a task that is no successor of St0�1 and has a release date � t0 � 1.
De�ne V = fw 2 St0�2[St0�1 j w is a parent of G2g. From Proposition 3.3, V contains
a task w1 that is a predecessor of every task in G2 with release date � t0 � 1. Let
V 0 = V nfw1g.

Case 3.2.1. Every task in G2 with release date � t0 � 1 has a predecessor in V 0.
With Proposition 3.3, V 0 contains a task w2 that is a predecessor of every task
in G2 with release date � t0 � 1. Since every task in G2 has priority at least as
high as u1, D(v1; v2) � d for all v1 6= v2 in G2. Using Lemma 5.3, we obtain
jG(w1; w2; t

0; t)j+P (w1; w2; t
0; t) � m(t� t0) + 1. From (8), D(w1; w2) � t0� 2. So

(w1; w2) violates its deadline. Contradiction.

Case 3.2.2. G2 contains a task with release date � t0 � 1 that is no successor of V 0.
Let v be such a task. Assume v is a source of G2. V

0 does not contain a parent
of v. V , however, does. So w1 is a parent of v. No parent of v is executed at
time t0 � 1, so w1 is scheduled at time t0 � 2. No other parent of v is scheduled
at time t0 � 2. Hence St0�1 contains another child v0 of w1. v

0 is scheduled before
v, so v0 occurs before v in L. So D(v0) � D(v). De�ne G02 = G2 [fv0g. Every
task in G02 has priority as least as high as u1. By applying Lemma 5.5 twice,
we get D(v1; v2) � t for every v1 6= v2 in G02. Using Lemma 5.4, we obtain
jH(w1; t

0 � 2; t)j+ P (w1; t
0; t) � jG02j � 1 = m(t� t0) + 2. From (6),

D(w1) � t� 1�
�
1

m
(m(t� t0) + 1

�
= t� 1� (t� t0 + 1)
= t0 � 2:

So w1 is not completed before its deadline. Contradiction.

Corollary 5.9. Let G be an interval order in which every pair of tasks has a deadline. If a 0-

optimal schedule for G exists on m processors, then the schedule on m processors for G constructed

by the above-mentioned algorithm is 0-optimal.

Proof. Obvious.

19

The algorithm for scheduling with only deadlines de�ned in the previous section �nds optimal
schedules, because its deadline modi�cation part does not depend on the individual deadlines. The
deadline modi�cation part of the above-mentioned algorithm does: the deadline of a task u can
only be modi�ed if R(u) � D(u). Therefore the algorithm above does not �nd optimal schedules.

It is, however, possible to �nd optimal schedules using the above-mentioned algorithm. Let
G be an interval order. De�ne l0 = maxf0;maxu R(u) �D(u) + 1g. The lateness of an optimal
schedule for G is at least l0. Let u be a task of G. In an optimal schedule on m processors, u is
scheduled at time � R(u) + n� 1. Hence the lateness of u is at most R(u) + n� 1 + 1�D(u) �
l0 + n� 1. So the lateness of an optimal schedule is at least l0 and at most l0 + n� 1.

If l is added to every deadline and the algorithm is applied to the resulting interval order,
a schedule with lateness at most l is constructed, provided that such a schedule exists. So an
optimal schedule can be found in O(n4 logn) time with bisection search.

Concluding remarks

The deadline modi�cation parts of the algorithms de�ned by Verriet [12] only consider a task and
its successors. The knowledge that at most one parent of a task can be scheduled immediately
before this task is not used. As a result, these algorithms �nd optimal schedules for a small class
of graphs.

A solution for this problem presented by Verriet [12] considered a special class of precedence
graphs: in these graphs, every task u has a parent, its least urgent parent, which has to be sched-
uled after every other parent of u.

Another approach to this problem was taken in this report: every pair of tasks is assigned a
deadline. This approach can be generalised to other classes of graphs, but, in general, the schedules
constructed by the algorithms de�ned in this report for other classes of graphs are not 0-optimal.
The class of the outforests is an exception. However, for outforests the introduction of deadlines
for pairs of tasks does not add any information. Besides, more e�cient algorithms for scheduling
outforests were de�ned by Verriet [12].

References

[1] H.H. Ali and H. El-Rewini. The time complexity of scheduling interval orders with commu-
nication is polynomial. Parallel Processing Letters, 3(1):53{58, 1993.

[2] H.H. Ali and H. El-Rewini. An optimal algorithm for scheduling interval ordered tasks with
communication on N processors. Journal of Computer and System Sciences, 51(2):301{307,
October 1995.

[3] P. Chr�etienne and C. Picouleau. Scheduling with communication delays: a survey. In
P. Chr�etienne, E.G. Co�man, Jr., J.K. Lenstra and Z. Liu, editors, Scheduling Theory and

its Applications, pages 65{90. John Wiley & Sons, 1995.

[4] D. Coppersmith and S. Winograd. Matrix multiplication via algorithmic progressions. In
Proceedings of the 19th Annual Symposium on the Theory of Computation, pages 1{6, 1987.

[5] D. Dolev and M.K. Warmuth. Pro�le scheduling of opposing forests and level orders. SIAM
Journal of Algebraic and Discrete Methods, 6(4):665{687, October 1985.

[6] M.R. Garey and D.S. Johnson. Scheduling tasks with nonuniform deadlines on two processors.
Journal of the ACM, 23(6):461{467, July 1976.

[7] M.R. Garey and D.S. Johnson. Two-processor scheduling with start-times and deadlines.
SIAM Journal on Computing, 6(3):416{426, September 1977.

20

[8] T.C. Hu. Parallel sequencing and assembly line problems. Operations Research, 9(6):841{848,
1961.

[9] J.K. Lenstra, M. Veldhorst and B. Veltman. The complexity of scheduling trees with com-
munication delays. Journal of Algorithms, 20(1):157{173, January 1996.

[10] C. H. Papadimitriou and M. Yannakakis. Scheduling interval-ordered tasks. SIAM Journal

on Computing, 8(3):405{409, August 1979.

[11] J.D. Ullman. NP-complete scheduling problems. Journal of Computer and System Sciences,
10:384{393, 1975.

[12] J. Verriet. Scheduling UET, UCT dags with release dates and deadlines. Technical Report
UU-CS-1995-31, Department of Computer Science, Utrecht University, September 1995.

21

