
Parallel algorithms for series parallel graphs�

Hans L. Bodlaender and Babette de Fluiter
Department of Computer Science, Utrecht University
P.O. Box 80.089, 3508 TB Utrecht, the Netherlands

e-mail: fhansb,babetteg@cs.ruu.nl

Abstract

In this paper, a parallel algorithm is given that, given a graph G = (V;E), decides
whether G is a series parallel graph, and if so, builds a decomposition tree for G of series
and parallel composition rules. The algorithm uses O(log jEj log� jEj) time and O(jEj)
operations on an EREW PRAM, and O(log jEj) time and O(jEj) operations on a CRCW
PRAM (note that ifG is a simple series parallel graph, then jEj = O(jV j)). With the same
time and processor resources, a tree-decomposition of width at most two can be built of a
given series parallel graph, and hence, very efficient parallel algorithms can be found for
a large number of graph problems on series parallel graphs, including many well known
problems, e.g., all problems that can be stated in monadic second order logic. The re-
sults hold for undirected series parallel graphs graphs, as well as for directed series parallel
graphs.

1 Introduction

One of the classical classes of graphs is the class of series parallel graphs. These appear in
several applications, e.g., the classical way to compute the resistance of an (electrical) network
of resistors assumes that the underlying graph is in fact a series parallel graph.

A well studied problem is the problem to recognise series parallel graphs. A linear time
algorithm for this problem has been given by Valdes, Tarjan, and Lawler [11]. Also, it is known
that when a ‘decomposition tree’ for a series parallel graph is given, then many problems can
be solved in linear time, including many problems that are NP-hard for arbitrary graphs [2, 5,
9, 10]; Valdes et al. also show how to obtain such a decomposition tree in linear time. (In this
paper, we assume a specific form of the decomposition tree, and use the term sp-trees for these
trees.)

He and Yesha gave a parallel algorithm for recognising directed series parallel graphs [8].
Their algorithm uses O(log2 n+ logm) time, and O(n+m) processors on an EREW PRAM,
thus, with O((n + m)(log2 n + logm)) operations. (The number of operations of a parallel
algorithm is the product of its time and number of processors used. We measure parallel al-
gorithms with the number of operations, as this gives us a direct comparison with the best se-
quential algorithm. In this paper, n denotes the number of vertices of the input graph; m the

�This research was partially supported by the Foundation for Computer Science (S.I.O.N) of the Netherlands
Organisation for Scientific Research (N.W.O.).

1

number of edges.) Eppstein [7] improved this result for simple graphs: his algorithm runs in
O(logn) time on a CRCW PRAM with O(m�(m;n)= logn) processors. As any algorithm on
a CRCW PRAM can be simulated on an EREW with a loss of O(logn) time, this implies an
algorithm with O(log2 n) time and O(m�(m;n)= logn) processors on an EREW PRAM, i.e.,
withO(m�(m;n)) operations on an EREW PRAM, or with O(m�(m;n) log n) operations on
a CRCW PRAM.

In this paper, we improve upon this result, both for the EREW PRAM model, and for the
CRCW PRAM model. We give a recognition algorithm for series parallel graphs on the EREW
PRAM, that uses O(logm log�m) time and O(m) operations, and one for the CRCW PRAM,
that uses O(logm) time and O(m) operations. In the same time and operations bounds, we can
also build an sp-tree for the graph, and solve many problems on series parallel graphs. If the
input graph is simple, i.e. there is at most one edge between every two vertices, then m = O(n)
if the graph is series parallel. If we are sure that the input graph is a simple graph, then we can
make our algorithm to run inO(logn log� n) on the EREW PRAM andO(logn) on the CRCW
PRAM, and the number of operations is O(n).

It is well-known that series parallel graphs have treewidth at most two. (Some authors mis-
takenly state that the class of series parallel graphs equals the class of graphs of treewidth two,
but for instance K1;3 is not series parallel.) We will use this fact in one of our proofs. Moreover,
several of our results were inspired by techniques, established for graphs of bounded treewidth,
especially those from [3] and [4]. As a side remark, we note that, while the algorithms in [4]
are carrying constant factors that make them impractical in their stated form, the algorithms in
this paper do not carry large constant factors and are probably efficient enough for a practical
setting (although a more detailed analysis can probably bring the constant factor further down.)

A central technique in this paper is graph reduction, introduced in a setting of graphs of
bounded treewidth in [1]. In [3] and [4], it is shown how the technique can be used to obtain
parallel algorithms for graphs of bounded treewidth.

Another technique that is used in this paper is the bounded adjacency list search technique,
taken from [4], and adapted here to the setting of series parallel graphs.

This paper is organised further as follows. In Section 2, we give some basic definitions,
and preliminary results. In Section 3, we give a number of graph reduction rules, and show
that they are ‘safe’ for series parallel graphs. In Section 4, we show that in any series parallel
graph, there are
(m) reduction rules that can be applied concurrently. Section 5 shows the
main algorithm, based on the results of the earlier sections. Section 6 gives some results for
variants of the problem, and shows how to solve many other problems on series parallel graphs.

2 Definitions and preliminary results

Unless stated otherwise, graphs considered are undirected, and may have parallel edges.

Definition 2.1. A series parallel graph is a triple (G; s; t), with G = (V;E) a graph, and s; t 2
V , such that one of the following cases holds.

� G has two vertices, s and t, and one edge between s and t.

2

s t

s x xy y t

s w wv

s v

s t s t

s v v t

s v

s

xv

w y

t

s t

s t

= parallel node with label (s; t)

= series node with label (s; t)

Figure 1: An sp-tree and the series parallel graph it represents

� There are series parallel graphs (G1; s1; t1), . . . , (Gr; sr; tr), such that (G; s; t) can be
obtained by a parallel composition of these graphs: G is obtained by taking the disjoint
union of G1; : : : ; Gr, identifying all vertices s1; : : : ; sr to s, and identifying all vertices
t1; : : : tr to t.

� There are series parallel graphs (G1; s1; t1), . . . , (Gr; sr; tr), such that (G; s; t) can be
obtained by a series composition of these graphs: G is obtained by taking the disjoint
union of G1; : : : ; Gr, identifying for i = 1; : : : ; r � 1, vertex ti with vertex si+1, and
letting s = s1, t = tr.

If (G; s; t) is a series parallel graph, we also say that G is a series parallel graph. s and t are
called the terminals of G; we also call s the source and t the sink of G.

See Figure 1 for an example. An equivalent definition, which is often used, only involves
series and parallel compositions with two series parallel graphs.

To each series parallel graph G = (V;E), we can associate an sp-tree TG. Every node of an
sp-tree corresponds to a series parallel graph (G0; a; b), and has as a label (a; b), the ordered pair
of its source and sink. The root of the tree has label (s; t), and corresponds to the graph (G; s; t).
Leaf nodes correspond to series parallel graphs consisting of a single edge, and hence there is a
one-to-one correspondence between leaves of TG and edges e 2 E. Internal nodes (i.e. non-leaf
nodes) are of two types: series nodes (or s-nodes), and parallel nodes (or p-nodes). The children
of a series node are ordered, while the children of a parallel node are not ordered. Note that the
children of a p-node have the same label as their parent. The series parallel graph associated to
an s-node is the graph, obtained by a series composition of the series parallel graphs, associated
to the children of the node, where the order of the children gives the order in which the series
composition is done. The series parallel graph associated to a p-node is the graph, obtained by
a parallel composition of the series parallel graphs, associated to the children of G.

3

Note that a series parallel graph can have different sp-trees. However, if a source and sink
are given, there also is a unique minimal sp-tree: given any sp-tree, if there is an s-node with
another s-node as child, or a p-node with another p-node as child, one can contract over the
parent-child edge, and obtain a smaller sp-tree for the same graph. Moreover, s-nodes or p-
nodes with only one child can easily be removed. So, in the minimal sp-tree, s-nodes and p-
nodes alternate.

Lemma 2.1. If � is an ancestor of � in an sp-tree TG, and the labels of � and � both contain
a vertex v, then all nodes on the path between � and � in TG contain v as label.

We can also define directed series parallel graphs. These are defined in the same way as
undirected series parallel graphs, with the sole exception that as ‘base graph’, we take a di-
rected graph with two vertices s and t and a directed edge from the source s to the sink t. As a
result, directed series parallel graphs are acyclic, and every vertex lies on a directed path from
the source to the sink.

Definition 2.2. A tree-decomposition of a graph G = (V;E) is a pair (fXi j i 2 Ig; T =
(I; F)), with fXi j i 2 Ig a collection of subsets of G, and T a tree, such that

�
S

i2I Xi = V .

� For all fv; wg 2 E: there exists an i 2 I with v; w 2 Xi.

� For all v 2 V : the set fi 2 I j v 2 Xig induces a connected part (subtree) of T .

The treewidth of a tree-decomposition (fXi j i 2 Ig; T = (I; F)) is maxi2I jXij � 1. The
treewidth of a graph G is the minimum treewidth over all possible tree-decompositions of G.

To be able to describe the reduction rules of our algorithm, we introduce the notion of k-
terminal graph.

A terminal graph is a triple (V;E;X), where (V;E) is a graph, and X is a subset of the
vertices from V , numbered from 1 to jXj. X is called the set of terminals of (V;E;X). A
vertex v 2 V is a terminal of (V;E;X) if v 2 X , and is an inner vertex of (V;E;X), if
v 2 V �X . A terminal graph (V;E;X) is a k-terminal graph, if jXj = k.

The binary operation � is defined on terminal graphs with the same number of terminals.
If G1 = (V1; E1;X1) and G2 = (V2; E2;X2) are k-terminal graphs, then G1 � G2 is the
graph, obtained by taking the disjoint union of (V1; E1) and (V2; E2), and then identifying the
jth terminal in X1 and X2, for all j, 1 � j � k.

Two k-terminal graphs (V1; E1; (x1; : : : ; xk)) and (V2; E2; (y1; : : : ; yk)) are said to be iso-
morphic, if there exist bijective functions f : V1 ! V2, g : E1 ! E2, such that for all v 2 V1,
e 2 E1: v is an endpoint of e, if and only if f(v) is an endpoint of g(e), and for all i, 1 � i � k,
f(xi) = yi).

While series parallel graphs are a special type of two-terminal graphs, to avoid confusion,
we will see series parallel graphs as graphs with two vertices with a special label.

A source-sink labelled graph is a graph G = (V;E), with two distinct vertices labelled,
one with the label source, and one with the label sink. A source-sink labelled graph G, with s

4

labelled source, and t labelled sink is said to be series parallel, if (G; s; t) is a series parallel
graph.

We now give some simple or well known lemmas.

Lemma 2.2. If (G = (V;E); s; t) is a series parallel graph, then (G+ fs; tg; s; t) is a series
parallel graph, where G+ fs; tg is the graph, obtained by adding an edge fs; tg to G.

Proof. By doing a parallel composition of G with a one-edge series parallel graph. 2

Lemma 2.3. If (G = (V;E); s; t) is a series parallel graph with sp-tree TG, and there is a node
� in TG, labelled with (w; x), then (G+ fw; xg; s; t) is a series parallel graph.

Proof. Suppose G� is the series parallel graph, associated with node �. Add between � and
its parent a p-node, with two children: � and a leaf node, representing edge fw; xg. 2

Lemma 2.4. Let T be an sp-tree of series parallel graph G = (V;E); let x; y 2 V . The set
of nodes fi j i is labelled with (x; y)g induces a (possibly empty) subtree of T .

The following lemma is given with a constructive proof, as this will be useful later for ob-
taining some algorithmic results.

Lemma 2.5. If G is a series parallel graph, then the treewidth of G is at most two.

Proof. First note, that any sp-tree can be transformed (using standard transformation tech-
niques) to a binary sp-tree (of the same graph). Suppose TG = (N;F) is a binary sp-tree. For
a parallel node i with label (v; w), write Xi = fv; wg; for a series node with label (v; w) and
labels of its two children (v; x) and (x;w), write Xi = fv; w; xg. Now, one can verify that
(fXi j i 2 Ng; TG) is a tree-decomposition of G of treewidth at most two. 2

A graph G = (V;E) is said to be a minor of a graph H = (W;F), if a graph, isomorphic to
G can be obtained fromH by a series of vertex deletions, edge deletions, and edge contractions.

Lemma 2.6. If the treewidth of G is at most two, then G does not contain K4 as a minor.

Lemma 2.7. Let G = (V;E) be a series parallel graph with source s and sink t.

1. If there is a node � with label (x; y) in an sp-tree of G, then there is a simple path
s; : : : ; x; : : : ; y; : : : ; t in G.

2. If there is a node with label (x; y) in an sp-tree of G that is an ancestor of a node with
label (v; w), then there is a simple path s; : : : ; x; : : : ; v; : : : ; w; : : : ; y; : : : ; t in G.

3. For every edge e = fx; yg 2 E, there is either a simple path s; : : : ; x; y; : : : ; t, or there
is a simple path s; : : : ; y; x; : : : ; t.

5

Proof. 1. We prove that for any node � with label (v; w) on the path from � to the root of the
sp-tree of G, there is a simple path v; : : : ; x; : : : ; y; : : : ; w, that uses only edges whose corre-
sponding nodes are descendants of �. We use induction to the length of the path from � to � in
the sp-tree. (Using this result with � the root of the sp-tree gives the desired result.)

First, suppose � = �. As any series parallel graph is connected, there is a path from v to w
in the series parallel graph associated with node �.

Next, suppose � is an ancestor of �. Let
 be the child of � on the path from � to �. If �
is a p-node, then the label of � equals the label of
 and the result directly follows. Suppose �
is an s-node with children �1; : : : ; �r , and �i has label (vi; vi+1) for each i, 1 � i � r. Let j,
1 � j � r, be such that �j =
.

Now, for any i, 1 � i � r, there is a simple path from vi to vi+1 using only edges that are
a descendant of �i. By induction hypothesis, there is a simple path from vj to vj+1 of the form
vj ; : : : ; x; : : : ; y; : : : ; vj+1 that uses only edges that are descendants of �j . Concatening these
paths gives the required simple path of the form v1 = v; : : : ; x; : : : ; y; : : : ; w = vr+1.

2. Similar.

3. Note that there is a node with label (x; y) or a node with label (y; x). Now we can use part
1 of this Lemma. 2

Lemma 2.8. Let there be a simple path s; : : : ; x; y; : : : ; t in a series parallel graph G = (V;E)
with source s and sink t.

1. Either there is no simple path from s to y that avoids x, or there is no simple path from
x to t that avoids y.

2. No node in an sp-tree of G is labelled with the pair (y; x).

Proof. 1. Suppose not. Then (G + fs; tg; s; t) contains K4 as a minor, which contradicts
Lemma 2.6.

2. This follows from part 1 of this lemma, and Lemma 2.7. 2

Lemma 2.9. Suppose fx; yg is an edge in a series parallel graph G = (V;E) with source s
and sink t. Suppose there is a simple path in G s; : : : ; x; y; : : : ; t. Let W be the set

W = fv 2 V � fx; yg j there is a simple path s; : : : ; x; : : : ; v; : : : ; y; : : : ; t in Gg:

Then:

1. For all fv; wg 2 E, v 2W implies that w 2W [fx; yg.

2. For every sp-tree of G, if a node is labelled with endpoints v; w, and v 2 W , then w 2
W [fx; yg.

3. Let T be an sp-tree of G, let � be the highest node with label (x; y). The series parallel
graphG� associated with� is exactly the graphG[W[fx; yg]. Furthermore, if jW j � 1,
then � is a parallel node.

Proof. 1. Suppose fv; wg 2 E, v 2W , w 62 fx; yg. By Lemma 2.7, one of the following two
cases must hold.

6

z1 z2

� x y

� v w

x y

� �

s t

w

vx

y

z1

z2

z1

z2

x

y

v

w

(a) (b) (c)

G

G

Figure 2: The sp-tree and possible graphs for the proof of Lemma 2.9

Case 1. There is a simple path s; : : : ; v; w; : : : ; t. If x and y do both not appear on the part of
the path from s to v, then G+ fs; tg contains K4 as a minor, contradiction. Hence either x or
y belongs to the path from s to v. Similarly, x or y belongs to the part of the path from w to t.
If y appears on the first part, and x appears on the last part, then we have a contradiction with
Lemma 2.8. Hence, we have a simple path of the form s; : : : ; x; : : : ; v; w; : : : ; y; : : : ; t. This
implies that w 2W .

Case 2. There is a simple path s; : : : ; w; v; : : : ; t. This case is similar to Case 1.

2. Note that if a node in the sp-tree of G is labelled with (v; w), then G+fv; wg is also a series
parallel graph (Lemma 2.3). Hence, the result follows by part 1 of the lemma.

3. We first show that G� is a subgraph of G[W [fx; yg]. Let v 2 V (G�). There is a de-
scendant � of � which contains v in its label. According to Lemma 2.7, there is a simple path
s; : : : ; x; : : : ; v; : : : ; y; : : : ; t, so v 2W .

Next we show thatG[W[fx; yg] is a subgraph ofG�. Let e = fv; wg 2 E(G[W[fx; yg]),
let � be the leaf node of e, and suppose w.l.o.g. that � has label (v; w). We show that � is a
descendant of �. If e = fx; yg, this clearly holds.

Suppose e 6= fx; yg and � is not a descendant of �. Then we have a node
, with label
(z1; z2) 6= (x; y), with children � and �, such that � is equal to or a descendant of �, and � is
equal to or a descendant of � (see Figure 2(a)).

If z1 2W , then G contains a path from s to x that avoids z1, and G contains a path from z1
to y that avoids x. Also, G contains a simple path s; : : : ; z1; : : : ; x; y, hence G+fs; tg contains
a K4 minor, contradiction. So, we may assume that z1 62W , and similarly, that z2 62W .

First suppose that
 is a p-node. Figure 2(b) shows the structure of the series parallel
graph G
 associated with node
. The graph G� associated with � contains a simple path

7

z1; : : : ; x; y; : : : ; z2, because of Lemma 2.7, part 2. Similarly, the graph G� associated with
node � contains a simple path z1; : : : ; v; w; : : : ; z2. Since the only common vertices of G� and
G� are z1 and z2, there is a simple path x; : : : ; z1; : : : ; v; : : : ; z2; : : : ; y in G. Since (x; y) 6=
(z1; z2) and z1; z2 =2W , this means that this path contains an edge between a vertex in W and
a vertex in V �W � fx; yg, which is in contradiction with part 1 of this lemma.

Suppose
 is an s-node, and suppose that node � is on the left side of node �. Fig-
ure 2(c) shows the structure of the series parallel graph G
 . There is no path z; : : : ; v; : : : ; y
in G
 , which means that any path in G which goes from x to y and contains v must look like
x; : : : ; z1; : : : ; z2; : : : ; v; : : : ; y. This again means that there is an edge between a vertex in W
and a vertex in V �W � fx; yg, contradiction. If � is on the right side of �, then in the same
way, we have a path x; : : : ; v; : : : ; z1; : : : ; z2; : : : ; y. This is again a contradiction. Hence � is
a descendant of �. This proves that G� = G[W [fx;wg].

If � is an s-node, then it is the only node with label (x; y). This is impossible, because there
is a leaf node with label (x; y). If � is a leaf node, then G� consists only of the edge fx; yg.
Hence if jW j � 1, then � is a p-node. This completes the proof of part 3. 2

3 Graph reductions

In this section, we consider a number of graph reduction operations.
A reduction rule is an ordered pair (H1;H2), where H1 and H2 are k-terminal graphs for

some k � 0. An application of reduction rule (H1;H2) is the operation, that takes a graph G
of the form G1 � G3, with G1 isomorphic to H1, and replaces it by the graph G2 � G3, with
G2 isomorphic to H2. We call such a rule application a reduction.

A reduction rule is safe for a property P , if, whenever G is obtained from H by applying
the rule, P (G), P (H). A set of rules is safe for P , if all rules in the set are safe.

The notion of reductions is generalised in the natural manner to source-sink labelled graphs.
In this case, it is assumed that no inner vertex of a left-hand side or right-hand side graph of a
rule is a vertex with a source or sink label.

We now give a set of 18 reduction rules, that is safe for the class of series parallel graphs.
Additionally, we pose some degree restrictions on terminal vertices in some of the rules. In the
next section, we show that we can always find a ‘sufficiently large’ set of reduction rules of the
given types, such that all rules in this set can be applied concurrently, until the graph consists
of a single edge.

Note that each of the rules described below, is performed on a source-sink labelled graph.
We depict the rules in Figure 3. Inner vertices are depicted by unfilled circles, terminal vertices
are depicted by filled circles; a number inside a terminal vertex denotes an upper bound on the
degree of the vertex.

Rule 1. Remove a non-terminal vertex of degree two, and add an edge between its neighbours.

Lemma 3.1. If (G0; s; t) is obtained from (G; s; t) by applying Rule 1, then (G; s; t) is a series
parallel graph if and only if (G0; s; t) is a series parallel graph.

8

a

b

1
c

terminal

terminal of degree at most 7

inner vertex
edge over which contraction
takes place

7 7

a

b

a

b

2
a

b

3

a

b

c d

e

7 7 9

7 7

7 7

7 7

7 7

11

7 7

7 7

12

7 7

7 7

13

7 7

7 7

14

7 7

7 7

15

7 7

7

7 7

7 7

7 7

7 7

7 7 16

7 7

7 7 7

7 7

7 7 8

7 7

7 7 4

7 7

7 7 5

7 7

7 7 6

7 7

17

18

10

a

b d

c

Figure 3: Reduction rules for series parallel graphs

9

Proof. Suppose G0 is obtained by removing vertex c of degree two, suppose the neighbours
of c are a and b. Suppose we have an sp-tree for G0. There must be a leaf with label (a; b) or
label (b; a). Suppose w.l.o.g. that there is a leaf node with label (a; b). If the parent of this leaf
is an s-node, then replace this leaf node by two leaf nodes, successively (a; c) and (c; b). If the
parent of this leaf is an p-node, then the leaf is replaced by a s-node with two children, (a; c)
and (c; b).

Now, suppose we have a minimal sp-tree forG. As c is not a terminal, there must be a series
composition that composed fb; cg and fc; ag. So, the modification above can be reversed. 2

Rule 2. Remove one of two parallel edges.

Lemma 3.2. If (G0; s; t) is obtained from (G; s; t) by applying Rule 2, then (G; s; t) is a series
parallel graph if and only if (G0; s; t) is a series parallel graph.

Proof. Suppose (G0; s; t) is obtained by removing edge e2 from G, where e2 is parallel to edge
e1. If we have an sp-tree for G0, then this tree has a leaf node � which corresponds to e2 (and
hence the end points of e1 are in its label). If the parent of� is a p-node, then attach an additional
leave below this parent, with the same label as �. If the parent of e1 is an s-node, then replace
� by a p-node, with two children: one for e1 and one for e2.

When we have an sp-tree for G, remove the leaf node corresponding to e2 from this tree.
When now the (former) parent, say �, of this leaf node has only one child, this child is directly
attached to the parent of �. 2

Rule 3. Rule 3 is depicted in Figure 3. Note that edges between terminals can have parallel
edges, but edges with at least one endpoint an inner vertex in a left-hand side of a rule cannot
have a parallel edge.

Lemma 3.3. Suppose (G0; s; t) is obtained from (G; s; t) by one application of Rule 3. Then,
(G; s; t) is a series parallel graph if and only if (G0; s; t) is a series parallel graph.

Proof. Suppose (G; s; t) is a series parallel graph, and let T be the minimal sp-tree of (G; s; t).
Consider a simple path P from s to t that uses the edge fa; bg.

Case 1. We first suppose that the path P visits a before b. We distinguish between two further
cases.

Case 1.1. First, we suppose that P does not use the node e. Write

W = fv 2 V j there is a simple path s; : : : ; a; : : : ; v; : : : ; b; : : : ; t and

v belongs to the same component as e in G[V � fa; bg]g:

Note that c; d; e 2 W , and hence (by part 1 of Lemma 2.9), all vertices in the component of
G[V � fa; bg] which contains e are in W . There must be a parallel node � in T with label
(a; b), with the subgraph containing the nodes in W ‘below it’ (see part 3 of Lemma 2.9). Each

10

vertex v 6= a; b of the graph G� associated with � can occur in at most one graph associated
with one of the children of �.

Let � be the s-node that is a child of � such that the series parallel graph G� associated with
� contains e. We claim that G� is the graph obtained from G[W [fa; bg] by deleting all edges
between a and b. If a vertex w 2 W is not in G� , then all paths from w to e use a or b, which
means that w is not in the component of G[V � fa; bg] which contains e. Hence w 2 V (G� .
Hence each vertex of W occurs only in G�, which means that all edges between vertices in W
and in W [fa; bg are in G� .

On the other hand, if there is a vertex x 2 G� , x =2 fa; bg, then there is a path P =
a; : : : ; x; : : : ; b in G� (Lemma 2.7). If P contains no vertex from W , then � can not be a series
node. Hence P contains a vertex from W . Together with part 1 of Lemma 2.9, this means that
all vertices on P are in W [fa; bg, so x 2W . The graph G� can not contain an edge between
a and b, since then � can not be an s-node. This proves the claim.

Suppose � has children with labels (a; x1),(x1; x2); : : : ; (xt; b), respectively. We show that
t = 1 and x1 = xt = c. Suppose not. First suppose that xt 6= c. Add an edge between xt and b;
this again gives a series parallel graph. Now, by contracting all nodes in W except c to d, we get
a K4 minor, contradiction. Hence xt = c. Now suppose that t > 1. There is a leaf node with
label (a; c) or label (c; a) which is a descendant of �, since there is an edge fa; cg. But vertex a
occurs only in the labels of the subtree of the child of � with label (a; x1). Furthermore, vertex
c occurs only in the labels of the subtrees of the children of � with labels (c; b) and (xt�1; c).
Since x1 6= c and xt�1 6= a, this means that there can be no leaf node with label (a; c) or
(c; a), which gives a contradiction. So t = 1, the children of � have labels (a; c) and (c; b),
respectively. It can be seen that the child with label (c; b) is a leaf node, corresponding to edge
fb; cg. By straightforward deduction, it follows that the sp-tree of G has the tree from the left-
hand side of Figure 4(i) as a subtree. We can replace this subtree by the subtree shown in the
right-hand side of Figure 4(i) and get an sp-tree of G0.

Case 1.2. Now, we suppose the simple path P from s to t that uses the edge fa; bg, also uses
node e. There are a two different cases:

Case 1.2.1. PathP is of the form s; : : : ; e; (: : : ;)a; b; : : : ; t. Now,G+fs; tg is series parallel,
but contains K4 as a minor, contradiction.

Case 1.2.2. Path P is of the form s; : : : ; a; b; : : : ; e; : : : ; t. Now, we have a simple path
s; : : : ; a; e; : : : ; t, that does not use b. This case can be analysed in exactly the same way as
the cases above, leading to a subtree transformation, as shown in Figure 4(iii).

Case 2. We now suppose that the path P visits b before a. This case can be dealt with in the
same way as Case 1, only with directions reversed. See Figures 4(ii),(iv).

This ends ‘only if’ part of the proof. The ‘if’ part is very similar. In this case, the same
transformations as above are done, but in opposite direction. 2

11

e a

b aa b

ab

a ba b

c bac

a ca c

d cad

a da d

e dae

a e

ab

a b

c bac

a ca c

e cae

a e

b a

b a

b c c a

c ac a

da

d ad a

e a

e a

c a

c d

d e

b a

b a

b c c a

c ac a

e a

e a

c a

c e

i ii

ae

a e

d ead

a da d

c dac

a ca c

b cab

a b

ae

a e

c eac

a ca c

b cab

a b

iii

e a

e a

e d da

d ac a

c a

c ac a

b a

b a

d a

d c

c b

e a

e a

e c c a

c ac a

b a

b a

c a

c b

iv

b a

a e a e e a

Figure 4: Transformations of subtrees for Rule 3.

12

Rules 4 – 18 Rules 4 – 18 are depicted in Figure 3.

Lemma 3.4. Suppose (G0; s; t) is obtained from (G; s; t) by one application of of one of the
Rules 4 – 18. Then, (G; s; t) is a series parallel graph, if and only if (G0; s; t) is a series parallel
graph.

Proof. The proof is similar to the proof of Lemma 3.3. As an example, consider Rule 4. Sup-
pose (G; s; t) is a series parallel graph, and let T be a minimal sp-tree of (G; s; t). Consider
a simple path P from s to t that uses the edge fa; bg. First suppose P visits a before b. We
distinguish four cases.

Case 1. P does not use vertices c and d. We can show that (G0; s; t) is series parallel in the
same way as in Case 1.1 in the proof of Lemma 3.3 (define W to be the component of
G[V � fa; bg] which contains c and d).

Case 2. P uses c but not d. Then either c is on the sub-path s; : : : ; a of P or c is on the sub-path
b; : : : ; t of P . In both cases, G+fs; tg contains aK4 minor, which gives a contradiction.

Case 3. P uses d but not c. This case is similar to Case 2, and hence gives a contradiction.

Case 4. P uses both c and d. If c and d both occur on the sub-path s; : : : ; a of P , or on the
sub-path b; : : : ; t of P , then G+ fs; tg contains a K4 minor.

If P = s; : : : ; d; : : : ; a; b; : : : ; c; : : : ; t, then G+ fs; tg also contains a K4 minor.

If P = s; : : : ; c; : : : ; a; b; : : : ; d; : : : ; t then there is a simple path from s to t that uses the
edge fc; dg, and does not use a and b. This case is similar to Case 1.

The case that P visits vertex b before a can be solved in the same way. This ends the ‘only if’
part of the proof. The ‘if’ part can be handled in the same way.

For the proof of Rules 5–18, we can apply exactly the same technique. 2

An important consequence of the proofs of Lemmas 3.1 – 3.4 is that the proofs are construc-
tive: especially, when we have a minimal sp-tree of the reduced graph, we can build, in O(1)
time, a minimal sp-tree of the original graph.

4 A structural lemma

A set of reductions is said to be concurrent, if no inner vertex of any subgraph to be rewritten
also occurs in another subgraph to be rewritten. So the subgraphs to be rewritten can share
terminals. Note that it is possible to carry out all reductions of a concurrent set of reductions
simultaneously.

Lemma 4.1. Let G = (V;E) be a series parallel graph. There is a concurrent set of at least
jEj=204 reductions in G of Rules 1 — 18.

13

Proof. Consider the minimal sp-tree T of G. The number of leaves of T equals jEj. We argue
that the number of leaves of T is at most equal to 204 times the number of concurrent applica-
tions of reduction rules. Therefore, we consider different ‘classes’ of leaves.

A leaf node � in T is good if it is a child of a parallel node and has at least one sibling which
is a leaf (i.e. � is child of a parallel node which has at least two leaf children), or it is a child of
a series node and one of �’s neighbouring siblings also is a leaf node (i.e. � is child of a series
node which has at least two successive leaf children of which� is one). Note that the edges that
correspond to good leaf nodes can occur in the application of reduction Rule 1 or 2.

An internal node in T is green if it has at least one good leaf child.
A node in T is branching if it is an internal node, and has at least two internal nodes as its

children.
A leaf is bad if it is not good, and its parent is branching or green. Most edges that corre-

spond to bad leaves can not occur in any application of a reduction rule.
Note that the leaf children of a branching node which is not green are all bad, and the leaf

children of a green node are either bad or good.
Now consider the other leaf nodes in T . An internal node is blue if it is not branching or

green, but it has a descendant that is branching or green at distance at most 33.
An internal node is yellow if it is not branching, green or blue.
The total number of leaves in T equals the number of good leaves plus the number of bad

leaves plus the number of leaf children of blue nodes plus the number of leaf children of yellow
nodes. We now derive an upper bound for the number of leaves in each of these classes, in terms
of the number of concurrent applications of reduction rules.

Good leaves. If a green p-node has m good leaves, then we can concurrently apply at least
bm=2c times reduction Rule 2 on the edges corresponding to these leaves. If a green s-node has
m good leaves, then we can concurrently apply at least bm=3c times reduction Rule 1 on the
edges corresponding to these leaves. Hence the number of good leaves is at most three times
the number of concurrent applications of reduction Rules 1 and 2.

Bad leaves.

Claim 4.1. The number of bad leaves is at most twice the number of branching nodes plus the
number of green nodes plus the number of blue nodes.

Proof. Let � be a bad leaf. If �’s parent is a parallel node, then account � to its parent (which
has at most one bad leaf). If �’s parent is a series node, then account � to its neighbouring
sibling on the right if it has one, or to its parent otherwise. In this way, each branching node
has at most two leaves accounted to it: at most one of its children and possibly its neighbouring
sibling on the left. Each green, yellow or blue node has at most one bad leaf accounted to it,
namely its neighbouring sibling on the left. If a yellow node� has a bad leaf accounted to it, then
its highest blue descendant
 has no bad leaf accounted to it, since it does not have a branching
parent. Furthermore, all yellow nodes on the path from � to
 have no bad leaf accounted to
it, since they have no branching parents. Hence we can account the bad leaf that is accounted
to �, to �. This means that the number of bad leaves accounted to yellow and blue nodes is at
most equal to the number of blue nodes. This proves the claim. 2

14

In each green node, we can apply Rule 1 or 2 on two of the edges corresponding to its good
leaves. Hence the number of green nodes is at most equal to the number of concurrent applica-
tions of Rules 1 and 2. We now bound the number of branching and blue nodes by the number
of green nodes in order to bound the number of bad leaves.

Claim 4.2. The number of branching nodes is at most equal to the number of green nodes.

Proof. Make tree T 0 from T , by removing all nodes that are not green and not branching, while
preserving successor-relationships. Note that, in T , every internal node that has only leaves as
child is green, hence every branching node still has at least two children in T 0. Moreover, every
leaf of T 0 is green. Since the number of internal nodes in a tree with two or more children is
at most the number of leaves, the number of branching nodes is at most the number of green
nodes in T 0, and hence in T . 2

Consider the number of blue nodes. The number of blue nodes is at most 33 times the num-
ber of branching and green nodes: account each blue node to the closest descendant which is
branching or green. Since the number of branching nodes is at most the number of green nodes,
this means that the number of blue nodes is at most 2�33 = 66 times the number of green nodes.

This means that the number of bad leaves is at most equal to 2 + 1 + 66 = 69 times the
number of green nodes, which is at most 69 times the number of concurrent applications of
Rules 1 and 2.

Leaves of blue nodes. The number of blue nodes is at most 66 times the number of green
nodes. Each blue node has at most two leaf children, which means that the number of leaves
of blue nodes is at most 2 � 66 = 132 times the number of concurrent applications of Rules 1
and 2.

Leaves of yellow nodes. Consider a path in T which consists of 33 successive yellow and
blue nodes, such that the highest node in this path is a parallel node. Each node in this path
either is a p-node with as its children one leaf node and one s-node, or it is an s-node with as its
children one p-node and one or two non-neighbouring leaf nodes.

The edges associated to the leaves that are a child of the nodes in this path form a subgraph
of G of a special form: they form a sequence of 16 cycles of length three or four, each sharing
one edge with the previous cycle, and one edge with the next (except of course for the first
and last cycle in the sequence); three successive cycles do not share one common edge. As no
series node on the path has two successive leaf nodes, we have that the shared edges of a cycle
of length four do not have a vertex in common. We call such a subgraph a cycle-sequence. See
Figure 5 for an example.

Claim 4.3. In a cycle-sequence which consists of 16 cycles, one of the Rules 3 – 18 can be
applied.

Proof. Consider a sequence of 33 successive yellow and blue nodes starting and ending with a
p-node, and its corresponding cycle-sequence. Let �a = a1; a2; : : : ; as, �b = b1; b2; : : : ; bt, such
that each node on the path of yellow and blue nodes has label (ai; bj), 1 � i � s, 1 � j � t,

15

a1

b1

a2 a4a3 a11

b2 b10

a5 a6 a8a7 a10a9

b3 b4 b5 b6 b7 b8 b9

Figure 5: Subgraph of G corresponding to a path of 33 yellow or blue nodes in the sp-tree, of
which the highest one is a p-node with label (a1; b1), and the lowest one is a p-node with label
(a11; b10). Only a1, b1, a11 and b10 may be incident with edges outside the subgraph.

Figure 6: Five successive triangles with one vertex in common

and for each 1 � i < i0 � s (1 � j < j0 � t), ai 6= ai0 (bj 6= bj0), and the highest node
containing ai0 (bj0) in its label is a descendant of the lowest node containing ai (bj) in its label
(hence the highest node has label (a1; b1), the lowest node has label (as; bt), and all ai and bj
occur at least once in a label). Let P1 = a1; a2; : : : ; as and let P2 = b1; b2; : : : ; bt. Note that P1
and P2 are paths in G. We call them the bounding paths of the cycle-sequence (see Figure 5).

If the cycle-sequence contains a cycle-sequence of five successive triangles with one vertex
in common as its subsequence, as in Figure 6, then Rule 3 can be applied. Suppose such a sub-
sequence does not exist. It follows that the edge between the fifth and sixth three- or four-cycle
in the sequence does not have an endpoint that is also endpoint of an edge not in the subgraph;
similarly for the edge between the 11th and 12th cycle. Moreover, all vertices that belong to
the sixth till 11th cycle belong to at most six three- or four-cycles, and hence have degree at
most seven. Consider the cycle-sequence formed by the sixth till 11th cycle. Let P 0

1 and P 0

2

be the bounding paths of this cycle-sequence, suppose P 0

1 has length (i.e. number of edges) m
and P 0

2 has length n. We now show that we can apply one of the reduction Rules 4 – 18 on this
cycle-sequence.

Suppose w.l.o.g. that m � n. We first show that m � 2 and n � 3. If m = 0, then the
only vertex of P 0

1 occurs in six triangles. If m = 1 then one of the vertices of P 0

1 occurs in three
triangles. Hence if m � 1 then we can apply Rule 3 to the cycle-sequence. If m = n = 2, then
the cycle-sequence consists of at most four cycles. Hence n � 3 and m � 2.

The left-hand sides of Rules 4 – 15 represent exactly the cycle-sequences with one bounding
path of length two and one of length three which can not be reduced by applying Rule 3. The
left-hand sides of Rules 17 and 18 represent exactly the cycle-sequences with two bounding
paths of length three which can not be reduced by applying one of the Rules 3 – 15. Hence if
our cycle-sequence contains a subsequence with one bounding path of length three and one of
length two or three, then we can apply one of the Rules 3 – 15, 17 or 18.

Now suppose the cycle-sequence does not contain such a subsequence. We show that

16

Rule 16 is applicable. The shortest of the two bounding paths has length at least two and the
longest one has length at least three. Remove one of the outermost cycles of the cycle-sequence
until one of these conditions would be violated by removing another outermost cycle. Let P 00

1

be the shortest bounding path and P 00

2 the longest bounding path of the obtained cycle-sequence.
If P 00

1 has length three, then P 00

2 must have length three, otherwise we can remove another
outer-cycle. But that means that one of the Rules 4 – 15, 17 and 18 can be applied. Hence P 00

1

has length two. If P 00

2 has length three, then one of the Rules 4 – 15 can be applied, hence P 00

2

has length four or more. If its length is five or more, then Rule 3 is applicable, hence its length
is four. Then the outermost cycles must be squares, otherwise Rule 3 is again applicable. But
that means that the cycle-sequence is equal to the left-hand side of Rule 16. This proves the
claim. 2

In a sequence of 34 successive yellow and blue nodes in T , we can find one path of 33
successive yellow and blue nodes, such that the highest node in this path is a p-node. We can find
a number of disjoint paths of 34 successive yellow and blue nodes, such that each yellow node
is in exactly one such path. This means that the largest number of disjoint paths of successive
yellow and blue nodes of length 34 that we can find in T is at least 1=34 times the number of
yellow nodes. Hence the number of concurrent applications of Rules 3 – 18 is at least1=34 times
the number of yellow nodes. This means that the number of leaf children of yellow nodes is at
least 2 � 34 = 68 times the number of concurrent applications of Rules 3 – 18.

The total number of leaves in T is now at most 3 + 69 + 132 = 204 times the number of
concurrent applications of Rules 1 and 2 plus 68 times the number of concurrent applications
of Rules 3 – 18. Since the applications of Rules 1 and 2 do not interfere with the applications
of the other Rules, we have that the number of leaves in T is at most 204 times the number of
concurrent applications of reduction Rules in G. This completes the proof. 2

5 Main algorithm

In this section, we give the main algorithm. Suppose we have given an undirected, not neces-
sarily simple, graph G with two specified vertices s and t, and we want to determine if (G; s; t)
is series parallel, and if so, we want to build an sp-tree for G. The algorithm consists of two
main phases. The first phase consists of O(logm) reduction rounds. In each reduction round,
a number of reductions is carried out, each round (when the input is a series parallel graph) re-
ducing the number of edges of G with at least a constant fraction. In the first phase, the input
graph is reduced to a single edge fs; tg if and only if it is series parallel. If (G; s; t) is not se-
ries parallel, i.e., we do not have a single edge after the first phase, then the algorithms stops.
Otherwise, we proceed with the second phase. In the second phase, all reductions are undone,
in an equally large number of rounds. During the ‘undoing’ of the reductions, we maintain a
minimal sp-tree of the current graph. (One can additionally also maintain a binary sp-tree of
the current graph.)

A round in the first phase consists of a few steps. First, every edge ‘looks around’ to see
whether it can take part in a reduction. Here, possibly not all possible reductions are found,
but at least ‘a large enough number of possible reductions’ are found. Then, a subset of the

17

reductions is selected, such that these reductions do not create conflicts when carried out si-
multaneously. Finally, the reductions are done — some bookkeeping is done such that later the
reductions can be undone.

Which edges can take part in an application of Rules 1, or 3 – 18, can easily be determined,
by only looking at adjacency lists of nodes of degree at most seven, in O(1) time per node. In
a reduction step, all possible choices for reductions of these rules are found. However, we will
not find all possible choices for Rule 2 reductions: this is probably not possible in the given
time bounds in the EREW PRAM model. Instead, every edge looks in both adjacency lists of
its endpoints to those edges that have distance at most ten, and the edge proposes a reduction,
if one of these edges it looks at has the same endpoints. Thus, this rule application can also be
carried out in O(1) time per edge. (Adjacency lists are assumed to be cyclic.)

Each reduction found in this way is said to be enabled. We now show that
(jEj) reductions
are enabled.

Lemma 5.1. If G = (V;E) is a simple series parallel graph, then jEj � 2jV j.

Say an edge is bad, if it has a parallel edge, but no parallel edge is found in the procedure
above.

Lemma 5.2. If (G; s; t) is series parallel, then there are at most 2jEj=5 bad edges.

Proof. Consider a tree-decomposition (fXi j i 2 Ig; T) of G of width two, and choose an
arbitrary node i 2 I as root of T . For a v 2 V , let rv be the highest node in T with v 2 Xrv .
If fv; wg 2 E, then note that either rv = rw, or rv is an ancestor of rw, or rw is an ancestor of
rv , as there is a node with labels v and w.

For every bad edge fv; wg, associate the edge with v if rv = rw, or rw is an ancestor of rv;
otherwise, associate the edge with w. Suppose bad edge fv; wg is associated with v. Now, Xrv

must contain both v and w. It follows that there are at most jXrv j � 1 � 2 different vertices
w, such that bad edges fv; wg can be associated with v (namely, the vertices in Xrv � fvg).
For each such w, each ten successive positions in the (cyclic) adjacency list of v can contain at
most one bad edge of the form fv; wg, hence there are at most degree(v)=10 bad edges fv; wg
associated with v, and hence in total, at most degree(v)=5 bad edges are associated with v. The
stated bound is derived by taking the sum over all vertices. 2

Now, if jEj � 4n, then there are at least jEj � 2n edges that are parallel to another edge,
of which at most 2jEj=5 are bad. Hence, 3=5jEj � 2n � 3=5jEj � 1=2jEj = jEj=10 edges
find a parallel edge. Hence
(E) reductions are enabled.

Now, suppose jEj � 4n. We now apply Lemma 4.1 above on the simple graph underlying
G. I.e., let G0 be obtained from G by removing all second and further occurrences of parallel
edges. Note that G0 has at least n � 1 edges. (We ignore the simple case that G0 consists of a
single edge in the remainder.) Hence, there are at least (n� 1)=204 reductions possible on G0,
and as G0 has no parallel edges, each of these is of Rules 1 or 3 – 18. For each reduction in this
set, there are two possibilities: either the reduction is also possible in G, or there are parallel
edges between two vertices that are both involved in the reduction. But, as at least one of these
two vertices has degree at most seven in G0, at least some parallel edges will be detected with

18

this node as endpoint. This shows that at least (n�1)=204 possible reductions will be enabled,
but as jEj � 4n, these are
(jEj) reductions.

As subgraphs that are involved in enabled rule applications may overlap, it is not possible
to carry out all enabled rule applications simultaneously. Also, some reduction-pairs would try
to simultaneously write or read to a memory location. Thus, it is needed to find a large set of
reductions that can be carried out simultaneously, without any conflicts arising. This is solved
in the same way as the reduction algorithms in [4] are done: a ‘conflict graph’ is built; one
can note that this conflict graph has bounded degree, and a large independent set in the conflict
graph is then found. By using the same approach as in [4], we can carry out all reductions in
O(logm � log�m) time with O(m) operations and O(m) space on an EREW PRAM, and with
O(logm) time and O(m) operations and O(m) space on a CRCW PRAM.

This situation is handled further in exactly the same way as in [4].
As each reduction round reduces the number of edges with a constant fraction when the

input is a series parallel graph, after O(logm) reduction rounds we can conclude whether the
input was series parallel or not, depending on whether we end up with a single edge or not.
(Note that all reductions are safe, i.e., we start with a series parallel graph if and only if we end
with a series parallel graph.)

The second phase builds the sp-tree, in case (G; s; t) was series parallel. The sp-tree is rep-
resented as follows. Each node in the tree has a mark denoting its type (series, parallel or leaf),
a mark containing its label, a pointer to its parent, and a pointer to a doubly linked list of its
children (in the correct order if it is a series node). Furthermore, each vertex v in the graph has
a pointer to one of the nodes in the sp-tree that contains v in its label.

We start with the simple sp-tree, with a single node, labelled (s; t). Then, we undo each
reduction round. Given an sp-tree for the reduced graph, we build the sp-tree for the graph as
it was just before this reduction round was carried out in the first phase, using the constructions
as in the proofs of Lemmas 3.1 – 3.4. The processor that carried out the reduction in the first
round will be the same processor that carries out the undoing of the reduction. Note that each
undoing of a single reduction can be done in O(1) time without concurrent reading or writing.

A small modification to the construction also allows us not only to maintain a minimal sp-
tree, but also a binary sp-tree.

This technique was based on work, reported in [3], where also more details can be found.

Theorem 5.1. The following problem can be solved inO(m) operations, andO(logm log�m)
time on a EREW PRAM, and O(logm) time on a CRCW PRAM: given a graph G = (V;E),
and s; t 2 V , determine whether G is series parallel with source s and sink t, and if so, find a
minimal or binary sp-tree.

6 Additional results for series parallel graphs

The algorithm, given in the previous section can also be used to solve the recognition problem
for directed series parallel graphs, and for series parallel graphs without specified source and
sink. Also, it can be used as a first step to solve many other problems on series parallel graphs.

First, suppose we are given a graph G = (V;E), and want to determine whether G is series
parallel with a proper choice of terminals. In [7], it was shown (using results from [6]) that this

19

problem reduces in a direct way to the problem with specified vertices, as the following result
holds.

Theorem 6.1. [Eppstein [7]] Let G = (V;E) be an undirected graph. If there exist vertices
r; q 2 V , such that (G; r; q) is series parallel, then (G; s; t) is series parallel, with source s 2 V
and sink t 2 V chosen in the following way.

� If G is biconnected, then s and t are chosen to be adjacent vertices.

� If G is not biconnected, then there must be exactly two biconnected components that con-
tain only one cut vertex. Source s is taken to be a vertex in one such biconnected com-
ponent, such that s is adjacent to the cut vertex of the biconnected component. Sink t is
taken in the same way in the other biconnected component with one cut vertex.

Now, note that the characterisation of s and t as in Theorem 6.1 above can be formulated
in monadic second order logic (using techniques from e.g., [5]); hence, it is possible (using
techniques of [4, 3]) to find values of s and t which fulfil the conditions of Theorem 6.1 in
O(logm log�m) time, withO(m) operations and space on an EREW PRAM, and in O(logm)
time, and O(m) operations and space on a CRCW PRAM. While the resulting algorithm will
probably not be efficient, this result does not rely on non-constructive arguing. (We expect that
a more straightforward approach, based on reduction, will also work here.)

When G is directed, then one can use the modification, described in [7]: solve the problem
first on the underlying undirected graph, and then verify that all edges have the proper direction.
If s and t are not specified, then take for s the vertex with indegree 0, and for t the vertex with
outdegree 0.

Theorem 6.2. Each of the following problems can be solved in O(m) operations, and
O(logm log�m) time on an EREW PRAM, and O(logm) time on a CRCW PRAM.

1. Given a graph G = (V;E), determine if there exist s 2 V , t 2 V , such that G is series
parallel with source s and sink t, and if so, find a corresponding sp-tree.

2. Given a directed graph G = (V;E), and s; t 2 V , determine whether G is series parallel
with source s and sink t, and if so, find a corresponding sp-tree.

3. Given a directed graph G = (V;E), determine if there exist s 2 V , t 2 V , such that G
is series parallel with source s and sink t, and if so, find a corresponding sp-tree.

Using the connection with treewidth, it is possible to design a large class of algorithms,
solving problems on series parallel graphs. Many problems can be solved in O(logn) time,
and O(n) operations and space, when the input graph is simple, and is given together with a
tree-decomposition of bounded treewidth. These include all problems that can be formulated
in monadic second order logic and its extensions, all problems that are ‘finite state’, etc. A
large number of interesting and important graph problems can be dealt in this way, includ-
ing CHROMATIC NUMBER, MAXIMUM CLIQUE, MAXIMUM INDEPENDENT SET, HAMIL-
TONIAN CIRCUIT, STEINER TREE, LONGEST PATH, etc. See [4].

20

Now, note that we can build a tree-decomposition of treewidth two of a given series par-
allel graph in the following way: first make a binary sp-tree, and then use the construction of
Lemma 2.5.

Lemma 6.1. One can find a tree-decomposition of treewidth two of a series parallel graph in
O(logm log�m) time, O(m) operations, and O(m) space on an EREW PRAM, and O(logm)
time, O(m) operations and O(m) space on a CRCW PRAM.

As a consequence, a very large class of graph problems can be solved in the same time
bounds.

Acknowledgement

We like to thank Torben Hagerup for help and useful discussions.

References

[1] S. Arnborg, B. Courcelle, A. Proskurowski, and D. Seese. An algebraic theory of graph
reduction. J. ACM, 40:1134–1164, 1993.

[2] M. W. Bern, E. L. Lawler, and A. L. Wong. Linear time computation of optimal subgraphs
of decomposable graphs. J. Algorithms, 8:216–235, 1987.

[3] H. L. Bodlaender and B. de Fluiter. Reduction algorithms for graphs with small treewidth.
Technical Report UU-CS-1995-37, Department of Computer Science, Utrecht University,
Utrecht, 1995.

[4] H. L. Bodlaender and T. Hagerup. Parallel algorithms with optimal speedup for bounded
treewidth. In Z. Fülöp and F. Gécseg, editors, Proceedings 22nd International Colloquium
on Automata, Languages and Programming, pages 268–279, Berlin, 1995. Springer-
Verlag, Lecture Notes in Computer Science 944.

[5] R. B. Borie, R. G. Parker, and C. A. Tovey. Automatic generation of linear-time algo-
rithms from predicate calculus descriptions of problems on recursively constructed graph
families. Algorithmica, 7:555–581, 1992.

[6] R. J. Duffin. Topology of series-parallel graphs. J. Math. Anal. Appl., 10:303–318, 1965.

[7] D. Eppstein. Parallel recognition of series parallel graphs. Information and Computation,
98:41–55, 1992.

[8] X. He and Y. Yesha. Parallel recognition and decomposition of two terminal series parallel
graphs. Information and Computation, 75:15–38, 1987.

[9] T. Kikuno, N. Yoshida, and Y. Kakuda. A linear algorithm for the domination number of
a series-parallel graph. Disc. Appl. Math., 5:299–311, 1983.

21

[10] K. Takamizawa, T. Nishizeki, and N. Saito. Linear-time computability of combinatorial
problems on series-parallel graphs. J. ACM, 29:623–641, 1982.

[11] J. Valdes, R. E. Tarjan, and E. L. Lawler. The recognition of series parallel digraphs. SIAM
J. Comput., 11:298–313, 1982.

22

