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Abstract

A graph is l-apex if it can be made planar by removing at most l vertices.

In this paper we show that the vertex set of any graph not containing an l-

apex graph as a minor can be quickly partitioned into 2l sets inducing graphs

with small treewidth. As a consequence, several maximum induced-subgraph

problems when restricted to graph classes not containing some special l-apex

graphs as minors, have practical approximation algorithms.
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1 Introduction

Much work in algorithmic graph theory has been done in �nding polynomial ap-
proximation algorithms (or even NC algorithms) for NP-complete graph problems
when restricted to special classes of graphs. A wide class of such problems is de-
�ned in terms of hereditary properties (a graph property � is called hereditary

when, if � is satis�ed for some graph G, then � is also satis�ed for all induced
subgraphs of G). The maximum induced subgraph problem for hereditary property
�, is the following problem: Given a graph G = (V;E), �nd a maximum subset of
V that induces a subgraph satisfying �. We call this problem MISP(�). A wide
range of this type of problems has been shown to be NP-complete by Yannakakis
in [17]. There is a long series of results concerning fast approximation algorithms
(serial or parallel) for such problems. An algorithm, that given an instance of
MISP(�), always returns a solution that is of size at least a constant factor 1=�,
is called an approximation algorithm for MISP(�) with performance ratio �. Also,
MISP(�) has a polynomial-time approximation scheme (PTAS) if, for any �xed
� > 0, there exist an polynomial approximation algorithm with performance ratio
1+ �. Lipton and Tarjan in [12] proved that various MISP(�)'s have a PTAS when
their instances are restricted to classes of planar graphs. This result has been
considerably generalised to any class of graphs with an excluded minor by Alon,
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Seymour, and Thomas (see [1]). Unfortunately, these schemes appear to have only
theoretical interest as, their running time is a highly exponential function of 1=�
(see [10]). Consequently, the following question appears: for which graph classes
there exist practical approximation algorithms for MISP(�)'s? In this direction,
Baker in [3] gave a practical PTAS for several MISP(�) when the input instances
are planar. Chen, in [18], gave a non trivial generalisation of Bakers' result for
K3;3-minor free of K5-minor free graphs classes.

In this paper we examine the practical approximability of several MISP(�)'s on
some more general classes of graphs. We call a graphH l-apex of a planar graphH0

if it contains at most l vertices whose removal produces H0. Let G = (V;E) be an
H-minor free graph, where H is an l-apex of some planar graph H0. In Section 3,
we give a linear and easy to implement algorithm that outputs a partition of V into
2l sets, each inducing a graph of bounded treewidth (intuitively, graphs of bounded
treewidth are graphs that can be constructed by piecing together graphs of bounded
size in a tree-like fashion). Using the fact that a wide range of MISP(�)'s restricted
to graphs with bounded treewidth can be solved by linear time algorithms, we can
obtain approximation algorithms for these MISP(�)'s with performance ratio 2l.
In Section 4 we describe several l-apex graphs that, when excluded, our approach
leads to practical approximation algorithms. Moreover, some interesting corollaries
of our results are discussed.

2 De�nitions

We consider undirected graphs without multiple edges or self-loops. Given a graph
G = (V;E) we denote its vertex set and edge set with V (G) and E(G) respectively.
Given two graphs G;H we say that H is a minor of G if H can be obtained by
a series of vertex deletions, edge deletions and edge contractions (a contraction
of an edge fu; vg in G is the operation that replaces u and v by a new vertex
whose neighbours are the vertices that where adjacent to u and/or v). G is H-
minor free if G has no minor isomorphic to H. A graph class containing only
H-minor free graphs is called H-minor free. If V 0 � V (G), we call the graph
(V 0; ffv; ug 2 E(G) : v; u 2 V 0) the subgraph of G induced by V 0 and we denote it
as G[V 0].

A tree decomposition of a graph G = (V;E) is a pair (fXi j i 2 Ig; T = (I; F )),
where fXi j i 2 Ig is a collection of subsets of V and T is a tree, such that

�
S

i2I
Xi = V (G),

� for each edge fv; wg 2 E, there is an i 2 I such that v; w 2 Xi,

� for each v 2 V , the set of nodes fi 2 I j v 2 Xig induces a subtree of T.

The width of a tree decomposition (fXi j i 2 Ig; T = (I; F )) equals max
i2I

(jXij�

1). The treewidth of a graph G is the minimum width over all tree decompositions
of G.
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Robertson and Seymour proved in [14] (see also [15]) that for any planar graph
H there exist a constant cH such that any H0-minor free graph has treewidth at
most cH . Given a planar graph H, we de�ne the minimum excluding bound of H,
med(H), as the maximum treewidth over all H-minor free graphs. as the minimum
k bounding the treewidth of H-minor free graphs.

In [15], it was shown that for all planar graphsH, med(H) � 202(2jV (H)j+4jE(H)j)5 .
There are several classes where smaller upper bounds for the minimum excluding
bound have been found. Examples of such classes are forests with at most r vertices
(� r � 2, see [4]), minors of r-disjoint triangles (� 12r2 � 27r+ 6, see [8]), graphs
that are minors of a 2�q grid and an r-circus graph (� 2(q�1)2(r�1)+1, see [7]),
cycles of length a most r (� r�2, see [11]) and minors of K2;r (� 2r�2, see [5]). It
is interesting to mention that, according to the results in [4, 8, 7, 11, 5], there exist
algorithms that, given a graph G with an excluded minor belonging into one of the
aforementioned classes, output the corresponding small width tree decompositions
in time linear on jV (G)j and polynomial on r and q. This means that when the
size of the excluded graphs is small, there are really practical algorithms to build
the corresponding small width tree decompositions. We call such classes of graphs
quickly and fast excluded.

Given a planar graph H0 we de�ne the l-apex extension of H0, Hl, as the class
of graphs containing a set of at most l vertices whose removal produces H, i.e.,
Hl = fG j 9S � V (G); jSj � l G[V (G) � S] is isomorphic to H0g. Given a class
H0 of planar graphs, we de�ne the l-apex extension of H0 as the union of all the
l-apex extensions of the graphs in H0. We call a graph H l-apex if it is contained
in the l-apex extension of some planar graph H0 (we call such a planar graph the
l-apex root of H).

An (�; 
)-partition of a graph is a partition fV1; : : : ; V�g of its vertices such
that treewidth(G[Vi]) � 
, 1 � i � �.

3 The splitting algorithm

The main result of this paper is the following. Note that H and H0 are not
necessarily required as part of the input for the algorithm.

Lemma 1 There exists an algorithm, that when given a graph G = (V;E) and an

integer l, such that G is an H-minor free graph for a graph H that is an l-apex of a
planar graph H0, outputs an (2l;med(H0))-partition of G in O(l(jV (G)j+ jE(G)j))
time.

Proof First, we remark that we may assume that 2l � jV (G)j � jE(G)j: if not,
then we just output the partition with one vertex per set. Now we claim that the
required partition can be computed by algorithm l-SPLIT(G) shown in Figure 1.

Algorithm l-SPLIT(G) re�nes a partition of G l times; each time each set is
(possibly) split in two. Thus, it outputs at most 2l sets. Each split is done in the
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algorithm l-SPLIT(G)
Input: An H-minor free graph G, where H is

an l-apex extension of a planar graph H0.
Output: A (l;med(H0))-partition fV1; : : : ; V2lg of G.
1 begin

2 set V1 = V (G), Vi = ;; 2 � i � 2l.
3 for h = 1; : : : ; l do

4 for m = 1 to 2h�1 call procedure SPLIT(m;h)
5 output fV1; : : : ; V2lg
6 end

procedure SPLIT(m;h)
1 begin

2 set n = (m� 1)2h�1.
3 Let G1; : : : ; G� be the connected components of G[V1+n].
4 for each connected component Gi; i = 1; : : : ; � do

5 begin

6 Chose arbitrarily a vertex vi0 2 V (Gi).
7 Compute a partition V i

0 ; V
i
1 ; : : : ; V

i
ti
of V (Gi) such that V i

0 = fvi0g
and any set V i

j ; 1 � ti contains the vertices of V (Gi) whose
distance from vi0 is exactly j.

8 Set V1+n+2l�h  V1+n+2l�h [ (
S

j=0;:::;b
ti

2
c
V i
2j)

9 end

10 Set V1+n  V1+n � V1+n+2l�h .
11 end

Figure 1: Algorithm l-SPLIT(G).

following way (per connected component of the induced graph): a breadth �rst
search is done from some arbitrary vertex vi0; in one set, we put all vertices with
an even distance to vi0, and in the other set, we put all vertices with odd distance
to vi0.

As H is an l-apex of H0, there exist a set Sadd = fs1; : : : ; s�g � V (H); � � l
such that H0 is isomorphic to G[V (H)� Sadd]. We set Hi = (V (H0 [ fs1; : : : ; sig;
E(H0) [ ffv; ug j v 2 V (H0) [ fs1; : : : ; sig; u 2 fs1; : : : ; sig)), 1 � i � �.

Claim. Let each connected component of G[V1+n] be Hs-minor free, where n =
(m � 1)2h�1, 1 � h � s, 1 � m � 2h�1. Then, after the execution SPLIT(m;h),
each connected component of graphs G[V1+n], G[V1+n+2l�h ] is Hs�1-minor free.

Proof of the claim: Suppose not. As any connected component is entirely inside
one of the sets V i

j , as computed in Step 7, we can obtain Hs as a minor of Gi:

contract all vertices in V i
0 [ � � � V

i
j�1 to one vertex (vi0), contract (and remove) the

edges (and vertices) in V i
j to Hs�1, and remove all other vertices. As each vertex

in V i
q is adjacent to at least one vertex in V i

q�1 for any q = 2; : : : ; j, we now have
a graph, obtained by adding a vertex to Hs�1 that is adjacent to all vertices in
Hs�1: this graph is isomorphic to Hs. A contradiction. 2
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Using inductively the claim above, we can conclude that each connected com-
ponent of each set in the partition, outputted by algorithm l-SPLIT is H0-minor
free and hence has treewidth at most med(H0). As the treewidth of a graph is the
maximum of the treewidth of its connected components, it follows that the output
is a (2l;med(H0))-partition of G.

Implementing Step 7 of Procedure SPLIT by the standard breadth �rst search
algorithm, it directly follows that the algorithm uses O(lV (G) +E(G)) time. 2

We mention that any H-minor free graph G is a sparse graph (i.e. jE(G)j �
cH jV (G)j for some constant cH). According to a result of Mader in [13], cH �
2jV (H)j�3 (see [9]) and thus, we can conclude that the time complexity of l-SPLIT(G)
is O(2jV (H)j�3ljV (G)j).

4 Conclusions

For a planar graph H0 and a hereditary property � such that MISP(�) can be
solved in linear time when restricted to graphs with bounded treewidth, we let
pH0;� be the value, such that MSIP(�) can be solved in � pH0;� � n time when
restricted on H0-minor free graphs with n vertices (as we have already mentioned,
such graphs have bounded treewidth, so this value does exist).

Theorem 1 Let � be a hereditary property. Let H 2 H where H is an l-apex
extension of some planar graph H0. Then, there exist an approximation algorithm

for MISP(�) on H-minor free graphs G with performance ratio 2l, and with running
time � pH0;� � jVGj+ cl(jV (G)j+ jE(G)j), where c is a constant not depending on

�, l.

ProofWe apply the following steps. (i) Using SPLIT(G), we �nd a (2l;med(H0))-
partition fV1; : : : ; V2lg of G. (ii) We �nd a maximum subset Wi of Vi such that
G[Wi] satis�es �, i = 1; : : : ; 2l. (iii) We output the maximum cardinality set in
fW1; : : : ;W2lg. We denote this set as Waprx.

Let W be a solution of MISP(�) and V � a set in the partition such that 8i; 1 �
i � 2l: jW \ V �j � jW \ Vij. Clearly, jW [ V �j � 1

2l
jW j. Notice that, as � is

hereditary, G[W [ V �] satis�es � and thus jW \ V �j � jWaprxj. It follows that
jWaprxj �

1
2l
jW j, thus the performance ratio of the algorithm is 2l. By Lemma 1

step (i) can be done in O(l(jV (G)j+ jE(G)j)) time. Also, step (ii) can be done in
� pH0;�jV (G)j time. 2

The term jE(G)j can be replaced by a factor 2jV (H)j�3jV (G)j, by the result of
Mader [13], discussed above.

Theorem 1 leads to practical approximation algorithms when pH0;� is a rela-
tively small constant. As in many cases, given a tree decomposition of G with
width� k the time to solve MISP(�) is O(2kn), an important bottleneck will often
be the time needed to construct such a decomposition. Therefore, the size of pH0;�
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Figure 2: Examples of some l-apex graphs where l = 1; 2. The l-root of each graph
is the one induced by the dark vertices. The number below each graph is an upper
bound to the minimum excluding bound of its l-apex root.

depends heavily on the existence of fast algorithms that, given a graph with a
planar graph as an excluded minor, output a tree decomposition with relatively
small treewidth. Consequently, we conclude, that pH0;� is often practically small
when H0 is quickly and fast excluded.

We mention that any new result characterising some planar graph as quickly
and fast excluded will extent further the collection of graph classes where Theo-
rem 1 leads to practical approximation algorithms.

Corollary 1 For any hereditary property � such that MISP(�) can be solved in

� t(i)n time in graphs with treewidth at most i = 1; 2, there exist an O(t(i)n +
(jV (H)j � 2� i)(jV (G)j+ jE(G)j)) time approximation algorithm for MISP(�) on
H-minor free graphs G, with performance ratio 2jV (H)j�2�i.

Proof It is enough to observe that if we apply l-SPLIT(G) where l = jV (H)j �
2� i; i = 1; 2, the output will be a partition of sets inducing forests (in case i = 1)
or graphs with treewidth� 2 (in case i = 2). 2
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In fact, we can obtain somewhat better approximation ratios than Corollary 1.
If we run algorithm l-SPLIT(G) for l = jV (H)j � 5 and with input an H-minor
free graph G, we can easily see that the output is a partition fV1; : : : ; V2jV (H)j�5g
of V (G) such that G[Vi] is a K5 free graph for i = 1; : : : ; 2jV (H)j�5. Using now the
practical PTAS of Chen in [18] we can easily conclude that, for several hereditary
properties �, given a H-minor free graph G and some � > 0, there exist a practical
approximation algorithm for MISP(�) with performance ratio 2jV (H)j�5+� (e.g. for
K6-minor free graphs the performance ratio is 2 + �)). We also have the following
corollary.

Corollary 2 Let � be a hereditary property such that MISP(�) can be solved in �
t(r)n time for n vertex graphs given with a tree decomposition of width � r. Then,
there exist an O(t(2k2� 2)jV (G)j+(k1� 2)(jV (G)j+ jE(G)j)) time approximation

algorithm with performance ratio 2k1�2 for MISP(�) on graphs G that are H-minor

free, where H is a bipartite graph that is a subgraph of Kk1;k2, k1 � k2.

Proof Observe that Kk1;k2 , and hence H is an (k1 � 2)-apex extension of K2;k2 .
Further we use that, given a K2;r-minor free graph G one can �nd a tree decom-
position of G with width � 2r � 2 in O(rjV (G)j) time (see [5]). The result now
follows from discussions above. 2

Some examples of 1 or 2-apexes of quickly and fast excluded graphs along with
the performance ratio of the corresponding approximation algorithms are shown
in Figure 4.
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