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Abstract

The classes Ar and Sr are de�ned as the classes of those graphs, where
the minimum degree greedy algorithm always approximates the maximum
independent set (MIS) problem within a factor of r, respectively, where this
algorithm has a sequence of choices that yield an output that is at most a
factor r from optimal, r � 1 a rational number. It is shown that deciding
whether a given graph belongs to Ar is coNP-complete for any �xed r � 1,
and deciding whether a given graph belongs to S1 is DP-hard, and belongs to
�2P. Also, the MIS problem remains NP-complete when restricted to Sr.

Keywords: Analysis of algorithms, Combinatorial problems, Approximation
algorithms

1 Introduction

A well known and well studied heuristic for the problem of computing a maximum
independent set in a graph is the Minimum Degree Greedy algorithm (MDG). In
this algorithm, one repeatedly selects a vertex of minimum degree from the graph,
puts this vertex in the independent set, and removes the vertex and its neighbours
from the graph, until an empty graph is left.

An interesting problem is when this MDG algorithm outputs a maximum indepen-
dent set, or when its output di�ers a constant factor from a maximum independent
set.

For several classes of graphs it is known that, if we require the input to belong
to such a class, then MDG has a good approximation ratio; examples are the
graphs of bounded degree or bounded average degree [6]. Also, MDG is known
to output always a maximum independent set, when the input is a well-covered
graph (a graph is well-covered if all its maximal independent sets are of the same
cardinality { see [8]). Moreover, it is easy to verify that MDG outputs a maximum
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independent set when the input is a tree, split graph, complements of a k-tree, or
a complete k-partite graph, for any k.

To consider the problem to determine when the MDG algorithm gives certain
approximations of the maximum independent set, we introduce for each rational
number r the graph classAr, consisting of those graphs where MDG always outputs
an independent size such that the maximum independent set is at most r times as
large. In other words, Ar is the class of graphs for which MDG is an approximation
algorithm with performance ratio r.

Note that the MDG algorithm has a certain degree of non-determinism: when
there are more vertices of minimum degree, the algorithm chooses one of them to
remove. We de�ne the graph class Sr (r rational number) as the set of graphs
for which there exist some sequence of choices of minimum degree vertices for the
MDG algorithm, such that the output is of size at least a constant fraction 1=r of
the maximum independent set.

We prove that the hierarchies de�ned by classes Ar and Sr are proper i.e. for
any r1 < r2 Ar1 � Ar2 . A consequence of this is (the non-surprising result)
that for any function f(n) = o(n) MDG is not a f(n)-approximation algorithm for
the maximum independent set problem (n is the number of vertices in the input
graph).

In this paper, we consider the complexity of the recognition problem for the classes
Ar and Sr for rational r. We prove that for any r, the recognition problem of Ar is
coNP-complete. Also, for any r, the recognition problem of Sr belongs to �2P. We
also prove that maximum independent set remains an NP-complete when restricted
to graphs belonging to S1 and that the recognition of S1 is a DP hard problem.

Our results indicate that the problem of recognising the instances of the maximum
independent set problem where the greedy algorithm has a nice approximation
behaviour is a hard combinatorial problem. Clearly, the same results hold also
for the maximum degree greedy algorithm for the clique problem (just take the
complement of the graphs involved.)

2 De�nitions and preliminaries

Throughout this paper all the graphs are considered to be without loops or multiple
edges. Given a graph G we denote as V (G) and E(G) its vertex and edge set
respectively. Given a set S � V (G), we de�ne the neighbourhood of S, denoted
N(S), to be the set of vertices not in S that are adjacent to vertices in S. Given
a vertex v 2 V (G), we call the set N(fvg) the neighbourhood of v in G and we
denote it as N(v). Given some set S � V (G) we denote as G[S] the subgraph
of G induced by S. A set I � V (G) is an independent set if E(G[I]) = ;. An
independent set I is a maximal independent set when there is no independent set
I with I 0 � I, I 0 6= I. We call an independent set I maximum, when there is no
independent set I 0 with jI 0j > jIj. The Maximum Independent Set (MIS) problem,
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is the problem of �nding a maximum independent set of a given graph. Finally,
we denote the size of some maximum independent set in G as �(G). The decision
version of the MIS problem asks, for given G,k, whether �(G) � k.

One of the most simple and e�cient algorithms to output a maximal independent
set of a given graph is the one called minimum-degree greedy (MDG) algorithm.

Algorithm MDG
Input: A graph G

Output: A maximal independent set I of G.
1 begin

2 I  ;
3 Let v 2 V (G) be a vertex of minimum degree in G

4 I  I [ fvg
5 G G[V (G)� fvg �N(v)]
6 if V (G) 6= ; then goto 3
7 end

It is easy to see that line 3 of MDG algorithm introduces a certain degree of
non-determinism, as there may be more than one minimum degree vertices to be
chosen. To any graph G we associate the collection IG of all possible maximum
independent sets that MDG may output with input graph G, i.e., we look at all
possible sequences of choices of vertices of minimum degree. We proceed with some
de�nitions:

De�nition 1 Let r � 1 be some rational number.
max -GR(G) = maxfjIj : I 2 IGg, min -GR(G) = minfjIj : I 2 IGg,
Sr = fG : �(G)=r � max -GR(G)g, Ar = fG : �(G)=r � min -GR(G)g.

In other words, Ar is the class of graphs for which MDG is an approximation
algorithm for MIS with performance ratio r. Also, Sr is the class of graphs for
which there exist some sequence of minimum degree choices for the MDG algorithm
such that the output has size at least a constant factor r of the MIS solution.

One can easyly verify that A1 contains all trees, cycles, split graphs, complete
k-partite graphs and complements of k-trees. We also mention that A1 contains
the class of well-covered graphs (the recognition problem of well-covered graphs
has been proved to be a coNP-complete problem (see [4, 5])). Also, according to
the results in [6], if r � �+2

3 , then Ar contains all the graphs with degree bounded
by �.

Proposition 2.1 For all rational numbers r1; r2 with 1 � r1 < r2, Ar1 is a proper

subset of Ar2, and Sr1 is a proper subset of Sr2 .

Proof. We look to the �rst part of the claim; the second part can be proved
with the same construction. Note that it is su�cent to show that for any rational
number r � 1, there exists a graph G with �(G)

min -GR(G)
= r.

Write r = l=m with l � m � 2. We construct G in the following way: Take a
vertex v0 and a set I = fv1; : : : ; vlg of l vertices adjacent to v0. Let fI1; : : : ; Im�1g
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be an arbitrary partition of I consisting ofm�1 non-empty sets. Take additionally
m � 1 cliques K1; : : : ;Km�1, each consisting of l + 1 vertices. The construction
is completed by connecting each vertex in Ii with all vertices in Ki, for any i =
1; : : : ;m � 1. We can easily verify that I is a maximum independent set in G.
Also, MDG will always start choosing vertex v0 and, because of this �rst choice,
will �nally output a maximum independent set consisting of v0 and one vertex
from each of the m � 1 cliques K1; : : : ;Km�1 (an example for the case r = 5

4 is
shown in Figure 1).

Thus, �(G) = l, but MDG outputs an independent set of size m: G 2 Ar and
G 62 Ar0 ;8r

0 < r. 2

The fact that for any r � 1 there are in�nitely many graphs not in Ar shows that
MDG is not an constant factor approximation algorithm. In fact, we can prove
that MDG is not an aproximation algorithm for any aproximation factor of the
form f(n) where lim

n!1

n
f(n) = 0 (n is the number of vertices of the input graph).

For this, it is su�cient to see that if we apply the above construction for l = l0
and m = 2 where l0 > 2f(2l0 + 1), we obtain a graph Gl0 where �(Gl0) = l0

and min -GR(Gl0) = 2. As jV (Gl0)j = 2l0 + 1, we have that
�(Gl0

)

min -GR(Gl0
)
= l0

2 >

f(jV (Gl0)j), a contradiction to the existence of any f(n)-approximation algorithm.

We mention that MIS is not approximable within a factor of n1=3�� unless coRP=NP
(see [1]).

v2

v1 v0 v5

4vv3

K 1 K 3

2K

Figure 1: An example of a graph in A 5

4

and/or S 5

4

3 The complexity of recognizing Ar

In this section we will prove that the recognition of those graphs where the MDG
algorithm approximates the maximum independent set with approximation ratio
any �xed rational number r � 1 is a coNP-complete problem.

Theorem 3.1 For any �xed rational number r � 1, the problem to determine

whether a given graph G 2 Ar is coNP-complete.
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Proof. First, in order to show that the problem belongs to coNP, it is su�cient
to observe that G =2 Ar if and only if there exist a set I � V , and a sequence of
vertices (v1; � � � ; vi), such that

� I is an independent set,

� (v1; � � � ; vi) is an independent set which can be chosen by the MDG algorithm,

� jIj=r > i.

To prove hardness for coNP, we present a reduction from the problem, to determine
whether for a given graph G and integer k, �(G) < k, to the problem to determine
whether for a given graph G0 G0 2 Ar.

Let G = (V;E) be a given graph, and k be a given positive integer. Write r = l=m,
l, m integers (l � m). Construct G0 as follows:

Take a clique A with l�jV (G)j vertices. Take a graphB consisting of l disjoint copies
of G. Take a graph C consisting of km� 2 isolated vertices. Let G0 be the graph
such that V (G0) = V (A)[V (B)[V (C) andE(G0) = E(A)[E(B)[E(C)[ffu; vg j
u 2 V (A)[V (C); v 2 V (B)g, i.e., we make every vertex in B adjacent to all vertices
in A and in C.

Since G0 =2 Ar i� min -GR(G0) < m
l �(G

0), it is su�cient to prove that �(G) � k
i� min -GR(G0) < m

l �(G
0). Notice that with G0 as input, MDG algorithm always

outputs a maximal independent set VC [ fpg, where p is a vertex in VA and thus
min -GR(G0) = km� 1. Also, it is easy to see that �(G0) = maxfl�(G); km� 1g:

Suppose that �(G) � k. Then min -GR(G0) = km� 1 < m�(G) = m
l �(G

0).

Suppose that �(G) < k. We distinguish two cases:

Case 1: km�1
l � �(G). We now have �(G0) = l�(G) and thus min -GR(G) =

km� 1 � m�(G) = m
l �(G

0).

Case 2: km�1
l > �(G). We now have �(G0) = mk � 1 and thus min -GR(G0) =

km� 1 = �(G0) � m
l �(G

0). 2

It is easy to see that, using the same reduction with the one of Theorem 3.1, one
can prove that the recognition problem for Sr is also a coNP-hard problem. In the
next section we will prove a stronger result for r = 1.

It is a natural question to ask about the complexity of recognizing Ar (or Sr)
when r is considered to be an irrational number. One can actually prove that
there are irrational numbers r, such that the recognition problem for Ar, or Sr
is undecidable. (Take any undecidable function f : N ! f0; 1g, e.g., f(n) tells
whether the nth Turing machine in some recursive numbering halts on an empty
input. Let r = 1+

P
1

i=1 2
�1 � f(i). If testing membership in Ar or Sr is decidable,

then one can compute the digits of r using graphs, as constructed in the proof of
Proposition 2.1.)

5



4 Complexity results on Sr

First, we show it does not help to know that a graph belongs to S1 (and hence,
to any class Sr for r � 1) when we want to solve the maximum independent set
problem.

Theorem 4.1 The maximum independent set problem, restricted to S1 is NP-

complete.

Proof. We will give a reduction from the maximum independent set problem
for arbitrary graphs. For a given (non-empty) graph G, we will construct a new
graph G0 2 S1 such that �(G0) = �(G) + jE(G)j. G0 is obtained from G by �rst
replacing every edge in G by a path of length three (i.e., the edge is subdivided
by putting two new vertices on it), and then taking two new adjacent vertices x,
y and making these adjacent to all the original vertices in G. (See Figure 2 for an
example.)

The original vertices from G are called the real vertices in G0, the vertices intro-
duced by the subdivisions are called the dummy vertices, and x and y are called
the additional vertices.

We will now show that �(G0) = �(G)+ jE(G)j. Let I 0 be a maximum independent
set of G0. Let I = V (G) \ I 0 be the set of real vertices in I 0. Change I 0 in the
following way: while there are vertices v; w 2 I that are adjacent in G, remove w
from I 0 and instead add the dummy vertex neighbouringw on the path representing
the edge fv; wg to I 0; update I accordingly. As a result, we obtain a maximum
independent set I 0 such that I = V (G) \ I 0 is an independent set of G. Note
that I 0 contains at most jE(G)j dummy vertices. If x 2 I 0 or y 2 I 0, then jI 0j �
jE(G)j + 1 � �(G) + jE(G)j, as no real vertex can belong to I 0. Otherwise, also
jI 0j � �(G) + jE(G)j. So we have �(G0) � �(G) + jE(G)j.

Let now I be a maximum independent set of G. We take an independent set I 0 of
G0 in the following way: take all vertices in I, and for every edge fu; vg in E(G),
we take on of the two dummy vertices corresponding to the edge: we can always
take such a dummy vertex because either v 62 I 0 or w 62 I 0. So �(G0) � jI 0j =
jIj+ jE(G)j = �(G) + jE(G)j.

y

G’G
Real vertex

Dummy vertex

Additional vertex

x

Figure 2: Graph G0

Also, we claim that G0 2 S1. Let I be an independent set in G. We start by choos-
ing jE(G)j dummy vertices, not adjacent to vertices in I, as in the construction
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above: note that we can always do this, as all other vertices will have degree at
least two (real vertices are adjacent to x and y, and x and y are adjacent to each
other and at least one vertex in I; none of these is yet removed). At this moment,
all vertices in I have degree two: they are only adjacent to x and y; all other
vertices have degree at least two. Then, we can choose all vertices in I, and we
end up with an independent set of size jE(G)j+�(G) = �(G0) (see also Figure 3).

Thus, the transformation, mapping (G; k) to (G0; k + jE(G)j) gives the required
reduction, and the theorem follows. 2

IA vertex of 

Figure 3: A sequence of steps for the MDG algorithm

As we have already mentioned, the recognition problem of Sr is a coNP-hard prob-
lem. In what follows, we will prove a stronger result for the recognition problem
of S1.

The complexity class DP is de�ned as the class of problems that can be expressed
as a conjunction of two subproblems such that the one is in NP and the other in
coNP (see [7]). An example of aDP-complete problem is Exact Vertex Cover,
which asks, when given a graph G and a positive integer k, whether the size of the
minimum vertex cover in G is exactly k. (See [3].) As the size of the vertex cover
of a graph G equals to jV (G)j ��(G), it is clear that the following problem is also
DP-complete.

Exact Independence Number

Instance: A graph G and a positive integer k.
Question: �(G) = k?

Theorem 4.2 The problem of determining whether a given graph G belongs to S1
is DP-hard.

Proof. We present a reduction from the Exact Independence Number.
Given a graph G and a positive integer k, we will construct a graph G00 such that
G00 2 S2 i� �(G) = k.
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verticesk + |E(G)|

subgraph Csubgraph

k

subgraph

1
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|E(G)|

clique

vertices

vertices
+|+k

p

V(G’)| +

Figure 4: Graph G00.

The construction ofG00 is as follows: First, let G0 2 S1 be obtained fromG, as in the
proof of Theorem 4.1. Take a graphA, isomorphic to G0. Take a graphB consisting
of k + jE(G)j isolated vertices. Take a clique C with k + jE(G)j + jV (G0)j + 1
vertices; distinguish an arbitrary vertex p from V (C). Take a graph D, isomorphic
to G. Take a graph E consisting of k isolated vertices. G00 is the graph with
V (G00) = V (A) [ V (B) [ V (C) [ V (D) [ V (E) and E0 = E(A) [ E(C) [E(D) [
ffu; vg : u 2 V (A); v 2 V (B)g [ ffu; vg : u 2 V (B); v 2 V (C) � fpgg [ ffu; vg :
u 2 V (C) � fpg; v 2 V (D)g [ ffu; vg : u 2 V (D); v 2 V (E)g (see Figure 4). (In
other words, take the union of A, B, C, D, and E, and we add edges between
vertices in A and vertices in B, between vertices in B and all vertices except p in
C, between all vertices except p in C and vertices in D, and between vertices in D
and vertices E.) It is easy to see that G00 can be constructed in polynomial time.

Now we show that G00 2 S1 i� �(G) = k.

First, suppose G00 2 S1. Now, the MDG algorithm will start picking vertices in A
and E, thus removing B and D. As A 2 S1, �(A) = �(G) + jE(G)j vertices in
A will be chosen, and one vertex in C, and all k vertices from E. Thus, �(G00) =
�(G)+ jE(G)j+k+1, using that G00 2 S1. As V (B)[fpg[V (E) is an independent
set of G00 with size 2k + jE(G)j + 1, we have �(G00) � 2k + jE(G)j + 1. It follows
that k � �(G). Now suppose k + 1 � �(G). Then, consider an independent set
consisting of �(G) + jE(G)j vertices in A, the vertex p and �(G) vertices in D.
Thus, �(G00) � 2�(G) + jE(G)j + 1 � (�(G) + jE(G)j + k + 1) + 1. This is a
contradiction, since �(G00) = �(G) + jE(G)j+ k + 1. So, �(G) = k.

Now, suppose �(G) = k. Any maximum independent set of G00 contains either
�(A) vertices from A or all vertices from B, one vertex from C, and �(D) vertices
fromD or all vertices fromE. Thus, �(G00) = 2k+jE(G)j+1. The MDG algorithm
can output a set of this size: k + jE(G)j vertices in A can be chosen (as in the
proof of Theorem 4.1), p, and all vertices in E. Hence, G00 2 S1. 2

We do not know whether the recognition problem for Sr is complete for DP for
r � 1. Instead, we prove membership in the larger class �2P. (�2P is the class
of the problems that can be decided by a deterministic polynomial time oracle
machine that uses an NP oracle). (See e.g. [3, 7].)
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Lemma 4.3 Let r � 1 be a rational number. The recognition problem for Sr
belongs to �2P.

Proof. It is su�cient to see that for a given graph G, G 62 Sr i� for some
k; 1 � k � n: (i) �(G) � k and (ii) there is not any output of the MDG algorithm
with at least k=r vertices. Finally, note that both (i) and (ii) can be answered by
NP oracles. 2

5 Open problems

We were unable to extend Theorem 4.2 to classes Sr for rational r > 1. Thus, it
remains open to prove hardness for classes above NP for the recognition problems
Sr with r > 1. Also, it is open whether the recognition problem of Sr is complete
for DP or for some larger complexity class like �2P, for all rational r � 1.
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