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Abstract

We study an approach to concurrent contractions, that is, to simultaneous contrac-

tions performed by multiple agents. Using ideas from the semantics of programming

we adopt an interleaved approach to reason about concurrent contractions. Although

many of the notions from the traditional G�ardenfors approach transfer to this setting,

our approach also forces us to depart from the G�ardenfors framework in important

ways. We present laws describing rational concurrent contractions, as well as a con-

struction that satis�es these laws.

1 Introduction

In real life concurrent accessing of data is the rule. Multiple agents are working on the
same theory, and multiple copies of some data are kept in di�erent locations. Typical
examples include scienti�c research or writing a joint-publication, and practical applica-
tions vary from networks of personal computers and workstations sharing some common
information to widely distributed applications such as automatic teller machines. The
primary advantage of concurrent theory change as opposed to single agent theory change
is the ability to share, access and engineer data in an e�cient manner. The primary dis-
advantage is the added complexity required to ensure proper coordination between the
agents taking part.

In a multi-agent setting, managing a belief set is a concurrent task: not only may
several agents retrieve information from one and the same source, but it may also be
the case that multiple agents have permission to alter a database (the 
ight booking
procedures are a typical example here). What are sensible strategies for con
ict resolution
in case inconsistency strikes? The task of maintaining consistency in the setting of multi-
agent theory change is more complex than in the single agent case, if only because of the
many possibilities that become visible.

This paper is part of a larger project on concurrent theory change (see [7]). Its purpose
is to demonstrate that concurrent theory change forms an interesting extension of the
traditional G�ardenfors style approach towards theory change, one that has many faces
and that calls for new tools. Here we will con�ne ourselves to the simplest case in which
a number of agents have access to shared data. The data are changed via contractions,
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which may in principle be proposed by any one of the agents. We will explore some of
the options and problems that present themselves. A central question of this paper is:
assuming that multiple agents, each guided by a familiar set of rationality postulates,
propose or perform (single agent) contractions for a shared theory, | what are the laws
governing the global contractions?

The rest of the paper is organized as follows. In Section 2 we brie
y outline the
general set-up. Section 3 contains an informal discussion of concurrent contractions, and
Section 4 recalls some facts from the standard G�ardenfors framework. Then, in Sections 5,
6 and 7 we present our formal approach to concurrent contractions, based on the idea of
interleaving. We conclude the paper with comments and suggestions for further work in
Section 8.

2 General Set-up

There have been many proposals to alter or extend the basic Alchourr�on, G�ardenfors,
Makinson (AGM) framework of theory change (see [5] for an overview), but most of the
literature in the AGM tradition focuses on a single agent changing a theory as she receives
new information. The actions of this solitary agent are usually speci�ed in terms of
functional input/output behavior:

(T; �) 7! T 0; (1)

where the input consists of a collection of sentences T (the material to be changed) and a
sentence � (the newly received information), and the output is a collection of sentences T 0

(the result of the cognitive action). Traditionally, three forms of theory change are consid-
ered: expansions , where we add � to T and close under logical consequence; contractions ,
where we remove � from T while preserving as much of T as possible; and revisions , where
we add � to T while maintaining or restoring consistency. In this paper we change the
format given in (1), and consider concurrent contractions that are speci�ed by expressions
of the form

T �

0
B@
�1
...
�n

1
CA ; (2)

or T � ~�, where T is as before, and ~� is a vector of formulas to be contracted from T ; �
is the concurrent contraction action whose principles we want to understand. The basic
assumption here is that there are n agents A1, . . . , An, each of whom proposes or performs
a contraction of T in accordance with her own contraction operation. That is, A1 proposes
or performs a contraction of T by �1, . . . , An proposes or performs a contraction of T
by �n, where each agent Ai has her own contraction operation �i. The expression in (2)
denotes the result(s) of an operation on T that is somehow composed of contractions of T
by �1, . . . , �n performed by, respectively, A1, . . . , An using their respective contraction
operations �1, . . . , �n. The key questions we address are:

� How can we model concurrent contractions?

� Which laws govern the concurrent contraction operation �?

� How can � be understood in terms of the single agent operations �1, . . . , �n?
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Below we will explore concurrent contractions. We leave the much more complicated (and
realistic) case of heterogeneous concurrent theory change in which multi-agent contrac-
tions, revisions and expansions may take place concurrently to later publications.

3 Why Contract Concurrently?

Before proceeding we give an informal discussion of concurrent contractions. As outlined
above, our basic picture is one where n agents A1, . . . , An simultaneously want to remove
information from a given background theory T , that is: each agent proposes or performs
a contraction, using her private contraction operation.

To give an example of concurrent theory change at work, one can think of a patient's
record in a medical database. Various agents contribute to the theory contained in the
database: a family doctor's report, various laboratories with their test results, special-
ists with further information. . . . Clearly, it is important that consistency be preserved.
One may conceptualize this is by personifying consistency checking in terms of a checker
that performs consistency checks at certain discrete intervals. If the checker detects an
inconsistency in the shared theory, she rings the alarm bell, asking the agents to sug-
gest contractions that will help remove the inconsistency. The agents then perform or
suggest a contraction. Having di�erent areas of expertise, the agents are likely to base
their suggested contractions on di�erent notions of which information is more reliable (or
`epistemically entrenched') than other. In other words, when agents suggest a contraction
for the shared theory they suggest both which information should be given up, and how
this should be done in their opinion. Therefore, the global change that is to be made to
the theory is in general composed out of a �nite number of `private' contractions being
performed concurrently.

In the special case where all agents employ the same contraction function, there is a
clear connection with the multiple contractions proposed by Fuhrmann and Hansson [3],
and with forms of iterated belief change that have recently been described by Lehmann
and others (see [10]).

Ideas related to concurrent contraction also appear in non-epistemic settings. For
example, co-authoring and joint research are processes in which concurrent contractions
occur frequently. They seem especially appropriate when bugs or inconsistencies are dis-
covered in cases where agents have sole responsibilities for certain parts of the work, and
each author can perform contractions on the parts for which she holds responsibility. And
of course, in concurrent databases concurrent transactions occur all the time. It is di�-
cult, however, to �nd pure cases of concurrent contractions that are substantially di�erent
from the above ones.

4 Laws and Models for Single Agent Contractions

In this section we describe the laws governing the contraction operations of individual
agents taking part in a concurrent contraction; as explained above, we assume that each
agent comes equipped with her own contraction function. We start with some technical
preliminaries.

Our background language is simply propositional logic, equipped with a classical con-
sequence operator Cn that satis�es all the usual properties (see [4]). A theory is a set of
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formulas T that is closed under Cn; a belief base K is a set of formulas that needs not
be a theory. In the AGM tradition there are two ways of reasoning about contraction
functions, a syntactic way which speci�es postulates that reasonable contraction functions
should satisfy, and a semantic way that de�nes contractions functions obeying those laws.
Here's a list of the standard AGM postulates for contraction.

T � � is a theory (logically closed) whenever T is (Closure)

T � � � T (Inclusion)

If � =2 T , then T � � = T (Vacuity)

If 6` �, then � =2 T � � (Success)

If � 2 T , then T � Cn((T � �) [ �) (Recovery)

If ` �$  then T � � = T �  (Extensionality)

We refer the reader to [4, 5] for a discussion. The above laws constrain how contraction
functions � should operate on a single, �xed theory T . But when n agents each come
up with a formula �i to be contracted from a theory T , they should not only provide the
system with a contraction function �i, but, since the actual implementation of T � ~�

may deal with several `intermediate' results T 0 from which some of the �i's still have to be
contracted, their contraction functions should indicate how to remove �i from arbitrary
theories.

Hansson [6] gives a formal account of contraction functions able to deal with arbitrary
theories. His approach is formulated in terms of belief bases K rather than theories T , and
he moreover allows for contractions with sets of formulas rather than single formulas. We
reformulate Hansson's original postulates for the `base/set' case for the `theory/formula'
case.

De�nition 1 (Postulates for single agent contraction) We propose the following
postulates for a single agent contraction function � that is de�ned for any theory T and
formula �:

T � � is a theory (logically closed) whenever T is (Closure)

T � � � T (Inclusion)

If  2 T n (T � �) then there exists T 0 with T � � � T 0 � T (Relevance)
and T 0 6` �, but T 0;  ` �

If T 0 ` �$  for all subtheories T 0 � T , then T � � = T �  (Uniformity)

If 6` �, then � =2 T � � (Success)

Relevance ensures that if a formula  is excluded from T when � is rejected, then  plays
a role in the fact that T implies �. Whereas Success ensures that formulas that should be
given up are in fact given up, Relevance blocks the deletion of formulas that need not be
deleted. Uniformity ensures that the result of contracting T with � depends only on the
subsets of T that imply �; if all subsets derive a given formula � i� they derive  , then
contracting with either � or  produces the same result. Observe that Vacuity is derivable
from Inclusion and Relevance.

In the setting of concurrent contractions it may well be that some agents want to
refrain from action. The next proposition shows how we can mimic this situation.
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Proposition 2 If a contraction function � satis�es the postulates of De�nition 1, then,
for any theory T and tautology >, we have T � > = T .

The best known model of a contraction function in the AGM theory is partial meet
contraction. It is de�ned as follows. Let T ? � denote the set of maximal subsets of T
that fail to imply �. A one-place selection function for T is a function s such that for all
formulas �, if T ? � is non-empty, then s(T ? �) is a non-empty subset of T ? �. When
T ? � is empty, s(T ? �) = fTg. Then, an operation � on a theory T is a partial meet
contraction if T � � is the intersection of the selected maximal subsets of T that fail to
imply �: T � � =

T
s(T ? �).

One-place selection functions are speci�c for a particular theory; if s is a one-place
selection function for T , and T 6= T 0, then s is not a one-place selection function for
T 0 (see Hansson [6]). Selection functions that work for arbitrary theories are obtained
by extending them with an additional argument; thus we will assume that each agent i
is equipped with a two-placed selection function s, where, for each theory T and set of
theories (S ?  ), we have s(T; (S ?  )) � (S ?  ).

The following result links up the postulates for � with two-placed contraction func-
tions; a proof is given in the Appendix.

Theorem 3 A single agent contraction function � satis�es the postulates of De�nition 1
i� there exists a two-placed selection function s with T � � =

T
s(T; (T ? �)), for any

theory T and formula �.

Now that we have shown how an agent's contractions can be modeled using two-placed
contraction functions s, we pause a moment and re
ect upon the desired e�ects of the �rst
argument of s. Recall that S ?  denotes all maximal sub-theories of S that do not entail
 (if 6`  ). When contracting  from S, the function s should make a selection from these
sub-theories. This selection should principally re
ect the agent's preferences among the
theories in (S ?  ). Thus, if we have

(S ?  ) = (U ? �) 6= ;;

it seems natural to require that

\
s(S; (S ?  )) =

\
s(U; (U ? �)):

In other words, the common parts of the selections agrees whenever possible.1 Hansson
calls a selection function with this property uni�ed . When working with belief bases
this property doesn't come for free. Hansson comes up with a condition on contraction
functions called redundancy to characterize uni�ed partial meet contractions. In our set
up this redundancy principle reads as follows:

Redundancy reformulated. Suppose T is a theory, and 6` �. Suppose furthermore
that Z is a set of formulas, satisfying: (i) T [Z is a theory, and (ii) for all � 2 Z: ` � ! �.
Then we have: T � � = (T [ Z)� �.

1Note that the �rst argument of s is still relevant: when modeling a contraction T � �, we calculate
s(T; (T ? �)).
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Theorem 4 If a contraction function � satis�es the postulates of De�nition 1, then it
also satis�es redundancy.

Theorem 4 (the proof of which is to be found in the Appendix) guarantees that we do
not have to add redundancy as a separate postulate, so that we can now formulate the
main result of this Section; its proof is given in the Appendix.

Theorem 5 A single agent contraction function � satis�es the postulates of De�nition 1
i� there exists a two-placed uni�ed selection function s with T � � =

T
s(T; (T ? �)), for

any theory T and formula �.

In the sequel, we will assume that selection functions are uni�ed, and we will often suppress
their �rst argument.

5 From Sequential to Interleaved Contractions

In many models of situations in which multiple agents need to access shared resources,
one �nds a reduction to a sequential, non-deterministic scheme. Our model of concurrent
contractions will be based on the same idea. To see how we arrive at our model, consider
the following diagram in which a contraction by a singel agent i is depicted by a line
segment labeled with i.

T

2

4

3

1

Figure 1: Overlapping contractions

It pictures how multiple agents might | in principle | act on a single theory T to perform
their individual contractions as time progresses: their actions might or might not overlap
in arbitrary ways. But what does it mean for an agent i to start a contraction while
another agent j is still performing her contraction? To what should i apply her selection
function? What should she act on, if not on the outcome of j's actions? To perform a
concurrent contraction one should execute the individual single agent contractions, one at
a time. Thus, instead of Figure 1, Figure 2 seems to o�er a much more realistic picture.

T

24 31

Figure 2: Interleaved contractions

To understand this situation, it may help to observe that there is a clear analogy
with some forms of concurrent computation. Speci�cally, the situation is reminiscent
of the concurrent execution of several independent programs on a single processor (see
e.g. [2]). In a popular formal model concurrency is represented by interleaving . This
means that parallel processes are never executed at precisely the same instant, but take
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turns in executing atomic transitions. When one of the participating processes executes an
atomic transition, the others are inactive. Thus, rather than input/output pairs, execution
sequences of the atomic instructions of sequential processes are at the focus of attention.
And rather than talk about input/output pairs, one describes properties of concurrent
programs that hold under some or all interleavings of the instructions. Let us brie
y
expand on this issue.

As parallel execution of sequential processes is modeled by the non-deterministic in-
terleaving of atomic steps of the individual processes in interleaved models of concurrent
programs, a program starting in a given state may follow any one of a number of compu-
tation paths corresponding to the di�erent non-deterministic choices the program might
make. The di�erent computation paths thus represent alternative possible `futures': at
each moment, time may split into alternative courses and thus has a `branching' tree-
like structure. A semantic theory of computations provides a formal basis for describing
or deducing properties of programs under all possible interleavings (see [2] for further
details).

A similar concern is found in concurrent database theory, where one studies mecha-
nisms for controlling the execution of several transactions at the same time. Here, one of
the main interests lies in describing all possible executions of transactions and in identi-
fying serializable transactions, that is: transactions that are equivalent in some sense to
serial (consistency preserving) database transactions (see [9, Chapter 10] for an introduc-
tory overview).

In our setting of multi-agent contractions, we take a similar interleaved approach. Con-
current contractions will be viewed as (collections of) sequences of `atomic' single agent
contractions that don't overlap and that don't interfere. This interleaved approach calls
for new ways of thinking about theory change. For a start, if we reduce concurrent contrac-
tions to non-deterministic sequential contractions, instead of single one step contractions
we should be considering collections of sequences of contractions that are organized in a
tree as in Figure 3. But then, we also have to give up the idea of concurrent contractions

T

...
...

�n�1�n�1�1�1�n�n�2�2

: : :: : :

�n�n

. . .
�1�1

sss

@
@@R

�
��	
@
@@R

s

@
@@R

s

�
��	

s

�
��	

s

Figure 3: Interleaved contractions

as functions. For, in general, even singleton contractions are not commutative, that is:
the identity

(T � �1)� �2 = (T � �2)� �1

is not universally valid (see [6] for a plausible counterexample). Hence, even in the case
where we only have two agents that share the same contraction operation, say �1, the
global concurrent contraction T �

��1
�2

�
may have two interleaving executions leading to

di�erent results: (T �1 �1)�1 �2 and (T �1 �2)�1 �1. As a consequence, it makes little
sense to talk about the outcome of interleaved contractions. As a further consequence,
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we have to abandon the idea that contractions can be speci�ed in terms of preconditions
and postconditions. Instead, we need to reason about intermediate stages of a concurrent
contraction, as these clearly have internal structure in the interleaved approach.

6 Laws for Interleaved Contractions

Traditionally, AGM style theory change has had two main concerns: (1) Constraints
and axioms that rational operations of theory change should satisfy; and (2) Explicit
constructions of operations of theory change that satisfy those constraints or axioms. In
our approach to concurrent theory change we follow the same strategy. In particular, in
this section we present a list of postulates that any reasonable operation of interleaved
contraction should satisfy. Then, in Section 7 below, we present a model for interleaved
contractions that satis�es these postulates.

We �rst need some notation. Let ~� and ~ be vectors of formulas of length n. We write
~� � ~ for `for all i � n: ` �i $  i,' and for a set of formulas Z, ~� �Z

~ means that for
all i � n: Z ` �i $  i. Special vectors are ~> and ~?, consisting only of the formulas >
and ?, respectively; ~� [�=�i] denotes the result of replacing the i-th component �i by �.
A concurrent contraction function is a function that produces a set of theories when given
a theory T and a vector ~� as input. Finally, we write (T � ~�) / S for `S is a result of
concurrently contracting T with ~�.'

De�nition 6 (Basic postulates for interleaved contractions) Let T be a set of for-
mulas, and let n > 1 be a natural number (the number of agents taking part). We assume
that each �i satis�es the postulates for single agent contraction given in De�nition 1.

If T is a theory and (T � ~�) / S, then S is also a theory (C-closure)

If (T � ~�) / S then S � T (C-inclusion)

Suppose (T � ~�) / S and  62 S,  2 T . Then there are T 0 and i � n (C-relevance)
such that S � T 0 � T , T 0 6` �i, and T

0;  ` �i

If ~� �T 0
~ for all subtheories T 0 � T then (T � ~�) / S i� (T � ~ ) / S (C-uniformity)

For all i � n, if 6` �i and (T � ~�) / S, then �i =2 S (C-success)

If for all j 6= i, we have �j = >; then (T � ~�) / S i� S = T �i �i (Solo)

C-closure and C-inclusion are straightforward concurrent versions of their single agent
counterparts. C-Relevance says that for every formula  that is given up in a concurrent
contraction from T , there is an agent that is `responsible' for this removal; according to the
individual obedience to Relevance, this agent can determine a part of T from which the
formula he proposed for contraction has indeed been removed, and in the process of doing
this,  had to be given up. C-uniformity says that if no subtheory T 0 of T can distinguish
any component �i of ~� from the corresponding component  i of ~ , then concurrently
contracting ~� from T cannot be distinguished from concurrently contracting ~ from T .
This uniformity postulate implies the following condition of C-extensionality:

If ~� � ~ then (T � ~�) / S i� = (T � ~ ) / S (C-extensionality)

It guarantees that only the content of the individual's proposal for contraction matters,
not the actual form. C-success guarantees that, as long as an agent does not propose
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to contract a tautology, her request for contraction will have been granted in each of the
possible results. Thus, whereas C-relevance says that each formula that is given up in a
concurrent contraction should be due to one of the agents, C-success guarantees that all
of the agents' wishes will be met as far as they are reasonable. Finally, the Solo postulate
shows that interleaved contractions really builds on the individual contraction strategies:
when only one agent comes up with a non-trivial formula to be removed, it will be her
strategy that determines the result of the concurrent contraction.

The postulates in De�nition 6 provide no means to reason about possible `intermediate'
results of interleaved contractions, and they certainly don't impose the condition that the
concurrent contraction process can be unraveled into successive single agent contractions.
To make up for this, we consider two further laws: Decomposition and Composition.

(T � ~�) / S )

8>>><
>>>:

either T = S and ~� � ~>
or there exist S0 and i with i � n and
S � S0 � T such that �i 6� >, S0 = T�i�i
and (S0 � ~ ) / S, where ~ = ~�[>=�i]

(Decomposition)

Decomposition says that concurrently contracting with ~> is a void action and that a
concurrent contraction with ~� 6= ~> can be decomposed in an individual contraction �i

followed by another, yet simpler, concurrent contraction.

(T � ~�) / S (

8>>><
>>>:

either T = S and ~� � ~>
or there exist S0 and i with i � n and
S � S0 � T such that �i 6� >, S0 = T�i�i
and (S0 � ~ ) / S, where ~ = ~�[>=�i]

(Composition)

Composition states that if one recursively unravels a concurrent contraction T � ~� into an
individual contraction T�i�i followed by a concurrent contraction of a vector ~ (obtained
from ~�) from the theory (T �i �i), one ends up with a theory S that will be a result of
the initial concurrent contraction. Notice that the Solo postulate is a consequence of
Decomposition. If we think about interleaving contractions in an algorithmic way, we can
view the Composition and Decomposition postulates as halting criteria: to contract ~�
from T , try to turn all components of ~� into the formula > by successively contracting
with one �i after another until ~� equals ~>.

Observe that the conjunction of Decomposition and Composition is equivalent to the
following statement; let n be the length of ~�.

(T � ~�) / S i� there exists a permutation f of f1; : : : ; ng such that

S = ((� � �(T �f(1) �f(1)) � � �)�f(n) �f(n)):

Theorem 7 Assume that a set of individual contraction functions �i (1 � i � n) and a
concurrent contraction � are connected via the Decomposition and Composition laws. If
all the �i's satisfy the postulates from De�nition 1, then � satis�es all the Concurrent
postulates from De�nition 6.

Proof. Suppose all the �i's satisfy the postulates from De�nition 1. As pointed out above,
we have that (T � ~�) / S i� for some permutation f of f1; : : : ; ng

S = ((� � �(T �f(1) �f(1)) � � �)�f(n) �f(n)):
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Let T0 = T and Ti = Ti�1�f(i) �f(i), for i > 0. Note that, by Inclusion, we have Ti � Ti�1
(for 1 � i � n). Now, � satis�es C-closure trivially: if T is a theory then, by n applications
of Closure, T0; T1 : : :Tn = S are all theories. C-inclusion follows similarly.

For C-relevance, suppose all �i's satisfy Relevance, and suppose that (T � ~�) /
S; � 62 S;  2 T . Since each �i satis�es Inclusion, there must be some j such that  2 Tj ,
 62 Tj+1. Since Tj+1 = Tj �f(j) �f(j) and �f(j) satis�es relevance, we �nd a T 0 with
Tj �f(j) �f(j) � T 0 � Tj+1, T

0 6` �f(j) and T
0;  ` �f(j). Using Inclusion, we see that

S = Tn � T 0 � T0 = T . From this we can conclude that � satis�es C-relevance.
For C-uniformity, suppose that ~� �T 0

~ for all subtheories T 0 � T . Thus, for all i � n,
T 0 ` �i $  i. Suppose furthermore that (T � ~�) / S: we have to demonstrate that
(T � ~ ) / S. But, since all the �i's satisfy Relevance, we immediately see that

S = (T �f(1) �f(1)) � � �)�f(n) �f(n)) = (T �f(1)  f(1)) � � �)�f(n)  f(n));

which proves that (T � ~ ) / S.
For C-success, suppose 6` �i and (T � ~�) / S. Let i = f(k), then, by Success,

�i 62 Tk = Tk�1 �i �i and, by Inclusion, � 62 Tn = S.
Finally, we prove that � satis�es Solo: suppose that for all j 6= i, we have �j = >.

Let k be such that i = f(k). Then, by Proposition 2, we have for any m 6= k, that
Tm = Tm1

; m > 0. Thus, we have

T = T0 = T1 = : : : = Tk1 ; Tk = Tk1 �i �i = Tk+1 = : : : = Tn = S:

Thus, S = T �i �i. a

Theorem 7 expresses a transfer property: if we de�ne a concurrent contraction � via
Composition and Decomposition using individual contractions �i, we get the rationality
postulates for � if we impose rationality postulates on all the �i's. Theorem 8 expresses
a projection principle going in the converse direction.

Theorem 8 Assume that a set of individual contraction functions �i (1 � i � n) and
a concurrent contraction � are connected via the Decomposition and Composition laws.
If � satis�es the Concurrent postulates from De�nition 6, then all the �i's satisfy the
postulates from De�nition 1.

Proof. We note the following. For any formula �, let ~v(i; �) be the vector with � at index
i, and with > at all other places: ~v(i; �)i = � and ~v(i; �)j = >; i 6= j. Using the interleaved
contraction postulate Solo, we immediately obtain:

(T � ~v(i; �)) / S , S = T �i � (3)

Equation (3) expresses that a single agent contraction can be modeled by the multiple-
agent contraction, provided that all agents but one refrain from acting. Now, let � satisfy
the properties of De�nition 6. Then, using (3), one easily reads o� the �i properties Clo-
sure, Inclusion and Success from C-closure, C-inclusion and C-success for �, respectively.
For Relevance, suppose that  2 T n (T �i �). Using C-relevance, we �nd a j � n and a T 0

with (T �i ~v(i; �)) = S � T 0 � T such that T 0 6` ~v(i; �)j and T 0;  ` ~v(i; �)j. Since for all
k 6= i, ~v(i; �)k = >, we must have j = i. Since ~v(i; �)i = �, we have T 0 6` � and T 0;  ` �
for some T 0 with (T �i �) � T 0 � T , expressing that �i satis�es Relevance. To check
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Uniformity for �i, suppose that T
0 ` � $  for all subtheories T 0 � T . By de�nition of

~v(i; �), we immediately see that ~v(i; �) �T 0 ~v(i;  ) so that C-uniformity yields

(T � ~v(i; �)) / S i� (T � ~v(i;  ))/ S:

Using (3) we conclude that (T �i �) = S = (T �i  ), which proves Uniformity. a

Combining Theorems 7 and 8 we see that the Composition and Decomposition pos-
tulates properly link individual and concurrent contractions together: postulates for indi-
vidual operations are guaranteed by imposing postulates on the concurrent one, and vice
versa.

Requiring that single agent contractions �i and a concurrent contraction � are related
through Composition and Decomposition is a non-trivial requirement, even if the single
agent contractions satisfy the postulates of De�nition 1, and the concurrent contraction
satis�es the postulates of De�nition 6. The main reason is that the postulates for con-
traction don't, in general, uniquely pin down its actual implementation. One can have
di�erent single contractions �1 and �10 satisfying the postulates of De�nition 1 (for ex-
ample, �1 can be a full meet contraction �1, and �10 a partial meet contraction). Now,
assume that �1 and �10 are composed with �2, . . . , �n (all satisfying the postulates of
De�nition 1) into � and �0, respectively, using Composition. Then, the single agent con-
tractions �1, . . . , �n and the concurrent contraction �0 are not related via Composition
and Decomposition.

7 A Model for Interleaved Contractions

Let n > 1 be the number of agents. We assume that for each i, agent i's contraction
function is de�ned using a selection function si, as outlined in Section 4. The models
we are about to de�ne are called selection systems; they are based on the selection func-
tions contributed by the individual agents. Roughly, a selection system is a collection of
compositions of single agent selection functions that satis�es certain constraints.

More precisely, a selection system (S; T ; s0), intended to represent interleaved contrac-
tions, is given by the following components:

� S, a set of states. Each state s is labeled with a theory Th(s). These are the theories
that the theory of the initial state Th(s0) can evolve into by applying sequences of
single agent contractions. Two states may be labeled with the same theory.

� T , a set of possible transitions built up from the individual agents' single contraction:
T = f(s; s0) j 9i9� (

T
i si(Th(s); (Th(s) ? �)) = Th(s0))g. Here s

0 is called a successor
(or �i�-successor) of s; notation: s

i;�
�! s

0. For technical reasons we will assume that
all successor steps are irre
exive: if s

i;�
�! s

0 then s 6= s
0.

A state s 2 S is terminal if it has no successors. A choice sequence of a selection system
(S; T ; s0) is a �nite sequence � : s1; : : : ; sm satisfying the following requirements. First, the
Initiation requirement says the state s1 is the initial state of the selection system, that is:
s1 = s0. Second, the Consecution requirement says that for each pair of consecutive states
sj , sj+1 2 � there is a selection function si and a formula � such that sj

i;�
�! sj+1. (Observe

that two states may be connected by multiple transitions.) Finally, the Termination
requirement says that the �nal state sm is a terminal state.
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A pre�x is a sequence s1, . . . , sk satisfying the requirements of initiation and consecu-
tion, but not necessarily of termination. The length of a pre�x is its number of states.

Let T be a theory, n the number of agents, and ~� = (�1, . . . , �n) a sequence of formulas.
Our next aim is to determine what it means for a selection system T = (S; T ; s0) to model
or represent the interleaved contraction T � ~�. We will impose three constraints. First,
the Start constraint says that Th(s0), the theory of the initial state, should equal T .
Second, the Tightness constraint requires that for every choice sequence � in T and every
i � n there exists at most one pair of consecutive states sj , sj+1 in � such that sj

i;�
�! sj+1.

Intuitively, the tightness property says that no attempt is made to carry out a single
agent contraction in T � ~� twice. Third, the Fairness constraint says that for every
choice sequence � in T and every i � n there is a consecutive pair sj , sj+1 in � such that
sj

i;�
�! sj+1. holds. The fairness property expresses that every single agent contraction in

T � ~� will eventually be carried out.
Let S = (S; T ; s0) be a selection system. S is called a model for T � ~� if it satis�es

the starting, tightness and fairness conditions for T � ~�. Given a model S = (S; T ; s0)
for T � ~�, a proper choice sequence of T � ~� is simply a choice sequence in S. What this
de�nition boils down to is that we view interleaved contractions as generators of proper
choice sequences.

To be able to express the connection between concurrent contraction functions and
selection systems, we say that a contraction function � generates a full selection system
for T and ~� if there are single agent selection functions s1, . . . , sn such that �j is de�ned

in terms of sj (1 � j � n), and for all S such that (T � ~�) / S there exists a sequence
S0, . . . , Sn such that S0 = T , Si+1 =

T
sf(i+1)(Si; (Si ? �f(i))), where f is a permutation

of f1; : : : ; ng, and Sn = S.

Theorem 9 Let � be a concurrent contraction function, and �i a set of single agent
contractions. Then � satis�es the C-postulates from De�nition 6, and � and �i are
related via the Composition and Decomposition laws from Section 6 i�, for every theory T
and vector of formulas ~�, � generates a full selection system for T and ~�.

Proof. First, suppose that � satis�es the C-postulates of De�nition 6, and suppose also
that � and �i are related via Composition and Decomposition. Let S be such that
(T � ~�) / S. Just as in the proof of Theorem 7 we �nd a permutation f of f1, . . . , ng
such that

S = ((� � �(T �f(1) �f(1)) � � �)�f(n) �f(n)):

Now, de�ne S0 = T and Si+1 = (Si �f(i+1) �f(i+1)). Theorem 8 guarantees that each
individual contraction�f(i+1) satis�es the postulates of De�nition 1 and hence, we may use
one direction of Theorem 3 to conclude that each contraction Si�f(i+1)�f(i+1) corresponds
to taking the intersection of the selection that agent f(i) generates, using Si and Si ? �f(i),

so that we have Si+1 =
T
sf(i+1)(Si; (Si ? �f(i))). This proves that every T and ~� generate

a full selection system.
For the converse, suppose that for every T and ~�, the operator � generates a full

selection function. Let S; T and ~� be such that (T � ~�) / S. We know that, semantically,
this gives rise to a sequence S0 = T and Si+1 =

T
sf(i+1)(Si; (Si ? �f(i))), where each

sf(i+1) is a selection function. Now, we use the other direction of Theorem 3 to lift this
semantic result to a syntactic level: we can associate a single agent contraction �f(i+1)
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satisfying the postulates of De�nition 1 with each selection function sf(i+1), and we may
write Si+1 = (Si �f(i+1) �f(i+1)). Hence, by an application of Theorem 7 we conclude
that � satis�es the C-postulates of De�nition 6. Finally, by observing that each sequence
S0, . . . , Sn in a full selection system determines a permutation f of f1; : : : ; ng such that
Si+1 = Si �f(i+1) �f(i+1), it follows that � and �i are related via the Composition and
Decomposition postulates. a

With the above result we can `complete the square' in the following diagram:

?

6

?

6

-�

Selection systemsPostulates for �

Selection functionsPostulates for �i

Syntax Semantics
Theorems 3, 5

Characterization

Theorem, 7, 8 Theorem 9

� -

By walking around the above diagram we see that full selection systems are a model for
our postulates for interleaved contraction, and any full selection system for T and ~� is
given by the postulates for �.

8 Concluding Remarks

We have shown that concurrent contractions are well-behaved in that they satisfy a set of
fairly transparent rationality postulates. On the assumption that all the underlying single
agents contract in a rational way, and that concurrency is modeled in an interleaving
manner.

In the course of the paper we have had to make explicit and alter some of the assump-
tions underlying the AGM approach to theory change as they seem no longer appropriate
in our setting:

� In our interleaved setting theory change operations need not be functional; they are
always de�ned but they need not have a unique outcome. (A similar deviation from
the AGM assumptions in the context of single agent theory change is explored by
Lindstr�om and Rabinowitz [11].)

� In our interleaved setting theory change no longer is a one step operation. Although
theory change typically occurs in dynamic environments in which agents may learn
new information in a continuous process, the traditional AGM framework consis-
tently avoids mentioning iterations of its operations. Recently a number of authors
have abandoned this assumption, and considered forms of iterated theory change;
see for example Lehmann [10] and K�r-Dahav and Tennenholtz [8].
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� In our interleaved setting theory change operations have internal structure, and
they are no longer fully characterized by their pre-conditions and postconditions.
In contrast, the traditional AGM postulates have nothing to say about the internal
mechanisms by which operations of theory change achieve their goals.

To formulate it in a single sentence, the reason that the above assumptions are no longer
valid is that we have been considering collections of sequences of (single agent, one-step)
contractions that are organized in a tree as in Figure 3 above.

In our ongoing work we consider alternative models for interleaved contractions called
entrenchment systems that are based on compositions of single agent entrenchment rela-
tions. One can prove a representation result to the e�ect that every selection system can
be represented as an entrenchment system, and vice versa.

Our future work revolves around the idea of using other models of concurrency than
interleaving, and determining the e�ects this has on the postulates describing multi-agent
theory change.

Acknowledgments. Wiebe van der Hoek was supported in part by ESPRIT III BRWG
project No. 8319 `ModelAge'. Part of the research was carried out while Maarten de Rijke
was with CWI, Amsterdam; during this period he was supported by the Netherlands
Organization for Scienti�c Research (NWO), project NF 102/62-356.

A Proofs

Below we give proofs for results that were stated without proofs in earlier sections.

Theorem 3. A contraction function � satis�es the postulates of De�nition 1 i� there
exists a two-placed selection function s such that, for any theory T and formula �,

T � � =
\
s(T; (T ? �)):

Proof. Let us �rst assume that � is de�ned using a selection function s: we show that �
satis�es the required postulates. The Closure and Inclusion conditions follow immediately
from the de�nition of s and the fact that theories are closed under intersection. Uniformity
follows because if T 0 ` � $  for all subtheories T 0 � T , then (T ? �) = (T ?  ) and
hence

s(T; (T ? �)) = s(T; (T ?  )):

Success is also clear: if 6` �, then � 62 X for any X 2 (T ? �), so � 62
T
s(T; T ? �)).

As to the Relevance postulate, suppose  2 T n
T
s(T; (T ? �)). Then, there must be a

T 0 2 s(T; (T ? �)) with  62 T 0. By the de�nition of s, T 0 � T and, by the de�nition of
(T ? �) we must have T 0;  ` �.

Conversely, let � satisfy the postulates of De�nition 1. For any theories T and T 0 and
formula � such that T � � = T 0, we have to guarantee that

T
s(T; (T ? �)) = T 0. We

de�ne s(T;�), with � 2 2T as follows.

s(T;�) :=

8><
>:
fTg; if � = ;
fS 2 � j T � � � Sg; if � = (T ? �) 6= ; for some formula �
�; otherwise.
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To see that s is a selection function, we �rst observe that s(T; ;) = fTg and if � 6= ;,
then s(T;�) is a non-empty subset of �. It is also a function: suppose T1 = T2 and
�1 = �2. If (T1; �1) is not a matching pair, then neither is (T2; �2) and we have

s(T1; �1) = �1 = �2 = s(T2; �2):

Otherwise, we may assume that �1 = T1 ? �1 and �2 = T2 ? �2 for some formulas �1 and
�2. Thus (T1 ? �1) = (T2 ? �2). Let T

0 be an arbitrary subtheory of T1 = T2. If T
0 ` �1,

we have T 0 62 (T1 ? �1) and hence T 0 62 (T2 ? �2). Thus, we have either that T
0 ` �2 and

then also T 0 ` �1 $ �2, or some S � T 0 with S 2 (T2 ? �2). The latter is impossible, since
it would yield S 2 (T1 ? �1) and S ` �1. This proves that for any subtheory T 0 of T1 we
have T 0 ` �1 $ �2. By Uniformity and T1 = T2, we then have T1 � �1 = T2 � �2. From
this we immediately get

s(T1; �1) = fS 2 �1 j T1 � �1 � Sg = fS 2 �2 j T2 � �2 � Sg = s(T2; �2):

Finally, we have to show that
T
s(T; (T ? �)) = T 0, whenever T � � = T 0. We

immediately have T 0 �
T
s(T; (T ? �)). For the other inclusion, we �rst assume � 2 T .

Suppose we have some  62 T 0. By Relevance, we �nd an S0 with T 0 � S0 � T , for which
S0;  ` � and S0 6` �. This S0 can be expanded to an S � S0 such that S 2 (T ? �) and
 62 S. We thus have

 62
\
s(T; (T � �)):

Finally, if � 62 T , then by Vacuity (which follows from Inclusion and Relevance), we have
T 0 = T and thus fTg = s(T; (T ? �)), so that

T
s(T; (T ? �)) � T . a

Theorem 4. If a contraction function � satis�es the postulates of De�nition 1 it also
satis�es redundancy.

Proof. Let T be a theory and suppose 6` �. Suppose furthermore that Z is a set of
formulas, satisfying: (i) T [ Z is a theory, and (ii) for all � 2 Z: ` � ! �. We have to
prove: T � � = (T [ Z) � �. If Z � T the equation holds trivially, so let us assume the
existence of a � 2 Z nT . We now �rst show that � 62 T : if we would have � 2 T , we reason
as follows. Since � 2 Z, we have (� _ :�) 2 Z [ T . But (� _ :�) 62 T , since otherwise we
would have, by �; �! � 2 T that � 2 T . Thus, (� _:�) 2 Z. By de�nition of Z, we have
` (� _ :�) ! �. Since ` ((� _ :�) ! �) ! �), we would have ` �, contradicting one of
the premisses. Thus, � 62 T .

Now we can prove that (T [Z)�� = T . For �, suppose  2 (T [Z)��. By Inclusion,
we have  2 T [Z. If  would be in Z, we would have `  ! � and hence � 2 (T [Z)��,
contradicting Success. Thus,  2 T . To see that also T � (T [ Z) � �, let  2 T . Then
 2 T [ Z. If  62 (T [ Z)� �, by Relevance, we �nd a U with

(T [ Z)� � � U � T [ Z

and such that U;  ` � and U 6` �. By the assumptions on Z, the latter implies that
U � T . Since  2 T and U;  ` � we have T ` � | a possibility we already excluded.
Thus,  2 (T [ Z)� �. a
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Theorem 5. A contraction function � satis�es the postulates of De�nition 1 i� there
exists a two-placed uni�ed selection function s such that, for any theory T and formula �,

T � � =
\
s(T; (T ? �)):

Proof. If s is a selection function, by Theorem 3 we �nd a contraction function � sat-
isfying the postulates of De�nition 1. Conversely, suppose � satis�es the postulates of
De�nition 1. By Proposition 4 we know that it also satis�es redundancy. We will show
that the selection function s whose existence is guaranteed by Theorem 3, is uni�ed. To
do so, suppose

(U ? �) = (V ?  ): (4)

We have to show that
T
s(U; (U ? �)) =

T
s(V; (V ?  )). If (U ? �) = ;, the conclusion

follows from the de�nition of s. So suppose (U ? �) 6= ;. We will �rst argue that

(U ? �) = ((U \ V ) ? �): (5)

Suppose that � 2 U n V . Then � 62 V and hence � 62 Y for any Y 2 (V ?  ) and, by (4),
� 62 X for any X 2 (U ? �). Since � has been removed from all maximal subsets of U
that do not entail �, we must have ` �! �. Thus

� 2 U n V ) ` �! �: (6)

To prove the �-direction of (5), suppose X 2 (U ? �). Then X 6` � and by (6) we must
also have X � V , and so X 2 ((U \ V ) ? �). Conversely, suppose X 2 ((U \ V ) ? �).
Then X 6` �. Let � be any formula in U n X . If we can show that X;� ` �, we may
conclude X 2 (U ? �). Firstly, if � 2 V , then, since X 2 ((U \V ) ? �), we have X;� ` �.
If � 62 V we have � 2 U n V , and by (6), X; � ` �. This proves (5), and, by a similar
argument, we of course have (V ?  ) = ((U \ V ) ?  ). Combining this with (4), we get

((U \ V ) ? �) = ((U \ V ) ?  ): (7)

Taking T = U \ V and Z = U n V , Redundancy guarantees that (U \ V ) � � = U � �.
Since � is modelled by a selection function s, we have

\
s (U \ V; ((U \ V ) ? �)) =

\
s (U; (U ? �)) :

Similarly,
T
s(U \ V; (U \ V ) ?  ) =

T
s(V; (V ?  )). From (7) we infer

\
s(U \ V; (U \ V ) ? �) =

\
s(U \ V; (U \ V ) ?  );

so that we can �nally conclude that
T
s(U; (U ? �)) =

T
s(V; (V ?  )), as required. a
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