Parallel algorithms for series parallel graphs

Hans L. Bodlaender and Babette de Fluiter
Department of Computer Science, Utrecht University
P.O. Box 80.089, 3508 TB Utrecht, the Netherlands
e-mail: {hansb,babette} @cs.ruu.nl

Abstract

In this paper, a parallel agorithm is given that, given agraph G = (V, E), decides
whether G isa series parallel graph, and if so, builds a decomposition tree for G of series
and paralel composition rules. The algorithm uses O(log |E|log” |E|) time and O(|E|)
operationson an EREW PRAM, and O(log |E|) time and O(|E|) operationson a CRCW
PRAM (notethat if G isasimpleseriesparallel graph, then |E| = O(|V])). Withthesame
time and processor resources, a tree-decomposition of width at most two can be built of a
given series parallel graph, and hence, very efficient parallel algorithms can be found for
alarge number of graph problems on series parallel graphs, including many well known
problems, e.g., al problems that can be stated in monadic second order logic. The re-
sultshold for undirected series parallel graphsgraphs, aswell asfor directed seriesparallel

graphs.

1 Introduction

One of the classical classes of graphs is the class of series parallel graphs. These appear in
severa applications, e.g., the classical way to compute the resistance of an (electrical) network
of resistors assumes that the underlying graph isin fact a series parallel graph.

A well studied problem is the problem to recognise series parald graphs. A linear time
algorithm for this problem has been given by Valdes, Tarjan, and Lawler [11]. Also, itisknown
that when a ‘decomposition tree’ for a series parallel graph is given, then many problems can
be solved in linear time, including many problems that are NP-hard for arbitrary graphs [2, 5,
9, 10]; Valdes et a. aso show how to obtain such a decomposition tree in linear time. (In this
paper, we assume a specific form of the decomposition tree, and use the term sp-trees for these
trees.)

He and Yesha gave a parallel agorithm for recognising directed series parallel graphs[8].
Their algorithm uses O(log? n. + log m) time, and O(n + m) processors on an EREW PRAM,
thus, with O((n + m)(log? n + logm)) operations. (The number of operations of a parallél
algorithm is the product of its time and number of processors used. We measure parallel al-
gorithms with the number of operations, as this gives us a direct comparison with the best se-
guential agorithm. In this paper, n denotes the number of vertices of the input graph; m the

“This research was partially supported by the Foundation for Computer Science (S.1.O.N) of the Netherlands
Organisation for Scientific Research (N.W.O.).



number of edges.) Eppstein [7] improved this result for simple graphs. his algorithm runsin
O(log n) timeon a CRCW PRAM with O(ma(m, n)/log n) processors. Asany algorithm on
a CRCW PRAM can be simulated on an EREW with aloss of O(log n) time, thisimplies an
algorithm with O(log® n) time and O (ma(m, n)/ logn) processors on an EREW PRAM, i.e.,
with O(ma(m, n)) operations on an EREW PRAM, or with O(ma(m,n) log n) operations on
aCRCW PRAM.

In this paper, we improve upon this result, both for the EREW PRAM model, and for the
CRCW PRAM modd. We give arecognition agorithm for series parallel graphs onthe EREW
PRAM, that uses O(log m log™ m) time and O(m) operations, and one for the CRCW PRAM,
that uses O(log m) timeand O(m ) operations. In the same time and operations bounds, we can
also build an sp-tree for the graph, and solve many problems on series parallel graphs. If the
input graphissimple, i.e. thereis at most one edge between every two vertices, then m = O(n)
if the graph is series parallel. If we are sure that the input graph is asimple graph, then we can
make our algorithmtorunin O(log n log™ n) onthe EREW PRAM and O(log n) onthe CRCW
PRAM, and the number of operationsis O(n).

It iswell-known that series parallel graphs have treewidth at most two. (Some authors mis-
takenly state that the class of series parallel graphs equals the class of graphs of treewidth two,
but for instance K 3 isnot series paralel.) Wewill usethisfact in one of our proofs. Moreover,
severa of our results were inspired by techniques, established for graphs of bounded treewidth,
especialy those from [3] and [4]. Asaside remark, we note that, while the agorithms in [4]
are carrying constant factors that make them impractical in their stated form, the algorithmsin
this paper do not carry large constant factors and are probably efficient enough for a practical
setting (although amore detailed analysis can probably bring the constant factor further down.)

A centra technique in this paper is graph reduction, introduced in a setting of graphs of
bounded treewidth in [1]. In [3] and [4], it is shown how the technique can be used to obtain
paralel agorithms for graphs of bounded treewidth.

Another technique that is used in this paper is the bounded adjacency list search technique,
taken from [4], and adapted here to the setting of series parallel graphs.

This paper is organised further as follows. In Section 2, we give some basic definitions,
and preliminary results. In Section 3, we give a number of graph reduction rules, and show
that they are ‘safe’ for series parallel graphs. In Section 4, we show that in any series parallel
graph, there are 2(m) reduction rules that can be applied concurrently. Section 5 shows the
main agorithm, based on the results of the earlier sections. Section 6 gives some results for
variants of the problem, and shows how to solve many other problems on series parallel graphs.

2 Definitionsand preliminary results
Unless stated otherwise, graphs considered are undirected, and may have parallel edges.

Definition 2.1. Aseriesparalel graphisatriple (G, s,t), withG = (V, E) agraph, and s,t €
V', such that one of the following cases holds.

e ( hastwo vertices, s and t, and one edge between s and ¢.



Sw wv

@ = parallel nodewith label (s, t)
@ = series node with label (s, t)

Figure 1: An sp-tree and the series parallel graph it represents

e There are series paralld graphs (G4, s1,t1), ..., (G+, s, t,-), Such that (G, s, t) can be
obtained by a parallel composition of these graphs. G is obtained by taking the digoint
union of G4, ..., G,, identifying all vertices s4, ..., s, to s, and identifying all vertices
t1,...t, tOt.

e There are series paralld graphs (G4, s1,t1), ..., (G, s, 1), Such that (G, s, t) can be
obtained by a series composition of these graphs. G is obtained by taking the digoint
union of Gy, ..., G,, identifying for i = 1,...,r <1, vertex ¢; with vertex s; 1, and
letting s = s1, t = t,.

If (G, s,t)isaseriesparallel graph, we aso say that G isaseries parallel graph. s and ¢ are
caled the terminals of G; we aso call s the source and ¢ the sink of G.

See Figure 1 for an example. An equivalent definition, which is often used, only involves
series and parallel compositions with two series parallel graphs.

Toeach seriespardlel graph G = (V, E), we can associate an sp-tree T(;. Every node of an
sp-tree corresponds to aseries parallel graph (G’, a, b), and hasasalabel (a, b), the ordered pair
of itssource and sink. Theroot of thetreehaslabel (s, ), and corresponds to the graph (G, s, t).
L eaf nodes correspond to series parallel graphs consisting of asingle edge, and hence thereisa
one-to-one correspondence between leaves of Ty and edgese € E. Internal nodes (i.e. non-leaf
nodes) are of two types. seriesnodes (or s-nodes), and parallel nodes (or p-nodes). Thechildren
of aseries node are ordered, while the children of aparalel node are not ordered. Note that the
children of a p-node have the same label astheir parent. The series parallel graph associated to
an s-node isthe graph, obtained by a series composition of the series parallel graphs, associated
to the children of the node, where the order of the children gives the order in which the series
composition isdone. The series parallel graph associated to a p-node is the graph, obtained by
aparalel composition of the series parallel graphs, associated to the children of G.

3



Note that a series paralel graph can have different sp-trees. However, if a source and sink
are given, there also is a unigue minimal sp-tree; given any sp-tree, if there is an s-node with
another s-node as child, or a p-node with another p-node as child, one can contract over the
parent-child edge, and obtain a smaller sp-tree for the same graph. Moreover, s-hodes or p-
nodes with only one child can easily be removed. So, in the minimal sp-tree, s-nodes and p-
nodes aternate.

Lemma2.l. If o isan ancestor of 3 in an sp-tree Ty, and the labels of o and 3 both contain
a vertex v, then all nodes on the path between o and 3 in Tz contain v as label.

We can aso define directed series paralel graphs. These are defined in the same way as
undirected series parallel graphs, with the sole exception that as ‘base graph’, we take a di-
rected graph with two vertices s and ¢ and a directed edge from the source s tothesink t. Asa
result, directed series parallel graphs are acyclic, and every vertex lies on adirected path from
the source to the sink.

Definition 2.2. A tree-decomposition of agraph G = (V, E) isapar ({X; |i € I}, T =
(I, F)),with {X; | i« € I'} acollection of subsets of G, and T" a tree, such that

e Foral {v,w} € E: thereexistsan i € I withv, w € X;.
e Forallve V:theset {i € I | v € X;} induces a connected part (subtree) of T'.

The treewidth of a tree-decomposition ({X; |i € I}, T = (I, F)) ismax;es | X;| 1. The
treewidth of a graph G is the minimum treewidth over all possible tree-decompositions of G.

To be able to describe the reduction rules of our algorithm, we introduce the notion of k-
terminal graph.

A terminal graph isatriple (V. E, X), where (V, E) isagraph, and X is a subset of the
vertices from V, numbered from 1 to | X|. X is caled the set of terminals of (V, F, X). A
vertex v € Visaterminal of (V,E, X) if v € X, andisan inner vertex of (V, E, X), if
v eV X, Atermina graph (V, E, X) isak-terminal graph, if | X| = k.

The binary operation & is defined on terminal graphs with the same number of terminals.
If Gy = (Vi,E1,X,) and G = (V3, B, X) are k-termina graphs, then G & G5 isthe
graph, obtained by taking the digoint union of (V1, E4) and (V3, Es), and then identifying the
jthtermina in X7 and Xy, foral j, 1 <j <k.

Two k-termind graphs (Vi, E1, (x4, ..., 2¢)) and (Vy, Es, (y1,. .., yk)) aesad to beiso-
morphic, if there exist bijective functions f : Vi — V5, g : E1 — FE5, suchthat for dl v € V7,
e € Eq: visanendpoint of e, if and only if f(v) isanendpoint of g(e), andforal i, 1 < i < k,
f(zi) = yi).

While series paralldl graphs are a specia type of two-terminal graphs, to avoid confusion,
we will see series parallel graphs as graphs with two vertices with a special label.

A source-sink labelled graph isagraph G = (V, E), with two distinct vertices labelled,
one with the label source, and one with the label sink. A source-sink labelled graph G, with s

4



labelled source, and ¢ labelled sink is said to be series parald, if (G, s,t) is aseries paralle

graph.
We now give some simple or well known lemmas.

Lemma22. If (G=(V,E),s,t)isaseriesparalle graph, then (G + {s,t},s,t) isaseries
parallel graph, where G + {s, ¢t} isthe graph, obtained by adding an edge {s,t} to G.

Proof. By doing aparallel composition of G with a one-edge series parallel graph. O

Lemma23. If (G = (V, E), s, t) isaseriesparallel graph with sp-tree T(;, and thereisanode
ainTg, labelled with (w, ), then (G + {w, z}, s, t) isa series parallel graph.

Proof. Suppose G, isthe series paralel graph, associated with node «.. Add between o and
its parent a p-node, with two children: « and aleaf node, representing edge {w, =}. O

Lemma2.4. Let T bean sp-tree of series parallel graph G = (V. E); let x,y € V. The set
of nodes {i | i islabelled with (x, )} induces a (possibly empty) subtree of T'.

Thefollowing lemmais given with a constructive proof, as this will be useful later for ob-
taining some algorithmic results.

Lemma2.5. If Gisaseriesparalle graph, then the treewidth of G is at most two.

Proof. First note, that any sp-tree can be transformed (using standard transformation tech-
niques) to abinary sp-tree (of the same graph). Suppose T; = (N, F) isabinary sp-tree. For
aparalel node: with label (v, w), write X; = {v, w}; for a series node with label (v, w) and
labels of its two children (v, z) and (z, w), write X; = {v,w,xz}. Now, one can verify that
({Xi |i € N}, T¢) isatree-decomposition of G of treewidth at most two. 0

Agraph G = (V, E) issaidto beaminor of agraph H = (W, F), if agraph, isomorphic to
G can beobtained from H by aseries of vertex deletions, edge deletions, and edge contractions.

Lemma 2.6. If the treewidth of G is at most two, then G' does not contain /4, as a minor.

Lemma2.7. LetG = (V, F) beaseries parallel graph with source s and sink ¢.

1. If there is a node « with label (x,y) in an sp-tree of G, then there is a simple path
Syeey @y Y,...,tiNG.

2. If there is a node with label (z, y) in an sp-tree of G that is an ancestor of a node with
label (v, w), thenthereisasimplepaths,...,x,...,v,...,w,...,y,...,tInG.

3. For everyedgee = {z,y} € E, thereiseither asimplepath s,...,z,y,...,t, or there
isasimplepath s,...,y,x,...,t.



Proof. 1. We prove that for any node /5 with label (v, w) on the path from « to the root of the
sp-tree of G, thereisasimplepath v,...,x,...,y,...,w, that uses only edges whose corre-
sponding nodes are descendants of 3. We use induction to the length of the path from «:to 3 in
the sp-tree. (Using this result with 3 the root of the sp-tree gives the desired resuilt.)

First, suppose o = 3. Asany series parallel graph is connected, thereis apath from v to w
in the series parallel graph associated with node «.

Next, suppose 3 is an ancestor of . Let v be the child of 3 on the path from o to 5. If 3
isap-node, then the label of 5 equals the label of ~ and the result directly follows. Suppose 3
is an s-node with children 4, ..., 4,, and §; has label (v;,v;+1) foreachi, 1 < i < r. Let j,
1 <j <r, besuchthat j; = ~.

Now, for any i, 1 < i < r, thereisasimple path from v; to v; 1 using only edges that are
adescendant of 9;. By induction hypothesis, there is asimple path from v; to v;.; of the form
Vj,...,%,...,Y,...,v;41 that uses only edges that are descendants of 4;. Concatening these
paths gives the required simple path of theform vy = v, ..., 2, ..., y, ..., w = V,41.

2. Similar.

3. Note that there is anode with label (z, y) or anode with label (y, ). Now we can use part
1 of this Lemma. O

Lemma2.8. Lettherebeasmplepaths,...,z,y,...,tinaseriesparallel graph G = (V, E)
with source s and sink ¢.

1. Either there is no simple path from s to y that avoids 2, or there is no simple path from
x to t that avoids y.

2. Nonodein an sp-tree of GG islabelled with the pair (y, ).
Proof. 1. Suppose not. Then (G + {s,t},s,t) contains K4 as a minor, which contradicts

Lemma2.6.
2. Thisfollows from part 1 of thislemma, and Lemma 2.7. O

Lemma29. Suppose {z,y} isan edgein a series parallel graph G = (V, E) with source s
and sink t. QuUppose thereisasimplepathinG s,...,x,y,...,t. Let W bethe set

W ={veV&{x,y}|theeisasmplepaths,...,z,...,v,...,y,...,tING}.
Then:
1. Forall {v,w} € E,v e Wimpliesthat w € W U {z,y}.

2. For every sp-tree of G, if a node is labelled with endpoints v, w, and v € W, thenw €
WU {z,y}.

3. Let T be an sp-tree of G, let « be the highest node with label (, ). The series parallel
graph G, associated with «isexactly thegraph G[WU{z, y}|. Furthermore, if |IW| > 1,
then o isa paralléel node.

Proof. 1. Suppose {v,w} € E,v € W,w ¢ {z,y}. By Lemma2.7, one of the following two
cases must hold.



21 O
/ 81
Y Z1 %22 r » y

III
|

il | €
/ \ / \\ y w 8@
’ \ Z2 O
@ B vw G Z9 O
x Y ' Gv
@ (b) (©

Figure 2: The sp-tree and possible graphs for the proof of Lemma 2.9

Casel. Thereisasimplepaths,...,v,w,...,t. If x and y do both not appear on the part of
the path from s to v, then G + {s, ¢} contains K4 as aminor, contradiction. Hence either x or
y belongs to the path from s to v. Similarly, 2 or y belongs to the part of the path from w to ¢.
If y appears on the first part, and x appears on the last part, then we have a contradiction with
Lemma 2.8. Hence, we have a simple path of theform s, ..., z,...,v,w,...,y,...,t. This
impliesthat w € W.

Case2. Thereisasimplepaths,...,w,v,...,t. Thiscaseissimilar to Case 1.

2. Notethat if anode in the sp-tree of G islabelled with (v, w), then G + {v, w} isaso aseries
paralel graph (Lemma 2.3). Hence, the result follows by part 1 of the lemma.

3. We first show that G, is asubgraph of G[W U {x,y}]. Letv € V(G,). Thereis ade
scendant /5 of o« which contains v initslabel. According to Lemma 2.7, there is asimple path
Sy iy Ty Uy Yy, t, 00 € W,

Next weshow that G[WU{z, y}]isasubgraphof G,,. Lete = {v,w} € E(G[WU{z,y}]),
let 3 be the leaf node of e, and suppose w.l.0.g. that 5 has label (v, w). We show that 5 isa
descendant of a. If e = {x, y}, thisclearly holds.

Suppose e # {x,y} and 3 is not a descendant of a. Then we have a node ~, with label
(z21,22) # (x,y), with children ¢ and ¢, such that « is equal to or a descendant of ¢, and 3 is
equal to or adescendant of ¢ (see Figure 2(a)).

If 21 € W, then G contains a path from s to x that avoids 21, and G contains a path from z;
to y that avoids . Also, G containsasimplepath s, ..., z1,..., 2z, y, hence G+ {s, ¢t} contains
a I, minor, contradiction. So, we may assumethat z; ¢ W, and similarly, that zo ¢ W.

First suppose that v is a p-node. Figure 2(b) shows the structure of the series paralel
graph G, associated with node v. The graph G associated with e contains a simple path



21,52, Y, ..., 22, because of Lemma 2.7, part 2. Similarly, the graph G5 associated with
node § containsasimple path zy,...,v,w, ..., z9. Since the only common vertices of G, and
Gs are zy and 2o, thereisasimplepath =, ..., 21,...,v,...,29,...,y ING. Since (z,y) #
(z1,22) and z1, z9 ¢ W, thismeans that this path contains an edge between avertex in W and
avertex inV W <{z,y}, which isin contradiction with part 1 of thislemma.

Suppose v is an s-node, and suppose that node § is on the left side of node e. Fig-
ure 2(c) shows the structure of the series parallel graph G,. Thereisno path z,...,v,...,y
in G, which means that any path in G' which goes from x to y and contains v must look like

LyoooyZ1,ye-y20,...,0,...,Yy. Thisagain means that there is an edge between a vertex in W
and avertex in V. <W < {z,y}, contradiction. If § ison the right side of ¢, then in the same
way, we have apath «,...,v,...,21,...,29,...,y. Thisisagain a contradiction. Hence (3 is

adescendant of «. Thisprovesthat G, = G[W U {x, w}].

If o isan s-node, then it isthe only node with label (z, y). Thisisimpossible, because there
is aleaf node with labdl (z,y). If o isaleaf node, then G, consists only of the edge {z, y}.
Henceif |W| > 1, then « isap-node. This completes the proof of part 3. O

3 Graphreductions

In this section, we consider a number of graph reduction operations.

A reduction ruleis an ordered pair (H;, H), where Hy and H are k-terminal graphs for
some k > 0. An application of reduction rule (Hy, H>) is the operation, that takes agraph G
of theform G & G5, with G isomorphic to Hy, and replaces it by the graph G, & G3, with
G isomorphic to H,. We call such arule application areduction.

A reduction rule is safe for a property P, if, whenever G is obtained from H by applying
therule, P(G) & P(H). A set of rulesis safefor P, if al rulesin the set are safe.

The notion of reductions isgeneralised in the natural manner to source-sink labelled graphs.
In this case, it is assumed that no inner vertex of aleft-hand side or right-hand side graph of a
ruleis avertex with asource or sink label.

We now give a set of 18 reduction rules, that is safe for the class of series parallel graphs.
Additionally, we pose some degree restrictions on terminal vertices in some of therules. In the
next section, we show that we can awaysfind a‘ sufficiently large’ set of reduction rules of the
given types, such that al rulesin this set can be applied concurrently, until the graph consists
of asingle edge.

Note that each of the rules described below, is performed on a source-sink labelled graph.
We depict therulesin Figure 3. Inner vertices are depicted by unfilled circles, terminal vertices
are depicted by filled circles, anumber inside aterminal vertex denotes an upper bound on the
degree of the vertex.

Rulel. Removeanon-termina vertex of degreetwo, and add an edge between its neighbours.

Lemma3.l. If (G, s,t)isobtained from (G, s, t) by applying Rule 1, then (G, s, t) isa series
parallel graph if and only if (G’, s, t) isa series parallel graph.



(=

(=

SEEEEELE

S§ S s o 2
U

> S S Q

o—o o6—°

o
U
3
w

|

lb

lm

Il

Iz

,lf
SR=ZRSRGRZRZRS

dEHd8d
| SR R N O R SR
SRS

|5

H B

@® termind
@ termina of degree at most 7

QO inner vertex
edge over which contraction
== takes place

Figure 3: Reduction rules for series parallel graphs




Proof. Suppose G’ is obtained by removing vertex ¢ of degree two, suppose the neighbours
of ¢ are « and b. Suppose we have an sp-tree for G'. There must be aleaf with label (a,b) or
label (b, a). Suppose w.l.0.g. that there is aleaf node with label (a, b). If the parent of this |eaf
isan s-node, then replace this leaf node by two leaf nodes, successively (a, c) and (¢, b). If the
parent of this leaf is an p-node, then the leaf is replaced by a s-node with two children, («a, ¢)
and (¢, b).

Now, suppose we have aminimal sp-treefor G. Ascisnot aterminal, there must be aseries
composition that composed {b, ¢} and {¢, a}. So, the modification above can bereversed. O

Rule2. Remove one of two parald edges.

Lemma3.2. If (G, s,t)isobtained from (G, s, t) by applying Rule 2, then (G, s, t) isa series
parallel graph if and only if (G’, s, t) isa series parallel graph.

Proof. Suppose (G', s, t) isobtained by removing edge e, from GG, where e, isparallel to edge
e1. If we have an sp-tree for G/, then this tree has a leaf node o which corresponds to e, (and
hencethe end pointsof e; areinitslabel). If the parent of . isap-node, then attach an additional
leave below this parent, with the same label as «. If the parent of e; isan s-node, then replace
a by ap-node, with two children: onefor e; and one for e,.

When we have an sp-tree for GG, remove the leaf node corresponding to e, from this tree.
When now the (former) parent, say /3, of thisleaf node has only one child, this child is directly
attached to the parent of 3. O

Rule3. Rule3isdepicted in Figure 3. Note that edges between terminals can have parallel
edges, but edges with at least one endpoint an inner vertex in aleft-hand side of arule cannot
have aparalld edge.

Lemma 3.3. Suppose (G, s, t) isobtained from (G, s, t) by one application of Rule 3. Then,
(G,s,t)isaseries paralle graph if and only if (G', s, t) isa series parallel graph.

Proof. Suppose (G, s, t) isaseriesparallel graph, and let T bethe minimal sp-tree of (G, s, t).
Consider asimple path P from s to ¢ that uses the edge {a, b}.

Casel. Wefirst supposethat the path P visits a before b. We distinguish between two further
cases.

Casel1l.1. First, wesuppose that P does not use the node e. Write

W = {veV|theeisasmplepaths,...,a,...,v,...,b,...,tand
v belongs to the same component ase in G[V <{a, b}]}.

Notethat ¢,d,e € W, and hence (by part 1 of Lemma2.9), all vertices in the component of
G|V < {a,b}] which contains e are in 1. There must be a parallel node « in T with label
(a, ), with the subgraph containing the nodesin 17 ‘below it’ (see part 3 of Lemma2.9). Each

10



vertex v # a, b of the graph G, associated with o can occur in at most one graph associated
with one of the children of «.

Let 3 bethe s-node that isachild of o such that the series parallel graph G g associated with
(3 contains e. We claim that G 3 isthe graph obtained from G[W U {a, b}] by deleting all edges
between a and b. If avertex w € W isnot in G, then dl paths from w to e use a or b, which
means that w is not in the component of GV < {a, b}] which contains e. Hence w € V(Gpg.
Hence each vertex of 17 occurs only in G' g, which means that all edges between verticesin W
andinW U {a,b} arein Gg.

On the other hand, if there isavertex + € Gg, * ¢ {a,b}, then thereisapath P =
a,...,x,...,binGgz (LemmaZ2.7). If P contains no vertex from 1, then 3 can not be a series
node. Hence P contains avertex from W. Together with part 1 of Lemma 2.9, this means that
al verticeson P arein W U {a, b}, S0 € W. Thegraph G 3 can not contain an edge between
a and b, since then 3 can not be an s-node. This proves the claim.

Suppose 3 has children with labels (a, x1),(x1, 22), . . ., (2, b), respectively. We show that
t=1landx; = x; = c. Suppose not. First suppose that x; # c. Add an edge between x; and b;
thisagain givesaseriesparallel graph. Now, by contracting al nodesin W except ¢ to d, we get
a I, minor, contradiction. Hence 2; = ¢. Now suppose that ¢ > 1. Thereis aleaf node with
label (a, c) orlabdl (¢, a) whichisadescendant of 3, sincethereisan edge {a, c}. But vertex a
occurs only in the labels of the subtree of the child of 3 with label (a, z1). Furthermore, vertex
c occurs only in the labels of the subtrees of the children of 3 with labels (¢, b) and (z¢—1, ¢).
Since x; # cand xy_1 # a, this means that there can be no leaf node with label (a,c) or
(c,a), which gives a contradiction. So ¢ = 1, the children of 3 have labels (a, c) and (¢, b),
respectively. It can be seen that the child with label (¢, b) isaleaf node, corresponding to edge
{b, c}. By straightforward deduction, it follows that the sp-tree of G has the tree from the left-
hand side of Figure 4(i) as a subtree. We can replace this subtree by the subtree shown in the
right-hand side of Figure 4(i) and get an sp-tree of G'.

Case1.2. Now, we suppose the simple path P from s to ¢ that usesthe edge {a, b}, also uses
node e. There are atwo different cases:

Casel.21. PathPisoftheforms,... e, (...,)a,b,... t. Now, G+{s,t}isseriesparalé,
but contains /', as aminor, contradiction.

Case 1.22. Path P isof theform s,...,a,b,...,e,...,t. Now, we have a simple path
$,...,a,€,...,t, that does not use b. This case can be analysed in exactly the same way as
the cases above, leading to a subtree transformation, as shown in Figure 4(iii).

Case2. We now suppose that the path P visits b before a. This case can be dealt with in the
same way as Case 1, only with directions reversed. See Figures 4(ii),(iv).

Thisends ‘only if’ part of the proof. The ‘if’ part is very similar. In this case, the same
transformations as above are done, but in opposite direction. O

11



Figure 4. Transformations of subtrees for Rule 3.

12



Rules4-18 Rules4— 18 are depicted in Figure 3.

Lemma 3.4. Suppose (G, s,t) is obtained from (G, s, t) by one application of of one of the
Rules4—18. Then, (G, s, t) isaseriesparallel graph, ifandonlyif (G', s, t) isaseriesparallel
graph.

Proof. The proof is similar to the proof of Lemma 3.3. Asan example, consider Rule 4. Sup-
pose (G, s, t) is aseries paralel graph, and let T' be a minimal sp-tree of (G, s,t). Consider
asimple path P from s to ¢ that uses the edge {a,b}. First suppose P visits a before b. We
distinguish four cases.

Case 1. P does not use vertices ¢ and d. We can show that (G', s, t) is series paralel in the
same way asin Case 1.1 in the proof of Lemma 3.3 (define W to be the component of
G[V <{a,b}| which contains ¢ and d).

Case 2. P useschutnotd. Theneither cisonthesub-path s, . .., a of P or cisonthe sub-path
b,...,tof P.Inbothcases, G+ {s,t} containsa K4 minor, which givesacontradiction.

Case 3. P usesd but not c. Thiscaseissimilar to Case 2, and hence gives a contradiction.

Case4. P usesboth c and d. If ¢ and d both occur on the sub-path s, ..., a of P, or on the
sub-path b, ..., t of P, then G + {s,t} contains a 'y minor.
fP=s,....d,...,a,b,...,c,...,t,then G + {s,t} aso contains a X, minor.
fP=s,...,c,...,a,b,...,d,..., tthenthereisasimple path from s to ¢ that usesthe
edge {¢, d}, and does not use a and b. This case is similar to Case 1.

The case that P visits vertex b before a can be solved in the same way. This endsthe ‘only if’
part of the proof. The‘if’ part can be handled in the same way.
For the proof of Rules 5-18, we can apply exactly the same technique. O

Animportant consequence of the proofs of Lemmas 3.1 — 3.4 isthat the proofs are construc-
tive: especialy, when we have a minimal sp-tree of the reduced graph, we can build, in O(1)
time, aminimal sp-tree of the origina graph.

4 A structural lemma

A set of reductions is said to be concurrent, if no inner vertex of any subgraph to be rewritten
also occurs in another subgraph to be rewritten. So the subgraphs to be rewritten can share
terminals. Note that it is possible to carry out all reductions of a concurrent set of reductions
simultaneously.

Lemmad.l. LetG = (V,FE) beaseriesparallel graph. Thereisa concurrent set of at least
|E|/204 reductions in G of Rules 1 —18.

13



Proof. Consider the minimal sp-tree T' of G. The number of leaves of T equals | E|. We argue
that the number of leaves of T' isat most equal to 204 times the number of concurrent applica-
tions of reduction rules. Therefore, we consider different ‘classes' of leaves.

A leaf node «inT isgood if itisachild of aparalel node and hasat least one sibling which
isaledf (i.e. «vischild of aparallel node which has at least two leaf children), or itisachild of
a series node and one of o’s heighbouring siblings also is aleaf node (i.e. « ischild of aseries
node which has at |east two successive leaf children of which o isone). Notethat the edges that
correspond to good leaf nodes can occur in the application of reduction Rule 1 or 2.

Aninternal nodein T isgreen if it has at least one good leaf child.

A node in T isbranching if it is an internal node, and has at least two internal nodes asiits
children.

A leaf isbad if it isnot good, and its parent is branching or green. Most edges that corre-
spond to bad leaves can not occur in any application of areduction rule.

Note that the leaf children of abranching node which is not green are al bad, and the leaf
children of agreen node are either bad or good.

Now consider the other leaf nodes in 7. An internal node is blue if it is not branching or
green, but it has a descendant that is branching or green at distance at most 33.

Aninterna nodeisyellow if it is not branching, green or blue.

The total number of leaves in T' equals the number of good leaves plus the number of bad
leaves plus the number of leaf children of blue nodes plus the number of leaf children of yellow
nodes. We now derive an upper bound for the number of leavesin each of these classes, interms
of the number of concurrent applications of reduction rules.

Good leaves.  If agreen p-node has m good leaves, then we can concurrently apply at least
| m /2] timesreduction Rule 2 on the edges corresponding to these leaves. If agreen s-node has
m good leaves, then we can concurrently apply at least |m /3] times reduction Rule 1 on the
edges corresponding to these leaves. Hence the number of good leaves is at most three times
the number of concurrent applications of reduction Rules 1 and 2.

Bad leaves.

Claim 4.1. The number of bad leaves is at most twice the number of branching nodes plus the
number of green nodes plus the number of blue nodes.

Proof. Let o beabad leaf. If o’s parent isaparallel node, then account « to its parent (which
has at most one bad leaf). If o's parent is a series node, then account « to its neighbouring
sibling on the right if it has one, or to its parent otherwise. In this way, each branching node
has at most two leaves accounted to it: at most one of its children and possibly its neighbouring
sibling on the left. Each green, yellow or blue node has at most one bad leaf accounted to it,
namely itsneighbouring sibling ontheleft. If ayellow node 3 hasabad leaf accounted toit, then
its highest blue descendant v has no bad leaf accounted to it, since it does not have a branching
parent. Furthermore, all yellow nodes on the path from /3 to v have no bad leaf accounted to
it, since they have no branching parents. Hence we can account the bad leaf that is accounted
to «, to 8. This means that the number of bad leaves accounted to yellow and blue nodesiis at
most equal to the number of blue nodes. This proves the claim. O

14



In each green node, we can apply Rule 1 or 2 on two of the edges corresponding to its good
leaves. Hence the number of green nodesis at most equal to the number of concurrent applica
tions of Rules 1 and 2. We now bound the number of branching and blue nodes by the number
of green nodes in order to bound the number of bad |eaves.

Claim 4.2. The number of branching nodes is at most equal to the number of green nodes.

Proof. MaketreeT” from T, by removing all nodes that are not green and not branching, while
preserving successor-relationships. Note that, in 7', every interna node that has only leaves as
child isgreen, hence every branching node still has at least two childrenin 7”. Moreover, every
leaf of 7" is green. Since the number of internal nodes in a tree with two or more children is
at most the number of leaves, the number of branching nodes is at most the number of green
nodesin7’, and hencein 7. O

Consider the number of blue nodes. The number of blue nodesisat most 33 times the num-
ber of branching and green nodes. account each blue node to the closest descendant which is
branching or green. Since the number of branching nodesis at most the number of green nodes,
this meansthat the number of blue nodesisat most 2-33 = 66 timesthe number of green nodes.

This means that the number of bad leaves is at most equa to 2 + 1 + 66 = 69 times the
number of green nodes, which is at most 69 times the number of concurrent applications of
Rules 1 and 2.

Leaves of bluenodes.  The number of blue nodes is a most 66 times the number of green
nodes. Each blue node has at most two leaf children, which means that the number of leaves
of blue nodesisa most 2 - 66 = 132 times the number of concurrent applications of Rules 1
and 2.

Leaves of yellow nodes.  Consider a path in T" which consists of 33 successive yellow and
blue nodes, such that the highest node in this path is a paralel node. Each node in this path
either isap-node with asits children one leaf node and one s-node, or it is an s-node with asits
children one p-node and one or two non-neighbouring leaf nodes.

The edges associated to the leaves that are achild of the nodes in this path form a subgraph
of G of aspecial form: they form a sequence of 16 cycles of length three or four, each sharing
one edge with the previous cycle, and one edge with the next (except of course for the first
and last cycle in the sequence); three successive cycles do not share one common edge. Asnho
series node on the path has two successive leaf nodes, we have that the shared edges of acycle
of length four do not have avertex in common. We call such a subgraph a cycle-sequence. See
Figure 5 for an example.

Claim 4.3. In acycle-sequence which consists of 16 cycles, one of the Rules 3 — 18 can be
applied.

Proof. Consider asequence of 33 successive yellow and blue nodes starting and ending with a
p-node, and its corresponding cycle-sequence. Let @ = aq, as, ..., as, b = by, by, ..., by, SUch
that each node on the path of yellow and blue nodes has label (a;,b;),1 < i <s,1 < j <t,

15



ay az a3z a4 a5 ag a7 ag a9 Ao @11

by by by b4 b5 bs br bs by bio

Figure 5: Subgraph of G corresponding to a path of 33 yellow or blue nodes in the sp-tree, of
which the highest one is a p-node with label (a1, b1), and the lowest one is a p-node with label
(a11, b1p). Only aq, by, a11 and b1y may be incident with edges outside the subgraph.

Figure 6: Five successive triangles with one vertex in common

andforeachl < i < i <s(1 <j <y <t)a; # ay (b; # bj), and the highest node
containing a; (b;/) initslabel is adescendant of the lowest node containing a; (b;) in its label
(hence the highest node has label (a1, b1), the lowest node has label (a5, b;), and al a; and b;
occur a least onceinalabd). Let Py = ay,a9,...,asandlet Py = by, bo, ..., b;. Notethat Py
and P, are pathsin G. We cdll them the bounding paths of the cycle-sequence (see Figure 5).

If the cycle-sequence contains a cycle-sequence of five successive triangles with one vertex
in common as its subsequence, asin Figure 6, then Rule 3 can be applied. Suppose such a sub-
sequence does not exist. It follows that the edge between the fifth and sixth three- or four-cycle
in the sequence does not have an endpoint that is aso endpoint of an edge not in the subgraph;
similarly for the edge between the 11th and 12th cycle. Moreover, al vertices that belong to
the sixth till 11th cycle belong to at most six three- or four-cycles, and hence have degree at
most seven. Consider the cycle-sequence formed by the sixth till 11th cycle. Let P{ and P
be the bounding paths of this cycle-sequence, suppose P| has length (i.e. number of edges) m
and P; haslength n. We now show that we can apply one of the reduction Rules 4 — 18 on this
cycle-sequence.

Suppose w.l.0.g. that m < n. Wefirst show that m > 2and n > 3. If m = 0, then the
only vertex of P{ occursinsix triangles. If m = 1 then one of the vertices of P{ occursin three
triangles. Henceif m < 1 then we can apply Rule 3 to the cycle-sequence. If m = n = 2, then
the cycle-sequence consists of at most four cycles. Hence n > 3 and m > 2.

Theleft-hand sides of Rules4 — 15 represent exactly the cycle-sequences with one bounding
path of length two and one of length three which can not be reduced by applying Rule 3. The
left-hand sides of Rules 17 and 18 represent exactly the cycle-sequences with two bounding
paths of length three which can not be reduced by applying one of the Rules 3 — 15. Hence if
our cycle-sequence contains a subsequence with one bounding path of length three and one of
length two or three, then we can apply one of the Rules 3 — 15, 17 or 18.

Now suppose the cycle-sequence does not contain such a subsequence. We show that

16



Rule 16 is applicable. The shortest of the two bounding paths has length at least two and the
longest one haslength at least three. Remove one of the outermost cycles of the cycle-sequence
until one of these conditions would be violated by removing another outermost cycle. Let P/’
be the shortest bounding path and P;’ the longest bounding path of the obtained cycle-sequence.

If P{ has length three, then P}’ must have length three, otherwise we can remove another
outer-cycle. But that means that one of the Rules 4 — 15, 17 and 18 can be applied. Hence P}’
has length two. If P;' has length three, then one of the Rules 4 — 15 can be applied, hence P/
has length four or more. If itslength isfive or more, then Rule 3 is applicable, hence its length
is four. Then the outermost cycles must be squares, otherwise Rule 3 is again applicable. But
that means that the cycle-sequence is equal to the left-hand side of Rule 16. This proves the
clam. O

In a sequence of 34 successive yellow and blue nodes in T, we can find one path of 33
successive yellow and blue nodes, such that the highest nodein thispathisap-node. Wecan find
anumber of digoint paths of 34 successive yellow and blue nodes, such that each yellow node
isin exactly one such path. This means that the largest number of digoint paths of successive
yellow and blue nodes of length 34 that we can find in 7" is at least 1/34 times the number of
yellow nodes. Hence the number of concurrent applications of Rules3—18isat least 1/34 times
the number of yellow nodes. This means that the number of leaf children of yellow nodesis at
least 2 - 34 = 68 times the number of concurrent applications of Rules 3 — 18.

The total number of leavesin T isnow a most 3 + 69 + 132 = 204 times the number of
concurrent applications of Rules 1 and 2 plus 68 times the number of concurrent applications
of Rules 3 — 18. Since the applications of Rules 1 and 2 do not interfere with the applications
of the other Rules, we have that the number of leavesin T is at most 204 times the number of
concurrent applications of reduction Rulesin G. This completes the proof. O

5 Main algorithm

In this section, we give the main algorithm. Suppose we have given an undirected, not neces-
sarily simple, graph G with two specified vertices s and ¢, and we want to determine if (G, s, t)
is series pardld, and if so, we want to build an sp-tree for G. The algorithm consists of two
main phases. Thefirst phase consists of O(logm) reduction rounds. In each reduction round,
anumber of reductions is carried out, each round (when the input is a series parallel graph) re-
ducing the number of edges of G with at least a constant fraction. In the first phase, the input
graph isreduced to asingle edge {s, ¢} if and only if it is series parallel. If (G, s,t) isnot se-
ries parald, i.e.,, we do not have a single edge after the first phase, then the algorithms stops.
Otherwise, we proceed with the second phase. In the second phase, al reductions are undone,
in an equally large number of rounds. During the ‘undoing’ of the reductions, we maintain a
minimal sp-tree of the current graph. (One can additionally aso maintain a binary sp-tree of
the current graph.)

A round in the first phase consists of afew steps. First, every edge ‘looks around’ to see
whether it can take part in a reduction. Here, possibly not all possible reductions are found,
but at least ‘a large enough number of possible reductions' are found. Then, a subset of the

17



reductions is selected, such that these reductions do not create conflicts when carried out si-
multaneously. Finaly, the reductions are done — some bookkeeping is done such that later the
reductions can be undone.

Which edges can take part in an application of Rules 1, or 3— 18, can easily be determined,
by only looking at adjacency lists of nodes of degree at most seven, in O(1) time per node. In
areduction step, all possible choices for reductions of these rules are found. However, we will
not find all possible choices for Rule 2 reductions: this is probably not possible in the given
time bounds in the EREW PRAM model. Instead, every edge looks in both adjacency lists of
its endpoints to those edges that have distance at most ten, and the edge proposes a reduction,
if one of these edges it looks at has the same endpoints. Thus, this rule application can aso be
carried out in O(1) time per edge. (Adjacency lists are assumed to be cyclic.)

Each reduction found in thisway issaid to beenabled. We now show that 2(|E|) reductions
are enabled.

Lemmab.l. If G = (V,FE)isasmpleseriesparallel graph, then |E| < 2|V|.

Say an edge is bad, if it has aparale edge, but no parale edgeis found in the procedure
above.

Lemmab5.2. If (G,s,t)isseriesparalle, then there are at most 2| E|/5 bad edges.

Proof. Consider atree-decomposition ({X; |i € I},T) of G of width two, and choose an
arbitrary node ¢ € I asroot of T. Forav € V, let r, bethe highest nodein 7" with v € X,., .
If {v,w} € F, then note that either r, = r,,, or r, isan ancestor of r,,, or r,, isan ancestor of
Ty, 8Sthereis anode with labels v and w.

For every bad edge {v, w}, associate the edge with v if r, = r,,, or r,, isan ancestor of r,;
otherwise, associate the edge with w. Suppose bad edge {v, w} isassociated with v. Now, X,
must contain both v and w. It follows that there are at most | X, | <1 < 2 different vertices
w, such that bad edges {v, w} can be associated with v (namely, the verticesin X, < {v}).
For each such w, each ten successive positions in the (cyclic) adjacency list of v can contain at
most one bad edge of the form {v, w}, hence there are at most degree(v)/10 bad edges {v, w}
associated with v, and hencein total, at most degree(v) /5 bad edges are associated with v. The
stated bound is derived by taking the sum over al vertices. O

Now, if |E| > 4n, then there are at least | E'| < 2n edges that are parallel to another edge,
of which at most 2|E|/5 are bad. Hence, 3/5|E| <2n > 3/5|E| <1/2|E| = |E|/10 edges
find aparallel edge. Hence Q2( E) reductions are enabled.

Now, suppose | E| < 4n. We now apply Lemma 4.1 above on the simple graph underlying
G. l.e, let G’ be obtained from G by removing all second and further occurrences of parallel
edges. Notethat G’ has at least n <1 edges. (We ignore the simple case that G’ consists of a
single edge in the remainder.) Hence, there are at least (n <1),/204 reductions possible on G’,
and as GG’ has no parallel edges, each of theseisof Rules 1 or 3—18. For each reduction in this
set, there are two possihilities: either the reduction is also possible in G, or there are paralé
edges between two vertices that are both involved in the reduction. But, asat least one of these
two vertices has degree at most seven in G/, at least some parallel edges will be detected with

18



this node as endpoint. Thisshowsthat at least (n <1) /204 possible reductions will be enabled,
but as |E| < 4n, these are (| E|) reductions.

As subgraphs that are involved in enabled rule applications may overlap, it is not possible
to carry out al enabled rule applications simultaneously. Also, some reduction-pairs would try
to simultaneousdly write or read to a memory location. Thus, it is needed to find a large set of
reductions that can be carried out simultaneously, without any conflicts arising. Thisis solved
in the same way as the reduction agorithms in [4] are done: a ‘conflict graph’ is built; one
can note that this conflict graph has bounded degree, and alarge independent set in the conflict
graph is then found. By using the same approach as in [4], we can carry out all reductions in
O(logm -log* m) timewith O(m) operations and O(m ) space on an EREW PRAM, and with
O(logm) timeand O(m) operations and O(m) space on a CRCW PRAM.

This situation is handled further in exactly the same way asin [4].

As each reduction round reduces the number of edges with a constant fraction when the
input is a series parallel graph, after O(log m) reduction rounds we can conclude whether the
input was series parald or not, depending on whether we end up with a single edge or not.
(Notethat all reductions are safe, i.e., we start with aseries parallel graph if and only if we end
with aseries paralle graph.)

The second phase builds the sp-tree, in case (G, s, t) was series parallel. The sp-treeisrep-
resented as follows. Each nodein the tree has amark denoting itstype (series, parallel or leaf),
amark containing its label, a pointer to its parent, and a pointer to a doubly linked list of its
children (in the correct order if it isaseriesnode). Furthermore, each vertex v in the graph has
apointer to one of the nodes in the sp-tree that contains v in its label.

We start with the smple sp-tree, with a single node, labelled (s,¢). Then, we undo each
reduction round. Given an sp-tree for the reduced graph, we build the sp-tree for the graph as
it was just before this reduction round was carried out in the first phase, using the constructions
as in the proofs of Lemmas 3.1 — 3.4. The processor that carried out the reduction in the first
round will be the same processor that carries out the undoing of the reduction. Note that each
undoing of asingle reduction can be done in O(1) time without concurrent reading or writing.

A small modification to the construction also allows us not only to maintain aminimal sp-
tree, but also abinary sp-tree.

This technique was based on work, reported in [3], where aso more details can be found.

Theorem 5.1. Thefollowing problemcan besolvedin O(m) operations, and O(log m log* m)
time on a EREW PRAM, and O(log m) time on a CRCW PRAM: given agraph G = (V, E),
and s,t € V, determine whether G is series parallel with source s and sink ¢, and if so, find a
minimal or binary sp-tree.

6 Additional resultsfor seriesparallel graphs

The algorithm, given in the previous section can aso be used to solve the recognition problem
for directed series parallel graphs, and for series parald graphs without specified source and
sink. Also, it can be used as afirst step to solve many other problems on series paralld graphs.

First, suppose we are given agraph G = (V, E'), and want to determine whether G is series
parallel with a proper choice of terminals. In[7], it was shown (using results from [6]) that this

19



problem reduces in adirect way to the problem with specified vertices, as the following result
holds.

Theorem 6.1. [Eppstein [7]] Let G = (V, E') be an undirected graph. If there exist vertices
r,q € V,suchthat (G, r, q) isseriesparalld, then (G, s, t) isseriesparallel, withsource s € V
and sink t € V' chosen in the following way.

e If G isbiconnected, then s and ¢ are chosen to be adjacent vertices.

¢ If G isnot biconnected, then there must be exactly two biconnected components that con-
tain only one cut vertex. Source s is taken to be a vertex in one such biconnected com-
ponent, such that s is adjacent to the cut vertex of the biconnected component. Sink ¢ is
taken in the same way in the other biconnected component with one cut vertex.

Now, note that the characterisation of s and ¢ as in Theorem 6.1 above can be formulated
in monadic second order logic (using techniques from e.g., [5]); hence, it is possible (using
techniques of [4, 3]) to find values of s and ¢ which fulfil the conditions of Theorem 6.1 in
O(log mlog™ m) time, with O(m) operations and space on an EREW PRAM, andin O(log m,)
time, and O(m ) operations and space on a CRCW PRAM. While the resulting algorithm will
probably not be efficient, this result does not rely on non-constructive arguing. (We expect that
amore straightforward approach, based on reduction, will aso work here.)

When G is directed, then one can use the modification, described in[7]: solve the problem
first on the underlying undirected graph, and then verify that all edges have the proper direction.
If s and ¢ are not specified, then take for s the vertex with indegree 0, and for ¢ the vertex with
outdegree 0.

Theorem 6.2.  Each of the following problems can be solved in O(m) operations, and
O(log mlog™ m) time on an EREW PRAM, and O(log m ) time on a CRCW PRAM.

1. Givenagraph G = (V, E), determine if thereexist s € V, ¢t € V, such that G is series
parallel with source s and sink ¢, and if so, find a corresponding sp-tree.

2. Givenadirectedgraph G = (V, E),and s, t € V, determinewhether GG isseries parallel
with source s and sink ¢, and if so, find a corresponding sp-tree.

3. Givenadirected graph G = (V. E), determine if thereexist s € V,t € V, suchthat G
isseries parallel with source s and sink ¢, and if so, find a corresponding sp-tree.

Using the connection with treewidth, it is possible to design a large class of agorithms,
solving problems on series parallel graphs. Many problems can be solved in O(logn) time,
and O(n) operations and space, when the input graph is simple, and is given together with a
tree-decomposition of bounded treewidth. These include al problems that can be formulated
in monadic second order logic and its extensions, al problems that are ‘finite state’, etc. A
large number of interesting and important graph problems can be dealt in this way, includ-
ing CHROMATIC NUMBER, MAXIMUM CLIQUE, MAXIMUM INDEPENDENT SET, HAMIL-
TONIAN CIRCUIT, STEINER TREE, LONGEST PATH, etc. See[4].

20



Now, note that we can build a tree-decomposition of treewidth two of a given series par-
ale graph in the following way: first make a binary sp-tree, and then use the construction of
Lemma2.5.

Lemma6.1. One can find a tree-decomposition of treewidth two of a series parallel graph in
O(logmlog* m) time, O(m) operations, and O(m) space on an EREWPRAM, and O(log m,)
time, O(m) operations and O(m) space on a CRCW PRAM.

As a consequence, a very large class of graph problems can be solved in the same time
bounds.

Acknowledgement

We like to thank Torben Hagerup for help and useful discussions.

References

[1] S. Arnborg, B. Courcelle, A. Proskurowski, and D. Seese. An algebraic theory of graph
reduction. J. ACM, 40:1134-1164, 1993.

[2] M.W.Bern,E.L.Lawler,andA. L. Wong. Linear time computation of optimal subgraphs
of decomposable graphs. J. Algorithms, 8:216-235, 1987.

[3] H.L.Bodlaender and B. de Fluiter. Reduction algorithms for graphs with small treewidth.
Technical Report UU-CS-1995-37, Department of Computer Science, Utrecht University,
Utrecht, 1995.

[4] H.L.Bodlaender and T. Hagerup. Parallel agorithms with optimal speedup for bounded
treewidth. InZ. Fllop and F. Gécseg, editors, Proceedings 22nd International Colloquium
on Automata, Languages and Programming, pages 268-279, Berlin, 1995. Springer-
Verlag, Lecture Notes in Computer Science 944.

[5] R. B. Borie, R. G. Parker, and C. A. Tovey. Automatic generation of linear-time algo-
rithms from predicate calculus descriptions of problems on recursively constructed graph
families. Algorithmica, 7:555-581, 1992.

[6] R.J. Duffin. Topology of series-parallel graphs. J. Math. Anal. Appl., 10:303-318, 1965.

[7] D.Eppstein. Paralel recognition of series parallel graphs. Information and Computation,
98:41-55, 1992.

[8] X.HeandY. Yesha. Parallel recognition and decomposition of two terminal series parallel
graphs. Information and Computation, 75:15-38, 1987.

[9] T.Kikuno, N. Yoshida, and Y. Kakuda. A linear algorithm for the domination number of
aseries-paralel graph. Disc. Appl. Math., 5:299-311, 1983.

21



[10] K. Takamizawa, T. Nishizeki, and N. Saito. Linear-time computability of combinatorial
problems on series-parallel graphs. J. ACM, 29:623-641, 1982.

[11] J.Vades, R. E. Tarjan, and E. L. Lawler. Therecognition of series parallel digraphs. SAM
J. Comput., 11:298-313, 1982.

22



