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Abstract

More and more real-life applications of the belief-network framework are emerging. As
applications grow larger, the belief networks involved increase in size accordingly. For
large belief networks, probabilistic inference tends to become rather time-consuming. In
the worst case this tendency may not be denied as probabilistic inference is known to
be NP-hard. However, it is possible to improve on the average-case performance of the
algorithms involved. For this purpose, the method of evidence absorption can be exploited.
In this paper, we detail the method of evidence absorption and outline its integration into a
well-known algorithm for probabilistic inference. The ability of the method to improve on
the average-case computational expense of probabilistic inference is illustrated by means
of experiments performed on both randomly generated and real-life belief networks.

Key words: belief networks, probabilistic inference, evidence absorption, (average-case)
computational complexity.

1 Introduction

The belief-network framework for reasoning with uncertainty in knowledge-based systems has
been around for some time now, and more and more practical applications employing the
framework are being developed [1, 2, 3]. As applications of the framework grow larger, the
belief networks involved increase in size accordingly: belief networks comprising hundreds, or
even thousands, of variables are no exception. For belief networks of this size, probabilistic
inference shows a tendency to become rather time-consuming, even so to an unacceptable ex-
tent. Since probabilistic inference is known to be NP-hard [4], this tendency may not be denied
in general: the basic algorithms associated with a belief network have an exponential worst-
case computational time complexity and it is not expected that a general polynomial-time
algorithm will be found. In this paper, we address improving on the average-case performance
of algorithms for probabilistic inference.

The average-case computational expense of probabilistic inference with a belief network
may be improved in many di�erent ways. We propose exploiting for this purpose the method
of evidence absorption. The method of evidence absorption has been �rst introduced by
R.D. Shachter as part of an algorithm for processing evidence in a belief network [5]. The
basic idea of the method is to dynamically modify a belief network as evidence becomes
available so as to explicitly represent newly created independences. Since all algorithms for
probabilistic inference with a belief network exploit the represented independences more or less

1



directly, the incorporation of evidence absorption into these algorithms is expected to speed
up computation while still providing for exact inference. The actual speed-up attained by
employing the method in practical applications, however, depends on the inference algorithm
used and on the topological properties of the belief network involved.

In this paper, we detail the method of evidence absorption and illustrate its incorporation
into Pearl's algorithm for probabilistic inference. The paper is organised as follows. In Section
2, the basic notions involved in the belief network formalism are provided; in addition, we
brie
y review Pearl's basic algorithm for probabilistic inference and its enhancement with
loop cutset conditioning. In Section 3, the method of evidence absorption is detailed. Section
4 addresses incorporation of the method into Pearl's enhanced algorithm. In Section 5, we
illustrate the ability of the method of evidence absorption to save on the computational
expense of inference by means of experiments performed on randomly generated and real-life
belief networks. The paper is rounded o� with some conclusions in Section 6.

2 Preliminaries

In this section we review the basic notions involved in the belief-network formalism and brie
y
outline Pearl's enhanced algorithm for probabilistic inference with a belief network; for further
details, the reader is referred to [6].

2.1 The Belief-Network Formalism

A belief network is a terse representation of a joint probability distribution on a set of sta-
tistical variables. It consists of a qualitative and a quantitative part. The qualitative part of
a belief network is a graphical representation of the interdependences between the variables
discerned; it takes the form of an acyclic directed graph. In this digraph, each vertex repre-
sents a variable that can take one of a set of values. The arcs represent dependences between
the variables: informally speaking, we take an arc Vi ! Vj to represent a direct in
uential
relationship between the variables Vi and Vj , where the direction of the arc designates Vj as
the e�ect of Vi. Absence of an arc between two vertices means that their variables do not
in
uence each other directly, and hence are (conditionally) independent. Associated with the
digraph of a belief network is a set of functions representing probabilities from the distribution
at hand, with each other constituting the quantitative part of the network.

Before de�ning the concept of a belief network more formally, we provide some additional
terminology and introduce our notational convention. In the sequel, we will restrict the
discussion to binary variables, taking one of the values true and false; the generalisation
to variables with more than two discrete values, however, is straightforward. We will use
the following notation: vi denotes the proposition that the variable Vi takes the truth value
true; Vi = false will be denoted by :vi. For a given set of variables V , the conjunction
CV =

V
Vi2V

Vi of all variables from V is called the con�guration template of V ; a conjunction
cV of value assignments to the variables from V is called a con�guration of V . In the sequel, we
will use fCV g to denote the set of all con�gurations of V . Furthermore, we will write CVi and
cVi instead of CfVig and cfVig, respectively, for singleton sets fVig. The independence relation
embedded in a joint probability distribution Pr will be denoted as IPr; an independence

statement IPr(X;Y;Z) signi�es that in the distribution Pr the sets of variables X and Z are
conditionally independent given the set of variables Y .

We now de�ne the concept of a belief network more formally.
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De�nition 2.1 A belief network is a tuple B = (G;�) such that

� G = (V (G); A(G)) is an acyclic digraph with vertices V (G) = fV1; : : : ; Vng, n � 1, and

� � = f
Vi j Vi 2 V (G)g is a set of real-valued functions 
Vi : fCVig � fC�G(Vi)g ! [0; 1],
called probability assessment functions, such that for each con�guration c�G(Vi) of the

set �G(Vi) of (immediate) predecessors of vertex Vi we have that 
Vi(:vi j c�G(Vi)) =
1� 
Vi(vi j c�G(Vi)), i = 1; : : : ; n.

Note that in the previous de�nition Vi is viewed as a vertex from the digraph and as a
statistical variable, alternatively.

To link the qualitative and quantitative parts of a belief network, a probabilistic meaning
is assigned to the topology of the digraph of the network [6].

De�nition 2.2 Let G = (V (G); A(G)) be an acyclic digraph and let s be a chain in G. Then,

we say that s is blocked by a set of vertices W � V (G) if s contains three consecutive vertices
X1;X2;X3 for which one of the following conditions holds:

� X1  X2 and X2 ! X3 are on the chain s and X2 2W ;

� X1 ! X2 and X2 ! X3 are on the chain s and X2 2W ;

� X1 ! X2 and X2  X3 are on the chain s, and ��G(X2) \ W = ?, where ��G(X2)
denotes the set of vertices composed of X2 and all its descendants in G.

Building on the notion of blocking we de�ne the d-separation criterion.

De�nition 2.3 Let G = (V (G); A(G)) be an acyclic digraph and let X;Y;Z � V (G) be sets

of vertices from G. The set Y is said to d-separate the sets X and Z, denoted as hXjY jZidG,
if for each Vi 2 X and Vj 2 Z every chain from Vi to Vj in G is blocked by Y .

The d-separation criterion provides for reading independence statements from a digraph, as
stated in the following de�nition.

De�nition 2.4 Let G = (V (G); A(G)) be an acyclic digraph. Let Pr be a joint probability
distribution on V (G) and let IPr be the independence relation of Pr. Then, the digraph G is

called an I-map for Pr if for all mutually disjoint sets X;Y;Z � V (G) we have: if hXjY jZidG
then IPr(X;Y;Z).

The following theorem now states that the probability assessment functions of a belief network
provide all information necessary for uniquely de�ning a joint probability distribution on the
variables discerned that respects the independence relation portrayed by the graphical part of
the network; henceforth, we will call this distribution the joint probability distribution de�ned

by the network.

Theorem 2.5 Let B = (G;�) be a belief network as de�ned in De�nition 2.1. Then,

Pr(CV (G)) =
Q

Vi2V (G) 
Vi(Vi j C�G(Vi))

de�nes a joint probability distribution Pr on the set of variables V (G) such that G is an I-map

for Pr.

3



2.2 Pearl's Enhanced Algorithm for Probabilistic Inference

Since a belief network de�nes a joint probability distribution, it can be used for probabilistic
inference. An algorithm for probabilistic inference with a belief network provides for comput-
ing probabilities of interest and for processing evidence, that is, for entering evidence into the
network and subsequently computing the revised probability distribution given the evidence.
Several such algorithms have been developed [5, 6, 7]. Here, we only brie
y review the basic
idea of the algorithm designed by J. Pearl [6].

In outlining Pearl's algorithm for probabilistic inference, we take an object-centered point
of view. The digraph of a belief network is taken as a computational architecture: the ver-
tices of the digraph are autonomous objects having a local processor and a local memory in
which the associated probability assessment function is stored; the arcs of the digraph are
bi-directional communication channels. Through these communication channels the vertices
send each other parameters providing information about the represented joint probability dis-
tribution and the evidence entered so far. Each vertex is equipped with a set of computation
rules for computing the probabilities of its values and the parameters to send to its neigh-
bours, from the information it receives from these neighbours and its own local probability
assessment function. Initially, the network is in an equilibrium state: repeated computation
of the parameters does not result in a change in any of them. When a piece of evidence is
entered into the network, however, this equilibrium is perturbed. The vertex for which the
evidence has been entered modi�es the parameters to send to its neighbours to re
ect the
new information. These modi�cations activate updating parameters throughout the entire
network: after receiving modi�ed parameters, each vertex in turn computes new parameters
to send to its neighbours. If the digraph of the network is singly connected, then a piece
of evidence is di�used through the network in a single pass: the network will reach a new
equilibrium state once every vertex has been visited, that correctly re
ects the updated joint
probability distribution given the evidence.

Unfortunately, Pearl's algorithm applies to belief networks involving a singly connected
digraph only. Straightforward application of the algorithm to an acyclic digraph comprising
one or more loops leads to insuperable problems [8]: vertices may inde�nitely send updated
messages to their neighbours causing the network never to reach a new equilibrium, or, if the
network does reach an equilibrium, it is not guaranteed to correctly re
ect the updated joint
probability distribution. Pearl has proposed several methods for probabilistic inference with a
belief network comprising amultiply connected digraph [6]. Of these, the method of loop cutset
conditioning may be looked upon as a supplement to the basic algorithm. The idea underlying
this method is that of reasoning by assumption. For a multiply connected digraph, vertices
are selected that, upon instantiation, with each other e�ectively `cut' or block all loops and
cause the digraph to behave as if it were singly connected; the selected vertices are said to
constitute the loop cutset of the digraph. Each con�guration of the loop cutset now is looked
upon as an assumption on which reasoning is performed. For each vertex, the probabilities
of its values are computed by conditioning successively on all possible con�gurations of the
loop cutset and subsequently weighting the results obtained. In the sequel, we will use the
phrase Pearl's enhanced algorithm to denote Pearl's basic algorithm supplemented with the
method of loop cutset conditioning for general probabilistic inference.

The details of the various computations involved in Pearl's basic algorithm and in loop
cutset conditioning are not relevant to the present paper. It su�ces to note that the computa-
tional expense of probabilistic inference using Pearl's enhanced algorithm is largely determined
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by the topology of the digraph of the belief network at hand. Informally speaking, Pearl's
enhanced algorithm performs the better from a computational point of view as the digraph
is sparser.

3 Evidence Absorption

A belief network generally is constructed to re
ect as many of the independences between
the variables discerned as possible. There are several reasons for seeking to represent these
independences to accuracy. One of these reasons is a computational one. The more inde-
pendences are represented explicitly, the sparser the digraph of the network will be and, as
we have mentioned before, the sparser the digraph, the lesser the computational expense of
probabilistic inference with the network. Now observe that during reasoning with a belief
network, evidence is entered and processed. Each new piece of evidence provides additional
information about the represented joint probability distribution for a given context. More in
speci�c, new dependences and independences may have come to hold in this context. It is
possible to modify the topology of the digraph of the network dynamically so as to re
ect
these newly created dependences and independences explicitly. In fact, Shachter's algorithm
for probabilistic inference is built on this very idea [5]. As we will argue in the sequel, how-
ever, it is worthwhile to modify the topology of the digraph to re
ect the new independences
only. The method of evidence absorption is designed for this purpose.

Informally speaking, the method of evidence absorption amounts to modifying a belief
network after a piece of evidence has been entered for some variable so as to re
ect the newly
created independences. The topology of the digraph of the network is modi�ed by deleting
all arcs emanating from the vertex for which the evidence has been entered; in addition, the
probability assessment functions for the (former) successors of this vertex are adjusted. The
modi�ed network is de�ned more formally in the following de�nition.

De�nition 3.1 Let B = (G;�) be a belief network where G = (V (G); A(G)) is an acyclic

digraph and � = f
Vi j Vi 2 V (G)g is a set of associated probability assessment functions.

Let Vi be a vertex in G for which the evidence Vi = true is entered. We de�ne the tuple

Bvi = (Gvi ;�vi) by

� Gvi = (V (Gvi); A(Gvi)) is the acyclic digraph with V (Gvi) = V (G) and A(Gvi) =
A(G) n f(Vi; Vj) j Vj 2 �G(Vi )g where �G(Vi) is the set of all (immediate) successors of

the vertex Vi in G, and

� �vi = f
viVj j Vj 2 V (G)g is the set of real-valued functions 
viVj : fCVjg � fC�Gvi (Vj )
g !

[0; 1] with

{ 

vi
Vj
(Vj j C�Gvi (Vj)

) = 
Vj (Vj j C�G(Vj)nfVig ^ vi), for all vertices Vj 2 �G(Vi ), and

{ 

vi
Vk
(Vk j C�Gvi (Vk)

) = 
Vk(Vk j C�G(Vk)), for all vertices Vk 2 V (G) n �G(Vi ).

The tuple B:vi = (G:vi ;�:vi) is de�ned analogously by substituting :vi for vi in the above.

It will be evident that the modi�ed network resulting after evidence absorption once more is
a belief network.

The method of evidence absorption is illustrated by means of an example.
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V1

V3

V2

V5 V6

V4

Figure 1: The Digraph G of the Example Belief Network B.

Example 3.2 Consider the belief network B = (G;�) where G is the multiply connected di-
graph shown in Figure 1 and � consists of the six probability assessment functions 
V1 ; : : : ; 
V6 :


V1(V1)

V2(V2)

V3(V3 j V1 ^ V2)

V4(V4 j V2)

V5(V5 j V3)

V6(V6 j V3 ^ V4)

Now suppose that the evidence V3 = true is obtained for the variable V3. The belief network
B then is modi�ed to Bv3 = (Gv3 ;�v3). The digraph Gv3 is obtained from G by deleting all
arcs emanating from vertex V3, and is shown in Figure 2; the evidence for the variable V3 is
represented by drawing vertex V3 with shading.

V1

V3

V2

V5 V6

V4

Figure 2: The Digraph Gv3 of the Belief Network Bv3 .

The set �v3 consists of the six functions 
v3V1 ; : : : ; 

v3
V6

that are obtained from the probability
assessment functions of the original belief network B:


v3V1(V1) = 
V1(V1)


v3V2(V2) = 
V2(V2)


v3V3(V3 j V1 ^ V2) = 
V3(V3 j V1 ^ V2)


v3V4(V4 j V2) = 
V4(V4 j V2)


v3V5(V5) = 
V5(V5 j v3)


v3V6(V6 j V4) = 
V6(V6 j v3 ^ V4)

2

The following proposition states that, after evidence absorption, the modi�ed belief network
and the original belief network model the same updated joint probability distribution given
the evidence.
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Proposition 3.3 Let B = (G;�) be a belief network and let Pr be the joint probability distri-
bution de�ned by B. Let Vi be a vertex in G for which the evidence Vi = true is observed and

let Prvi denote the updated joint probability distribution given Vi = true. Now, let the network

Bvi = (Gvi ;�vi) be de�ned as in De�nition 3.1 and let P be the joint probability distribution

de�ned by Bvi. Furthermore, let Pvi denote the updated joint probability distribution given

Vi = true. Then, Prvi = P
vi .

Proof. We consider the belief network B = (G;�) and its joint probability distribution Pr,
and the modi�ed network Bvi = (Gvi ;�vi) and its joint probability distribution P. To prove
that Prvi = P

vi , we show that

Pr(V1 ^ � � � ^ Vi�1 ^ vi ^ Vi+1 ^ � � � ^ Vn) = P(V1 ^ � � � ^ Vi�1 ^ vi ^ Vi+1 ^ � � � ^ Vn)

The main result then follows from the property of marginalisation and the de�nition of con-
ditional probability.

From Theorem 2.5, we have that the joint probability distribution Pr de�ned by the belief
network B can be expressed as

Pr(V1 ^ � � � ^ Vn) =
Q

Vj2V (G) 
Vj (Vj j C�G(Vj))

From this expression, we derive an expression for the marginal distribution Pr(V1^� � �^Vi�1^
vi ^ Vi+1 ^ � � � ^ Vn) by �lling in the value vi for the variable Vi.

The joint probability distribution P de�ned by the belief network Bvi can be expressed as

P(V1 ^ � � � ^ Vn) =
Q

Vj2V (G) 

vi
Vj
(Vj j C�Gvi (Vj)

)

From this expression, we derive an expression for the marginal distribution P(V1^� � �^Vi�1^
vi ^ Vi+1 ^ � � � ^ Vn) by substituting the value vi for the variable Vi.

To show that Pr(V1^� � �^Vi�1^vi^Vi+1^� � �^Vn) = P(V1^� � �^Vi�1^vi^Vi+1^� � �^Vn), it
su�ces to show that the various terms in the expressions for the marginal distributions stated
above match. We distinguish between several di�erent cases:

� for the assessment functions 
Vi and 

vi
Vi

for the variable Vi, we have that


Vi(vi j C�G(Vi)) = 
viVi(vi j C�Gvi (Vi)
)

by de�nition;

� for the assessment functions 
Vj and 

vi
Vj

for a variable Vj with Vj 2 �G(Vi), we have
that


Vj (Vj j C�G(Vj)nfVig ^ vi) = 
viVj (Vj j C�Gvi (Vj)
)

by de�nition;

� no other assessment function involves the variable Vi; for the functions 
Vk and 
viVk for
a variable Vk with Vk 2 V (G) n (�G(Vi) [ fVig), we therefore have that


Vk(Vk j C�G(Vk)) = 
viVk(Vk j C�Gvi (Vk)
)

by de�nition.
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We conclude that

Pr(V1 ^ � � � ^ Vi�1 ^ vi ^ Vi+1 ^ � � � ^ Vn) = P(V1 ^ � � � ^ Vi�1 ^ vi ^ Vi+1 ^ � � � ^ Vn)

2

Note that a similar property holds with respect to evidence Vi = false.
From the previous proposition and its proof, it is easily seen that application of the method

of evidence absorption cannot introduce into the modi�ed network any independences condi-
tional on the evidence that were not already re
ected by the original network. In the following
lemma, we state more formally that the two networks represent the same independences given
the evidence; a separate proof for this property is provided in [9].

Lemma 3.4 Let B = (G;�) be a belief network with G = (V (G); A(G)). Let Vi be a vertex in

G for which the evidence Vi = true is observed and let the network Bvi = (Gvi ;�vi) be de�ned
as in De�nition 3.1. Then, hXjY jZidG if and only if hXjY jZidGvi , for all sets X;Y;Z � V (G)
such that Vi 2 Y .

So far we have considered applying the method of evidence absorption for one piece of evidence
only. It will be evident, however, that Proposition 3.3 and Lemma 3.4 are easily generalised
to hold for multiple pieces of evidence.

As we have mentioned before, the method of evidence absorption has been �rst introduced
by R.D. Shachter as part of an algorithm for processing evidence in a belief network. The
basic idea of this algorithm is to eliminate a vertex from a belief network as soon as it is
instantiated, modifying the network to re
ect the updated probability distribution given the
evidence for the vertex. The algorithm is composed of two phases. When a piece of evidence
is entered for a speci�c variable, the method of evidence absorption is applied. Subsequently,
the evidence is spread throughout the network by a method called evidence propagation which
basically consists of repeated application of an arc-modifying operation called arc reversal. In
these two phases, the topology of the digraph of the network is modi�ed dynamically to re
ect
the newly created independences and dependences. In doing so, new arcs may be inserted
into the digraph to portray the newly created dependences among the remaining variables
and for these arcs accompanying conditional probabilities are calculated.

Shachter's algorithm for processing evidence has some drawbacks, as has been noted be-
fore by J. Pearl [6 (pp. 144 { 145)]. Related to the computational e�ort involved, we note
that eliminating an instantiated vertex from a belief network is computationally expensive:
the algorithm has an exponential worst-case time complexity. In addition, the computational
expense of further probabilistic inference with the modi�ed belief network after elimination
may increase as a result of the insertion of new arcs into the digraph of the network. These
drawbacks cannot be alleviated if the aim is to eliminate an instantiated vertex from the
network. Upon close examination of Shachter's algorithm for processing evidence, it becomes
clear, however, that these drawbacks arise to a large extent from the arc-reversal operation
employed during evidence propagation: it is this method that accounts for the high compu-
tational expense. As opposed to evidence propagation, evidence absorption can be performed
e�ciently as all computations involved are local to a vertex and its successors | in fact,
evidence absorption will generally take constant time.
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4 Incorporating Evidence Absorption into Pearl's Algorithm

The method of evidence absorption has been designed to dynamically modify a belief network
as evidence becomes available to explicitly represent the new independences holding in view
of the evidence. All existing algorithms for exact probabilistic inference exploit such indepen-
dences more or less directly. Pearl's (enhanced) algorithm, for example, tends to perform the
better from a computational point of view as the digraph of a belief network is the sparser,
that is, as the digraph portrays the more independences. Since the method of evidence ab-
sorption aims at explicitly representing new independences only, it tends to delete arcs from
the digraph of a belief network and never inserts any new ones. The incorporation of this
method into the existing algorithms, therefore, is expected to improve on the average-case
computational expense of probabilistic inference.

The method of evidence absorption is easily incorporated into Pearl's basic algorithm
for probabilistic inference with a belief network involving a singly connected digraph. The
basic idea is as follows. When a piece of evidence is entered into the belief network for
some vertex, the method of evidence absorption is applied before propagating the evidence.
Then, Pearl's algorithm is called upon to perform the actual propagation. In contrast with
Shachter's algorithm for probabilistic inference, the instantiated vertex is not eliminated
from the network: as the method of evidence absorption models new independences only, the
instantiated vertex has to remain in the digraph of the network to properly re
ect the newly
created dependences. Note that the ability of the method of evidence absorption to improve
on the average-case computational expense of probabilistic inference with a belief network
comprising a singly connected digraph derives from its e�ect on the topology of this digraph:
if applying evidence absorption lets the digraph of the network fall apart into (equally large)
components, then any further probabilistic inference can be restricted to one component only.
Also note that the speed-up of inference obtained easily outweighs the computational e�ort
of evidence absorption.

The incorporation of the method of evidence absorption into Pearl's enhanced algorithm
for probabilistic inference with a belief network involving a multiply connected digraph in
essence is the same as its incorporation into Pearl's basic algorithm. In view of loop cutset
conditioning, however, the concept of evidence absorption can even be exploited to a further
extent. We recall from Section 2 that for a multiply connected digraph a loop cutset is
selected that, upon instantiation, e�ectively `cuts' all loops and causes the digraph to behave
as if it were singly connected. Now observe that a piece of evidence may equally provide for
`cutting' one or more loops of the digraph at hand. So, when evidence is entered, it may
render one or more vertices of the loop cutset obsolete. The method of evidence absorption
therefore provides for dynamically reducing an initial loop cutset as evidence is entered into
a belief network involving a multiply connect digraph; for further details of dynamic loop
cutset reduction, we refer to a forthcoming paper [10].

5 The Experiments and Their Results

In the previous sections, we have detailed the method of evidence absorption and its incor-
poration into Pearl's enhanced algorithm for probabilistic inference. The most interesting
question to address now is what impact applying the method of evidence absorption has on
the topology of the digraph of a belief network as successive evidence is entered, since this
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impact can be related directly to the computational expense involved in further probabilistic
inference.

From a theoretical point of view, the best case and the worst case are easily identi�ed.
The worst case would be a digraph for which evidence is entered only for vertices without
any arcs emanating from them. In this case, applying the method of evidence absorption is
pointless: there are no arcs deleted from the digraph and further computations are just as
expensive as when evidence absorption had not been applied. It is worth noting, however,
that the method of evidence absorption would not weigh heavily on the computational e�ort
spent on probabilistic inference: the only additional work required would be a simple check
on a vertex' successor set. In the best case, the method of evidence absorption causes the
digraph of the network to fall apart into components of size one only for a single piece of
evidence: this would be a digraph having the shape of a tree of depth one for which evidence
is entered for the root vertex.

The above observations are general and not very illuminating. To gain more insight into
the impact of the method of evidence absorption, we have conducted several experiments on
di�erent classes of randomly generated belief networks. In addition, we have analysed the
impact of evidence absorption on some real-life networks.

5.1 Experiments on Randomly Generated Belief Networks

The aim of our experiments with the method of evidence absorption on randomly generated
belief networks is to gain insight into the impact of the method on the average-case computa-
tional expense of probabilistic inference. Since this impact derives from the way the method
modi�es the graphical part of a belief network and not from the modi�cation of the associated
conditional probabilities, we have designed our experiments to apply to the graphical part of
a network only.

The Set-Up of the Experiments

In each experiment, we have generated a set of one hundred (connected) acyclic digraphs
by means of a graph generator; for further details of the graph generator used, we refer the
reader to [11]. Each digraph is randomly generated to comprise n vertices, n � 1, and m

arcs, n � 1 � m � 1
2n � (n � 1). To study the impact of repeated application of the method

of evidence absorption, in each experiment we have entered k pieces of evidence into the
digraphs generated; we have modelled entering a piece of evidence by selecting a vertex from
the set of vertices of the digraph at hand and applying the modifying operation of the method
of evidence absorption to the digraph's topology. Vertices modelling pieces of evidence are
selected by means of an evidence generator. This generator selects vertices from the digraph
at hand either randomly or with one of two di�erent biases. These biases concern the location
in the digraph of the vertices for which evidence is entered and have been introduced into
the evidence generator because it is expected that the location in the digraph of the vertices
for which evidence is entered plays a major role in the impact of the method of evidence
absorption on a digraph's topology. We would like to note that for diagnostic applications
the vertices for which evidence is entered tend to be located in the lower part of the digraph
whereas for prognostic applications these vertices are more likely to be located in the upper
part of the network. In this paper, however, we will not address the impact of these biases.
For further details of the evidence generator and for an overview of all experiments performed
and their results, we refer the reader once more to [11].
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Figure 3: The Results of the First Experiment | (a) The Average Number of Deleted Arcs,
(b) The Average Number of Components, (c) The Average Size of the Minimum Component,
(d) The Average Size of the Maximum Component

The Results of the Experiments

The aim of the �rst experiment reported here has been to study, in isolation, the in
uence of
the degree of connectivity on the behaviour of a digraph's topology under evidence absorption.
In this experiment, we have generated several sets of one hundred digraphs comprising �fty
vertices each. We have varied the number of arcs of the generated digraphs from forty-
nign, and �fty up to one hundred and �fty, increasing by two for each set. To each digraph
generated, we have applied the method of evidence absorption for ten randomly selected pieces
of evidence. For the modi�ed digraphs, we have found the statistics summarised in Figure 3;
Figure 3(a) shows the average number of deleted arcs, in Figure 3(b) the average number of
components of the modi�ed digraphs is shown, and Figures 3(c) and 3(d) plot the average
sizes of the minimum and maximum component of the modi�ed digraphs, respectively.

The second experiment reported here is similar to the �rst one in the sense that its aim also
is to study the impact of one of the parameters de�ning the search space for experimentation
in isolation: it is the number of pieces of evidence that is varied in this experiment. In this
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Figure 4: The Results of the Second Experiment | (a) The Average Number of Deleted Arcs,
(b) The Average Number of Components, (c) The Average Size of the Minimum Component,
(d) The Average Size of the Maximum Component

experiment, we have generated several sets of digraphs comprising �fty vertices each; we have
�xed the number of arcs of these digraphs to one hundred. The pieces of evidence entered into
these digraphs have been generated randomly; the number of pieces of evidence entered is
varied from one up to twenty-�ve, increasing by one for each set of digraphs. To each digraph
generated, we have applied the method of evidence absorption for the pieces of evidence
selected. For the modi�ed digraphs, we have found the statistics summarised in Figure 4;
Figure 4(a) shows the average number of deleted arcs, in Figure 4(b) the average number of
components of the modi�ed digraphs is shown, and Figures 4(c) and 4(d) plot the average
sizes of the minimum and maximum component of the modi�ed digraphs, respectively.

Discussion

We begin our discussion of the results obtained from our experiments by considering the
average numbers of deleted arcs. From a theoretical point of view, we observe that in a
digraph comprising n vertices and m arcs, the average number of arcs emanating from a
vertex equals m

n
. When applying the method of evidence absorption for one piece of evidence,
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the number of deleted arcs therefore is expected to approximate this ratio. Since deleting the
arcs emanating from one vertex does not in
uence the number of arcs emanating from any of
the other vertices in the digraph, we �nd that for k pieces of evidence the number of deleted
arcs is expected to approximate k � m

n
. For a given digraph, this formula indicates a linear

relation between the number of pieces of evidence entered and the number of arcs deleted
by evidence absorption. The results of our experiments con�rm this observation; Figure 4(a)
shows a linear increase in the number of deleted arcs for an increasing number of pieces of
evidence entered. From the formula k � m

n
, we further observe that the number of arcs deleted

by evidence absorption for a �xed number of pieces of evidence is related linearly to the total
number of arcs comprised in the digraph at hand. This observation is also con�rmed by
our experiments; Figure 3(a) indicates a linear increase in the number of deleted arcs for an
increasing total number of arcs.

We now address the average numbers of components and their respective sizes found in
the experiments. For this purpose, we �rst consider the generation of a random digraph by
successive addition of arcs between randomly selected vertices [12]. It will be evident that the
more arcs are added to a digraph in the making, the more likely it is to become connected.
A well-known result from random graph theory is that a random digraph with n vertices
is almost always connected if it comprises O(n � logn) arcs or more. Moreover, a random
digraph with between O(n) and O(n � logn) arcs typically comprises one large component
of O(n) vertices, called the giant component, and many small components of size at most
O(logn) each. Now consider adding to a digraph having the topology just described an arc
between two randomly selected vertices. We distinguish between three situations:

� the new arc connects two vertices comprised in the giant component | the probabil-
ity that this situation will occur is rather high and increases as the giant component
increases in size;

� the new arc connects one vertex from within the giant component and one vertex from
within one of the tiny components | the probability that this situation will occur is
fairly small and even diminishes as the giant component grows; note that since adding
such an arc results in the giant component encapsulating a tiny one, we have that the
probability that the giant component will increase in size is inversely proportional to
its current size;

� the new arc connects two vertices not yet comprised in the giant component | the
probability that this situation will occur is very small and even diminishes as the giant
component grows.

We now observe that the behaviour of the topology of a random digraph under arc deletion
is dual to its behaviour under arc addition. From this observation we have that by successive
arc deletion a connected random digraph will at �rst stay connected until it has shrunk to
comprise approximately O(n � logn) arcs. Further arc deletion will tend to yield a topology
in which one giant component can be discerned and many tiny ones.

The digraphs generated in our experiments with the method of evidence absorption are
rather sparse and therefore are likely to exhibit the behaviour outlined above. In fact, the
presence and behaviour of the giant component is re
ected in Figures 3(d) and 4(d). Figure
3(d) shows that as the number of arcs of the generated digraphs increases, the size of the
giant component rapidly rises to approximate the number of vertices of the digraphs; note
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that the amount of increase in size of the giant component for an increase in the number
of arcs is inversely proportional to the size the component already has. Figure 4(d) shows
that as the number of pieces of evidence entered, and hence the number of deleted arcs,
increases, the giant component slowly decreases in size. Figures 3(b) and 4(b) depict the
average number of components found in our experiments. Figure 3(b) shows that the number
of components rapidly decreases as the number of arcs of the digraphs, and hence the size of
the giant component, increases; Figure 4(b) shows that the number of components increases
as the number of pieces of evidence entered increases. Both Figure 3(c) and 4(c) demonstrate
that the size of the minimum component, and hence the size of the tiny components, is very
small compared to the size of the giant component.

5.2 Experiments on Real-life Belief Networks

So far we have considered the impact of the method of evidence absorption in view of exper-
iments on randomly generated belief networks. A close examination of the results obtained
from the experiments reveals several interesting properties. From the discussion in the pre-
vious section it will be evident, however, that these properties to a large extent derive from
applying the method to randomly generated digraphs | in fact, the results obtained from our
experiments cannot be generalised to apply to the method's behaviour on belief networks that
do not incorporate a random digraph. In addition to our experiments on randomly generated
belief networks, we therefore have also done some experiments on real-life networks, among
which is the HEPAR belief network [13].

The HEPAR belief network is a small medical belief network for the diagnosis of Wilson's

disease. Wilson's disease is a recessively inherited derangement of the copper metabolism in
the human body; it typically results in progressive copper accumulation in the liver, causing
cirrhosis, and in copper deposits in other organs, causing extrahepatic disorders, such as
renal and neurological disease. The qualitative part of the HEPAR belief network is shown
in Figure 5. The digraph comprises 21 vertices and 23 arcs. Note that, although the digraph
does not have a high degree of connectivity, it includes several loops. In the �gure, the vertices
for which evidence may be obtained are drawn with shading. Of these, the vertices labeled
Free serum copper, Serum caeruloplasmin, and Urinary copper represent the concentration of
copper in various body 
uids which can be determined by laboratory tests; the values of the
other vertices are directly available from a patient's interview and physical examination.

In the digraph, almost all vertices pertaining to readily available evidence have no arcs
emanating from them. Applying the method of evidence absorption for these vertices therefore
has no impact on the digraph's topology whatsoever. The only exception is the vertex labeled
Age. Upon application of the method of evidence absorption for this vertex, two arcs are
deleted from the digraph; note that the deletion of these arcs reduces the number of loops
in the digraph. If, in addition to the data from interview and physical examination, the
laboratory test results for Free serum copper and Serum caeruloplasmin are available, then
another four arcs are deleted from the digraph and several loops are cut. Moreover, the
digraph falls apart into several components. The largest of these components comprises 12
vertices and 12 arcs; it contains a single loop. As this component includes the Wilson's

disease vertex modeling the hypothesis, further probabilistic inference is restricted to this
very component. We would like to note that the HEPAR belief network concerns one hepatic
disorder only and is projected to be part of a larger network modeling some 80 disorders of
the liver and biliary tract.
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Figure 5: The Digraph of the HEPAR Belief Network.

The impact of the method of evidence absorption as outlined above for the HEPAR belief
network appears to be typical for (small-scaled) diagnostic belief networks: we have found
similar results for other networks such as for example the ALARM Monitoring system [14].

We would like to note that at present only few full-scaled, real-life belief networks are
available from the literature, rendering extensive experiments on such networks practically
infeasible. Also, most present-day belief networks have been designed for the task of diagnosis
and therefore are expected to share the characteristic of evidence vertices being located mainly
in the lower part of the network's digraph. Furthermore, most existing networks are tailored to
state-of-the-art methods for reasoning with a belief network which tend to impose restrictions
on the topology of the graphical part of the network. Since research on reasoning methods
rapidly progresses, future belief networks may very well di�er considerably from present-day
ones. We feel that as applications grow larger, the digraphs involved will tend to have a
topology in which subgraphs with a high degree of connectivity can be discerned modelling
di�erent focal areas of attention of the domain at hand; these dense subgraphs will tend to be
loosely interconnected. As long as this tendency is not con�rmed by full-scaled real-life belief
networks, we should be careful in drawing any decisive conclusions as to the true ability of
the method of evidence absorption.
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6 Conclusions

In this paper, we have addressed the tendency of the basic algorithms for probabilistic infer-
ence associated with the belief network formalism to become the major consumers of com-
puting resources. We have mentioned that in the worst case this tendency cannot be denied
as these algorithms have an exponential worst-case time complexity. It is possible, howev-
er, to improve on the average-case performance of these algorithms. To this end, we have
proposed incorporating the method of evidence absorption into Pearl's (enhanced) algorithm
for probabilistic inference. This method amounts to dynamically modifying a belief network
as evidence becomes available. The ability of the method to improve on the average-case
performance of probabilistic inference derives from the method's property of explicitly incor-
porating the new independences created by the observation of the evidence into the digraph
of the network: the method tends to delete arcs and to make a digraph fall apart into separate
components.

To gain some insight in the ability of the method of evidence absorption to improve on
the computational expense involved in inference, we have performed several experiments on
di�erent classes of randomly generated belief networks. Unfortunately, the results obtained
from these experiments to a large extent re
ect the use of randomly generated belief networks
and do not provide for drawing detailed conclusions as to the method's behaviour on real-
life networks that do not incorporate a digraph of random topology. Also, the results of
experiments on real-life belief network cannot be generalised straightforwardly to apply to
all types of (future) belief networks. Since the impact of applying the method of evidence
absorption on probabilistic inference is determined by the topological properties of the digraph
of the network at hand, however, it can be decided for each belief network separately whether
or not applying evidence absorption is expected to be advantageous. To this end, a simple
investigation of the location in the network's digraph of the vertices for which evidence is
likely to be entered su�ces.

To conclude, we would like to note that, although in this paper we have addressed incorpo-
ration of the method of evidence absorption into Pearl's algorithm for probabilistic inference
only, the method is as easily introduced into the Lauritzen and Spiegelhalter algorithm, requir-
ing only simple operations on a junction tree. Moreover, the method e�ortlessly amalgamates
with other methods for improving on the computational expense of probabilistic inference.
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