A Knowledge-Based
Compositional Proof
System for Parallel
Processes

IS /. van Hulst and].-].Ch. Meyer

UU-CS-1996-19
May 1996

= M & Universiteit Utrecht

ISSN: 0924-3275

A Knowledge-Based Compositional Proof System
for Parallel Processes

M. van Hulst J.-J.Ch. Meyer

Abstract

We show how epistemic logic may be used to reason about concurrent
programs. Starting out from Halpern & Moses’ interpretation of knowledge
in the context of distributed systems, where they use the interleaving model,
we extend this to a setting where also truly concurrent computations can
be modeled, viz. posets of action labels. Moreover, and more importantly,
we present an epistemic proof system for the the compositional verification
of concurrent programs. As our programming language, we fix a channeled
variant of Hoare’s well-known Concurrent Sequential Processes (CSP). Proofs
of soundness and (relative) completeness of the proof system are provided.

1 Introduction

In [HM85] Halpern and Moses presented a framework to reason about distributed
processes based on the notion of knowledge. They showed that a modal logic of
knowledge (epistemic logic) may be employed fruitfully to reason about the be-
haviour of networks of processors in which communication protocols take care of
the flow of messages between the processors. They were able to prove a number of
fundamental results regarding the kind of knowledge that is or is not reachable in
such networks ([HM90]). Moreover, using epistemic logic it appeared to be possible
to prove the correctness of some well-known protocols such as the alternating bit
protocol ([HZ87]).

The question we address in this paper is whether epistemic logic is useful as well in
the verification and specification of parallel or concurrent programs in a composi-
tional framework. To get a feel for the idea of using epistemic notions (i.e., notions
pertaining to knowledge) consider a command P;?z, expressing a request for a value
from process 7 to be stored in the variable z. Restricting ourselves to synchronous
communication, of course such a command will only be executed successfully when
it is used in a process j, if process i — that is executed in parallel with j — is
willing to send a value to process j, and execution of process j will be suspended
until this happens. Possibly it will never happen, and then the process j will fail to
be executed. But suppose that a successful transmission of a value takes place from
the process ¢ to the process j. Then it is not known a priori to the process § which
value it will receive to store in z (possibly apart from some information regarding
the type of the variable z, e.g. integers), since this depends entirely on process i.
The process j must consider possible all values that are allowed by the type of z.

In the ‘classical’ (Hoare logic-based) proof system for CSP ([AFdR80]) this local
uncertainty or rather ignorance is represented by an axiom {p}P;?z{¢}. meaning
. that if p holds before execution of the command P;?z, then g holds after execution
(provided that the execution is successful), for arbitrary p and ¢. In effect this
means that it is left completely open what happens after execution of P;?z ! The
approach of Apt et al. corrects this arbitrariness by enforcing a co-operation test
between the local proofs of the correctness of the (sequential) processes invoived.
So, the idea amounts to give (guess) correctness proofs of the sequential processes,
after which these proofs are checked on global consistency by the co-operation test.

In the approach we propose in this paper we shall directly use notions of knowledge
to express the uncertainty in cases as above. More in particular, we employ modal
operators K; to express that something is known to process i. We believe that in
proceeding in this way we obtain a natural form ¢f compositionality in the verifi-
cation of concurrent programs, since thus the language is enriched with pointers to
the local processes, which may be used to speak only of the facts that are known
locally to some process in isolation. This knowledge may later be combined to rea-
son about a composite process, e.g. the request for receiving a message and the
matching request for sending one in parallel. In fact, in ‘standard’ proof systems
for the correctness of nondeterministic programs often a notion of knowledge is left
implicit. In our approach this is made explicit by the employment of epistemic
operators.

Semantically speaking, the proof system to be presented essentially consists of two
layers, one dealing with the usual reasoning about a process in isolation, and the
other dealing with programs possibly consisting of more programs in parallel. The
first layer concerns the realm of set semantics, the second concerns that of Kripke-
semantics.

To get an idea of our approach, we focus again on the command P;?z occurring
in the process j. Although it is not known to j what is the value of z after its
execution, which we may now express by the fact that, for any value v, the formula
K;(z = v) does not hold, we do know that if the execution has been successfully
completed it is the case that z has some value in the domain of the variable r and
that this value has been sent from process 7 to the process 7. This may be expressed
by something like K;(Jv{z = vAsent(v,t,7)]). In fact, as we shall see we even know
some more, viz. concerning the locations of the commands of sending and receiving,
respectively, in the processes ¢ and j. We shall postpone the discussion of this to
the formal treatment in the sequel.

The choices made in this paper represent but one from a vast number of possibilities.
In particular, our choice to consider CSP is a first test how things work out in a
concrete and established setting. In section 11 it is shown how the method-can be
easily adapted to cope with asynchronous communication as well. We envisage to
investigate extensions of our framework in at least two directions: firstly, considering
more complex programming languages, such as e.g. (subsets of) POOL ([Ame89]) in
order to see the practical use of epistemic notions in the context of more advanced
programming languages, particularly object-oriented ones. These objects act as
natural agents to which epistemic operators may refer. Secondly, we could consider
extensions of the logic with more expressive power, such as the incorporation of
temporal operators. This may also be interesting in itself for devising a logic to
reason about truly concurrent processes.

Compared to the work of Halpern and Moses, our notion of knowledge is somewhat
different in the sense that we use knowledge as a meta-notion, in order to prove

properties of programs in a compositional way. Halpern and Moses are not inter-
ested in compositionality of programs but rather use programming constructs which
involve tests on the knowledge of the processes (agents) in a program. Programs
which have this property are then called ‘knowledge-based protocals’.

2 Syntax of the Programming Language

We will now give the syntax of our programming language, which is a variant of
CSP ([Hoa78]). Assume a set CHAN of communication channels, and a set VAR of
variables, both finite. We will denote the variables of a statement S (or program
for that matter) by VAR(S) respectively. Labels in programs are denoted by /. I;
etcetera.

Bezpression b= e=e€le<e |-b|bAY

Ezpression ex= v|z|let+ele—e|exe

Basic command su= skiplz:=elcle]|c’x

Statement Su= 1:s| 88 |2 [bssli i ci?x — Si) |
*u;’;l[bi; li : C,‘?l‘i - 57,]

Program PR:= [P =S| - || Py Sy

Furthermore, we have the following syntactical restrictions:

o A label can occur only once in a program PR
e For 5;,5; € PR,i # j it holds that VAR(S;) N VAR(S,) =0
e For §;5': if S contains cle(c?z) then S’ does not contain c?z(cle)

For (%), {bs; i - ¢;?z; = Si]: for all 4,5 € {1,...,m}, S; does not contain
c;'e, and if S; contains cle then S; does not contain ¢?z.

For Py :: 1 || --- || Po i Sn € PR: if c?z(cle) € S; then not c?2(cle’) € S,
where 4,5 € {1,...,n},i#j

These syntactic restrictions guarantee that every variable occurring in a program is
local to some particular process; moreover, each channel in CHAN is unidirectional
and connected to at most 2 processes. Furthermore, we assume programs are closed,
which means that each channel is connected to ezactly two processes.

In this syntax, v ic a constant, skip is the null command, = := e denotes an assign-
ment, cle denotes ‘output to process i the value of € on channel ¢, and ¢?z denotes
‘input a value from channel ¢ and store it in z’. Typically, basic commands will be
denoted by s. As is the case in CSP, communication will be modeled synchronously;
a process willing to send scme value over a channel has to wait (becomes blocked)
until the corresponding receiving process executes the corresponding receive com-
mand, and vice versa. In section 11 we will indicate how adaptations can be made
in order to support asynchronous communication.

Furthermore, a statement S is a labeled basic command, and the operation ; denotes
sequential composition. The execution of a (guarded) statement |7, [b;;1; : ¢;?z; —
S;] selects one of the alternatives for which the boolean guard is true and the
" corresponding process is willing to send a value; the communication is executed
and control is passed to the statement S; from the selected branch. In case none of
the booleans evaluates to true the guarded statement terminates. The execution of

the recursive guarded statement x|, [bi;l; : ¢;?x; — 5] consists of executing the

=1

guarded statement until ail booleans evaluate to false.

A program PR finally is the parallel composition of a number of processes, where
a process is a statement labeled with an —indexed— process labei P.

3 Semantics of the Programming Language

In this section, we prepare grounds for the use of first-order epistemic logic, of which
our assertion language —to be defined in Section 4— is an instance. As usual, we
use Kripke models to interpret our logic.

In order to do so. we first define the view semantics for individual processes, which
consists of a set semantics. Then, we proceed to define the Kripke semantics of
programs, thereby using the view semantics of an individual process to define the
reachability (possible worlds) relation of that process. We then are able to interpret
Hoare-triples containing (also) epistemic assertions, to be defined later on.

The semantics to be defined below will be aimed at describing the changes in the
valuation of the program variables and recording the communicated values. This is
sufficient for our present purpose, namely the definition of a proof system for partial
correctness. In order to prove more evolving properties such as deadlock freedom -
and progress properties, the semantics would have to be enhanced to convey more
information. Not to blur our presentation, which is aimed at introducing epistemic
logic in the assertion language, we decided to stick to partial correctness. There
seem to be no real obstacles for the above-mentioned enhancements, however.

3.1 The Semantical Domain

In the following, let PR be a program, consisting of n processes. Let P denote the
set {1, ...,n} of process-indices in PR. We define S with typical element ¢ to be the
set of valuations of VAR(PR)|J LVAR, where LVAR with typical elements z (hx) is
the set of logical (history) variables. ¢ maps elements of VAR and logical variables
onto the domain Z, with typical element v, booleans onto the domain {true, false},
and logical history variables hx onto H, to be defined shortly.

We will use the notation o[v/z] to denote the valuation function which is equal to
o but for the valuation of z, which is v.

Next we define the set of program labels:
A={l,{v,e,?,m), (v,¢.1,?), (v,¢,l,m) | |, m appear in PR}

Thus, there are two possible formats for labels, with as intended meaning that
a ‘simple’ label ! reflects some internal action, whereas a ‘quadruple’ label de-
scribes a communication, or an attempt at a communication. For instance, the
label (v,¢,l,m) informally describes the sending of value v over channel ¢ where
the sending statement is labeled ! and the receiving statement is labeled m. The
appearance of the question marks in the quadruple labels is due to incomplete in-
formation: they typically occur in the semantics of communication statements in
isolation. In the sequel, both simple and quadruple labels will be denoted by A, ,...
when we are not interested in their inner structure. The set of i-labels, A;, consists
of the simple labels from A which appear syntactically in P; and the quadruple

labels from A which contain both a question mark and a simple label which appears
syntactically in P;. The set of global labels, Ag, consists of the labels from A that
do not contain a question mark.

Finally, we define the set of histories . with typical element h, as the set of posets
(H, <) over Aq with the restriction that for any i, HNA; is totally orderad by <. As
will be explained below, the notion of poset is adequate, as we (implicitly) generate
different labels when encountering the same label more than once in the event of
iteration.

The basic building blocks of our semantical domain, points. are pairs (0. h) € S x H,
where the first component of a pair is a state. and the second component describes
the history via which the state in the first component was reached. We sometimes
abuse notation and write A € h when we mean A € H, where h = (H. <). Further-
more, when h is a poset with only one element (hence H is a singleton). we may
use that element as denotation for h, and € denotes the empty history.

In the next section, individual processes will be provided with a semantics, which
we will call view semantics. because of the fact that it provides local processes with
certain, limited information of the overall program behaviour. Therefore, next to
the full domain we will use a local domain for each process P;: S; x H;, where S;
is defined analogously to S but for the fact that valuations are now restricted to-
variables of process i and H; are linear posets (sequences) over A;. Analogous to
the global case, elements from S; x H; will be called local points. We will use the
dot " to denote the concatenation operation between (local) histories. Because in
our framework the concatenation operator will only be needed in determining the
local semantics of processes, and hence only for the concatenation of linear posets,
its meaning boils down to the usual concatenation of sequences.

3.2 View Semantics for Statements

In this section we will provide the semantic clauses giving meaning (assigning views)
to statements. Assume in the following that S is a statement of process i. The
semantical operator, which transforms sets of local points to sets of local points, is
typed as follows: :

[1:8 x p(S: x Hi) = (S x Hy)

It is defined point-wise, as in e.g. [FLP84], which means we only have to define
[S1({o, b)), for all pairs (o,h). Once this is done, we derive the semantics for sets
of points as follows: [S](V) = U<a,h>ev(|[5]|((or, h))). Note that we use (s, h) also
to denote elements of S; x H,;.

For the skip-statement, the semantics is simple: the valuation function remains the
same, while the history is augmented with the label of the statement. Note that
h -l is a sequence concatenation.

o[l : skip}({o.h)) = {{0.h- 1)}
Define e, (to be denoted by o(e) also) as the value of ¢ in o.
oll: 2= e]((0. b)) = {(0le. /). h - 1)}

The semantics of the output-statement is obtained by augmenting the history with

a quadruple label which expresses that a corresponding communication ‘has taken
place. The question mark within the quaaruple label indicates that the label of the
receiving statement is not available locally.

ol - cle]((o, 1)) = {(0 - {eoy,1, 7))}

Regarding the input-statement, all pairs of changed states and extended histories
describing possible communications are included:

o[l : cMx]({o. b)) = {{ov/z].h- (v,c.7.])) | v € Z}
The semantic clause for sequential composition:

o[51; S2l({o. b)) =[S ([S1] (e B)))

The semantic clause for ithe nondeterministic statément:

oI [bisls : ci?xi = SilJ({o.h)) = {{o.h) | o(b;) = false, all i} U {(¢’,h) |
there exists k& < m such that o(b.) = true and (o', h') € [l : cx?zx; Se] ({0, h))}

Finally, the clause for the iterated guarded command:

oI sl ¢ clai = Sl hY) = {(0", 1) | there exists £, (o1, ha), .., (0%, P
such that o' = o, b’ = hy, o4 (b;) = false for all 7 and for all 0 < j < k: for some
i, 0;(b:;) = true and (041, hj41) € [li : ¢;?2:;5:]((0, h;))} (where o = & and

ho = h)

Although according to this last clause it:is possible to obtain histories that contain
multiple occurrences of the same label, it is not difficult to circumvent this by means
of a counting mechanism. Formally this can be accomplished by keeping track in
o for every label ! the number of times it has been used, and for instance pairing
[with this number, thus obtaining unique labels. To avoid cumbersome notation,
we leave this semantical feature hidden.

3.3 Kripke-style Semantics of Programs

Now that we have defined the view semantics of statements. we are able to define
the semantics of programs, possibly composed of several processes. Our domain
will be a pair consisting of a Kripke structure M = (S x H,R;,...,R,) and a
pair (o,h) € § x H, where the relation R; represents the accessibility relation of
process 1, giving the points that are “equivalent” as far as process 7 is concerned. In
most approaches, a Kripke model additionally contains a truth-function to atomic
propositions per state. In our case, its role would be quite insignificant, because the
worlds themselves convey the necessary information through the state-functions.

Any formula in an epistemic logic is validated with respect to both a model M and
a world s. The pair (o, h) fulfils this role of current world in the Kripke semantics
of statements and assertions.

A few words are in order here to explain the emerging Kripke structure, in particular
concerning the relations R;. Each equivalence relation R;, belonging to process i, is
derived from the semantics V; of the statement that process ¢ contains, in a simple
fashion: V; divides the set S x H into two classes in a trivial way. In a first attempt,
the resulting relation, which is written Ry, can be characterised as follows (the
formal definition of the restriction operator | follows; note that this is a relation
between global points):

(o, h)Ry, (0’ h') <= [(o,h) i € Vi & (o', }) [i €V

That is, two points are equivalent according to 7 iff their projections onto process
1 are either both in V; or both not in V;. The intuition behind this 1s the inabil-
ity of ¢ to distinguish points that are “the same locally”, i.e. with respect to 7.
We may think of the set of worlds as a set of possible global states of the system
during some execution. The accessibility relation R; may be interpreted as follows:
(o.h)Ry, (o', h') holds if the agent (the process) considers {¢’,h’) to be a possible
alternative, given the world (o, h) (or given the agent's information ‘in’ (o, k)): the
observable information in (o, h) and (o', &') coincide for process i. Putting it differ-
ently, the relation R; may be considered to be some kind of ‘epistemic compatibility
relation’ between the worlds in the model. Or. putting it still somewhat differently:
R; holds between (o, h) and (¢’, ') if the world (o', A’} is a possible ‘extension’ of
agent ¢’s information about (o, k). For instance, if the agent knows that his local
variable r has the value 4, then he will only consider those worlds as possible al-
ternatives in which this is the case, and, conversely, if he considers (given his view)
two worlds as possible alternatives that do not agree on the value of z, then he does
not exactly know this value. ’

This interpretation should be contrasted with the dynamic logic interpretation (see
e.g. [Gol87]) and the temporal logic interpretation ([MP92, Kr687]) of the relations
R;. In the dynamic logic framework, (o, h)R;{c’, h’) holds if {¢’, k') is a state which
can be obtained by executing the ‘program’ ¢ in state {o,h) (hence, a relation
is associated with any program/statement). In temporal logic, the situation is yet
different: here we have only one relation R, modeling the relation between successive
points in time. Comparing our epistemic interpretation with these two alternatives,
we observe that in our case, the accessibility relations do not model ‘progress’ of
any kind, but rather observationally equivalent alternatives of some point in the
computation. -

It should be noted that our notion of local indistinguishability deviates from the
related notion in the approach of Halpern et al, in a crucial way. Because in their
approach, a point is determined within a so-called run, that is, using the information
of other processes which run in parallel, full information can be deduced from that
run with respect to the program variables of some isolated process. Limiting the
set of (global) runs to those that correspond with executions of the whole program
under consideration, this approach leads to a useful notion of knowledge in their
framework.

However, this method is not suited for a compositional approach, in which we want
to describe the a priori knowledge of a particular process regardless of its contezt.
Obviously, the price that has to be paid for this compositionality is that now much
more points are to be considered as locally equivalent, resulting in bigger equivalence
classes and hence weaker knowledge. Thus, contrary to the approach advocated by
Halpern and Moses, it can now be the case that a process does not know the values
of its own variables. for example after executing a nondeterministic statement, or
an input statement. As a consequence of this, the notion of view that we define
here differs from that of Halpern and Moses in that we cannot fix a set of atomic
propositions that determines the view of a process; in other words, the dynamic
nature of the current view function prohibits the selection of some fixed set of basic
propositions by which it is determined.

It will be clear. that, under our interpretation of R;, it seems natural to take this

-1

relation to be an equivalence: given agent i's information about (o, h), the agent
will consider (o,h) to be a possible alternative (i.e., R; is reflezive); if agent i
finds world (0", h"") to be a possible extension of his information about some world
{o’,h') which. on its turn, is held to be a reasonable alternative for some world
{0,h) then (¢”.h") will be considered a possible extension (o, k), given the agent’s
information about (o, h) (i.e., R; is transitive); finally, if the agent finds (o' ,h') to
be epistemically compatible with {a, k), then this will also be the other way around
(ie., R; will also be symmetric).

We now define formally the operations of restriction and chaotic closure on global
pairs (o, h). These operators are needed in order to identify the right set of (global)
points that comply to the view of one or more processes.

Definition 3.1 The restriction operator [: (SxH)xP — | iep(Si x H;) is defined
as follows:
(o.h) fi={o]si,hlni))

where [,: H x P - Uiecp Hiand [(: Sx P — Uie,, S; are defined by:
(H.<)hi=(H' <)

where H' = {l € H| lis an i-label} :

U{(v,¢,2,m) | 3l[(v,¢,1,m) € H] A m is an i-label}

U{(v,e;m, ?) | 3l[(v,¢,m,1) € H] A m is an i-label},
and—note that by the fact that channels are one-one, the missing element from
the quadruple label is uniquely determined by H, so that we can use the nota-
tion O(v,c,?.m) to denote the H-element (original) from which (v.¢,?,m) was
derived— '

<'=(< () H x H)

U{(A\,p) € H' x H' | A < O(u) A Ais simple , u is quadruple }

U{(A\p) € H' x H' | O()\) < . A Xis quadruple , g is simple }

U{(A\,n) € H' x H' | O(X) < O(k) A), p are quadruple }

clsi=c
where ¢'(hz) = o(hz) [¢
o'(z) =o(z),z € VAR(P,) |JLVAR
= undefined, otherwise

The restriction operator defined above is intended to cut out non-local information.
It therefore has to throw out (valuations of) non-local variables, and, with regard
to histories, it only keeps the local simple labels while adapting the local quadruple
labels so as to omit the non-local label which is contained in them. Note that any
quadruple label must contain two simple labels of different sort; this follows from
the syntactic restrictions (a process cannot send to or receive from itself). The—
somewhat awkward looking—definition of <’ is needed to ensure that the ordering
relation < is inherited correctly by the revised quadruple labels.

Definition 3.2 The chaotic closure operators CC’ : S; x H; — P(S x H) and
CC : P(S; x Hi) = P(S x H) are defined as follows:

CC'({o,h)) = {{o", k') | (o', ') T'i = (0.)}

CCH)= [J CC'({o.h))
{o,n)eH

The chaotic closure operators are used to yield the set of all possible extensions
of (a set of) local points. The definition shows why this type of operator is also
referred to as “inverse projection”. It comes up naturally in the description of a
compositional semantics for parallel processes, see e.g. [Zwi88].

Remark From these definitions, it follows that the Ry, »)}-equivalence class of a
point (o, h) in S; x H; is equal to CC'({0, h)).

The set CC'({o. h)) as defined above, yields too many global points {¢. k). This is
because the ordering on the elements of h is not fully determined by the projections
only. An example may clarify this:

Example 3.3 Suppose a local point {o,h) with 2 = (3,¢.7,1l;) - 5. Then, the
following two global histories, together with an arbitrary extension of ¢ to a global
state, determine two points that are within CC'({o, h)) (where we denote the partial
order by arrows):

I ={3,c,my, 1) = ma =1y
" and

i
h.2= (3,C,mlvll>

\
I,

However, h; should be considered as an over-specification: it imposes an ordering
on the labels my and Iy which are both simple labels of different processes, and thus
need not be ordered.

In order to obtain the least restrictive points (i.e. those points that have the least
restrictive histories) we will leave out of consideration points that are ‘refinements’
of other points.

We will therefore aim for the maximal parallel histories in CC'({o, h}), and dismiss
all points that are not maximal. To do so, we need a refinement relation over
histories:

Definition 3.4 The relation <C H x H is defined as follows. Let h; = (Hy,<1)
and hy = (Hz, <2). '

hy < hy if Hi=Hy AN <1C<»

We will pronounce iy < hy also as "hy refines ;.

It can easily be seen that in example 3.3 above, hy < h; holds. Finally. we define
the abstraction function mazpar:

Definition 3.5 The abstraction function mazpar : P(H) — P(H) is defined as
follows:
mazpar(H) = {h € H | h is minimal w.r.t. <}

We can now formally define Ry,. taking care not to include points which are not
maximal:
Definition 3.6

(0, h) Ry, {0’ 1) <= [{0.h) € mazpar(CC(V;)) & (o', k') € mazpar(CC(V;))]
Note that Ry is a partial relation, defined on maximal parallel elements with respect
to CC(V;) only.

Now we can define the function POSS which serves to describe the set of worlds
that are held possible by all the processes involved, starting from a common global
point (o9, ho)-

Definition 3.7 The function POSS. which. given a point. describes the—global—
possibilities according to the process(es) in [P, = Sy,...,P, = S,] is defined as
follows: .

POSS(P;, {0, h)) = mazpar(CC([S:].((7. k) [©)))

POSS(Pr, ..., Py, (0. h}) = mazpar([)| CC([S:}((0. b) [4)))

Another, more constructive definition (albeit in a slightly different context) can be.
found in [HHM93]. However, the intersection used in the definition of POSS above
allows us to relate the semantics with the logic in a clearer way.

Corollary 3.8

POSS(Py, ..., Py.(0,h)) = [| POSS(P;. (g, b))

Proof direct from definition 3.7, and the fact that mazpar distributes over inter-
section. ‘ O

Finally, we have done enough preparatory work in order to provide the definition
of the semantics for programs:

Definition 3.9 (semantics of programs) We define K as the set of all Kripke struc-
tures of the form (S x H, Ry, ..., R,,), for n € N. Now

[1:PRx(SXxH)=Kx(SxH)
is defined by)
of[PL::Sy |- || Py Sn)l({o0. ho)) = (M, (o, h)), where

10

M= (S X H7RV,~ ”.,RV“),

Vi = [Si)({00, ho) T 7).
(o,h) = f(POSS(Py,.... P, {00, ho))).

where f. is a choice function, picking an arbitrary pair (o, h) from a given set in
©(S xH). The choice function is needed for technical reasons only, namely to obtain
an arbitrary point out of this set, which. together with the model M, constitutes a
world.

In words, the Kripke model [[P1 == Sy || --- || Pr = Sa][{{00.ho)) is obtained by
first determining the view semantics V; of the individual processes, and then lifting
these to relations Ry,. Furthermore the actual world (o, k) has to be selected in
such a way that it complies with the views of all processes.

It should be noted that, in our two-leveled approach, it is only after execution
of a parallel program that we can say something sensible about the knowledge of
one or more processes. Therefore, Kripke models only appear in the range of our
semantical function, and not in the domain. More comments on this can be found
in section 10.

4 Syntax of Formulae

In this section, we define our language of assertions. There will be three kinds of
assertions: local assertions Assn;, non-epistemic assertions Assn_ and epistemic
assertions Assn. These will correspond to the different correctness formulae to
be defined further on. Moreover, we define sets of (local) expressions and history
expressions:

Expr; e;n v|xi(EVAR) lei+el|e; —el|e xeél

Ezxpr e v|z(€VAR)|e+e |e—€|exe

Hezpr; he;: e|li|(eic.li,?) | (zi,c.?.0;) | he; - hel | ha 4| hist [i
Assn,; wiz e =e; | he;=he| ~p; | i A} | 2w | T[]
Assne. o e=e g |e- Aol

Assn v oo | Kig| Kgy

The definition of expressions is as in the definition of the syntax of the language.
As to the history expressions, these consist of the empty history ¢, or a (simple or
quadruple) label, to be understood as a poset, or two history expressions composed
sequentially, or the projection of a history variable hz, or the projection of the
current history hist. Note that there are no global history expressions, forcing us
to reason about history expressions on the local level only.

The local assertions consecutively denote equality of expressions, equality of history
expressions, and the operations negation, conjunction and quantification. The non-
epistemic assertions include equality of non-local expressions, the set of all local
assertions and the operation of conjunction. The epistemic assertions finally consist
of the non-epistemic assertions, and two predicates expressing the knowledge of a
process of some local assertion. and the knowledge of a group of processes of some
assertion. ,

In the sequel, we will use the expressions hx = hx', ha = hist, etcetera to denote
the assertions A, ha [i=ha' [iand A, hx |1 = hist | i.

11

5 Semantics of Formulae

Firstly, we need two valuation functions that assign a meaning to expressiors and
history expiessions in a point.

Definition 5.1 The valuation function V : Ezpr x (S x H) — Z is defined as
follows:

V(z)({o.h)) = o(z)
V(v)({o,h)) =

V(er +e2)({0.h)) = V(e1) ({0, h}) + V(e2)({o. })
V(er —e2)({0.h)) = V(e1)({a,h)) — V(e2)({0. h))
V(er x e2)((0,h)) = V(e1)({o. h)) x V(ea2) ({0 k)

Similarly, the local valuation function V; : Expr; x (S; x H;}) — Z is defined,
replacing z by xz; in the first clause.

The valuation function V,; : Hexpr; X (S; X H;) = H; is defined as follows:

= Vhi(hei)({o, h)) - Vhi(he;)({a, R))

One would expect the functions V and V; to vield the same results when given a
local expressioin, and two corresponding points (i.e. a local point and a global point,
where the local point is the projection of the global point with respect to 7). This
is formalised in the following lemma.

Lemma 5.2 For alle; € Expr;:
V(ei)({o, h)) = Vi(e:)({o, h) [1)

Proof by a simple induction on e; resp. he;. (]

Now we define three interpretation functions on assertions. The first function, 7; is
used to interpret local assertions in local points from S; x H;, the second function,
T_ interprets non-epistemic assertions in global points from § x H, and the third
function 7 interprets assertions in a world consisting of a Kripke structure and a
global point.

Definition 5.3 The function T; : Assn; x (S; x H;) — {true, false} is defined as
follows: . :

Ti(e: = €)((o, h)) Vi(e:)({o, h)) = Vi(e')({o. 1))
Ti(hei = he;)((0,) = Vhi(hei)((0. 1)) = Vii(he]) ({0, h))
Ti(=:)({o, h)) = not Ti(w:)({o. b))

T(\r'z rei)({o. k) = Te{wi)({o, h))and Ti(e)({o. b))
T:(3x[2:])({o. h)) = there exists v such that T;(¢;)({ofv/z], h))
T(th[pz])(o.h)) = there exists b’ such that T;(,)({g[h'/hz], k)

Definition 5.4 The function 7_ : Assn_ x (§ x H) — {true, false} is defined as
follows:

T_(e = &)((0. b)) = Vie)({o b)) = V(€' ({o. k)
T- (20 h) =T) 1) '
T (o A)((0. 1)) = T-(p-)((er b)) and T () (o &)

Definition 5.5 The function T : 43571 X K x (§ x H) —= {true, false} is defined
as follows:

T(p-)M, (o, 1)) = T_ (-
T(Kip)(M, {o,h)

) =Y [{o,R)Ry, {0, b} = T(p)}(M »(U' R'))
T(Kgp) (M. (o, h)) =Y{(o' A)[{o.h (M

[
Ra(o',h) = T(p)(M.{o.h))]

where in the last clause. the relation R¢ is defined by:
(o, h)Rg (o', k') & Vi € G[(o,h)Ry, (0’ k)]
or, equivalently, Rg =), Rv,.

Because, according to this last definition, a world is a possible world for the group
G iff this is the case for all members of GG, we obtain the desired behaviour of group
knowledge: it is the knowledge that would result if the members of G somehow
‘combined’ their knowledge ([HMS853]). For a recent description of group knowledge,
which exposes some of its intricacies, see [vdHvLM95)]. :

6 Reasoning about Programs

In order to define our correctness formulas further on, we need the definitions of
validation as defined below. One should be aware of the limitations (with respect
to the assertions that can be evaluated) of the semantical domains involved. For
instance, in a local point, say from S; x H;, only local assertions from Assn; can
be evaluated; and in a global point from S x H, only non-epistemic assertions (i.e.
~ from Assn_) can be evaluated. An epistemic assertion from Assn can only be
interpreted in a world.

Definition 6.1 For all ¢;, ¢_, and ¢ we define

(Si x Hi 3o, h) =i @1 © Ti(wi) (0. h))
(S: x Hi D)V k=i i & V{0, h) € V(0. h) k=, i)

13

(S xH3)o,h) v & T-(v-)({0. 1))
(SXH2)V E v & V(o h) € V{e.h) E -]

(M. (0. 1)) Ev & T(2) (M. (0. 1))

We next proceed with what could be viewed as a generalisation of lemma 3.2. We
want to express that evaluating a local i-assertion in a global point amounts to
evaluating the assertion in the local point which is the i-restriction of that global
point. Formally:

Lemma 6.2

Vip; € AssniV(o.h) € S x H[{o.h) = i & (0. h) T i =)]

Proof Direct from definition 5.4. a

We now come to the definition of two kinds of correctness formulae. connecting pro-
gram semantics with semantics of assertions. These definitions provide the standard
partial correctness interpretation of Hoare triples, in the context of our domain.

Definition 6.3

Fi {ei}Si{vi} & Vio, k) € S x Hil(o, k) i i = [Si] ({0,) b= 9]
= {p_}PR{v} & YM € K¥(0.h) € S x H[(o,h) k= o = [PRIM. (0. 1)) = ¥]

7 Proof System

The proof system is divided into three parts: a general part, a local part and a global
part. The general part contains rules that hold in both the local and the global
system. In the section on completeness below, we will show that, using our proof
system, we can derive any valid formula (of a particular format), provided that we
can derive all valid assertions in first-order arithmetic. This type of completeness
is called relative completeness. For this reason, we import all first-order validities
in the system. The local part contains rules and axioms to describe the individual -
program constructs of processes; the formulation of the axioms and rules in this part
presuppose that the statements in them occur inside some process S;. The global
part deals with parallel constructs, or programs. and also covers knowledge-related

issues. In the general part, the symbol S denotes either a process S or a program
PR.

14

7.1 General Part

Axiom 1 (tautologies)

All valid assertions in first-order arithmetic

Axiom 2 (K-aziom)

(Kip A Ki(= @) = K0
Axiom 3 (veridicality)

Kip—=¢

Axiom 4 (positive introspection)
K'ig,? e d I\"iI\’iQO

Axiom -5 (negative introspertion)
—1K¢<p - I&'iﬂfficp

Axiom 2'-5'

replace i by G in axioms 2-5

Axiom 6 (group knowledge)
Ko = Kgy, where 1 € G

Rule 1 (modus ponens)

Y, 9=
'L/)

Rule 2 (necessitation)

Kip

Rule 3 (generalisation)

Vo]

Rule 4 (consequence)

p—p {p}S{d'}.d = ¢

{r}s{q}

Rule 5 (conjunction)

{p1}S{aq1}, {p2}S{e=}
{p1 Ap2}S{q1 A g2}

Using the above rules, we cau derive the following theorem. stating that conjunction
distributes over (both individual and group) knowledge:

Lemma 7.1 For all i we have
[Kigo A Ii’il) L d]\’1(95' A U‘)

and stmilarly with i replaced by G

7.2 Local Part

Axiom 7 (skip) {¢;[hist - 1/hist]} : skip{¢:}

Axiom 8 (assignment) {p;[hist-l/hist.e/x]}: z = e{p:}
Axiom 9 (output) {@;[hist- (e,c,l.7)/hist]} : cle{p;}

Axiom 10 (input) {¥a'[@;[hist - (z',¢,?. 1)/ hist. 2" /z]]}H : Tz {o:}
Rule 6 (sequential composition)

{ei}Sifer} {el}Sa{ei}
{oi}S1:S2{¢i}

Rule 7 (guarded statement)

{(,Di/\bj}lj :cj?xj;Sj{gng} for1<j<m
{oi L1 1bss b s 57z — SiH{{wi A Njzi =b5) V)}

Rule 8 (recursive guarded statement)

{oi AV; b HTe1bil : ez = Sil{ei}
{oit * [T21[bj38; - ¢57;5 = S;1{ws A A; (b))}

7.3 Global Part

Rule 9 (K-introduction) .

{p:}Si{oi}
{ipi}Pi e SI{I\’IQ’DZ}

Rule 10 (K-persistence)

{@_}P; = Si{K;p;}fori=1,...n)
{o-HP =S| || P Sal{Kioi}

Rule 11 (variable substitution) Let he = hist or he = hx' # hz.

{¢-}PR{v)}
{o_le/z. he/hz]} PR{¥:

7 provided x, hx do not occur in PR or 1.

16

The variable substitution rule is used as usual to get rid of auxiliary variables.

It should be stated that for the notion of completeness that we consider, not all
of the above axioms are needed. This can be seen in the proof of completeness in
Section 9, in which the introspection axioms do not play any role. However they
are sound in our setting, and we decided to include them to stress the fact that we
are dealing with an S5-logic.

7.4 Examples

1. Let PR=[P =l:c?x || P, im: c!5]. ‘

F {hist | 1 =€} :c?x{hist [1 = (z,¢,?,1)} (axiom 10)

F{hist [1=€}Py :l:c?z{K (hist | 1 = (z,c,?,1))} (K-introduction)

F {hist | 1 = e}PR{K(hist [1 = (z,¢,?,1))} (K-persistence)

F{hist 1 2=¢}m : c!5{hist [2 = (5.c,m,?)} (axiom 9)

b {hist | 2= €} P ::m: c!53{K>(hist | 2 = (5,¢,m,?))} (X-introduction)

b {hist | 2 = e} PR{K1(hist | 2 = (5,¢,m,?))} (K-persistence)

F {hist [1=eAhist [2=€}PR{K;(hist | 1 = (z,¢,2,I))A
K,(hist [2 =(5,¢,m,?))} (Conjunction)

F {hist = e}PR{K¢g(hist [1 = (z,¢,?,1)) A Kg(hist [2 = (5,c.m. 7))}
(Consequence, Group kn.; G = {1,2})

F {hist = e}PR{Kg(hist [1 = (z,¢,7,l) A hist [2= (5,¢c,m, 7))}
(Consequence)

F {hist = e}PR{Kg(hist = (5,¢,m,l) Az = 5)} (Consequence)

2. Let PR=1[P, = 51 || P> :: S2 || Ps :: S3], where

Sl = 111 : C!O; 112 : 01!1,
So =gy 17z ls0 : "z + 1), and
S =(I31: P2y l50 : "y (Laz = " Ty lag 1 €72).

Then we can derive in a similar way {true}PR{K(; 5 3)2 = 1Ay = 2Az = 0},
and also {true} PR{Ky; 3;z = 0} but not {true} PR{Ky, 33y = 2}. Note that
from this last fact it fo'lows that the combined knowledge of processes 2 and
3 is not enough to derive the value of y. However, we can prove the formula
{true}PR{ K33y = z + 1}. This example shows how in particular cases,
we can derive useful knowledge within a subgroup of all processes involved.’
Moreover, information does not get ‘lost’ when considering larger groups of
processes, as in traditional (non-epistemic) preof system for this kind of lan-
guage.

8 Soundness

The axioms 1-7 and rules 1-3 together constitute the a sound and complete axiom-
atization of first order S5 (see e.g. [HC84]). So in particular it follows from our
semantics that these axioms and rules are sound. ’

The program axioms together with the rules for sequential composition and non-
deterministic choice from the local part can be checked to be sound in a standard
way, as is the case for the rules of consequence and conjunction.

There remains the proof of the K-introduction rule, the K-persistence rule and the
variable substitution rule. As to the first, we even have the following stronger result

17

Proposition 8.1
i {wi}Si{vi} & B {0} P Si{ e}

Proof

“=7" Suppose =; {¢:}S:{v:}

=4 V(O’, h) € 5; x Hi[(o, h) in i = [[S-LIIL((O’ h)) }:i L"i]
To prove: = {¢i}P; i S {K:;)}

& V(. h) € Sx H[{o,h) i 0i = [P 2 S;]({0. b)) k=i K
So suppose {0, h) = @;. '
Then also (o, R) [¢ =, @i, by Lemma 6.2

So, by assumption [S;],({c, k) [i) E=; ¥;

< Vi =i ¥;. where V; = [Si],((o, h) | 1)

< mazpar(CC(Vi)) k= ¥; (again Lemma 6.2)

< ((S x H,7,Rvy,), f(POSS(P;, (0, h))) = K

& [P = SJ{o, b)) = K,

Suppose = {i} P; i Si{ ;).

To prove = {©;}S:{v;}.

Suppose (0. h) k= @i, aud define V; = [S;],((

Let (o', ') € mazpar(CC({o,R))), and thus () E= ;.
By assumption [P; :: S;}({o’,h')) &= K¢

& (8 x H,m, Ry,), f((POSS(P;. (a,h)))) | Kt

& mazpar(CC(V;)) k= o ,

< V; =i ¥;, by Lemma 6.2

So =i {w:}Si{wi}

The soundness of the K-persistence rule is proven as follows:
Proof Let in the following V; = [S:].({o, k) | %), for all 7.

Suppose = {p_}P; = Si{K:p;}
@V (0, h)[{o,h) = o = [P; : Si] ({0, k) = K]

® V{o,h)[{o,h) = o = (S x H, 7, Rv,), fo(POSS(P,, (0. 1)) = K]
& Vo, B)(o.h) b= g = mazpar(CCV)) £ o] |
& Y(o, h)[(o, h) E o-

= (S x H,W,va,...,Rv,,),fc(POSS(Pl,.. v Pr. (o,) E K]

@ V(o,h)[(o.h) oo = [Py Sy || ... || Pn o S2]({o,h)) = K]
<:>‘= {gﬁ_}ﬂ:Pl = Sy ” ” P, : Sn]]{lx’,cp,}

Finally, we prove the soundness of the variable substitution rule:

Proof Let he be a meta-variable denoting either hist or some history variable in
LHVAR which is different from hz.

—

Suppose (0. h) = ¢_[e/z. he/hx).
Define & = o[V(e)({0. h))/x.o(he)/hz].
By lemma 9.4 below, (5,h) k= ¢_.

18

Let (M', (o', ")) = [PR]({o, h)).

Define ¢/ = o'[V(e)({r, h))/z, o (he)/hz].

Since z, hz do not occur in PR, we have, for some suitable M" :
(M",{d’, k")) = [PR]({5.h)). i

Then, by {¢_}PR{v}, we have (M",(¢', 1)) = ¢.

Since z, ha do not occur in ¥, we arrive at (M, (o', 1)) = v.

(note that M" and M’ differ only with respect to the variables z, hz)

9 Completeness

In order to prove relative completeness of our system (in fact, a particular, strongly
related notion which we will call K-completeness), we extend Assn; by adding
sp(yi, Si) to it, the strongest postcondition with respect to a statement and a local
assertion. The semantics is given as follows, as an extension of definition 6.1:

(Si x H; 3)(o, h) =1 sp(w:, S:) & 3(00777'0)[(‘00,%) i wi Ao, k) € [Si] ({00, ho))]

The proof that this definition indeed provides a semantical characterisation of the
strongest postcondition is standard and not given here (see e.g.[dB80]).

We now have the following lemma stating that the strongest postcondition can be
expressed in Assn;, for any ¢; € Assn; and statement S; (for the recursive guarded
statement, the situation is somewhat different, in that we need the existence of an

invariant; see the proof of Theorem 9.6 below).
i

Lemma 9.1 o = sp(wi, 2 skip) & 3hx : p;[ha/hist) A hist [i=hz [i-]

o = sp(pi,l iz =€) < 30’ ha : gi[z’ [z, ha/hist) Az = e[z’ /7] A hist | i =
hxfz-l »

=i sp(pi, - cle) < (Fhx : p;[hx/hist] A hist |1 = hz [i-{e,c,l, M)

o =i sp(pi,l:clz) < (32’ ha : iz’ fx.ha/hist) Ahist [i = hz [1- (z,¢,7,1))

i sp(pi, S1; S2) © sp(sp(wi, 51), S2)

Fi sp(oi T2 [b55 4 < 675 = Si]) & (@i A AL —b5) AV spls A byl
cj?xj;Sj) '

In order to prove this lemma, we first state some lemmas concerning substitution
in expressions and assertions.

Assume the usual definition of substitution of variables in expressions and assertions:
let ¢[z’/x] denote the formula ¢ .where (logical) variable z is replaced by z'.

Lemma 9.2 Vi(elle:/x])((o. h)) = Vi(e})({o[Vi(ei)({o. h))/x], h))

Lemma 9.3 o (0. h) =i wiles/x] © (o[Vile:)({o, h)) /], k) =i s

19

o (0.h) i ¢ilhei/hx] & (o[Vhi(he:)({o. 1)) /ha].) =i o
o (0. h) =; pilhei/hist] & (0. Viri(he){{o, k) k= @i

Lemma 9.4 Let again he denote hist or some hx' # hx.

o (0.1} I p-le/a] @ (oV(e) (o, h))/al) oo
o (0,h) = ¢_lhe/ha] & (oo(he)/hz],h) = ¢

Proof (of lemma 9.1)

o (0,h) | sp(wi,l : skip) iff
o9, ho) ({00, ko) E ¢: and (o, h)
3(0’0, ho)[(O’q, ho) |= @i and <0’, h)
3hol{o. ho) = i and h = hg -] iff
Hho[(d[ho/hl‘],ho) ,‘: o5 and h = ho . l] (h.’L fresh) iff
3ho[{o[ho/hx], h) = wilha/hist] and {olho/hz], h) k= hist [i = hx [i- 1] iff
3ho[{c[ho/hx], h) |= wi[ha/hist] A hist [i=hz [i-1]iff
{(o,h) = 3hz(pi[ha/hist) Ahist 11 =hx [i-]]

o (0,h) E sple;,l 2 :=¢) iff
(o0, hodl{00, ho) = i and (o, h) € [l : 2 := e]({00, ho))] iff
3(0’0, ho)[(do,ho) }-‘: [*21 and o = 0‘0[0’0(6)/1‘], h= ho . l] iff
oo, ho)l{ooloo(z)/2', ho/hx], h) |= @i[z' [z, hx/hist] and
(goloo(x)/2', ho/hz],h) =z = e[z /z] and o = agloo(e)/x], h = ho - 1] iff
oo, ho){(oloo(z)/2', ho/ha), k) |= @i[z' [z, hz/hist] A z = e[z |z]A
hist [i=hg i) iff
(o,h) = 32’ halp;[2' [z, ha[hist) Az = e[z’ [z) AN hist [i=hx [i-]]

e (o, h) = sp(wi,: cle) iff
oo, ho){(o0, ho) = @i and (o, h) € [I : c'e]({o0, ho))] iff
3(0’0,/10)[(0’0,hq) i= (-5 and (0’, h) = (Go,ho - (eg’c’l§?>>)] iff
3hol[(o, ho) = i and h = kg - (es. ¢, 1, 7)] iff
dhol{a[ho/hx], h) = @ilhax/hist] A hist [i = hz [i-(es,c,0,7)] iff
(o, h) = 3hxlp;[hx/hist] Ahist [i=hz [i-(es,c,1.7)]

o (g h) = sp(e;,l:c?x) iff
3(0’0,/10)[(0’0,]10) }: w; and (0', h) € ﬂl : C?.’L‘]]((O’o,ho))] iff
oo, ho). v[{00, ko) = @i and ¢ = gg[v/z],h = hyg - (v.e, 7, 1)) iff
oy, ho),v[(oo[ao(x)/x’,ho/h:c],h) E= ilz’ [z, ha/hist]
and 0 = agfv/z],h = ho - (2o,¢,7,1)] iff
oo, ho)[(oloa(x)/z' ho/hx], h) = [z’ [z, hx/hist]A
hist [i=hx i (x,¢7?0]iff
(0.h) = 32, halp;i(z' [z, ho/hist] Ahist [i = hx i - (z,c,?.1)]

* (0,h) = sp(w:, 51: S2) iff
oo, ho)[{00, ho) = @i A (0. k) € [S1; S2]({00, ho))] iff
(a0, ho)[(00. ho) = wi A (0, h) € [S2H([S1]({00, ho)))] iff
3(0‘0,/7,0), <01,h1>[(0‘0.ho> f-: W A (0’1,}11) S Hsl]j((do,h()))/\
(0, h) € [S2]({o1, h1))] iff
o1, 1) 300, hodl(oo, ko) = @i A (o1, h1) € [S1]({o0, ho))]A
<07 h) € [SQII“Ulth))] iff
Ho, ha)[{o1, h1) | sp(ws, S1) A (0,) € [S2]({o1, b)) iff
{0,h) = sp(sp(gi. $1), S2)

€ [l : skip]({oo. ho))] iff
= (g, ho - 1))] iff

20

o (0.h) = sples, {5,053 cJ?acJ — S;]) iff

(007h0>[(00,h0) EeiA) € 7= b3l - ¢725 — 5]]I((Uo-,hom iff
Hoo, ho)l{oo, ho) = %‘ ((Uo,ho) = (o, h) /\0'(/\ =b;) '

3k < m[UO(bk) A{o,h) € [i;: Cj?$j§51]]((00»h0)))] iff

oo, ho){(oo: he) |E i A oo, ho) = (0. k) Aa(A\; -b;) or

3(0’0,h0 [(Uo,ho '—: wi A 3k < m[Uo(bk)/\

<0', h) € [[l] : Cj?iL‘j;Sj]](<0'0,ho)))] iff

(0 h) = i A N\, by or 3k < m(o, k) b= sp(o A b, by - ex2: Si)] i

(0. h) s A A by Vs splos A byl 2 ;7253)

O

The following lemma justifies the previously introduced syntactical abbreviation
hz = hist meaning A, hx [¢ = hist [. Although in our assertion language there
is no means of reasoning directly about global history expressions such as hist. it
follows from this lemma that we can make global statements using the abbreviations.

Lemma 9.5 A history h € H is completely determined by all its projections h [y 1
where 1 ranges over all processes.

Proof We show, for all A, h' € H:

h#ER = 3ihlhi#h Thi (*)

Let h = (H,<) and &' = (H',<’), and suppose h # h'. We will use the following
notation: h [y i = (H;,<;),h' [ni = (H],<}). As both h and h' are posets, there
are the following possibilities:

o H # H': without loss of generality, assume there is some i-label \; in H\H'.
There are the following possibilities:

1. A; is a simple ¢-label: then also A\; € H;\H], so H; # H.,so h [n i #
h' Iy 1.

2. A; is a quadruple label, say (v,e¢,l,m), where [is an i-label and m is
a j-label. Now (v,c,!,?) € H; and (v,c,?,m) € H;, and it cannot be
the case that (v,c,l,?) € H! and (v,¢,?,m) € H; as will be shown in
the rest of the proof. Suppose on the contrary that (v,c,,?) € H] and
(v, c, ?’,m) € H}. Then (v,c,l,m') € H' and (v,c,l',m) € H' for some
I',m' and by umdlrectedness of ¢, I' is an i-label and m' is a j-label.
Furthermore, by the fact that (v,c,l,m) € H\H', we havel # I, m #m'.
So H! contains at least the elements {v,¢,{,?) € H; and (v, c, 7, and
H; contains at least the elements (v,¢,?,m) € H; and {v,c,?,m'). Now
if either (v,¢,l',?) &€ H; or {v,c,?,m’) & H then the consequence of (*)
holds so we are done. So suppose {(v,c,!’, ?) € H; and (v,¢,?,m') € Hj.
This implies (v,c,!’,m") € H and (v,c,l”,m') € H for some I",m".

- Now suppose m"” = m' (and so also I = I', again by unidirectedness of
¢). Then there is an order conflict either between h [, 2 and A’ [, ¢ or
between A [, j and A’ [, j: this is because the elements (v,c,I,m) and
(v,c,I',m') € H must be ordered and also the elements (v,c,l’,m) and
(v,c,l,m'} € H' must be ordered, and both orderings imply necessarily
different orderings either on h [y ¢ and A’ [y ¢ oron h [j and A’ [}, 5.

21

So we conclude: m” # m' (otherwise we are done). Similarly we derive
I # ', so that we conclude: (v,c,!”,m') and (v.c,I',m") € H, and thus
{v.c,1",?) € H; and (v,c.?,m") € H;. Once again, if either (v.c.l".7) €
Hior(v,e.?.m")¢ H + then we are done as the consequence of (%) holds.
Analogously we conclude that there must be fresh m. 1" etc., etc. So
we can blow up both & [, 7z and R’ |}, ¢ ad infinitum which contradicts
the finiteness of our programs. Sc we conclude either (v.c,l,?) € H! or
(v.e,?,m) & H}, which leads to h [w i # A [nior h{nj# R I j.

o <#<'(while H = H'). Suppose A < u and A £’ u. Define <, (<), the
next-relation derived from < (<), by A <, p & A < u A -\ < v < .
Then there exists k € IN : XA <, A] <, A2 <p .. < Ap <n u. It follows
that for some m. A, <, Ay but not A\, <, Am+1- Now first note that all
adjacent labels are labels of che same (process) type (this does not imply that
all labels are of one and the same type, because quadruple labels have two
types). We consider the case that A, is simple, say of type ¢, and /\m+1 is
quadruple, say Aniy = (v,c,l,m) with [of type i (the other three cases are
similar). Then it follows that An,, <; (v,¢.l,?) and not A, <’ (v.¢,l.?), so
hilwi#R [y

a

Finally, we are ready for the main theorem of this Section. Let PR = [Py, 2 S ||
| P Spl

‘Theorem 9.6 The proof system presented in this paper is ccmplete respectively
K-complete, i.e. :

1 if B {p:}Si{ei} then + {p:}Si{w:}
2. if B {o}PR{Kcy} then - {p}PR{Kcv} (G C {1,...,n})

The second clause of this theorem asserts that any correctness formula involving a
postcondition referring to the knowledge of (groups of) processes can be derived in
our axiom system, provided it is valid.

Proof 1. to prove F {©;}S;{sp(y;:, S:)}. The proof proceeds by induction on S;:

e skip:

F {(3hx(pi[hz/hist] A hist = hz - I))[hist - I/ hist]}] : skip
{3hx[p;[hz/hist] A hist = hz - 1]} (axiom 7)

F{(3hz{pi[hz/hist] A hist -1 = hx - 1)} : skip
{3hzlp;i[hz/hist] A hist = hx - 1]}

F{@i}l : skip{3hx(p;[hz/hist] A hist = hz - 1]} (rule of conseq.)

e assignment:

F{(32". hapi[a’ /2. ha/hist] Az = e[z’ /z] A hist = ha - 1])[hist - I/ hist, e/z]}
l:x:=e¢
{32', hzps[z')z, ha/hist] Az = e[z’ /2] A hist = hz - 1]} (axiom 8)

F {32, hzpila' /a, hx/hist) Ae = e[z’ [z] A hist -l =hz -)} :z:=¢
{32', halpsfz’ [z, ha/hist) Az = e[z’ /] A hist = hx - 1]}

F{ei}l 1z = {32, halpi[z' [z ha/hist] A z = e[z’ [z] A hist = hz - 11} (coms.)

o
[

“output:

F {(3hz|pi[hz/hist] A hist = ha - (e,c, 1,)])[hist - (e,c.1,?)/hist]} : cle
{3hz[pi[hz/hist] A hist = hx - (e, c,1,?)]} (axiom 9)

F {(3hzlpilhz/hist] A hist - (e,c,1,?) = hx - {e,c,[,)])}H : cle
{3hx[pilhz/hist] A hist = hx - (e, c,1,7)}}

F{oi} : cle{Zhz|pi[ha/hist] A hist = hz - (e, c,1,?)]} (rule of conseq.)

input:

F {Yo[(3z', halps(z' [z, ha/hist] A hist = hz - (z,¢,?,1)])[v/z,
hist - (v,c,?,1)/hist]|} : ¢’z
{32, hzpi[z’ /2, hx/hist] A hist = hx - (z,¢,?,1)]} (axiom 10)
F{vv[(3z’, hzpi[z' [z, ha[hist] A hist- (v,¢,?.1) = ha - (v.c, 7, D])]}
L:c?x{3z', ha[ei[2'/x, hz/hist] A hist = hx - (z.¢,?.1)]}
F{wiH : c?z{32', hx[p;s[a’ [z, hx[hist] A hist = hz - (x.¢,?,1)]} (conseq.)

sequential composition:

By induction hypothesis, F {©;}51{sp{w:, S1)} and F {sp(¢:, S1)}S>"
{sp(sp(@4, 51), S2)}. Then, by rule 3: + {p;}51; S2{sp(sp(¢;:, S1), S2)}, or,
equivalently, - {¢;}51; So{sp(¥;, S1;52)}.

guarded statement:

By induction hypothe515 for 1 < j < m we have - {o; Abj}; - ¢;725; S
{sp(piAbj,1; : ¢;72;5;)}. Applying the consequence rule, we get for 1 < j <
m F {@i A} ¢ x];Sj{V;" L sp(wi Abj, L < ¢;725; S;)} Hence, using rule
7 we obtain F {p:}[J72,[bs; 15 : ¢;72; = S]{(«p/\ Ajz1 =b5) v sp(epi A by, 1
¢;? x],)}, or, equivalently, b {w; }HI7L 1[bj,l iej?z; = 5]{sp(c,ai,[]J NIHRE
¢ xJ —* S;])})

iterated guarded statement:
Let x[|7L;[b5; 15 : ¢;?z; = S;] be given. In a standard way (see e.g. [Ho093])

we can show the existence of an invariant I for which the following hold:

I € Assn;
= sp(os, x[1721 (b1 1 1 5725 = S5]) © (I A NJZ; b))
Eoi—-1
4 F LAV 05 bss L ¢72; = ST}
Essentially, I expresses the strongest invariant for the statement considered.
Now using induction hypothesis and (d) we obtain - {IA V7L, b;}[7,[b;;1; :
cj’z; — S;}{I}. Using rule 8 we get = {I} * [[70,[b;;!; : cJ"xJ — S~]{I/\
Aj=; ~b;}. Using (b),(c) and the consequence rule we arrive at F {p;} x
}"=1[bj?lj t¢;?x; = Sjl{sp(wi *[Ja b1 < 725 — Si)}-

W e

2. Let G ={1,....n}.

Suppose = {¢}PR{Kcv}. Let. for all 7, 7 denote the list of i-local variables
in VAR. Define @ = ©[01 /%71, ..Tn /Tn, hz /hist) ATT =TT A ... AT, =Ty, A hist

= hz (hz,7; fresh for all 4). :

Clearly, T — ¢. so = {$}PR{K¢zv} holds.

Now let ; = loc;(F), where loc; is defined below.

Then P < A, ¢:. Now by definition of sp(p;, S;). we have = {o:}S:{sp(¢i, S:)}.

23

Thus. by 1. it follows F {:}S:{sp(pi. S:)}.

By rule 8 it follows that F {,}P; == S;{K;(sp(¢:.S:))}. all ¢

By K-persistence, + {¢;} PR{K,(sp(¢:, S:))}. all ¢

Then. by conjunction. F {A; w:} PR{A, Ki(sp(¢:.S:))}

Group knowledge: F {A; v:}PR{A, Kc(sp(¢i, S:))}

Distrib. of Kz over A (lemma 7.1): F {A; i }PR{Kg A,(sp(v:. i)}
K-axiom, and A;(sp(@:, S:)) = ¥ (see below): F {A, v;}PR{K v’}
Consequence: + {G}PR{Ngy'}

Variable substitution rule: - {¢}PR{Kgv'}

There remain the definition of loc; and the proof of k= A.(sp(¥:i. 5i)) = ¥

For any ¢, the function loc; : Assn_ — Assn; is defined as follows:

o loci(i) =
o loci(g;) =V (i #7)

L] lOCi(C"l = 62) =€ = € if VAR(el,eg) nVARJ = @
= otherwise

e loci{p_ A ¢l) = loci{p—) A loc; ()

where A’ is defined as A except for V N o = o A"/ = .

In this definition, the symbol \/ expresses the projection of a non-i-formula, i.e.
a part of the source formula which is of no importance to the formula ;. This
also explains its role with respect to the operator A’: this cperator just forgets
operands of type |/, rendering the output of loc; into the domain Assn;. Note
that by construction of @, there always is at least one sub-formula of P that is left
unprocessed by loc; (namely hx I i = hist [7), so that we need not define /A’ /;
we can elininate the /s by associating in the right way.

Lastly, suppose (o, h) = A, sp(¢:, S;). Then. by lemma 6.2 it follows that, for all 7,
{(o,h) 11 =i sp(@:,S:). So, by definition of sp(y;, S;). for all 4

o, ho)(o5, ki) Ei i Ao) 1 € [0,)]

Now because execution of S; does not influence the values of logical variables, we
have ¢ | i(z) = o((z) for all z € LVAR, and o [i(hz) = o§(hz) for all hz € LHVAR.
Hence we can construct oo such that oq [7 = o} for all i (take oo(z;) = o}(z;) and
oo(hz) = o(hz)).

Furthermore, because we have (0§,h5) k= hz | 7 = hist | ¢ (all 1) it follows that
o5 (hx) = hy, hence o | i(hz) = h} (all i) and hence, by lemma 9.5, there is some
ho uniquely determined by o(hz) = hg, such that hg [i = &} for all 5.

Therefore we can 'melt’ together all (o, h3) to obtain a global point (o9, ko) such
that for all i: (00, ho) |7 = (0. hY).

It follows that (oo. ho) = A, v, hence {09, ho) E B
So, we have

Hoo- ho)[{T0. ho) = FAVi[(o.h) [i € [S:]({o0, ko) |)]
& 3(00.h0)[(00. ho) = F A (0. h) € POSS(P,. ... Pa.(00. ho))]

24

It then follows from = {F}PR{R v} that POSS(P, wos P, (70, ho)) | ¥, hence
(o, h) =%, which proves = A, (sp(pi, Si)) = ©.

(]

10 Some Remarks on the Semantics

The semantics of programs as defined in Section 3 is limited in a certain way. This
is because only after execution of some process, something about its knowledge can
be stated. As a result, group knowledge of any group of processors only exists a
posteriori.

Therefore, it would be nice to be able to describe the evolution of knowledge during
computation of a process. Of course, our Hoare logic would have to be extended in
order to be able to reason about these intermediatz states, but this can be done for
instance by adding an invariant to our triples, in a similar way as used in Pandya’s
I-logic [Pang&8].

In the following however, we will show that it is not at all straightforward to define
such a semantics.

First of all, note that an equivalence relation R; on & x H defines a partition of
S x H and vice versa (for the moment, we are not interested in maximal parallelism;
therefore we simplify the framework somewhat): :

S va/Ri = {[(C, h)]R; I (07 h) €S x H}

Let us denote the elements of this partition by Vg,, Vg, etc..

The global idea is now to define the local semantics in terms of transitions of the
relation R;; in other words, when executing some statement S, the new relation R,
is obtained from the current R; by determining the semantical image of each class
of the partition:

M(S)S x H/r:) = {[SUVR.) | Vr. € S x H/R,}

As we will explain below, the right hand side of this “definition” does not represent
a partition of § x H.

Assume a process with only one local variable, z. In the pictures below, each
equivalence class is denoted by stating the value of £ and the value of the local
history, denoted by h. Such a class then consists of all global extensions (with
respect to the full program under consideration) of these values.

h= \fm—i\hsk\\ e
Q

z=0 I~ z=0

In the first picture. it is shown how the execution of a local command [: z := 0
affects the partition. In particular. it is clear that the resulting set of image-classes
does not cover the whole of S x #. i.e. is not a partition (for instance, all classes
that have h = ¢ do not have an original). Luckily, this is not too serious a bug: we
can fix it by defining a “rest” class Viegt, as follows:

Viest = S X H\{[S1(VR.) | VR, € S x H/R,}

This way, by adding Vjeg; to the image, we again get a partition. Initially we set
Vrest = 0; note that in the construction of the new partition, Vest does not play
any role; it is determined by the images of the “proper” classes.

A second, more serious problem concerns the fact that the set of classes resulting
from the execution of a particular statement need not be disjoint. An example of
this type of event is represented in the second picture below.

h= h=¢ \\
/ z=1 =2)

\.*Z:I

The picture shows the transition of two classes under the semantics of the statement
[l:z:=1]m : 2 := 2 + 1]. Obviously, both resulting equivalence classes are not
disjoint, but they do not coincide, either. This type of “clash” occurs because of the
use of a nondeterministic choice in combination with smartly chosen assignments.
It shows that there exist circumstances in which the resulting partition is such that

one would like to consider two points both R;-equivalent and not R;-equivalent at
the same time.

For this second flaw we do not have a satisfying solution as yet; for instance taking
as a resulting class the union of the two classes above leads to classes that are too
big, unnecessarily diminishing what can be known by the process.

It would be worthwhile investigating this issue further, because there seems not
to be an obvious solution to the problem of defining an “update” semantics. For

26

instance, it may be possible to define such a semantics in the case of some not-so-
distinguishing view functions.

11 Asynchronous Communication

In this section, we study the modification of the proof system presented in this paper
to asynchronous communication. This communication will be modeled by infinite
FIFO (first-in-first-out) buffers. Hence, the sending of a value can always take place,
while receiving a message requires that the associated buffer be non-empty.

Basically, when shifting from synchronous communication (handshake) to asyn-
chronous communication, the description of the communication interface between
processes by means of communication histories becomes more complex in the sense
that we now have to represent a successful communication between two processes by
two reccrds—one representing the sending action and one representing the receiving
action—and, moreover, the sending of a message has to be done first.

An example may clarify things: consider the program
(L :cM?zyly 1 A3 || my < 155 ma - d?7y]

in which two processes communicate asynchronously (indicated by !! and ??) over
the channels ¢ and d. The communication behaviour of the individual processes
can then be described by the following two sequences of records, where we only
record the local label of the sender/receiver): (¢??,v,{;) - (d",3,12) and (c",5,m;) -
(d??,v’,mz). On the communication history of the combined process, we have to
impose the restriction that the projection on each individual process respects its
(local) behaviour, as is the case with synchronous communication. However, this is
not enough, as it would allow for the history (c!!, 5, my) - (¢??,v,11) - {(d??,v',ms) -
(d", 3,15) which is clearly not a valid one, because the value over channel d is
earlier received than it is sent. (Synchronously speaking, there would be no problem
whatsoever, because communication is now considered as handshake, leaving as
single possibility the global history (c,5,m1,l1) - (d,3,l2,m2)). Thus, in defining
the semantics of the parallel composition, apart from the projection property, we
have to add a constraint with respect to the order in which messages are sent and
received.

In the proof system we propose in this section, we localise this constraint by defining
‘local’ merge predicates M; (which are in fact giobal predicates as we shall see)
stating that on all in-going channels from process i, at all times enough values
have been produced by its environment to enable i’s execution. Conjoining these
local merge predicates can then easily be seen to coincide with Pandya’s NETINV
predicate [Pa].

We proceed with discussing the successive adaptations of the framework.

The Language: we replace the communication commands c?z and cle by ¢??z
resp. c!le to denote the asynchronous nature of the communication.

Semantics: with respect to the domain, the set of local labels is now defined as

A = { (v, e??.1). (v, c!!,1) | | appears syntactically in S;}.

Here (v, ¢??,1) will denote the event of an input of value v from channel ¢, where the
executed action is labeled with [, and (v, c!!.1) likewise for output. By the fact that

o
-1

communication actions are now autonomous, the label does not contain unknown
sender/receiver labels as in the the synchronous case.

We define #;(3 h) to be the set of posets (sequences) over A;. for i € P.
Global semantics: We define S. with typical element o as the set of global states.
Let A = Uie,, A;. and define H to be the set of posets over A.

We assume a restriction operator [, which can be used in two ways. Firstly it yields
a local point when provided with a global point and a process index:

PSXHXP — U(S,-x?—ii)
1E€P

by the intuitively obvious restriction/projection operation. Secondly, when given a
directed input/output channel as second argument, it yields a sub-trace of a global
history consisting of those labels that involve the specified channel. e.g.

(3. D) -m-(3,e77,n) [?? = (3,c77,n)

In the definitions below. we will have need for a prefix operator < on posets. Intu-
itively, by < hy means that h; is a prefix of hy. This notion of prefix is not so easily
defined as in the case of linear structures such as streams. The reason for this is
that a poset can be extended in more directions.

Definition 11.1 Let h; = (H,.<1), hy = (H»,<2), and let A, u range over H; UH,.
Then we define

hi<hy & HCHy AN <1= <sNHyxH, A V/\EHQ\Hl _'BMEHl[)\ <2 /.L]

The first two conjuncts express that h; is a sub-poset of k. The third conjunct
states that hy is a proper ‘right-extension’ of h;. In other words: if some label) is
in Hy\H;y, then also p is in H,\H), for all u with A <y .

Now. we will define the chaotic closure operator CC, which yields all global points
that are possible extensions of a given set of local points. Unlike in the synchronous
case, this definition will not be just the inverse projection. but an additional con-
junct is required in order to guarantee that every receive action is preceded by a
corresponding send action. We define this predicate as follows.

Definition 11.2 The predicate Merge; is defined by
(S xH 3)(0.h) = Merge; <= [\ VR <A [c?? <K [

c€IN(S;)

Definition 11.3 The chaotic closure operators CC’ : S; x H; — P(S x H) and
CC :P(S; x H;) = P(S x H) are defined as follows:

CC'({o,h)) = {{o" W) | (o' 1) i = (o.h) Ao h') = Merge;}
CCH)= |J CC'((o,h))

(U,h)EH

28

Given these definitions, we can now fix the relation Ry for any set of local points
Vi:

{(o,h)Ry, (0", ') <= ({0, h) € mazpar(CC(V;)) & (0', ') € mazpar(CC(V}))]
So again, as in the synchronous case, the set S x #H is divided into precisely two

classes for each process.

Syntax of Formulae The syntax of ocur assertion language is the same as in the
synchronous case, except for the addition of the special predicate Merge,. reflecting
the semantical Merge;:

Assn. p_ i e=¢€ || p- Apl | Merge;

Thus, it now becomes possible to infer non-trivial knowledge about non-local infor-
mation, as we will see in the proof system below. Note that this was not possible
in the synchronous case.

Semantics of Formulae The function 7_. is extended by the following clause:
T_(Merge,)((0, 1)) = Acerns,) VR < BIR 1?7 < h T el

Proof System The only different rule is that of knowledge introduction. Because
the chaotic closure operator is more selective than in the synchronous case through
the enforced validity of Merge;, we can infer more knowledge of the process involved
(if process ¢ does some input, it knows some matching output must have occurred
beforehand (although ¢ does not know the corresponding send-label)).

Rule 12 (K-introduction)

{oi}Si{e;}
{pi} P; ©: Si{K;(¢. A Merge;)}

Completeness

The key lemma is now the following, stating that a global history is completely
determined by all its projections, if the Merge; predicate holds for each i-projection.
This lemma enables us to use the abbreviation also in the new situation.

Lemma 11.4 Let h,h' € H. Suppose there are h; € H; such that for all 1 with
1<i< nitholdsthath {i=h'[i=h;. Suppose furthermore thath |= \; Merge;
and h' &= A\, Merge;, and that both h and h' are mazimal parallel under these
conditions. Then it follows that h = b'.

12 Conclusion

In this paper we have presented a proof system for the correctness of a simple parallel
programming language using a logic in which epistemic operators are included to be
able to speak about the knowledge of the sub-processes involved in the execution of
parallel programs in this language. As we have seen this proof system comprises of a
local and a global part. The former is classical dealing with the correctness of local

29

processes, whereas the latier part concerns the parallel composition of processes
and eventually the whole process of parallel computation.

It is in this latter part where the use of epistemic operators comes into the picture.
These operators enable us to (still) refer to assertions along with the agents (pro-
cesses) that know them. Combining this knowledge to knowledge of larger groups
of processes eventually gives us the desired assertions known by the process as a
whole but again we still can refer to the knowledge of every subgroup of processes
when we want to. So combining knowledge into group knowledge does not destroy
the information about what is known by subgroups. Moreover, this knowledge can
also be re-used when putting subgroups in another context (another program), thus
supporting the re-use of software and specifications. This illustrates the modularity
of our approach. So. summarizing, one could state that in our proof system, the
constructs on the local level are handled in a more or less standard way, whereas
the parallel (top) construct is treated by means of epistemic operators.

This two-leveledness in our approach is not strictly needed. With suitable adapta-
tions of the semantics it should be possible to allow an arbitrary depth of nesting
of the parallel construct.

The section on asynchronous communication shows that the essential factor in de-
vising a proof system as defined in this paper entails the determination of the right
view function; this suggests that the view function is a parameter in the proof
system that can be tuned so as to match particular cases of interest.

There have been other attempts at defining and proving the notion of knowledge
in distributed systems, of which we mention [KT86]; they used an interleaving
semantics, as opposed to our poset semantics (a form of true concurrency semantics,
cf. [BRR89)), and, moreover, their proof method is based on the well-known proof
systems of [AFdR80] and [OG76], and is therefore not compositional.

We believe that the epistemic approach to the correctness of parallel programs may
be used fruitfully for a range of programming languages. In particular, since our ap-
proach is agent-oriented we believe that the approach is amenable to object-oriented
parallel programming languages since the objects in these languages are exactly the
agents/processes involved in the execution of a program. Also the incorporation of
parallel languages into more advanced agent-oriented software systems as proposed
in the realm of distributed AI ([BG88]) might be facilitated in this way. This will
be investigated in future research.

We would finally like to mention that we do not need a merging lemma ([Apt83]),
due to compositiorality of the semantics (cf. also [AdB94]).

acknowledgement Jozef Hooman is acknowledged for providing his useful lecture
notes, and for suggesting the use of channeled communication in earlier versions of
this paper ([HM94]). .

References

[AdBY4] P.H.M. America and F.S. de Boer. Reasoning about dynamically
evolving process structures. Formal Aspects of Computing, 6:269-316,
1994.

30

[AFdRS80)

[Ame89]

[Apt83]

[BGss)

[BRRS9)

[dBS0]

[FLPs4]

[Gol87]
[HC84)

[HHMO3]

[HM83]

[HM90]

[HM94]

[Hoa78]

[Hoo93]
[HZ87]

 [Kro87]

K.R. Apt, N. Francez, and W.-P. de Roever. A proof system for
communicating sequential processes. ACM-TOPLAS, 2(3):359-385.
1980.

P.H.M. America. Issues in the design of a parallel object-oriented
language. Formal Aspects of Computing, 1(4):366-411, 1989.

K.R. Apt. Formal justification of a proof system for communicating
sequential processes. Journal of the ACM, 30:197-216, 1983.

A.H. Bond and L. Gasser, editors. Readings in Distributed Artificial

Intelligence, San Mateo, CA, 1988. Morgan Kaufmann.

J.W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors. Lin-
ear Time, Branching Time and Partial Order in Logics and Models
for Concurrency. Springer-Verlag, 1989. Lecture Notes in Computer
Science 354.

J. W. de Bakker. Mathematical Theory of Program Correctness.
Prentice-Hall, 1980.

N. Francez, D. Lehmann, and A. Pnueli. A linear-history seman-
tics for languages for distributed programming. Theoretical Computer
Science, 32:25-46, 1984.

Robert Goldblatt. Logics of Time and Computation, volume 7 of CSLI
Lecture Notes. Stanford, 1987.

G.E. Hughes and M.J. Cresswell. A Companion to Modal Logic.
Methuen, 1984.

W. van der Hoek, M. van Hulst, and J.-J.Ch. Meyer. Towards an epis-
temic approach to reasoning about concurrent programs. In G. Rozen-
berg J.W. de Bakker, W.-P. de Roever, editor, Semantics: Founda- -
tions and Applications, volume 666 of Lecture Notes in Computer Sci-
ence, pages 261-287. Springer-Verlag, 1993.

J.Y. Halpern and Y.O. Moses. A guide to the modal logics of knowl-
edge and belief. In Proc. 9th IJCAI, pages 480-490, 1985.

J.Y. Halpern and Y.O. Moses. Knowledge and common knowledge in
a distributed environment. Journal of the ACM, 37(3):549-587, 1990.

M. van Hulst and J.-J.Ch. Meyer. An epistemic proof system for par-
allel processes. In R. Fagin, editor, Theoretical Aspects of Reasoning
About Knowledge: Proceedings of the fifth conference (TARK 1994),
pages 243-254. Morgan Kaufmann, 1994.

C.A.R. Hoare. Communicating sequential processes. Communications
of the ACM, 21(8):666—677, 1978.

J. Hooman. Verification of parallel systems, 1993. Course Notes.

J.Y. Halpern and L.D. Zuck. A little knowledge goes a long way: Sim-
ple knowledge-based derivations and correctness proofs for a family of
protocols. In Proc. of 6th PODC, pages 269-280, 1987.

F. Kroger. Temporal Logic of Programs. Springer, 1987.

31

[KT86]
(MP92)
[0G76)

[Pan8g]

[vdHvLM95]

[Zwis8]

S. Katz and G. Taubenfeld. What processes know: definitions and
proof methods. ACM-PODC, pages 249-262. 1986.

Z. Manna and A. Puueli. The Temporal Logic of Reactive and Con-
current Systems. Springer. 1992.

S. Owicki and D. Gries. An axiomatic proof technique for parallel
programs I. Acta Informatica, 6:319-340. 1976.

P.K. Pandya. Compositional Verification of Distributed Programs.
PhD thesis, Tata Institute of Fundamental Research. Homi Bhabha
Road, Bombay 400 005, INDIA, 1988.

W. van der Hoek. B. van Linder. and J.-J.Ch. Meyer. Group knowl-
edge isn’t always distributed (nor is it always implicit). In M. Koppel
and E. Shamir, editors. Proc. BISFAI'95. pages 191-200. Ramat Gan.
Jerusalem, 1995.

J. Zwiers. Compositionality, Concurrency and Partial Correctness.
PhD thesis. Technical University Eindhoven, 1988.

