Modelling Interactions for Diagnosis*

Peter Lucas
Department of Computer Science, Utrecht University
P.O. Box 80.089, 3508 TB Utrecht

The Netherlands
E-mail: lucas@cs.ruu.nl

Abstract

Model-based diagnosis concerns the development of diagnostic knowledge-based systems
based on detailed domain models. Typically, such domain models include knowledge of
causal, structural, and functional interactions among modelled objects. Various formal
theories have been proposed in the literature to capture model-based diagnosis. In this
paper, a new set-theoretical framework for the analysis of model-based diagnosis is presen-
tented. Basically, the framework distinguishes between an interpretation of a specification
of knowledge for the purpose of diagnosis, called an ‘evidence function,” and an interpre-
tation of this evidence function with respect to hypotheses and sets of observed findings,
yielding diagnoses. This second interpretation is carried out by partial functions, called
‘notions of diagnosis.” This set-theoretical framework offers a simple, yet powerful tool for
comparing existing notions of diagnosis, as well as for proposing new notions of diagnosis.
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1 Introduction

In recent years, model-based diagnosis has become a popular approach to building diagnostic
systems in both technical (cf. [1, 5]), and nontechnical fields, such as medicine (cf. [6]).
The model-based approach advocates the construction of knowledge-based systems based on
models of a problem domain. Usually, such models describe the structural and functional
interactions between components of a physical system, or the causal interactions between
elements in a domain.

Accompanying research into the formal aspects of diagnosis has yielded much insight into
the nature of the diagnostic process. Generally, two directions of research can be distinguished:
(1) consistency-based diagnosis, which basically provides a theory of diagnosis for models of
normal structure and behaviour [7, 10], and (2) abductive diagnosis, which focusses on causal
models of abnormal behaviour [3]. As has been shown, consistency-based diagnosis can be
extended to deal with fault models [7], and abductive diagnosis can be extended to models
of normal behaviour [4]. Thus, these theories of diagnosis may both be used to lay out a
spectrum of definitions of diagnosis.

However, the conclusion that there is not a unique way to characterize diagnosis raises
questions concerning the assumptions underlying consistency-based and abductive diagnosis.

*This paper has been published in: Proceedings of CESA’96 IMACS Multiconference: Symposium on Mod-
elling, Analysis and Simulation, 1, 541-546.
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Figure 1: Nonmonotonic interaction between disorders.

Does the logical notion of consistency provide an appropriate basis for formalizing various
notions of diagnosis, and similarly, is logical implication the proper way to formalize cause-
effect and other relationships between defects and observable findings in abductive diagnosis?
In this paper, it is argued that the formalization of diagnosis requires the modelling
of interactions at two levels of specification: interactions between defects, expressed by a
mapping from defects to observable findings, and the interpretation of observed findings in
the context of such a mapping. A set-theoretical semantic framework to express these aspects
of diagnosis is proposed. Medicine and simple logic circuits are taken as example domains.

2 The representation of interactions

2.1 Causal interactions

Consider a medical diagnostic problem, where a patient may have Cushing’s disease — a disease
caused by a brain tumour producing hyperfunctioning of the adrenal glands —, pulmonary in-
fection and iron-deficiency anaemia. We shall not enumerate all signs and symptoms causally
associated with these medical problems; it suffices to note that moon face is a sign associated
with Cushing’s disease, fever and dyspnoea (shortness of breath) are associated with pul-
monary infection, and low levels of serum iron are characteristic for iron-deficiency anaemia.
However, in a patient in whom Cushing’s disease and pulmonary infection coexist there usu-
ally is no fever. This indicates that there exists an interaction between the two disorders,
Cushing’s disease and pulmonary infection, that is nonmonotonic, i.e. the co-occurrence of the
two disorders produces fewer findings than the union of their associated observable findings.
Figure 1 depicts this simple problem, where it is assumed that:

d; = Cushing’s disease

dy = pulmonary infection

ds = iron-deficiency anaemia
f1 = moon face

fo = fever

f3 = dyspnoea

f1 = low serum iron

Interactions among disorders can be expressed by means of a mapping of sets of disorders to
sets of observable findings. Such as mapping will be called an evidence function. Since the
term ‘disorder’ is not used in technical domains, where instead the term ‘fault’ is commonly
employed to indicate device problems, the term ‘defect’ will be used in the following to denote
both disorders in medicine and faults in technical devices.



More formally, let ¥ = (A, ®,¢e) be a diagnostic specification, where A denotes a set of
defects, and ® denotes a set of findings. Positive defects d (findings f) and negative defects
—d (findings —f) denote present defects (findings) and absent defects (findings), respectively.
It is assumed that — o = = ¢, where ¢ is the identity function. If a defect d or a finding f is
not included in a set, it is assumed to be unknown. Let a set Xp denote a set of positive
elements, and let X denote a set of negative elements, such that Xp and Xy are disjoint.
Tt is assumed that A = Ap UAx and & = &p U ® . The power set of a set S is denoted by
©(S). Now, an evidence function e is a mapping

e:p(A) = p(@)U{l}
such that:

(1) for each f € @ there exists a set D C A with f € e(D) or —f € e(D) (and possibly
both);

(2) if d,~d € D then e(D) = L;
(3) if (D) # L and D' C D then e(D') # L.

If e(D) # L, it is said that e(D) is the set of observable findings for D; otherwise, it is said
that D is inconsistent.

According to the definition above, we may have that both f € e(D) and —f € e(D), which
simply means that these findings may alternatively occur given the combined occurrence of
the defects in the set D. In some domains it might hold that if e({d}) = e({d'}), it follows
that d = d', i.e. the defects d and d’ are taken as synonyms for the same defect. An evidence
function is not assumed to be injective in general, because for non-singleton sets D, D' C A,
D # D', it is not precluded that e(D) = e(D’). It is also not precluded that sets of defects
may have several findings in common; thus, the sets e(D) and e(D’), D # D', need not be
disjoint.

For the medical knowledge depicted in Figure 1, it holds, among others, that:

e({d:}) {f1}
e({d2}) = {fa f3}
e({di,d2}) = {f1,fs}

The property e({d1,d2}) 2 e({d1}) Ue({d2}) formally expresses that the interaction between
dy and ds is nonmonotonic.

2.2 Functional behaviour

As discussed in Section 1, there are, in addition to diagnostic systems that incorporate causal
knowledge, other types of diagnostic systems containing knowledge of structure and behaviour.
This type of knowledge is usually employed for diagnosing device problems, where the be-
haviour of the device is observed by means of input and output signals. Consider the logic
circuit depicted in Figure 2. The circuit consists of an XOR (exclusive OR) gate X and an
AND gate A. The presence of a defect in X is denoted by z; the absence of a defect in X is
denoted by —z. A similar notation is employed to denote the presence or absence of a defect
concerning gate A. The three inputs signals to the circuit are indicated by I1, I3 and I3; O
and Oz denote the two output signals. If I; = 1, this will be denoted by ¢;; an input equal
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Figure 2: Logic circuit.

to I; = 0 will be denoted by —i;. A similar convention is adopted for the output signals
Og. Tt is supposed that a defective gate produces an output signal that is complementary
to the correct output signal. Suppose that the input signals to the circuit are i1, 7iy and 3.
Now, the output signals are represented as observable findings, and a component for which
the presence or absence of a defect is unknown, is taken into account by assuming that the
component is either defective or nondefective. Note that this description concerns both the
structure as well as the normal and abnormal behaviour of the device. The following evidence
function (only values for consistent sets of defects are provided) corresponds to the description
above:

e¢({z,a}) = {01,092}
¢({-z,a}) = {01,702}
61({37,_'0'} = {_'Ola_'OZ}

{01, 00}
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For example, €/ ({x}) = {—01, 02, 702} indicates that when the XOR gate is defective, and it is
unknown whether or not the AND gate is defective, then the first output signal O; = 0 and
the second output signal O, may be either 0 or 1, depending on whether the AND gate is
defective or not.

Knowing which findings are observable for present or absent defects is essentially the
qualitative information that is required for diagnosis.

3 Some properties of evidence functions

Various semantic properties of a domain for which a diagnostic system must be built can be
expressed precisely in terms of evidence functions. In Table 1 some possible local interactions
among defects, i.e. interactions that only hold for some D C A, are enumerated. Based on
the particular semantics underlying a knowledge base (left column), an interpretation that
respects that meaning in terms of observable findings is defined (right column). Examples of
local interactions are:

e Causality: the diagnostic view of knowledge of the sort ‘the set of defects D causes the
set of defects D"’ as used in abductive diagnosis (cf. [3]).



Meaning Definition in terms of observable findings
causality: the defects D cause D' | e(D') C e(D) and e(D) = e(D U D')
correlation: defects d and e({d}) = e({d'}) = e({d,d'}) and

d" are correlated e({-d}) = e({—d'}) = e({—d,—d'})
category: d' is a category for e({d'}) = Ugep e({d})

defects in D
augmentation e(D) D Upicpe(D)
cancellation (fault masking) e(D) C Uprcpe(D')
exclusion e(D)=1
complementation ife({d1,...,dn}) ={f1,-.-, fm} then

6({—|d1, ceey ﬁdn}) = {—lfl, ce ,ﬁfm}

Table 1: Local interactions among defects.

e Correlation: if the defects d and d' are correlated, then if d has occurred, then d’ occurs
as well, whereas, if d is absent, d’' is also absent, and vice versa.

e (lategory: a category gathers all findings of the defects with regard to which it is more
general.

o Augmentation: the combined occurrence of two or more defects in the set D gives rise
to new observable findings in addition to those associated with the individual elements,
or proper subsets of D.

e Cancellation (also referred to as fault masking): the combined occurrence of two or
more defects in the set D yields fewer observable finding when compared to the findings
associated with the individual elements, or proper subsets of D.

e Fzclusion: the combination of defects D cannot occur.

o (Complementation: the observable findings associated with the absent defects —d1, ..., ~d,
are the complements of those associated with the presence of those.

We may also have that defects exhibit no interactions at all, which is a global property,
expressed as follows:

e(D) = J e({d})

deD

for each consistent set D C A. Monotonicity in terms of set-inclusion is also a global property
of the evidence function, which holds for many forms of causality and normal behaviour of
devices expressed in terms of evidence functions. For example, for the logic circuit in Figure 2
it holds that

VD,D'CA:DC D' =¢(D)De(D)

i.e. € is monotonically decreasing.

An evidence function requires an exponential number of interactions to be specified. How-
ever, providing a partial specification of interactions may suffice when it can be assumed that
the remaining values of e can be computed according to some computation rule. For example,



assuming that all values of the medical evidence function e above can be obtained by taking
the union of consistently specified function values for sets of defects that are maximal subsets
of a given set of defects, yields the following partial specification € of the evidence function e
(cf. Figure 1):

{fi} if D = {d1}
{f2,f3} if D= {d2}
e(D) =4 {fs} if D = {d3}
{f1, f3} if D ={di,dy}
6] lfD:{d},dEAN

For example, it holds that e({d;,ds}) = €({d1}) Ué({d3}). Note that the generated evidence
function displays cancellation of observable findings (cf. Table 1), because

e({dy,da}) C e({d1}) U e({d2})

Using another computation rule, it is also possible to provide a partial specification of the
evidence function €’ for the logical circuit.

4 Notions of diagnosis

As has been shown, an evidence function can be viewed as a semantic interpretation of a
knowledge base, containing for example causal or functional knowledge, in terms of expected
evidence for the combined occurrence of defects. To employ an evidence function for the
purpose of diagnosis, it must be interpreted with respect to the actually observed findings.
The interpretation of an evidence function and the observed findings that is adopted, can be
viewed as a notion of diagnosis applied to solve the diagnostic problem at hand.

More formally, let P = (3, E) be a diagnostic problem, where E C ® is the set of observed
findings; it is assumed that if f € E then —~f ¢ FE, i.e. contradictory observed findings are not
allowed. Let Ry denote a notion of diagnosis R applied to ¥, then a mapping

Ry, t 9(3) = p(A) U {u}

will either provide a diagnostic solution for a diagnostic problem P, or indicate that no
solution exists, denoted by u (undefined). Here, H denotes a hypothesis, which is taken to be
a set of defects (H C A), and e|m, called the restricted evidence function of e, is a restriction
of e with respect to the power set p(H):

e : p(H) = p(®)U{L}

where for each D C H: e g(D) = e(D). A restricted evidence function ez can be thought
of as the relevant part of a knowledge base with respect to a hypothesis H. An R-diagnostic
solution, or R-diagnosis for short, with respect to a hypothesis H C A, is now defined as the
set

Rz,elH(E'), where RE,€|H(E) CH
if a solution exists.
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Figure 3: Schema of notion of diagnosis, diagnostic problem and solution.

In Figure 3, the idea underlying the definition of a notion of diagnosis R and diagnostic
solution to a diagnostic problem is illustrated schematically.

A notion of diagnosis R provides the possibility to express interactions among defects and
observed findings at the level of diagnosis, which we call dependencies. We may also have that
a hypothesis can be split up into two subhypotheses, that can be examined independently:

RE=€|HUH’ (E) = RE,e|H(E) U RE,e‘H/ (E)

with Rz,el o (E) # u. This means that the diagnostic solution with respect to the hypothesis
HUH' is obtained as the union of the solutions for the two separately examined hypotheses H
and H'. This is called the independence assumption. For many notions of diagnosis described
in the literature, in particular for abductive diagnosis and consistency-based diagnosis, the
independence assumption fails to hold.

To demonstrate how the definitions above can be employed, we consider a notion of
diagnosis U, such that Us ¢, (E) = H' if it holds that H' is the only subset of H such that
€| u(H') C E; otherwise, H' = u. This notion of diagnosis expresses that a diagnosis consists
of a set of defects which, on the one hand, can account for at least part of all observed
findings, and, on the other hand, every finding associated with the set of defects that is taken
as a diagnosis has been observed. Furthermore, there is only one such subset of the given
hypothesis H. Now, reconsider the medical example from Figure 1 with H = {d1,d2}. Some
interesting diagnostic conclusions are: Us , ({f2, f3}) = {d2}, i.e. a patient with only fever
and dyspnoea has pulmonary infection, Us, »{f1, f2}) = u, i.e. there exists no diagnosis
accounting for both moon face and fever as signs, and finally, Us. ,({f1,f3}) = H. In
the first case, it is said that the hypotheses has been adjusted, in the second case, that the
hypothesis H is rejected, and in the last case, that the hypothesis H has been accepted. This
example demonstrates the flexibility of the approach.

5 Analysis of notions of diagnosis from the literature

Because the diagnostic formalism introduced above is meant to act as a framework, various
notions of diagnosis known from the literature should be expressible in it. In this section, the



expressive power of the framework is examined with respect to abductive and consistency-
based diagnosis.

5.1 Abductive diagnosis

The formalization of diagnosis using causal domain models has been thoroughly studied by L.
Console and P. Torasso [3, 4]. In their theory, the abnormal behaviour of a system is specified
in terms of abnormal states (called defects in this paper) and resulting abnormal findings;
normal findings, however, may also be included. Strongly causal relationships between defects,
and between defects and observable findings, are expressed by logical implications of the form
dy N+ ANd, - d and dy A--- ANd, — f, respectively. Consider, for example, the causal
specification C = (A, ®,R), with Ap = {d1,da,ds}, ®p = {f1, f2, f3}, where specific causal
knowledge with respect to defects and observable findings is expressed by the following set of
abnormality azioms R:

di = f1
di — fo
d2—>d1
d3 — f3

Now, let A = (C, E) be an abductive diagnostic problem, with E = {f1, f2} a set of observed
findings. Then, a set of defects H C A is called a diagnosis of A iff:

(1) Vfe E: RUHE f (covering condition);
(2) Vf e E°: RUH ¥ —f (consistency condition)

where E°, the set of observable findings assumed to be absent, is defined in terms of E as
follows:

Ef={-fe®|fePp,[¢E}

Here, we have that E¢ = {—f3}, and, thus, H = {d;,d2} is a diagnosis for A, because the
covering and consistency conditions are satisfied.

This form of abductive diagnosis can be translated into our framework in a straightforward
way. For the axioms R above, a partial specification " of the resulting evidence function e”,
where again unspecified function values are obtained by taking the union of specified ones, is:

{f1,f2} it D={di}
B {f1, fo} if D ={d2}
e"(D) =< {fs} if D= {ds}
N it D = {~dy,do)
o it D= {~di},i=1,2

yielding a diagnostic specification ¥ = (A, @, e).

Abductive diagnosis as defined above can now be defined as a notion of diagnosis. The
corresponding notion of diagnosis is called the notion of strong-causality diagnosis (SC). It is
defined as follows:

SCxe1 (E) = { H ifey(H)=E

u  otherwise



i.e. it is necessary that all observable findings e(H) are observed to accept an hypothesis H.
For the diagnostic problem P = (X, E), with E = {f, fo}, we find:

SCE,eHdl,@} ({fl, f2}) = {d17 d2}

Note that for E' = {f1} no abductive diagnosis exists. Indeed, it holds that SCs¢ , (E') = u
for E' = {f1} and every consistent H C A.

A notion of weak causality [3] is arrived at by the addition of assumption literals a to
the individual abnormality axioms. This way, it can be expressed that a causal relation is
uncertain. Reconsider the abductive problem A = (C, E) above, where assumption literals
are added to the individual axioms, yielding the causal specification C' = (A’, ®, R'), with R’
equal to:

di Nag — fr
di Nag = fo
do Nas — di
ds Nay — fs

The resulting evidence function is again e” as defined above. The diagnostic interpretation
of this evidence function, however, differs. To this end, a distinction is made between an
abductive solution — a set of defects and assumption literals for which the covering and
consistency conditions are satisfied —, and an (abductive) diagnosis, the set of all defects
included in an abductive solution.

The notion of diagnosis that corresponds to abductive diagnosis, with weakly causal re-
lations as introduced above, is called the notion of weak-causality diagnosis, denoted by WC.
It is defined as follows:

H if €| u(H) D E
u  otherwise

WCs , (E) = {

For example, the set H = {di, a1, a2} is an abductive solution to A" = (C’, E), because the
covering and consistency conditions are satisfied; the associated dagnosis is D = {d;}. We
also have that WCs , | (E) = {d1 }.

Weak and strong causality diagnosis can also be combined to obtain a notion of diagnosis
that combines these two different interpretations of causal knowledge.

5.2 Consistency-based diagnosis

In consistency-based diagnosis, as proposed in [10] and [7], knowledge concerning structure
and behaviour of a device is represented as a triple S = (SD, COMPS, OBS), called a system,
where

e SD denotes a finite set of formulae in first-order predicate logic, specifying normal
structure and behaviour, called the system description;

e COMPS denotes a finite set of constants in first-order logic, denoting the components
(elements) of the system;

e OBS denotes a finite set of formulae in first-order predicate logic, denoting observations,
i.e. observed findings.



It is, in principle, possible to specify normal as well as abnormal (faulty) behaviour within a
system description SD.

A consistency-based diagnosis is defined as an assignment of either a positive literal
Abnormal(c) or a negative literal ~Abnormal(c) to each ¢ € COMPS, i.e.

D = {Abnormal(c) |c € C} U
{—Abnormal(c) | c € COMPS\C}

where C C COMPS, such that
SDUOBSUD

is satisfiable (the consistency condition).
Again, the notion of diagnosis can be defined in terms of our framework. The resulting
notion of consistency-based diagnosis, denoted by CB, is defined as follows:

H ifVfeE:fcey(H)V
CBs,e  (E) = -f & ey (H)
u  otherwise

For example, for the logic circuit in Figure 2 we have that CBx , ., ({-01,02}) = {z,a},
which is analogous to the diagnosis

D = {Abnormal(z), Abnormal(a)}

obtained by the corresponding logical definition of consistency-based diagnosis.
We have investigated the expressive power of the framework for other notions of diagnosis
in the literature as well (cf. [8]).

6 Comparison to related work

Above we have introduced a quite general framework to express static aspects of diagnosis, i.e.
without taking diagnostic problem-solving strategies into account. The framework supports
two different views. On the one hand, given some intuitively appealing interpretation of an
evidence function, a notion of diagnosis can be designed (or selected) that adheres to that
meaning as closely as possible. On the other hand, applying a particular notion of diagnosis
to solve a diagnostic problem implies that a particular (diagnostic) meaning is given to the
associated evidence function.

The framework, which is inspired by the work on abductive diagnosis by Reggia et al.
([9]) and Bylander et al. ([2]), differs in several respects from the diagnostic frameworks
based on logic [4, 7, 10, 11]. Firstly, the logical notions of diagnosis proposed in the literature
have been designed in close connection with specific domain models, such as causal models
or models of structure and behaviour. In contrast, in our framework, there is no intimate
connection between the theory and any of the existing conceptual models of diagnosis. In
fact, the meaning of a knowledge base, described by means of an evidence function e, is
completely separated from its diagnostic use. Of course, it is usually desirable to define
notions of diagnosis that closely mirror the meaning of a knowledge base. Secondly, where in
the other frameworks, the modelled functional behaviour is usually monotonic (except when
nonmonotonic logic is employed), due to the monotonicity of the employed logical entailment
relation, monotonicity is no prerequisit in our framework.

10



In our framework, the properties of an evidence function follow from domain character-
istics. Standard properties of evidence functions, as illustrated in Table 1, and notions of
diagnosis express standard interpretations of domain knowledge. A limitation is that, as a
tool for the semantical analysis of diagnosis, our framework is rather extensional in nature.
This is in contrast to the more intensional nature of logic-based techniques for the analysis
of diagnosis, such as used in defining consistency-based and abductive diagnosis, which allow
for the separate specification of knowledge of structure and function.
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