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Polyhedral combinatorics is the study of the integer programming polyhedron

P = conv(X) = conv(fx 2 Xg);

where X is given as a subset of the integer lattice ZZn and conv denotes the convex
hull operator. By Weyl's Theorem

H. Weyl (1935). Elementare Theorie der konvexen Polyeder. Comentarii
Mathematici Helvetici 7, 290{306,
there exists a matrix B 2 IRm�n and a vector of right hand sides b 2 IRm such that

P = fx 2 IRn : Bx � bg:

The system Bx � b is said to describe P , and each hyperplane fx 2 IRn : BT
i�x = big

is called a cutting plane. One of the central questions in polyhedral combinatorics is
to �nd the cutting planes that describe P . This question is the subject of this chapter.
We start with a section on books and collections of survey articles that treat

polyhedral combinatorics in detail. x2 on integer programming by linear programming
discusses general schemes by which all cutting planes are generated. We discuss the
separation problem, the concepts of total unimodularity and total dual integrality, and
give a reference to the computational complexity of deriving an explicit description of
conv(X). For NP-hard problems, such as the knapsack, covering, packing, partitioning
or mixed integer 
ow problems, one cannot expect to derive an explicit description of
P . Then it is of interest to describe the associated polyhedra partially. Some articles
on this issue are listed in x3.
Our policy in selecting references has been as follows. We have chosen books that

give a modern account of polyhedral combinatorics. The purpose of x2 is to review
the most important theoretical results. When selecting problems for x3 we chose basic
combinatorial structures that form substructures of a large collection of combinatorial
optimization problems. Some prominent problems of this type are treated in separate
chapters of this book, such as the traveling salesman problem, and the maximum cut
problem, and are therefore not included here.

�This article will appear as Chapter 3 in the book Annotated Bibliographies in Combinatorial

Optimization, M. Dell'Amico, F. Ma�oli, S. Martello (eds.), Wiley, Chichester.
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1 Books

In this section we present a selection of books that are often used as references, and
that contain an in-depth treatment of polyhedral combinatorics.

A. Schrijver (1986). Theory of Linear and Integer Programming, Wiley, Chichester,
is a broad book directed to researchers. It contains much more than polyhedral

combinatorics, and is therefore particularly useful as it puts polyhedral combinatorics
in the general context of linear and integer programming.

M. Gr�otschel, L. Lov�asz, A. Schrijver (1988).Geometric Algorithms and Combinatorial
Optimization, Springer-Verlag, Berlin,
derives algorithmic versions of results from geometry and number theory, and links

them to combinatorial optimization.One of the outstanding results in polyhedral com-
binatorics, namely that the separation problem and the optimization problem for a
family of polyhedra are polynomially equivalent, is discussed extensively.

G.L. Nemhauser, L.A. Wolsey (1988). Integer and Combinatorial Optimization, Wiley,
New York,
treats all aspects of polyhedral combinatorics. Next to the general theory, it also

gives examples of problem-speci�c results, both with respect to families of strong valid
inequalities, and separation. The book

M. Padberg (1995). Linear Optimization and Extensions, Springer, Berlin,
has a comprehensive chapter on the theory of polyhedra. The book discusses all

central issues in polyhedral combinatorics, and the links between optimization and
separation.
The following books contain selections of survey papers related to polyhedral com-

binatorics:

W. Cook, P.D. Seymour (eds.) (1990). Polyhedral Combinatorics. DIMACS Series in
Discrete Mathematics and Theoretical Computer Science 1, AMS, Providence, ACM,
New York.
R.L. Graham, M. Gr�otschel, L. Lov�asz (eds.) (1995). Handbook of Combinatorics, Vol
II, North-Holland, Amsterdam.
Even though the central theme of the following books is not polyhedral combina-

torics, we still want to mention them as they give considerable insight in the study of
polyhedra.

E.L. Lawler (1976). Combinatorial Optimization: Networks and Matroids, Holt,
Rinehart and Winston, New York.
L. Lov�asz, M.D. Plummer (1986). Matching Theory, Akad�emiai Kiad�o, Budapest.
K. Tr�umper (1992). Matroid Decomposition, Academic Press, San Diego.
R.K. Ahuja, T.L. Magnanti, J.B. Orlin (1993). Network Flows, Prentice-Hall, New
Jersey.
G.M. Ziegler (1995). Lectures on Polytopes, Springer-Verlag, New York.
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2 Integer Programming by Linear Programming

If a linear description of conv(X) is known, then one can solve the problem minfcTx :
x 2 Xg by linear programming techniques, which is computationally easy.
There is one special case where, for every integral vector b 2 IRn, the integrality

of the polyhedron fx 2 IRn : Ax � bg is guaranteed. This situation arises when the
matrix A is totally unimodular, i.e., each subdeterminant of A is either �1, 0 or 1.
Within the last 40 years a deep theory on totally unimodular matrices has emerged
that we cannot discuss here. The interested reader is referred to the books of Schrijver
and Tr�umper listed in x1 for references and surveys on this subject.
If the constraint matrixA is not totally unimodular, then the integrality of the linear

programming relaxation is quite rare. However, a linear description of the convex hull
of all the feasible integer points of the problem can always be constructed. This topic
is discussed next.
For a set X = fx 2 ZZn

+ : Ax � bg, let conv(X) be the polyhedron de�ned as the
convex hull of all the points in X, and let fx 2 IRn

+ : Ax � bg be its linear pro-
gramming relaxation. If the constraint matrix A, and the vector of right-hand sides b
are integral, and if the set X is bounded, then there exists an implementation of Go-
mory's cutting plane algorithm, such that for every objective function the procedure
terminates after a �nite number of iterations with an integral optimum solution.

R.E. Gomory (1958). Outline of an algorithm for integer solutions to linear programs.
Bull. American Math. Soc. 64, 275{278.
If the coe�cients of A and b are real numbers, and if the feasible set is bounded,

then Chv�atal's rounding scheme will produce conv(X) after a �nite number of itera-
tions.

V. Chv�atal (1973). Edmonds polytopes and a hierarchy of combinatorial problems.
Discr. Math. 4, 185{224>
An elegant way to formulate, and even generalize Chv�atal's result was presented by

Schrijver,

A. Schrijver (1980). On cutting planes. M. Deza, I.G. Rosenberg (eds.). Combinatorics
79 Part II, Ann. Discr. Math. 9, North-Holland, Amsterdam, 291{296.
Schrijver considered the case where the set of feasible solutions is not necessarily

bounded, and where the entries of A and b are rational numbers. In each step of the
algorithm he derives a system of linear inequalities Bx � d that is totally dual integral
(TDI), and where all entries of B are integral, and rounds down the elements of the
vector d. A rational system Bx � d of linear inequalities is called TDI if for each
integral vector c such that minfyT d : y 2 IRn

+; y
TB = cg is �nite, the minimum is at-

tained by an integral vector. In comparison to Gomory's procedure the step of adding
up linear combinations of current inequalities and rounding down the left hand sides
becomes redundant if one resorts to a TDI representation of the current polyhedron.
The notion of TDI-ness was introduced in

J. Edmonds, R. Giles (1977). A min-max relation for submodular functions on graphs.
P.L. Hammer et al. (eds.). Studies in Integer Programming, Ann. Discr. Math. 1,
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North-Holland, Amsterdam, 185{204.
It was proved in

R. Giles, W.R.Pulleyblank (1979). Total dual integrality and integer polyhedra. Linear
Algebra and Appl. 25, 191{196,
that for every rational polyhedron there exists a TDI-system. This system is unique,

if the rational polyhedron is full-dimensional, see

A. Schrijver (1981). On total dual integrality. Linear Algebra and Appl. 38, 27{32.
This and many more beautiful results, such as a relation of TDI-ness to Hilbert

bases that allows one to derive an integer analogue of Carath�eodory's Theorem, can
be found in the book of Schrijver, see x1, and, for instance, in the following articles:

R. Chandrasekaran (1981). Polynomial algorithms for totally dual integral systems
and extensions. P. Hansen (ed.). Studies on Graphs and Discrete Programming, Ann.
Discrete Math. 11, 39{51.
W. Cook (1983). Operations that preserve total dual integrality. Oper. Res. Lett 2,
31{35.
J. Edmonds, R. Giles (1984). Total dual integrality of linear inequality systems. W.R.
Pulleyblank (ed.). Progress in Combinatorial Optimization, Academic Press, New
York, 117{129.
W. Cook (1986). On box totally dual integral polyhedra. Math. Program. 34, 48{61.
W. Cook, J. Fonlupt, A. Schrijver (1986). An integer analogue of Carath�eodory's
theorem. J. Combin. Theory B 40, 63{70.
Related to the question of describing conv(X) by a system of linear inequalities is

the study of the so-called corner polyhedra that builds a bridge between linear pro-
gramming and the group problem in integer programming. The reference introducing
this topic is

R. Gomory (1969). Some polyhedra related to combinatorial problems. Linear Algebra
and Appl. 2, 451{558.

If we restrict the variables to take values zero or one only, then there is an alterna-
tive procedure for generating the convex hull of all 0=1-vectors satisfying Ax � b � 0
with A 2 IRm�n; b 2 IRm. The basic idea was introduced by Balas, who developed the
technique of disjunctive programming. References regarding disjunctive programming
techniques are:

E. Balas (1975). Disjunctive programming: Cutting planes from logical conditions.
O.L. Mangasarian et al. (eds.) Nonlinear Programming 2, Academic Press, 279{312.
C.E. Blair (1976). Two rules for deducing valid inequalities for 0-1 problems. SIAM
J. Appl. Math. 31, 614{617.
R.G. Jeroslow (1977). Cutting plane theory: Disjunctive methods. Ann. Discr. Math.
1, 293{330.
E. Balas (1979). Disjunctive programming. Ann. Discr. Math. 5, North-Holland,
Amsterdam, 3{51.
The following two references deals with generating the convex hull of a 0-1 integer
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program by disjunctive programming techniques:

H. Sherali, W. Adams (1990). A hierarchy of relaxations between the continuous and
convex hull representations for zero-one programming problems. SIAM J. Discr. Math.
3, 411{430.
L. Lov�asz, A. Schrijver (1991). Cones of matrices and set-functions and 0-1
optimization. SIAM J. Optim. 1, 166{190.
The idea of Lov�asz and Schrijver can be described as follows. Every constraint

aTx � � � 0 in the current system of inequalities is multiplied by every constraint
(1 � xj) � 0 and xj � 0 for j = 1; :::; n, where n is the number of variables in the
original formulation. This gives rise to a linear formulation in n2 variables and 2mn
constraints under the substitution xixj := yij, yij := yji and x2i := xi. The resulting
polyhedron is projected down onto the original space of the x-variables. Lov�asz and
Schrijver showed that this process needs to be iterated at most n times before the con-
vex hull of feasible solutions is obtained. In fact, one can also show that it is su�cient
to multiply each constraint by one single variable xj and its complement at a time.
This way, the inequality system in the lifted space consists of at most 2n variables
and 2m constraints. This result can be found in the paper by

E. Balas, S. Ceria, G. Cornu�ejols (1993). A lift-and-project cutting plane algorithm fo
mixed 0-1 programs. Math. Program. 58, 295{324.

One of the fundamental results in polyhedral combinatorics is the equivalence be-
tween the optimization problem minfcTx : x 2 Xg and the separation problem for
the polyhedron conv(X) in terms of computational complexity. The latter problem is
to �nd a hyperplane separating a given point x� from the polyhedron conv(X), or to
assert that no such hyperplane exists. This result is a theoretical justi�cation for the
use of cutting plane algorithms in linear integer programming. It can be found in

M. Gr�otschel, L. Lov�asz, A. Schrijver (1981). The ellipsoid method and its
consequences in combinatorial optimization.Combinatorica 1, 169{197 [Corrigendum:
4, 291{295].
Often one is interested in a solution of the separation problem for a speci�c family

F of inequalities. This is the problem of �nding an inequality in F that violates x�,
or asserting that no separating hyperplane in this family exists. For certain families of
inequalities this problem is sometimes solvable in polynomial time, although the opti-
mization problem for which they are valid is NP-hard, and the number of inequalities
in the family is exponential in the encoding length of the optimization problem. This
is one of the explanations behind the computational success of polyhedral techniques,
see Chapter 4 for further details. An important example of this kind is the separation
problem for the family of 2-matching constraints that is valid for the traveling sales-
man polytope. This family was originally invented by Edmonds for the 2-matching
polytope, and gives together with the de�ning constraints an explicit description of
the convex hull of 2-matchings. The fact that the separation problem for the family of
2-matching constraints can be solved in polynomial time was discovered by Padberg
and Rao.
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J. Edmonds (1965). Maximummatchings and a polyhedron with 0,1-vertices. Journal
of Research of the National Bureau of Standards (B) 69, 9{14.
M.W. Padberg, M.R. Rao (1982). Odd minimum cut-sets and b-matchings. Math.
Oper. Res. 7, 67{80.
The Padberg-Rao algorithm can even be used to solve the following more general

problem. Let A 2 f0; 1gm�n be matrix with at most two 1's per column and b 2 ZZm.
For every point y 2 IRn, the 0� 1=2-cut separation problem minfb�T bc � �TAy; � 2
f0; 1

2
gmg can be solved in polynomial time. In other words, the minimumhere is taken

over all Chv�atal-Gomory cuts with dual multipliers in f0; 1
2
g. The result implies that

if there exists a Chv�atal-Gomory cut with multipliers in f0; 1
2
g that separates y from

the polyhedron conv(fx 2 ZZn : Ax � bg), then the most violated inequality in this
family can be found in polynomial time. Otherwise it is con�rmed by the algorithm
that all inequalities in the family are satis�ed by y. A result in the same vein was
obtained recently by

A. Caprara, M. Fischetti (1993). f0; 1
2
g-Chv�atal-Gomory cuts. Math. Program. (to

appear).
The paper shows that the 0� 1=2-cut separation problem is polynomially solvable

if the constraint matrix modulo 2 is related to the edge-path incidence matrix of a
tree. This result is, in particular, applicable to matrices with at most two odd entries
for each row, or at most two odd entries for each column.

There is an important technique that can be used to increase the dimension of a
face induced by an inequality that is valid for the polyhedron PS = conv(fx 2 ZZn

+ :
Ax � bg \ fxj = �j ; j 2 Sg) where S is a proper subset of f1; : : : ; ng. For ease of
explanation we assume that �j = 0 for all j 2 S. For a � 0, � > 0, let aTx � � be an
inequality that is valid for PS such that the dimension of the face fx 2 PS : aTx = �g
is equal to t. At each iteration of the so-called sequential lifting technique we choose
a variable xk; k 2 S, set S := S n fkg, and compute a coe�cient 
 � 0 such that
aTx + 
xj � � is valid for PS. Let 
0 be the maximum value of 
 such that the
inequality is valid for PS . For any choice of 
 � 
0 the resulting inequality is valid,
and if we choose 
 = 
0, then the face induced by fx 2 PS : aTx + 
xj = �g has
dimension t+ 1. Sequential lifting was �rst applied by Padberg to the vertex packing
problem, see x3.2. As a general procedure it was presented in

M.W. Padberg (1975). A note on zero-one programming. Oper. Res. 23, 833{937.
A generalization of this procedure can be found in

L.A. Wolsey (1976). Facets and strong valid inequalities for integer programs. Oper.
Res. 24, 367{372.
Zemel developed a more general technique called simultaneous lifting,

E. Zemel (1978). Lifting the facets of zero-one polytopes.Math. Program. 15, 268{277.
Here any subset of the variables in S can be lifted simultaneously, yielding inequal-

ities that in general cannot be obtained by lifting the variables sequentially.

In this chapter we have indicated that it is possible, in principle, to describe the
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polyhedron conv(X) by means of linear inequalities. The descriptions are, however,
implicit and can only be constructed in an iterative fashion. For quite a few polyhedra,
such as the matching polyhedron, an explicit description is at hand. A natural ques-
tion to ask is under which conditions we can expect to derive an explicit description
of the convex hull of feasible solutions. The answer was given by

R.M. Karp, C.H. Papadimitriou (1980). On linear characterizations of combinatorial
optimization problems. Proc. 21st Annual IEEE Symp. Found. Comput. Sci., IEEE,
New York, 1{9,
who proved that if the optimization problem under consideration is NP-hard, then

one cannot �nd an explicit description of the convex hull of feasible solutions, unless
NP=co-NP. More precisely, if a certain optimization problem is NP-hard, e.g., the
traveling salesman problem, and if the problem to decide whether a valid inequality
de�nes a facet for the associated class of polyhedra is in NP, then this would imply that
NP=co-NP. If NP=co-NP, then there exists a compact certi�cate for the no-answer
for all problems in NP, which is unlikely. Despite this negative answer, polyhedral
techniques can be e�ective for NP-hard integer programming problems in the sense
that we can �nd good partial descriptions of the convex hull of feasible solutions. This
is the topic of the next section.

3 Selected Combinatorial Problems

Here we study polyhedra associated with special NP-hard combinatorial optimization
problems. These problems often appear as substructures in more complex optimization
problems. Therefore, it is important to analyze the polyhedra corresponding to such
special problems in order to understand the polyhedral structure of more complex
problems.

3.1 The Knapsack Problem

The knapsack problem is the basic version of a data dependent problem and is de�ned
as follows. For a capacity a0 2 ZZ+ and a set N of items, where each item j has a
weight aj and a pro�t cj, the knapsack problem is the problem of �nding a subset of
items, with total weight less than or equal to the capacity a0, that maximizes the total
pro�t. Since a slight change of the weights of the items might drastically change the
inequalities that describe the polyhedron, it seems important to understand principles
by which valid inequalities are constructed.
Most of the polyhedral studies presented so far involve the basic object of minimal

covers, see for instance

L.A. Wolsey (1975). Faces of linear inequalities in 0-1 variables. Math. Program. 8,
165{178.
A subset S � N is a cover (or dependent set) if its weight exceeds the capacity.

With the cover S one can associate the cover inequality
P

j2S xj � jSj � 1 that is
valid for the knapsack polyhedron. If the cover S is minimal with respect to inclusion,
the associated inequality is called a minimal cover inequality. An interesting question

7



is to characterize weight vectors a = (a1; : : : ; an) 2 INn for which the minimal cover
inequalities describe the knapsack polyhedron. This question was addressed by

M. Laurent and A. Sassano (1992). A characterization of knapsacks with the max-

ow-min-cut property. Oper. Res. Lett. 11, 105{110.
They showed that n minimal cover inequalities su�ce to describe the knapsack

polytope when a = (a1; : : : ; an) is a weakly superincreasing sequence, i.e.,
P

j�q aj �
aq�1, for all q = 2; : : : ; n.
A slightly more general object than minimal covers are (1; k)-con�gurations that

were introduced by

M.W. Padberg (1980). (1,k)-con�gurations and facets for packing problems. Math.
Program. 18, 94{99.
A (1; k)-con�guration consists of an independent set S plus one additional item, z

say, such that every subset S of cardinality k, together with z, forms a minimal cover.
A (1; k)-con�guration gives rise to the inequality

X

j2S

xj + (jSj � k + 1)xz � jSj:

Padberg showed that if the set N of items de�nes a (1; k)-con�guration, then the con-
vex hull of the associated knapsack polyhedron is given by the lower and upper bound
constraints and the set of all (1; l)-con�guration inequalities de�ned by T � S, where
T [ fzg is a (1; l)-con�guration for some l � k. This result is generalized by

Y. Pochet and R. Weismantel (1994). The sequential knapsack polytope. Preprint SC
94-30, Konrad-Zuse-Zentrum, Berlin,
to knapsack problems where the weights of the items have the divisibility property,

i.e., for every pair of weights, the bigger one is an integer multiple of the smaller one.
Inequalities derived from both covers and (1; k)-con�gurations are special cases of ex-
tended weight inequalities that have been introduced by

R. Weismantel (1994). On the 0=1 knapsack polytope. Math. Program. (to appear),
and that describe the knapsack polyhedron when aj = 1, or aj � ba0=2c+ 1, for all

j 2 N . It was also shown in this paper that, independent of the lifting sequence, the
lifting coe�cient of a variable, xj , in the extended weight inequality is either equal to
the value �j that this variable would obtain if it was the �rst one in the sequence, or
it equals �j � 1. The correct value of the lifting coe�cient for a given sequence can
be computed in polynomial time. For cover inequalities these results can be found in
the following articles.

E. Balas (1975). Facets of the knapsack polytope. Math. Program. 8, 146{164.
E. Zemel (1989). Easily computable facets of the knapsack polytope.Math. Oper. Res.
14, 760{764.
For knapsack type problems there are other techniques for lifting lower-dimensional

faces of the associated polyhedra. One such techniques is based on an analysis of sub-
additive functions, see
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E.J. Johnson (1980). Subadditive lifting methods for partitioning and knapsack prob-
lems. Journal of Algorithms 1, 75{96.

We want �nisch this subsection by mentioning two successful implementations of
generating violated inequalities for the knapsack polytope since they represent major
breakthroughs in the use of polyhedral techniques.

H.P. Crowder, E.L. Johnson, M.W. Padberg (1983). Solving large-scale zero-one linear
programming problems. Oper. Res. 31, 803{834.
T.J. Van Roy, L.A. Wolsey (1987) Solving mixed 0-1 programs by automatic
reformulation. Oper. Res. 35, 45{57.
For more references on computational aspects and results we refer to Chapter 4.

3.2 Packing, Covering and Partitioning Problems

For a matrix A 2 IRm�n
+ and a vector b 2 IRm

+ a packing problem is of the form

maxfcTx : Ax � b; x 2 ZZn
+g;

where c is a m-dimensional vector of real coe�cients. Replacing the �-sign by the
�-sign and the max-operation by the min-operation we speak of a covering problem.
A partitioning problem is of the form minfcTx : Ax = b; x 2 ZZn

+g.
From the theory of linear programming it follows that the dual of the linear pro-

gramming relaxation of the packing problem is a covering problem. This allows us to
derive min-max results for the linear programming relaxations of covering and pack-
ing models. In case that b is the m-dimensional vector of all ones, 1, we can also use
the concept of blocking and anti-blocking polyhedra to derive min-max results for the
linear programming relaxations of the packing and covering models. This theory was
introduced by

D.R. Fulkerson (1971). Blocking and anti-blocking pairs of polyhedra.Math. Program.
1, 168{194.
If fx 2 IRn

+ : Ax � 1g = convfd1; : : : ; dtg + IRn
+ := fx + y : x 2

convfd1; : : : ; dtg; y 2 R+
ng, then the blocking polyhedron is equal to fx 2 IRn

+ : Dx �
1g = convfa1; : : : ; amg + IRn

+, where A is the matrix with rows a1; : : :am and D is
the matrix with rows d1; : : : ; dt. One application of the theory of blocking and anti-
blocking polyhedra is an elegant proof of the max-
ow-min-cut Theorem of Ford and
Fulkerson. For further details on blocking and anti-blocking polyhedra we refer to the
survey of Schrijver in the Handbook of Combinatorics, see x1. Packing and covering
models have been extensively surveyed by

A. Schrijver (1983). Min-max results in combinatorial optimization. A Bachem, M.
Gr�otschel, B. Korte (eds.).Mathematical Programming: The State of the Art, Springer,
Berlin, 439{500.
Often min-max results for discrete packing and covering models can be derived for

totally dual integral systems. Examples are integrality results for crossing families de-
�ned on the set of vertices of a digraph and the blocking collection of covers of the

9



crossing family. A comprehensive survey on results in this spirit can be found in

A. Schrijver (1984). Total dual integrality from directed graphs, crossing families, and
sub- and supermodular functions. W.R. Pulleyblank (ed.). Progress in Combinatorial
Optimization, Academic Press, New York, 315{361.
Special, but particularly important cases of packing and covering models arise when

the vector b of right hand sides is equal to 1, when the coe�cients of the matrix A are
either 0 or 1, and when the variables are binary. Then one speaks of set packing, set
covering, and set partitioning problems, respectively. For the associated polyhedra,
explicit descriptions are sometimes known. In particular, if the 0-1 matrix A is bal-
anced, i.e., if A does not contain a square submatrix of odd order with two ones per row
or columns, then, the set packing as well as the the set covering polyhedra are integral.

C. Berge (1972). Balanced matrices. Math. Program. 2, 19{31.
The notion of balancedness was also introduced by Berge.

C. Berge (1970). Sur certains hypergraphes g�en�eralisant les graphes bipartites. P.
Erd�os, A. R�enyi, V.T. S�os (eds.). Combinatorial Theory and Its Applications I,
Colloquia Mathematica Societatis J�anos Bolyai, Vol. 4, North-Holland, Amsterdam,
119{133.
For more details on balanced matrices we refer to Chapter 11, and to the following

articles:

M. Conforti, G. Cornu�ejols, A. Kapoor, M. R. Rao and K. Vu�skovi�c (1994). Balanced
matrices. J.R. Birge, K.G. Murty (eds.). Mathematical Programming: State of the Art
1994, University of Michigan, 1{33.
M. Conforti, G. Cornu�ejols, A. Kapoor and K. Vu�skovi�c (1994). Recognizing balanced
0 � 1 matrices, Proc. 5-th Annual ACM-SIAM Symp. Discr. Algorithms, ACM, New
York, SIAM, Philadelphia, 103{111.
Every set packing problem can be interpreted as the problem of �nding a maxi-

mum stable set in the graph whose nodes correspond to the columns of the matrix
and whose edges represent the pairs of columns with intersecting support. The stable
set polyhedron has been studied extensively in the literature during the last 20 years
starting with the work of Padberg,

M. Padberg (1973). On the facial structure of set packing polyhedra. Math. Program.
5, 199{215.
In this paper clique inequalities of the form

P
j2C xj � 1, where C is the node set

of a complete subgraph of the given graph, have been introduced. Odd circuit con-

straints
P

j2C xj �
jCj�1
2

, with C being a subset of the set of nodes of odd cardinality
whose induced subgraph is a cycle without chords, as well as the constraints based
on the complements of odd circuits, can be found in this reference, too. Odd circuit
constraints can be separated in polynomial time by adapting the odd cycle separation
algorithm for the max-cut problem that was introduced by

F. Barahona, A.R. Mahjoub. On the cut polytope. Math. Program. 36, 157{173,
see also Gr�otschel et al. (1988) listed in x1. The graphs for which the set of all odd
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circuit constraints, the lower bound inequalities, and the xi + xj � 1-constraints for
all edges fi; jg in the graph su�ce to describe the set packing polyhedron, are called
t-perfect. This notion was introduced by

V. Chv�atal (1975). On certain polytopes associated with graphs. Journal of
Combinatorial Theory B 18, 305{337.
Similarly, one can ask for the integrality of the polyhedron that is de�ned by all

clique constraints together with the lower bound inequalities and the xi + xj � 1-
constraints for all edges fi; jg in the graph. Such graphs are called perfect, and are
discussed in Chapter 11.
For a thorough treatment of the mathematics that is underlying the constraint

generation for the set covering polyhedron we refer the readers to, for instance, the
following two papers:

A. Sassano (1989). On the facial structure of the set-covering polytope.Math. Program.
44, 181{202.
E. Balas, S.M.Ng (1989). On the set covering polytope I: All the facets with coe�cients
in f0; 1; 2g.Math. Program. 43, 1{20.
Both the set packing and the set covering polyhedron are equivalent to special cases

of independence system polyhedra that have been studied by

R. Euler, M. J�unger, G. Reinelt (1987). Generalizations of odd cycles and anticycles
and their relation to independence system polyhedra. Math. Oper. Res. 12, 451{462.
M. Laurent (1989). A generalization of antiwebs to independence systems and their
canonical facets. Math. Program. 45, 97{108.
Polyhedra associated with independence systems are included in the family of tran-

sitive packing polyhedra introduced by

A.S. Schulz, R. M�uller (1996). Transitive packing. Springer Lecture Notes in Computer
Science, Proceedings of the 5th International Conference on Integer Programming and
Combinatorial Optimization (to appear).
This paper describes a common frame for valid inequalities induced by graphic struc-

tures such as cliques, odd cycles, odd anticycles, webs, antiwebs etc. It even generalizes
polyhedral results for certain graph partitioning problems. A collection of papers on
this subject is given below.

E. Balas, M. Padberg (1976). Set partitioning: A survey. SIAM Review 18, 710{760.
M. Gr�otschel, Y. Wakabayashi (1990). Facets for the clique partitioning polytope.
Math. Program. 47, 367{388.
S. Chopra, M.R. Rao (1993). The partition problem. Math. Program. 59, 87{115.
C.E. Ferreira, A. Martin, C. de Souza, R. Weismantel, L. Wolsey (1994). Formulations
and valid inequalities for the node capacitated graph partitioning problem.Math. Pro-
gram. (to appear).
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3.3 Mixed Integer Flow Problems

When considering any kind of 
ow problem in integer programming, there is one fun-
damental reference.

L.R. Ford, Jr., D.R. Fulkerson (1956). Maximal 
ow through a network. Canadian J.
Math. 8, 399{404.
This is the paper containing the well-known max-
ow-min-cut Theorem. There are

many extensions of this result that have been formulated in the setting of multicom-
modity 
ows including duality-results for the problem of packing paths and cuts in
graphs under capacity restrictions. In order to cover this and related topics in detail,
it would require a book on its own. We refer here to the excellent survey articles
contained in

B. Korte, L. Lov�asz, H.J. Pr�omel, A. Schrijver (eds.) (1990). Paths, Flows, and VLSI-
Layout, Springer, Berlin.
Another comprehensive survey can be found in

M.V. Lomonosov (1985). Combinatorial approaches to multi
ow problems. Discr.
Appl. Math. 11, 1 { 94.
Each 
ow in a graph can be decomposed into paths. Since a subgraph that is induced

by a path is node- and edge-connected, a 
ow can be viewed as a special graph struc-
ture that requires connectivity. Besides paths, there are further connectivity structures
in graphs that have become important. Consider an undirected graph G = (V;E) and
a subset T of V . A Steiner tree in G is a subgraph that spans T and possibly vertices
in V nT . Polyhedral results regarding various versions of the Steiner tree problem can
be found in

M.X. Goemans (1994). The Steiner tree polytope and related polyhedra. Math.
Program. 63, 157{182.
S. Chopra and M.R. Rao (1994). The Steiner tree problem I: Formulations,
compositions and extensions of facets. Math. Program. 64, 209{229.
S. Chopra and M.R. Rao (1994). The Steiner tree problem II: Properties and classes
of facets. Math. Program. 64, 231{246.
In the paper by Goemans a characterization of the convex hull of all incidence vec-

tors of Steiner trees (in the space of the number of nodes plus the number of edges)
is given when the underlying graph is series parallel. Chopra and Rao use a directed
formulation for the problem of �nding a minimum weighted Steiner tree in a graph
with weights on the edges. They show that the linear relaxation of the directed for-
mulation is stronger than the linear relaxation of the undirected one. This result is
obtained by projecting the polyhedron associated with the directed formulation onto
the subspace de�ned by the variables associated with the undirected formulation.

Similarly as for 
ows and multicommodity 
ows, it is interesting to study the prob-
lem of packing Steiner trees under capacity restrictions. We do not want to go into
details here, but refer the readers to
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M. Gr�otschel, A. Martin, R. Weismantel (1993). Packing steiner trees: Polyhedral
investigations. Math. Program. 72, 101{123.
In communication network design it is essential to design networks that are reliable

in the sense that a failure at any component of the network does not disconnect im-
portant clients. This requirement is taken into account by designing networks that are
k-node connected or k-edge connected, where the number k has to be speci�ed by the
customers. Recent references on this topic are:

M. Stoer (1992). Design of survivability networks. Lecture Notes Math. 1531, Springer,
Heidelberg.
M. Gr�otschel, C.L. Monma, M. Stoer (1995). Polyhedral and computational investi-
gations for designing communication networks with high survivability requirements.
Oper. Res. 43, 1012{1024.

Until now we have brie
y sketched results associated with purely integer
connectivity type requirements. There is a lot of ongoing research on mixed integer
problems that have a 
ow structure. The basic form of a mixed integer 
ow structure
yields the so-called single-node 
ow formulation,

XF = f(x; y) 2 IRn
+ � f0; 1gn :

nX

j=1

xj = b; xj � ujyj ; for all j = 1; : : : ; ng;

where we have a single node with a �xed out
ow b, and a set N = f1; : : : ; ng
of arcs with variable upper bounds entering the node. The associated single-node

ow polytope is a relaxation of several polyhedra associated with �xed-charge plan-
ning and distribution problems, such as lot-sizing and location problems, see further
Chapter 15. Let J be a subset of N such that

P
j2J uj = b + �; � > 0. The set

J is called a 
ow cover. Let (m)+ denote maxf0;mg. The 
ow cover inequalitiesP
j2J xj � b�

P
j2J (uj � �)+(1� yj) were developed by

M.W. Padberg, T.J. Van Roy, L.A. Wolsey (1985). Valid inequalities for �xed charge
problems. Oper. Res. 33, 842{861.
One way of extending the 
ow cover inequalities is to include variables xj ; j 2

L � N n J in the inequality. This yields an inequality of the form
P

j2J[L xj �

b �
P

j2J (uj � �)+(1 � yj) +
P

j2L(�uj � �)yj , where �ul = maxfmaxj2Jfujg; ulg for
all l 2 L. Padberg et al. (1985) showed that if uj = u for all j 2 N , then conv(XF )
is described by all the constraints in the mixed integer programming formulation and
the family of extended 
ow cover inequalities. It was observed by

K. Aardal, Y. Pochet, L.A. Wolsey (1995). Capacitated facility location: Valid
inequalities and facets. Math. Oper. Res. 20, 562{582 [Erratum: 21, 253{256],
that the separation problem for the family of extended 
ow cover inequalities can

be solved in polynomial time when uj = u, for all j 2 N .
A slightly more complicated model arises when arcs can enter and leave the node.

All arcs have variable upper bounds. For this model various versions of generalized

ow cover inequalities were developed by
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T.J. Van Roy, L.A. Wolsey (1986). Valid inequalities for mixed 0-1 programs. Discr.
Appl. Math. 14, 199{213.
The authors also discuss the separation problems based on these inequalities. Later,

Wolsey (1989) generalized several of the families of inequalities mentioned above by
introducing the family of submodular inequalities.

L.A. Wolsey (1989). Submodularity and valid inequalities in capacitated �xed charge
networks. Oper. Res. Lett. 8, 119{124 [Erratum: 8, 295].

For uncapacitated directed �xed-charge networks a general class of inequalities was
developed by

T.J. Van Roy, L.A. Wolsey (1986). Valid inequalities and separation for uncapacitated
�xed-charge networks. Oper. Res. Lett. 4, 105{112.
The inequalities are based on the idea of using the 0-1 variables when bounding the

continuous 
ow that can pass along a subset of the arcs that form a directed cut in the
network. Such inequalities have been particularly useful when solving uncapacitated
lot-sizing problems, see

Y. Pochet, L.A. Wolsey (1995). Algorithms and reformulations for lot sizing problems.
W. Cook, L. Lov�asz, P. Seymour (eds.). Combinatorial Optimization, DIMACS Series
in Discrete Mathematics and Theoretical Computer Science 20, AMS, Providence,
ACM, New York, 245{293.
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