
Formal methods and mechanical veri�cation

applied to the development of a convergent

distributed sorting program.

T.E.J. Vos, S. D. Swierstra and I.S.W.B. Prasetya

Utrecht University, Department of Computer science

P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

e-mail: ftanja, doaitseg@cs.ruu.nl, wishnup@caplin.cs.ui.ac.id

September 30, 1996

Abstract

Gentle introductions to the programming logic UNITY, the theorem proving envi-
ronment HOL, and the embedding of the �rst into the latter are presented. Equipped
with this apparatus a methodology for designing distributed algorithms is described.
Finally this methodology is used to design and proof the correctness of a convergent
distributed sorting algorithm.

keywords: formal methods, UNITY, theorem provers, HOL, distributed algorithms,
convergence.

Contents

1 Introduction 4

2 Why formal methods and mechanical veri�cation 4

3 The results of a four-year study 5

4 Notational conventions in this report 6

5 HOL 7
5.1 Formulae in HOL . 8
5.2 Theorems in HOL . 9
5.3 Extending HOL . 11
5.4 Proving theorems in HOL . 12
5.5 Automatic theorem proving . 14

1

CONTENTS 2

6 UNITY 15
6.1 States, predicates, expressions and actions . 15
6.2 UNITY programs . 18

6.2.1 The UNITY programming language 20
6.2.2 The well-formedness of a UNITY program 21

6.3 UNITY logic . 22
6.4 Extended UNITY . 26

6.4.1 Compositionality . 26
6.4.2 Self-stabilisation . 30

7 Embedding UNITY in HOL 34
7.1 Predicates and Predicate Operators . 35
7.2 Actions . 35
7.3 UNITY programs . 36
7.4 Program properties . 37

7.4.1 Well-formedness . 37
7.4.2 Safety, progress and self-stabilising properties 38

8 How to design and verify UNITY programs with HOL 40

9 Case study 43
9.1 Some notational conventions and necessary de�nitions 43

9.1.1 Notation . 43
9.1.2 Relations and orderings . 43
9.1.3 Graphs . 43
9.1.4 Functions . 45

9.2 Informally describe what the program is to do. 45
9.3 Create a formal speci�cation of what the program is to do 46
9.4 Re�ne and decompose the speci�cation . 51
9.5 Construct a program which satis�es this re�ned speci�cation 56
9.6 Represent the program in the HOL embedding of UNITY 63
9.7 Proof that the program is well-formed . 64
9.8 Prove that the program satis�es the speci�cation 70

10 Re
ections 74

Appendix 79

A HOL de�nitions and pre-proved theorems 79
A.1 Relations, orderings and permutations . 79
A.2 Graphs and networks . 80
A.3 Predicate Operators . 80
A.4 Variables, Actions and Expressions . 81
A.5 Core UNITY . 81
A.6 Convergence . 82
A.7 Parallel Composition . 82

CONTENTS 3

A.8 The sorting program and related de�nitions 83

References 85

Index 88

1 Introduction 4

1 Introduction

In the last few years many computers have been connected to each other, and society has
become more and more dependent on computer networks for their availability of world-
wide communication. Distributed programs, underlying these world-wide communication
networks, have to ensure that every message sent reaches its destination, and have to pro-
vide management for resources shared by various users on various computers. These are
very complicated tasks. As a consequence of the increasing usage and dependence of com-
puter networks, distributed programs have become of major importance. Accordingly, their
trustworthiness must be subjected to severe tests of correctness.

In his dissertation Wishnu Prasetya [Pra95] reported the results of a four-year research-
project on the mechanically supported veri�cation of distributed algorithms. The objective
of this present report is to summarise his �ndings and to show how these can be used to
verify a distributed algorithm. The survey of Prasetya's results is given in section 3, which
just recites them. Gentle introductions to the di�erent aspects involved are given in sections
5 up to and including 7. The utilisation of these results is illustrated by means of a case
study, which shows the formal design and mechanical veri�cation of a convergent distributed
program for sorting numbers according to an arbitrary total order.

2 Why formal methods and mechanical veri�cation

Few if any would dispute that the use of computers within our society is not without risks.
Nevertheless, computers are increasingly being used to monitor, and/or control, complex
safety-critical processes where a run-time error or failure could result in death, injury, loss
of property or environmental harm. Reasons for this growing employment of computers
are that computers have the potential to increase power, improve performance, establish
great e�ciency, add
exibility and decrease costs. A consequence of this ever-increasing
computerisation in safety-critical environments is that serious attention must be paid to the
trustworthiness of the computer systems applied.

In his book [Neu95] Peter Neumann gives an extensive list of serious and less serious
mishaps that have happened in computerised environments in the past few years. Deaths
due to poorly designed software have occurred; for example the accidents that happened with
the Therac-25, a computerised radiation therapy machine. Between June 1985 and January
1987, six known accidents involved massive overdoses by this machine { with resultant deaths
and serious injuries. For a thorough investigation of these accidents with the Therac-25 the
reader is referred to [LT93].

Formal methods, the term with which the variety of mathematical modelling techniques
that are applicable to computer system design is meant, are often advocated as a way of
increasing con�dence in computer based systems. Many [BS92, BH95b, BS93b, BBL93,
BH95a, BS93a, Bow93, But93, CGR93, CG92, GCR94, Hal90, Kem90, Nic91, RvH93,
Rus94, WW93] believe that the use of formal methods currently o�ers the only intellectually
defensible method for handling the software crisis which increasingly a�ects the world of
embedded systems. In this report we shall mainly concentrate on safety-critical software
design. Formal methods can be applied at three levels, which provide di�erent levels of
assurance for the software developed.

3 The results of a four-year study 5

At a basic level, formal methods may be used for speci�cation of the system to be de-
signed. The use of formal speci�cation techniques can be of bene�t in most cases. Using
a formal speci�cation language instead of natural language has the advantages that speci-
�cations are more concise and less ambiguous, which makes it easier to reason about them
and helps to gain greater insight into and understanding of the problem solved. Further-
more, formal speci�cations serve as a valuable piece of documentation, which is essential
for software maintenance purposes. The next level of use is formal development, which in-
volves formally specifying the program, proving that certain properties are satis�ed, proving
that undesirable properties are absent, and �nally applying a re�nement and decomposition
calculus to the speci�cation such that it may gradually be translated into an e�cient and
concrete representation of the program. The proofs involved are pencil-and-paper proofs,
which can be formal or informal, depending on the level of assurance that is required. At
the last, and most rigorous, level, the whole process of proof is mechanised. Hand proofs
or design inevitably lead to human error occurring for all and even the simplest systems.
Verifying the design process with a mechanical theorem prover reduces the possibility of
errors. Although some argue that this can never eliminate errors completely since the
program that does the veri�cation itself may be incorrect, experience shows that theorem
provers are very reliable, and de�nitely least much more reliable than people. In addition to
reducing errors, the use of theorem provers attributes to the understanding of the problem
that is being solved, because during the veri�cation process one is irrevocable confronted
with every aspect of the program under construction.

In using one of these levels, one has to determine which level is suitable for the problem
at hand. Before deciding to use full formal development and mechanised proofs, one must
resolve whether the additional costs (in time, e�ort, manpower, tool support, money, edu-
cation) is justi�ed. For safety critical systems { that is computer based systems, in which a
system failure could result in death, injury, environmental harm or loss of property, money
or information { such additional costs are warranted and required.

Although, formal methods and automatic veri�cation are becoming more and more
accepted as the only intellectually defensible way in which the quality of both software
and hardware can be improved, it should, however, be remembered that they are not some
universal panacea. To quote from C.A.R. Hoare:

Of course, there is no fool-proof methodology or magic formula that will ensure
a good, e�cient, or even feasible design. For that, the designer needs experi-
ence, insight,
air, judgement, invention. Formal methods can only stimulate,
guide, and discipline our human inspiration, clarify design alternatives, assist in
exploring their consequences, formalise and communicate design decisions, and
help to ensure that they are correctly carried out.

3 The results of a four-year study

First, an embedding of the programming logic UNITY was made inside the theorem prover
HOL, by extending the latter with all de�nitions required by the logic, and making all
basic theorems of the logic available by proving them. The gain from this is that the formal
design of programs can now be assisted by a mechanical veri�cation with the theorem prover,
resulting in a signi�cant increase of the trustworthiness of the design.

4 Notational conventions in this report 6

Second, two extensions of the programming logic UNITY were de�ned and embedded
within the theorem prover HOL. The �rst extension of the programming logic UNITY con-
cerns compositionality properties. A problem of UNITY is that progress properties are not
compositional with respect to parallel composition. That is, we cannot in general factorise a
progress speci�cation of a program into the speci�cations of its parallel components. There-
fore one is unable to develop a component program in isolation, which is awkward. The ex-
tension presented is however compositional. The second extension regards self-stabilisation
and convergence of programs. Roughly speaking, a self-stabilising program is a program
which is capable of recovering from arbitrary transient failures. Obviously such a property
is very useful, although the requirement to allow arbitrary failures may be too strong. The
more general notion of convergence, which allows a program to recover only from certain
failures, is used to express a more restricted form of self-stabilisation. Since self-stabilisation
and convergence are considered to be essential for programs in safety-critical environments,
e.g. distributed environments, this second extension is signi�cant for our purposes. More-
over, an induction principle is formulated for convergence which is stronger than the one for
UNITY's reach-to operator. As a consequence, a powerful technique for proving convergence
has become available.

Third, this HOL embedding of extended UNITY was used to mechanically verify Lent-
fert's Fair and Successive Approximation (FSA) algorithm [Len93]. This algorithm is a
complicated self-stabilising distributed program which computes the minimal distance be-
tween all pairs of vertices in a network, in other words an algorithm which maintains routing
tables for a network in a changing environment (that is, vertices and links may appear and
disappear during the execution of the algorithm).

Last, two generalisations of Lentfert's FSA algorithm were de�ned and proved with HOL.
The �rst generalisation extends the applicability of the FSA algorithm, by generalising the
notion of `minimal distance'. This generalised FSA algorithm computes a certain class of
minimal-distance-like functions, called round-solvable functions. In order to prove this gen-
eralisation, large HOL-libraries have been developed for orderings and round-solvability of
functions. The second generalisation lifts the FSA algorithm so that it works for hierarchical
networks of `domains' instead of ordinary networks of vertices.

4 Notational conventions in this report

When computer checked results (de�nitions) are presented, they shall be marked by the
names they are identi�ed with in the HOL theories (de�nitions) that we wrote. For example:

Theorem 4.1 Pink Panther Pink Panther thm

Fu = Fu � Fu

The number and the name Pink Panther are how we refer to the theorem in this thesis.
The name Pink Panther thm is how the theorem is called in HOL. Implicitly, this means
that the theorem has been mechanically veri�ed.

When presenting a theorem we often present it like this:

A1

A2

B

5 HOL 7

which is another way for denoting A1 ^ A2) B. The notation is commonly used within
the UNITY community.

5 HOL

For those who are familiar with HOL, this section can be skipped.
The HOL system [GM93] is one of the most widely used theorem provers, both in

academia and industry. It is free, comes with extensive documentation, libraries, an in-
teractive help system, and myriad web-sites providing information and a dynamic search
engine for HOL information1. HOL is a direct descendant of the innovative LCF (Logic
of Computable Functions) [Pau87] theorem prover developed by Robin Milner in the early
1970s, and is an implementation of a version of Church's simple theory of types, a formalism
dating back more than 50 years. HOL is an acronym of Higher Order Logic, the logic used
by the HOL system. Basically, this logic is �rst-order classical predicate logic, with the
following di�erences: the logic is higher-order (variables can range over functions and pred-
icates); the logic is typed; and there is no separate syntactic category of formulae (terms of
boolean type play the role of formulae).

HOL is an interactive theorem prover: one types a formula and proves it step by step
using any primitive strategy provided by HOL. When the proof is completed, the code can
be collected and stored in a �le, to be given to others for the purpose of re-generating the
proved fact, or simply for documentation purposes in case modi�cations are required.

HOL is built on top of the strict functional programming language ML. The HOL system
de�nes ML types for the various logical entities (e.g. terms, types, theorems, theories). The
ML type for theorems (denoted in ML as thm) is an abstract data-type, with operators
corresponding to the axioms and inference-rules. In this way ML's type system ensures that
only valid inferences can be made. One of the main strengths of HOL is the availability
of ML as a meta-language. In HOL, ML is used to program proof tactics. The notion of
tactics was invented in 1970 by Robin Milner. In HOL a tactic is an ML function with
which one can do goal-directed (i.e. top-down) proofs by splitting a theorem (the top-goal)
into a number of simpler parts (the subgoals), proving these separately, and then combining
the proofs of the subgoals to construct the proof of the whole.

HOL is not generally attributed to be an automatic theorem prover. Full automation
is only possible if the scope of the problems at hand is limited. Instead HOL provides a
general platform which, if necessary, can be �ne-tuned to the speci�c kind of proofs to be
constructed.

The major hurdle in using HOL is that it is, after all, still a machine which needs to
be told in detail what to do. When a formula needs to be re-written in a subtle way, for
humans this may seem one of the simplest things that there is. For a machine, however, it
is not so simple since it needs to know precisely which variables have to be replaced, the
positions at which they are to be replaced, and by what they should be replaced. On the
one hand HOL has a whole range of tools to manipulate formulae: some designed for global
operations such as replacing all x in a formula with y, and some for �ner surgical operations
such as replacing an x at a particular position in a formula with something else. On the
other hand it does take quite a while before one gets a su�cient grip on what exactly each

1http://lal.cs.byu.edu/lal/hol-documentation.html

5.1 Formulae in HOL 8

standard notation HOL notation

Denoting types x 2 A or x : A "x:A"

Proposition logic :p, true, false "~p", "T", "F"
p ^ q, p _ q "p /\ q", "p \/ q"

p) q "p ==> q"

Universal quanti�cation (8x; y :: P) "(!x y. P)"

(8x : P : Q) "(!y::P. Q)"

Existential quanti�cation (9x; y :: P) "(?x y. P)"

(9x : P : Q) "(?x::P. Q)"

Function application f:x "f x"

� abstraction (�x: E) "(\x. E)"

Conditional expression if b then E1 else E2 "b => E1 | E2"

Sets fa; bg, ff:x j P:xg "{a,b}", "{f x | P x}"

Set operators x 2 V , U � V "x IN V", "U SUBSET V"

U [V , U \ V "U UNION V", "U INTER V"

UnV "U DIFF V"

Lists a;s, s;a "CONS a s", "SNOC a s"

[a; b; c], st "[a;b;c]", "APPEND s t"

Figure 1: The HOL Notation.
J

tool does, and how to use them e�ectively. Perhaps, this is one thing that scares some
potential users away.

Another problem is the collection of pre-proven facts. Although HOL is probably a
theorem prover with the richest collection of facts, compared to the knowledge of a human
expert, it is a novice. A simple fact such as (8a; b :: (9x :: ax + b � x2)) may be beyond
HOL's knowledge. When a fact is unknown, users will have to prove it themselves. Many
users complain that their work is slowed down by the necessity to \teach" HOL sundry
simple mathematical facts. At the moment, various people are working on improving and
enriching the HOL library of facts.

5.1 Formulae in HOL

All HOL formulae, also called terms of the HOL logic or logical terms, are represented
in ML by a type called term. Figure 1 shows examples of how the standard notation is
translated to the HOL notation. As the reader can see, the HOL notation is as close an
ASCII notation can be to the standard notation. Anything between a pair of quotes is
parsed as a logical term. Terms of the HOL logic are quite similar to ML expressions, which
can cause confusion since these terms have two types, logical types and ML types (called
object language types and meta-language types respectively). The object language types of
HOL terms are also represented by an ML type called type. These object language types
are denoted by expressions of the form ": ... ". There is a built-in function type of, which
has ML type term->type and returns the logical type (i.e object language type) of a HOL
term. An example taken from [GM93] may elucidate these matters. Consider for example
the logical term "(1,2)"

5.2 Theorems in HOL 9

� It is a HOL term with object language type (i.e. logical type) ":num#num".

� It is an ML expression with meta-language type term

� Evaluating type of "(1,2)" results in ":num#num". This object language type ":num#num"
has ML type type.

� In contrast consider the ML expression ("1","2") which has ML type term#term.

Within a quotation (i.e. " "), expressions of the form ^(t) (where t is an ML ex-
pression of meta-language type term or type) are called anti-quotations. An anti-quotation
^(t) evaluates to the ML value of the expression t. As an exempli�cation, consider the
following small HOL-session:

#let x = "y /\ z";;

x = "y /\ z" : term

#let p = "^x \/ k";;

p = "y /\ z \/ k" : term

#
J

There are di�erent kinds of object language types. First, there are primitive types such
as ":bool", ":nat" and ":ind" (representing the Boolean set of true and false, the natural
numbers, and the in�nite set respectively). Second, there are type-variables to denote, as the
name suggests, arbitrary types. Names denoting type-variables must always be preceded
by a * like in ":*A" or ":*B". Third, object language types can be combined using type
constructors (e.g. product (#), function (->), lists (list), sets (set)) to form new compound
types. In HOL one can de�ne new type constructors with the ML function define_type.
For example the type operator triple can be de�ned as follows:

define_type `triple_DEF` `triple = TRIPLE *A *B *C`

After the execution of this function "x:(num,bool,bool)triple", for example, is a
valid HOL-term.

5.2 Theorems in HOL

A theorem is an ML expression of meta-language type thm. Theorems can only be created
by a formal proof. A formal proof is a sequence, each element of which is either an axiom or
can be derived from earlier elements of the sequence by a rule of inference. Consequently,
each element of the sequence is a theorem proved by the formal proof. HOL's deductive
system has only eight primitive inference rules and �ve axioms, everything else is formally
derived. And since creating theorems can only2 be done by constructing a formal proof,
this makes for a reliable proof system.

More speci�cally, a HOL theorem has the form:

2Because thm is an abstract data type with operators corresponding to the axioms and inference rules.

5.2 Theorems in HOL 10

A1; A1; ... |- C

where the Ai's are boolean HOL terms representing assumptions and C is boolean HOL
term representing the conclusion of the theorem. It is to be interpreted as: if all Ai's are
valid, then so is C. An example of a theorem is the following:

|- !P. P 0 /\ (!n. P n ==> P (SUC n)) ==> (!n. P n)

which is the induction theorem on natural numbers3.
The �rst four axioms in HOL are:

BOOL_CASES_AX : |- !t. (t=T) \/ (t=F)

IMP_ANTISYM_AX : |- !t1 t2. (t1 ==> t2) ==> (t2 ==> t1) ==> (t1=t2)

ETA_AX : |- !t. (\x. t x) = t

SELECT_AX : |- !(P:*->bool) x. P x ==> P ($@ P)

where @ denotes the choice operator. $@ P picks an element x such that it satis�es P |if
such an element exists (which is exactly what the fourth axiom above says). As for the
other axioms: the �rst states that a boolean term is either true or false4; the second axiom
states that) is anti-symmetric; and the third states that (�x:f x) = f .

The �fth axiom asserts that there exists a injection between the type ind and itself, but
the injection is not surjective. In other words, the type ind is in�nite. The axiom is given
below:

INFINITY_AX : |- ?f:ind->ind. ONE_ONE f /\ ~(ONTO f)

The 8 primitives inference rules are:

i. ASSUME, introduces an assumption: ASSUME "t" generates the theorem t |- t.

ii. REFL, yields a theorem stating that any HOL-term t is equal to itself: REFL "t"

generates |- t=t.

iii. BETA_CONV, corresponds to Beta reduction. For example, BETA_CONV "(\x. (x + 1)) X"

generates |- (\x. (x+1)) X = (X+1).

iv. SUBST, is used to perform a substitution within a theorem.

v. ABS, generates a theorem, e.g. ABS "t1 = t2" generates the theorem |- (\x. t1) = (\x. t2).

vi. INST_TYPE, is used to instantiate type variables in a theorem.

vii. DISCH, is used to discharge an assumption. For example, DISCH (A1; A2 |- t) yields
A1 |- A2 ==> t.

viii. MP, applies the Modus Ponens principle. For example, MP (|- t1 ==> t2) (|- t1)

generates |- t2.

More sophisticated inference rules can be derived by combining the above primitive rules.
Examples of (frequently used) derived rules are REWRITE_RULE and MATCH_MP. Given a

list of equational theorems, REWRITE_RULE tries to rewrite a theorem using the supplied

3All variables which occur free are assumed to be either constants or universally quanti�ed.
4Hence the HOL logic is conservative.

5.3 Extending HOL 11

equations. The result is a new theorem. MATCH_MP implements the modus ponens principle.
In illustration below are some HOL sessions.

1 #DE_MORGAN_THM ;;
2 |- !t1 t2. (~(t1 /\ t2) = ~t1 \/ ~t2) /\ (~(t1 \/ t2) = ~t1 /\ ~t2)
3
4 #th1 ;;
5 |- ~(p /\ q) \/ q
6
7 #REWRITE_RULE [DE_MORGAN_THM] th1 ;;
8 |- (~p \/ ~q) \/ q

J

The line numbers have been added for our convenience. The # is the HOL prompt.
Every command is closed by ;;, after which HOL will return the result. On line 1 HOL
is asked for the value of DE_MORGAN_THM. HOL returns on line 2 a theorem, de Morgan's
theorem. Line 4 shows a similar query. On line 7 HOL is requested to rewrite theorem th1

with theorem DE_MORGAN_THM. The result is found on line 8.
The example below shows an application of the modus ponens principle using the

MATCH_MP rule.

1 #LESS_ADD ;;
2 |- !m n. n < m ==> (?p. p + n = m)
3
4 #th2 ;;
5 |- 2 < 3
6
7 #MATCH_MP LESS_ADD th2;;
8 |- ?p. p + 2 = 3

J

5.3 Extending HOL

The core of HOL provides predicate calculus. To use it for a particular purpose, it has
to be extended. For instance, to verify programs with HOL, the latter must be told what
programs and speci�cations are. Two ways exist to extend HOL: by adding axioms or
by adding de�nitions. Adding axioms is considered dangerous because inconsistency can
easily arise when axioms are introduced freely. Although it is also possible to introduce
absurd de�nitions, these are nothing more than abbreviations, and hence cannot introduce
inconsistency. De�nitional extension, also called conservative extension, is therefore a much
more preferred practice.

In HOL a de�nition is also a theorem, which states the meaning of the object that
is being de�ned. Because the HOL notation is quite close to the standard mathematical
notation,de�nition of new objects can, to some extend, be written in a natural way. Below
Hoare triples are de�ned.

5.4 Proving theorems in HOL 12

1 #let HOA_DEF = new_definition
2 (`HOA_DEF`,
3 "HOA (p,a,q) =
4 (!(s:*) (t:*). p s /\ a s t ==> q t)") ;;
5
6 HOA_DEF = |- !p a q. HOA(p,a,q) = (!s t. p s /\ a s t ==> q t)

J

5.4 Proving theorems in HOL

To prove a conjecture one can start with known facts, combine these to deduce new facts,
and continue until the conjecture is obtained. Alternatively, one can start with the conjec-
ture, work backwards by splitting it into new conjectures, and continue until all obtained
conjectures can be reduced to known facts. The �rst yields what is called a forward proof
and the second yields a backward proof. This can be illustrated by the tree in Figure 2. It
is called a proof tree. At the root of the tree is the conjecture. The tree is said to be closed
if all leaves are known facts, and hence the conjecture is proven if a closed proof tree is
constructed. A forward proof attempts to construct such a tree from bottom to top, and a
backward proof from top to bottom.

In HOL, new facts can only be generated by applying HOL inference rules to known
facts, i.e. axioms and previously proved facts; basically this comprises forward proof in
HOL. There is, however, also support for the construction of backward proofs. A conjecture
is called a goal in HOL. It has the same structure as a theorem:

A1; A2; ... ?- C

Note that a goal is denoted with ?-, whereas in a theorem we write |-. To manipulate goals,
tactics are available. A tactic may prove a goal |that is, convert it into a theorem. For
example ACCEPT_TAC proves a goal ?- g if g is a known fact. A tactic may also transform
a goal into new goals |or subgoals, as they are called in HOL|, which hopefully are easier
to prove.

Examples of other tactics are: rewrite tactics, which rewrite (or solve) a goal by us-
ing as rewrite rules (i.e. as left-to-right replacement rules) the conclusions of a given list
of equational theorems; decomposition tactics, for example CONJ_TAC, which splits a con-
junctive goal ?- g1 /\ g2 into two separate subgoals ?- g1 and ?- g2; matching tactics,
e.g. MATCH_MP_TAC, which when applied to a goal ?- g uses a supplied implication (e.g.
|- p ==> g) to reduce the goal to the subgoal ?- p; resolution tactics, for example RES_TAC,
which tries to generate more assumptions by applying, among other things, modus ponens
to all matching combinations of the assumptions. For instance, applying RES_TAC to the
goal:

"0<x"; "!y. 0<y ==> z<y+z"; "z<x+z ==> g" ?- "g"

will yield the following new goal:

"z<x+z"; "0<x"; "!y. 0<y ==> z<y+z"; "z<x+z ==> g" ?- "g"

5.4 Proving theorems in HOL 13

g10 g11

g12

g0

g1 g2 g3

g4 g5 g6 g7 g8 g9

Figure 2: A proof tree.
J

Applying RES_TAC again to the new goal will generate "g", the tactic then concludes that
the goal is proven, and returns the corresponding theorem.

Tactics are not primitives in HOL. They are built from inference rules. When applied to
a goal ?- g, a tactic does not only generate new goals |say, ?- g1 and ?- g2| but also a
justi�cation function. Such a function is a rule, which if applied, in this case, to theorems
of the form |- g1 and |- g2 will produce |- g. When a composition of tactics proves a
goal, what it basically does is re-building the corresponding proof tree from the bottom,
i.e. the known facts, to the top, i.e. the goal, using the generated justi�cation functions to
construct new nodes up in the tree.

HOL provides much better support for backward proofs than it does for forward proofs.
For backward proofs, HOL provides higher order tactics, also called tactics combinators or
tacticals, with which tactics can be composed. Examples of the most used tacticals in HOL
are THEN, ORELSE and REPEAT.

� THEN : tactic -> tactic -> tactic; if T1 and T2 are tactics, then T1 THEN T2

is a tactic, which �rst applies T1 and then applies T2 to all the subgoals that were
generated by T1.

� ORELSE: tactic -> tactic -> tactic; if T1 and T2 are tactics, then T1 ORELSE T2

is a tactic, which �rst tries T1. If T1 fails then it tries T2.

5.5 Automatic theorem proving 14

� REPEAT: tactic -> tactic; if T is a tactic, then REPEAT T is a tactic that repeatedly
applies T until it fails.

On the other hand, no rules combinators are provided. Although, using the meta lan-
guage ML rules combinators can quite easily be made.

HOL also provides a facility, called the sub-goal package, to interactively construct a
backward proof. The package will memorise the proof tree and justi�cation functions gen-
erated in a proof session. The tree can be displayed, extended, or partly un-done. Whereas
interactive forward proofs are also possible in HOL simply by applying rules interactively,
HOL provides no facility to automatically record proof histories (proof trees).

5.5 Automatic theorem proving

As higher order logic |the logic that underlies HOL| is not decidable, there exists no de-
cision procedure that can automatically decide the validity of each HOL formula. However,
for limited applications, it is often possible to provide automatic procedures. The standard
HOL package is supplied with a library called arith written by Boulton [Bou94]. The li-
brary contains a decision procedure to decide the validity of a certain subset of arithmetic
formulae over natural numbers. The procedure is based on the Presburger natural number
arithmetic [Coo72]. An exempli�cation is:

1 #set_goal([],"x<(y+z) ==> (y+x) < (z+(2*y))") ;;
2 "x < (y + z) ==> (y + x) < (z + (2 * y))"
3
4 #expand (CONV_TAC ARITH_CONV) ;;
5 goal proved
6 |- x < (y + z) ==> (y + x) < (z + (2 * y))

J

To prove x < y+ z) y+ x < z+2y: �rst the goal is set on line 1, then the Presburger
procedure, ARITH CONV, is invoked on line 4, which immediately proves the goal.

There is also a library called taut to check the validity of a formula from propositional
logic. This library can for instance be used to automatically prove p ^ q) :r _ s =
p ^ q ^ r) s. It cannot be used to prove more sophisticated formulae from predicate
logic, such as (8x :: P:x)) (9x :: P:x) (assuming a non-empty domain of quanti�cation).
There is, however, a library called faust written by Schneider, Kropf, and Kumar [SKR91]
that provides a decision procedure to check the validity of many formulae from �rst order
predicate logic. The procedure can handle formulae such as (8x :: P:x)) (9x :: P:x), but
not (8P :: (8x : x < y : P:x)) P:y) because the quanti�cation over P is a second order
quanti�cation (no quanti�cation over functions is allowed).

So some automatic theorem proving capacity is available in HOL, but it is limited.
The arith library cannot, for example, handle multiplication5. Temporal properties of
a program, such as we are dealing with in UNITY, are often expressed in higher order
formulas, and hence cannot be handled by faust.

5In general, natural number arithmetic is not decidable if multiplication is included.So the best we can
achieve is a partial decision procedure.

6 UNITY 15

6 UNITY

Basically, a program is a collection of actions. During the execution of a program, its
actions are executed in a certain order. In considering parallel or distributed executions of
programs, strict orderings on when, where and how actions are executed vanish. Therefore,
many distributed programming logics view programs as a collections of actions without any
ordering. UNITY [CM88] consists of such a programming theory. It is invented to support
the design and veri�cation of distributed programs. An important aspect of UNITY is the
separation of concerns between the core problem to be solved by an algorithm and the
implementation details concerning programming languages and architectures. The UNITY
theory consists of a programming language and an associated logic. Program design in
UNITY commences with the formulation of a program speci�cation in the UNITY logic.
Next, this speci�cation is re�ned until it is detailed enough to be directly associated with
a UNITY program. A UNITY program describes what must be done, in other words it
describes the initial state and the state transitions. A UNITY program does not describe
when, where and how actions are executed. As a result, detailed architectural concerns do
not have to be considered during the design of a UNITY program.

6.1 States, predicates, expressions and actions

First, a brief review on some basic notions in programming is given. A program has a set of
variables. The values of these variables at a given moment is called the state of the program
at that moment. Assume a universe Var of all program variables, and a universe Val of
all values these variables may take. Let P be a program and V be a set consisting of all
variables of P , that is V � Var. A state of P can be represented by a function s 2 V!Val.
The value of a variable v in state s is denoted by s:v. However, since in HOL all functions
are required to be total and since sub-typing is not possible, we shall represent a state of
P by a total function s 2 Var!Val. The value of a variable v outside V in a state s is
irrelevant to P in the sense that it cannot in
uence any execution of P and neither can any
execution of P in
uence it. The set of all (program) states shall be denoted by State. For
a state s 2 Var!Val, the projection or restriction of s to a set V , denoted by s � V can
be de�ned as a partial function of type V !Val such that (s � V):x = s:x if x 2 V \ Var

and else it is unde�ned. Since, the projection of a state must be a state again (i.e. a total
function), a constant @ is introduced. In HOL, all objects are typed. A type de�nes of
course a set. The types in HOL are all non-empty. All that is known about @ is that
for any given (non-empty) type T , @T exists and is a member of T . The constant @ can
be seen as 'unde�nedness' in a partial function. However, evaluating an 'unde�ned' value
results in an error and as a consequence special calculation rules have to be added to handle
these errors. Therefore we prefer to regard @ as an ordinary value representing the set of
'uninteresting' but otherwise valid values. Hereby the need to introduce special rules to
handle 'unde�nedness' is eliminated.

The following de�nition formally de�nes projection of an arbitrary function:

6.1 States, predicates, expressions and actions 16

Notation Meaning HOL-de�nition
true (�s: true) TT DEF

false (�s: false) FF DEF

:p (�s: :p) pNOT DEF

p) q (�s: p:s) q:s) pIMP DEF

p ^ q (�s: p:s ^ q:s) pAND DEF

p _ q (�s: p:s _ q:s) pAND DEF

(8i :W:i : P:i) (�s: (8i :W:i : P:i:s)) RES qAND

(9i :W:i : P:i) (�s: (9i :W:i : P:i:s)) RES qOR

Note: p and q are predicates over State. The dummy s ranges therefore over State.

Table 1: Overloading of the boolean operators.
J

De�nition 6.1 Projection Pj DEF

For all f 2 A!B, V � A, and x 2 A:

(x 2 V) (f �V):x = f:x) ^ (x 62 V) (f �V):x = @)
J

A predicate over a set S is a function of type S!B . In particular, we are interested in
predicates over State, since these are used to specify pre and post conditions of a program.
Such predicates are called a state-predicates. A state-predicate is used to describe a set of
states satisfying a certain property. For instance:

(�s: (s:x = s:y + 1) ^ n < s:y)

is a state-predicate describing all states s in which the value of variable x is the value of
variable y plus 1 and the value of variable y is greater than some constant n. In practice,
the above state-predicate is usually written as:

(x = y + 1) ^ n < y

So, the symbols =, +, ^ and < are being overloaded. Other examples of such overloading
are:

"y < x", "p ^ q", or "(9i : P:i : x:i = 0)"

which actually denote:

"(�s: s:y < s:x)", "(�s: p:s ^ q:s)", and "(�s: (9i : P:i : s:(x:i) = 0))"

Usually, this kind of overloading does not cause confusion. There are, however, occasions
where a careful distinction is called for. Therefore, it is important that the reader is well
aware of this double interpretation. To emphasise this, Table 1 shows the \lifted" meaning
of the standard boolean operators. The set of all state-predicates shall be denoted with
Pred.

6.1 States, predicates, expressions and actions 17

A predicate p over S is said to hold everywhere |usually denoted by [p]| if p:s holds
for all s 2 S.

A state-predicate p is said to be con�ned by a set of variables V , denoted by p 2 Pred:V ,
if p does not restrict the value of any variable outside V (unless p is already empty):

De�nition 6.2 Predicate Confinement CONF DEF

p 2 Pred:V = (8s; t :: (s�V = t�V)) (p:s = p:t))
J

For example, x+1 < y is con�ned by fx; yg but not by fxg. Notice that if p is con�ned
by V , p does not contain useful information about variables outside V . Indeed, p 2 Pred:V

is how we encode p 2 (V!Val)!B .
State-predicates true and false are con�ned by any set. Con�nement is preserved by any

predicate operator in Table 1. So, for example, if p; q 2 Pred:V then p ^ q 2 Pred:V . As a
rule of thumb, any predicate p is con�ned by free:p, that is, the set of variables occurring
free in p:

p 2 Pred:(free:p) (6.1)

Note however, that free:p is not necessarily the smallest set which con�nes p. For example,
� con�nes "0 = x _ 0 6= x".

Analogue to predicates over State, we call expressions over State (i.e. functions of type
State!Val) state-expressions. As we already saw above these expressions are also being
overloaded, that is \y + 1" is written in stead of \(�s:s:y + 1)". Furthermore, \e1 + e2"
is the overloaded notation for \(�s:e1:s + e2:s)". Note that state-predicates are actually a
special kind of state-expressions, viz. those where Val is B .

An action (statement) of a program can change the state of a program. An obvious way
to represent an action is by a function a where the state resulting from the execution of a
on a state s is given by a:s. As a result, such an action is always deterministic. To allow for
non-determinism, we will represent an action as a relation on State. That is, an action a has
the type State!State!B . The interpretation of a:s:t is that t is a possible state resulting
from execution of a at state s. Consequently, Hoare triple can be de�ned as follows:

fpg a fqg = (8s; t :: p:s ^ a:s:t) q:t) (6.2)

All kind of basic laws for Hoare triples are derivable from this de�nition. For example:

(fpg a fqg) ^ (frg a fsg)
fp^rg a fq^sg and [p)q] ^ (fqg a frg) ^ [r)s]

fpg a fsg

The set of all actions will be called Action, examples of elements in this set are given
below, where for some set S, Sc denotes the complement of set S (i.e. fxgc is the set
Var�fxg).Action (6.3) is an assignment action, which assigns the value of state-expression
e to the variable x and, except for x, does not change the value of any other variable. The
guarded action (6.4) executes action a or b, dependent on whether guard g is true or not.
The skip-action (6.5) does not change any variable.

6.2 UNITY programs 18

assign:x:e = (�s; t: (t:x = e:s) ^ (t�fxgc = s�fxgc)) (6.3)

if g then a else b = (�s; t: (g:s) a:s:t) ^ (:g:s) b:s:t)) (6.4)

skip = (�s; t: s = t) (6.5)

Projection � of functions can be lifted to the action level as follows:

De�nition 6.3 � on Action a Pj DEF

(a�V):s:t = a:(s�V):(t�V)
J

Restricting an action does not generally yield something that makes sense. For example,
let x and y be distinct variables. Restricting y := x + y + 1 to fxg yields (�s; t: (@ =
s:x+ @+ 1) ^ (s�fxg = t�fxg)).

What is perhaps more interesting is skip�V . It is an action that preserves the values of
all variables in V . With it we can, for example, rewrite (6.3) to:

assign:x:e = (�s; t: t:x = e:s) u (skip�fxgc) (6.6)

where u is the so-called synchronisation operator on actions, which is de�ned as follows:

De�nition 6.4 Synchronisation Operator rINTER

a u b = (�s; t: a:s:t ^ b:s:t)
J

A simultaneous assignment can be de�ned as:

assign2:(x; y):(E1; E2)

= (6.7)

(�s; t: t:x = E1:s) u (�s; t: t:y = E2:s) u (skip�fx; ygc)

An action is called always enabled if it is always ready to make a transition (even though it
may be a skip transition).

De�nition 6.5 Always Enabled Action ALWAYS ENABLED

�Ena = (8s :: (9t :: a:s:t))
J

6.2 UNITY programs

Figure 3 displays an example of an UNITY program. The precise syntax will be given later.
The read and write sections declare, respectively, the read and write variables of the

program. The init section describes the assumed initial state of the program. In the program

6.2 UNITY programs 19

prog Example

read fa; x; yg
write fx; yg
init true

assign

if a = 0 then x := 1 else skip

[] if a 6= 0 then x := 1 else skip

[] if x 6= 0 then y; x := y + 1; 0 else skip

Figure 3: The program Example

J

Example in Figure 3, the initial condition is true, which means that the program may start
in any state. The assign section lists the actions (multiple-assignments statements) of the
program, separated by the symbol [].

Actions in a UNITY program are assumed to be atomic. An execution of a UNITY pro-
gram starts in a state satisfying the initial condition and is an in�nite and interleaved execu-
tion of its actions. In each step of the execution some action is selected non-deterministically
and executed, so there is no ordering imposed on the execution of the actions. There is,
however, one fairness condition:

In a UNITY execution, which is in�nite, each action must be executed in�nitely

often, and hence cannot be ignored forever.

So in the program Example, eventually x = 0 will hold and if M = y, then eventually
M < y will hold. As far as UNITY concerns, the actions of this program can be implemented
sequentially, fully parallel or anything in between, as long as the atomicity and the fairness
condition of UNITY are met. Consequently, in constructing a UNITY program one is
encouraged to concentrate on the 'real' problem, and not to worry about ordering and
allocation of the actions, as such are considered to be implementation issues.

By now the reader should have guessed that a UNITY program P can be represented by
a quadruple (A; J; Vr; Vw) where A � Action is a set consisting of P 's actions, J 2 Pred is
a predicate describing the possible initial states of P , and Vr; Vw 2 Var are sets containing
P 's read and write variables respectively. The set of all possible quadruples (A; J; Vr; Vw)
shall be denoted by Uprog. Consequently, all UNITY programs are a member of this set,
whereas, as will be made clear later, the converse is not necessarily true.

To access each component of an Uprog object, the destructors a, ini, r, and w are
introduced. They satisfy the following property:

Theorem 6.6 Uprog Destructors

P 2 Uprog = (P = (aP; iniP; rP;wP))
J

In addition, the set of P 's input variables , that is, the set containing the variables read by

6.2 UNITY programs 20

P but not written by it, is denoted by iP :

iP = rPnwP (6.8)

6.2.1 The UNITY programming language

Below we present the syntax of UNITY programs that is used here. The syntax deviates
slightly from the one in [CM88]6.

hUnity Programi ::= prog hname of programi
read hset of variablesi
write hset of variablesi
init hpredicatei
assignhactionsi

hactionsi ::= hactioni j hactioni [] hactionsi
hactioni ::= hsingle actioni j ([]i : i 2 V : hactionsii)
hsingle actioni ::= hassignmenti j hguarded actioni
hassignmenti ::= hvariable-listi := hexpr-listi
hvariable-listi ::= hvariablei f; hvariableig
hexpr-listi ::= hexpri f; hexprig
hexpri ::= hvariablei j hexpri h opei hexpri j hconditional-expri
hconditional-expri::= hboolean-expri =) hexpri � hexpri
hguarded actioni ::= ifhboolean-expri then hactioni else hactioni

j ifhboolean-expri then hactioni
hboolean-expri ::= htruei j hfalsei j hexpri h opci hexpri

j hboolean-expri h opbi hboolean-expri

Where ope are the addition, subtraction, multiplication, etc . . . , operators on numbers; opc
are the comparison operators (i.e. <, >, =, etc . . .); and opb are the boolean operators (i.e.
^, _,), etc . . .).

So actions is a list of actions separated by [], an action is either a single action or a set of
indexed actions, and a single action is either an assignment such as x := x+1 or a guarded
action.

An assignment can assign to more than one variable at the same time. A variable may
appear more than once in the left side of an assignment action. It is the programmer's
responsibility to ensure for any such variable that all possible values that may be assigned
to it in an action are identical.

A guarded action has the form:

if g1 then a1
else g2 then a2
else g3 then a3
else : : :

6We omit the always section and split the declare section into read and write parts

6.2 UNITY programs 21

If more than one guard evaluate to true, then one is selected non-deterministically. If none
of the guards evaluate to true, a guarded action behaves like skip. So, for example, the
action "if a 6= 0 then x := 1 else skip" from the program Fizban can also be written as "if
a 6= 0 then x := 1". Note that every guarded action which has the form:

if (a > 0) then x := x+ 1 else x := x� 1

can be written as the single action:

x := (a > 0) =) x+ 1 � x� 1

There is no di�erence between the two, we just added the possibility of the latter notation
for convenience.

6.2.2 The well-formedness of a UNITY program

Besides being an element of the language generated by the grammer which was presented in
the previous section, the following requirements regarding the well-formedness of a UNITY
program must be met:

semantical requirements

1. The actions of the program should be always-enabled

syntactical requirements

2. A write variable is also readable.

3. The actions of a program should only write to the declared write variables.

4. The actions of a program should only depend on the declared read variables.

These are perfectly natural requirements for a program. Most programs that are written
shall satisfy them. In order to be able to capture these requirements into a predicate, we
introduce two new notions, viz. ignored-by and invisible-to.

A set of variables is V ignored-by an action a, denoted by V 8 a, if executing the action
in any state does not change the values of these variables. Variables in V c may however be
written by a. The smallest set of variables which may be written by a is the set of variables
which are actually written by a.

De�nition 6.7 variables Ignored-by action IG BY DEF

V 8 a = (8s; t :: a:s:t) (s�V = t�V))
J

The notion of ignored-by is used to formalise the second syntactical requirement from above.
All actions of a program P only write to the declared write variables, if and only if these
actions do not change the values of variables that are not declared as write variables, i.e.
variables in the set (wP)c. So, the second syntactical requirement is precisely (8a : a 2
aP : (wP)c 8 a).

6.3 UNITY logic 22

A set of variables V is said to be invisible-to an action a, denoted by V 9 a, if changing
the values of the variables in V will not in
uence what a can do to the variables outside V ,
hence a only depends on the variables outside V .

De�nition 6.8 variables Invisible-to action INVI DEF

V 9 a

=
(8s; t; s0; t0 :: (s�V c = s0 �V c) ^ (t�V c = t0 �V c) ^ (s0 �V = t0 �V) ^ a:s:t) a:s0:t0)

J

This notion of invisible-to is used to formalise the last syntactical requirement. All actions
of a program P only depend on the declared read variables, if and only if changing the
values of the variables that are not declared as read variables (i.e. variables in the set
(rP)c) will not in
uence a's result, hence a only depends on the variables outside (rP)c

which are precisely the declared read variables. So the last syntactical requirement can be
formalised by (8a : a 2 aP : (rP)c 9 a).

Recall that any UNITY program is an object of type Uprog. Now a predicate Unity can
be de�ned to express the well-formedness of an Uprog object. From here on, a "UNITY
program" is an object satisfying the predicate Unity.

De�nition 6.9 Unity

Unity:P = (8a : a 2 aP : �Ena) ^ (wP � rP) ^

(8a : a 2 aP : (wP)c 8 a) ^ (8a : a 2 aP : (rP)c 9 a)
J

6.3 UNITY logic

In UNITY, speci�cations are expressed using normal predicate logic plus three additional
logical binary operators (unless, ensures, and 7! (\leads-to")), that facilitate reasoning about
program behaviour.

The discussion in Section 6.2 revealed that an execution of a UNITY program never,
in principle, terminates. Therefore we focus on the behaviour of a program during its
execution. Two aspects will be considered: progress and safety. A progress property of a
program expresses what the program is expected to eventually realize. For example, if a
message is sent through a routing system, a progress property may state that eventually
the message will be delivered to its destination. A safety property, on the other hand, tells
us what the program should not do: for example, that the message is only to be delivered
to its destination, and not to any other computer.

In UNITY safety behaviour is described by an operator called unless (de�nition 6.10).7

Intuitively, P` p unless q implies that once p holds during an execution of P , it remains to
hold at least until q holds. Figure 4 may be helpful. Note that this interpretation gives no
information whatsoever about what p unless q means if p never holds during an execution.

7In the sequel, P;Q; and R will range over UNITY programs; a; b; and c over Action; and p; q; r; s; J and
K over Pred.

6.3 UNITY logic 23

p unless q : p ^ :q
EDGF@A

// // q p ensures q : p ^ :q
EDGF@A

// //

! q

Figure 4: unless and ensures. The predicates p ^ :q and q de�ne sets of states. The arrows
depict possible transitions between the two sets of states. The arrow marked with ! is a
guaranteed transition.

J

By the fairness condition of UNITY, an action cannot be continually ignored. Once
executed, it may induce some progress. For example, the execution of the action in the
program Example (�gure 3) shall establish x = 0 regardless when it is executed. This
kind of single-action progress is described by an operator called ensures (de�nition 6.11).

P` p ensures q encompasses p unless q, and adds that there should also exist an action that
can, and because of the fairness assumption of UNITY, will establish q.

De�nition 6.10 Unless

P` p unless q = (8a : a 2 aP : fp ^ :qg a fp _ qg)

De�nition 6.11 Ensures

P` p ensures q = (P` p unless q) ^ (9a : a 2 aP : fp ^ :qg a fqg)

J

To illustrate these de�nitions, consider again the program Example in Figure 3. It has
the following assign section:

if a = 0 then x := 1
[] if a 6= 0 then x := 1
[] if x 6= 0 then y; x := y + 1; 0

The following properties are satis�ed:

Example` (a = X) unless false (6.9)

Example` true unless (x = 1) (6.10)

Example` (a = 0) ensures (x = 1) (6.11)

Example` (a 6= 0) ensures (x = 1) (6.12)

If (6.9) holds for any X then it states that Example cannot change the value of a. In
(6.10) we �nd an example of a property that trivially holds in any program (the reader
can check it by unfolding the de�nition of unless). (6.11) and (6.12) describe single-action
progress from, respectively a = 0 and a 6= 0 to x = 1.

6.3 UNITY logic 24

Theorem 6.12 ensures Introduction ENSURES IMP LIFT

P :
[p) q]

p ensures q

Theorem 6.13 ensures Post-weakening ENSURES CONSQ WEAK

P :
(p ensures q) ^ [q) r]

p ensures r

Theorem 6.14 ensures Progress Safety Progress (PSP) ENSURES PSP

P :
(p ensures q) ^ (r unless s)

p ^ r ensures (p ^ s) _ (r ^ q) _ (q ^ s)

Theorem 6.15 ensures Conjunction ENSURES CONJ

P :
(p ensures q) ^ (r ensures s)

p ^ r ensures (p ^ s) _ (r ^ q) _ (q ^ s)

Figure 5: Some properties of ensures
J

Properties of the form P` p unless false are called stable properties, which are very useful
properties because they express that once p holds during any execution of P , it will remain
to hold forever. Because of their importance a separate abbreviation is de�ned in de�nition
6.16 below.

De�nition 6.16 Stable Predicate

P`�p = P` p unless false
J

P`� p is pronounced "p is stable in P" and p is called a stable predicate. Notice that �
can also be de�ned as follows:

P`�p = (8a : a 2 aP : fpg a fpg) (6.13)

Consequently, if p holds initially and is stable in program P , it will hold throughout any
execution of P , and hence it is an invariant of P , which shall be denoted by P` �p. As a
result, we have the following de�nition:

De�nition 6.17 Invariant

P` �J = (iniP) J ^ P` �J)
J

Figures 6 and 5 list some interesting properties of unless , �and ensures . These prop-
erties are taken from [CM88], and there are more to be found there. Most of the properties

6.3 UNITY logic 25

Theorem 6.18 unless Introduction UNLESS IMP LIFT1, UNLESS IMP LIFT2

P :
[p) q] _ [:p) q]

P` p unless q

Theorem 6.19 unless Post-weakening UNLESS CONSQ WEAK

P :
(P` p unless q) ^ [q) r]

P` p unless r

Theorem 6.20 unless Simple Conjunction UNLESS SIMPLE CONJ

P :
(P` p unless q) ^ (P` r unless s)

P` p ^ r unless q _ s

Theorem 6.21 unless Simple Disjunction UNLESS SIMPLE DISJ

P :
(P` p unless q) ^ (P` r unless s)

P` p _ r unless q _ s

Theorem 6.22 �Conjunction STABLE CONJ

P :
(P`�p) ^ (P`�q)

P`�(p ^ q)

Theorem 6.23 �Disjunction STABLE DISJ

P :
(P`�p) ^ (P`�q)

P`�(p _ q)

Figure 6: Some properties of unless and �.
J

can be derived from the de�nitions 6.11 and 6.10. Some of the properties (Theorems 6.19
and 6.21) look similar to some well known rules for Hoare triples8.

As a notational convention: if it is clear from the context which program P is meant, we
often omit it from a formula. For example we may write p unless q to mean P` p unless q.
Also, for laws we write, for example:

P :
: : : (p unless q) : : :

r unless s
to abbreviate:

: : : (P` p unless q) : : :

P` r unless s

The ensures operator is still too restricted to describe progress (it only describes single
action progress). Intuitively, progress seems to have transitivity and disjunctivity properties.
For example, if a system can progress from p to q and from q to r, then it can progress from
p to r (transitivity). If it can progress from p1 to q and p2 to q, then from either p1 or p2 it

8Note though that the pre-condition strengthening principle of Hoare triples does not apply to unless

and ensures

6.4 Extended UNITY 26

can progress to q (disjunctivity). As a more general progress operator we can therefore take
the smallest closure of ensures which is transitive and disjunctive. The resulting operator
is the leads-to operator, denoted by 7!:

De�nition 6.24 Leads-to

(�p; q: P` p 7! q) is de�ned as the smallest relation R satisfying:

i.
P` p ensures q

J P` R:p:q

ii.
J P` R:p:q ^ J P` R:q:r

J
P` R:p:r

iii.
(8i : i 2W : J P` R:(pi):q)

J P` R:(9i : i 2W : pi):q
J

Obvious properties of 7! is that it satis�es i, ii, and iii above. P` p 7! q implies that
that if p holds during an execution of P , then eventually q will hold, so it corresponds with
our intuitive notion of progress.

6.4 Extended UNITY

As mentioned in section 3 Prasetya extended the UNITY programming logic with two logical
operators, that concerned compositionality and self-stabilisation. These two operators will
be described in the two sections below.

6.4.1 Compositionality

A consequence of the absence of ordering in the execution of a UNITY program is that the
parallel composition of two programs can be modelled by simply merging the variables and
actions of both programs. In UNITY parallel composition is denoted by []. In [CM88] the
operator is also called program union.

De�nition 6.25 Parallel Composition

P []Q = (aP [aQ; iniP ^ iniQ; rP [rQ;wP [wQ)
J

Parallel composition is re
exive, commutative, and associative. It has a unit element,
namely (�; true; �; �) (although this is not a well-formed UNITY program).

To illustrate, the program Example in Figure 3 can be composed with the program below:

prog TikTak

read fag
write fxg
init true

assign if a = 0 then a := 1 [] if a 6= 0 then a := 0

6.4 Extended UNITY 27

Theorem 6.26 unless Compositionality UNLESS PAR i

(P` p unless q) ^ (Q` p unless q) = (P []Q` p unless q)

Theorem 6.27 �Compositionality STABLE PAR i

(P` �J) ^ (Q` �J) = (P []Q` �J)

Theorem 6.28 ensures Compositionality ENSURES PAR

(P` p ensures q) ^ (Q` p unless q)

P []Q` p ensures q

Figure 7: Some theorems describing the properties of parallel compositions.
J

The resulting program consists of the following actions (the else skip part of the actions in
Example will be dropped, which is, as remarked in Section 6.2.1, allowed):

a0 : if a = 0 then a := 1
a1 : if a 6= 0 then a := 0
a2 : if a = 0 then x := 1
a3 : if a 6= 0 then x := 1
a4 : if x 6= 0 then y; x := y + 1; 0

Whereas in Example x 6= 0 will always hold somewhere in the future, the same cannot be
concluded for Example [] TikTak. Consider the execution sequence (a0; a2; a1; a3; a4)�, which
is a fair execution and therefore a UNITY execution. In this execution, the assignment
x := 1 will never be executed. If initially x 6= 1 this will remain so for the rest of this
execution sequence.

In designing a program, one often splits the program into smaller components (mod-
ularity principle). It would therefore be desirable if one could also decompose a global
speci�cation into smaller speci�cations of component programs. This would enable us to
design each component program in isolation. In order to enable these kind of decompositions
laws of the form

(P sat spec1) ^ (Q sat spec2)
P
Q sat (spec1� spec2)

(6.14)

are required. P and Q are programs,
 is some kind of program composition, and spec1 and
spec2 are speci�cations. This law states a compositionality property of � with respect to the
program composition
. Such properties enable us to split the speci�cation of a composite
program P
Q into the speci�cations of P and Q. In particular, we are interested in the
case where
 is some form of parallel composition. An advantage of having compositional
properties is that they often signi�cantly reduces the amount of proof obligations. In �gure
7 are several compositionality properties of unless , � and ensures .

In particular, notice how Theorem 6.28 describes the condition in which progress by
ensures can be preserved by parallel composition. The theorem does not apply to progress

6.4 Extended UNITY 28

by 7! though. The extension presented in [Pra95] is a variant of 7!. It is called the reach
operator, and is denoted by�. In the rest of this section the reach operator is de�ned and
the most important compositionality laws on this operator are presented.

De�nition 6.29 Reach Operator

(�p; q:J P` p� q) is de�ned as the smallest relation R satisfying:

i.
p; q 2 Pred:(wP) ^ (P`�J) ^ (P` J ^ p ensures q)

J P` R:p:q

ii.
J P` R:p:q ^ J P` R:q:r

J P` R:p:r

iii.
(8i : i 2W : J P` R:(pi):q)

J P` R:(9i : i 2W : pi):q

where W is assumed to be non-empty.
J

Intuitively, J P` p� q means that J is stable in P and that P can progress from J ^ p
to q. J in a certain sense captures the assumptions made about the environment under
which progress is ensured. In addition, the type of p and q is restricted: they are predicates
over wP!Val (the part of state space restricted to the write variables of P). Since P can
only write to its write variables, it will make progress only on these variables. Therefore it
is reasonable to restrict the type of p and q as above. Whatever values variables outside
wP may have will remain stable then, and can consequently be speci�ed in J . This division
turns out to yield a compositional progress operator.

Figure 8 list some other interesting properties of�. Again, as a notational convention:
if it is clear from the context which program P or which stable predicate J are meant, we
often omit them from an expression. For example we may write P` p� q or even simply
p� q to mean J P` p� q. Also, for laws we write, for example:

P; J :
: : : (p unless q) : : :

r� s
to abbreviate:

: : : (P` p unless q) : : :
J P` r� s

The operator � Introduction states that if p) q holds, then it is trivial that any
program P can progress from p to q. Theorem� Disjunction asserts that� is disjunctive
at its left and right operands. The � Substitution law expounds that, like Hoare triples,
we can strengthen pre-conditions and weaken post-conditions. The PSP law indicates that
a safety property (unless) of a program can in
uence its progress. And �nally� Bounded

Progress gives the well-founded induction principle for the reach operator, that is, if, from
p, a program can progress to q, or else it maintains p while decreasing the value of m with
respect to a well-founded9 ordering �, then, since � is well-founded, it is not possible to
keep decreasing m, and hence eventually q will be established.

To give the most important compositionality laws on �, it is necessary to de�ne a
special case of unless .

9An ordering �2 A!A!B is said to be well-founded if it is not possible to construct an in�nite sequence
of ever decreasing values in A. That is, : : : ; x2 � x1 � x0 is not possible.

6.4 Extended UNITY 29

Theorem 6.30 � Introduction REACH ENS LIFT,REACH IMP LIFT

P; J :
p; q 2 Pred:(wP) ^ (P`�J) ^ [J ^ p) q]

J P` p� q

Theorem 6.31 � Disjunction REACH DISJ

P; J :
(J P` p� q) ^ (J P` r� s)

J P` p _ r� q _ s

Theorem 6.32 � Substitution REACH SUBST

P; J :

p; s 2 Pred:(wP)
[J ^ p) q] ^ (J P` q� r) ^ [J ^ r) s]

J P` p� s

Theorem 6.33 � Progress Safety Progress (PSP) REACH PSP

P; J :
r; s 2 Pred:(wP) ^ (P` r ^ J unless s) ^ (J P` p� q)

J P` p ^ r� (q ^ r) _ s

Theorem 6.34 � Bounded Progress REACH WF INDUCT

P; J :
q 2 Pred:(wP) ^ (8M :: p ^ (m =M)� (p ^ (m �M)) _ q)

p� q

With � a well-founded ordering over A and m 2 State!A is a bound function.

Figure 8: Some properties of�.
J

De�nition 6.35 unlessV

Let V be a set of variables:

Q` p unlessV q = (8X :: Q` p ^ (�s: (8v : v 2 V : s:v = X:v)) unless q)
J

In particular, if V = rP \ wQ (hence V are the 'border' variables from Q to P),

Q` p unlessV q means that under condition p, Q cannot in
uence P without establishing q.
So, for example, Q` p unlessV false means that Q cannot in
uence P as long as p holds;

Q` true unlessV q means that Q always marks its interference to P by establishing q.
Let V = rP\wQ. Suppose under condition r, Q cannot in
uence P without establishing

s (i.e. Q` r unlessV s). Hence Q cannot destroy any progress in P without establishing
q. This principle |or actually, a more general version thereof| is formulated by the law
below. It is called the Singh law.

6.4 Extended UNITY 30

i

j

k
3

12

9

1
l

Figure 9: A simple network.
J

Theorem 6.36 Singh Law REACH SINGH

r; s 2 Pred:w(P []Q) ^ (Q` �J) ^ (Q` J ^ r unlessV s) ^ (J P` p� q)
J P []Q` p ^ r� q _ :r _ s

where V = rP \wQ.
J

A corollary of Singh Law is given below. Compare it with the compositionality law of
ensures (Theorem 6.28).

(Q` �J) ^ (Q` J ^ p unlessV q) ^ (P` J ^ p unless q) ^ (J P` p� q)

J P []Q` p� q

� also satis�es a very nice principle called the Transparency principle:

Theorem 6.37 Transparency Law

(wP \wQ = �) ^ (Q` �J) ^ (J P` p� q)

J P []Q` p� q
J

So, in a network of components with disjoint write variables, any progress J P` p� q in a
component P will be preserved if all components respect the stability of J . A network of
programs with disjoint write variables occurs quite often in practice. For example a network
with write-disjoint components can model a network of programs that communicate using
channels.

6.4.2 Self-stabilisation

Imagine a network of processes as in Figure 9, which is fully connected. Each node has a
label (i.e a name) which in Figure 9 is printed above the node. Each node also contains
data, which in Figure 9 consist of one number. Suppose that the labels are also numbers
that come from a collection called Labels. Furthermore, let V be a function that given a

6.4 Extended UNITY 31

prog Sort

read fV ij i 2 Labelsg
write fV ij i 2 Labelsg
init true

assign([]i; j : (i; j 2 Labels) ^(i � j) ::(V i); (V j) :=min(V i; V j), max(V i; V j))

Figure 10: A sorting program
J

label l, returns the data value that resides in the node labelled by l. Then this network
being sorted can be de�ned as:

Sorted = 8i; j 2 Labels: i � j) (V i) � (V j)

An algorithm that establishes this property for any network as described above is displayed
in Figure 10. This algorithm exploits an \swap-out-of-order-values" strategy, that is if the
values of two nodes are out-of-order according to the de�nition above then the values of these
nodes are swapped. The functions min and max determine the minimum and maximum of
their two inputs respectively.

Notice that the program has an initial condition true, which means that it will work
correctly no matter in which state it is started. Consequently, if during its execution an
external agent interferes with it and tampers with the data values of the nodes, this can be
considered as if the program is re-started in a new initial state. Since the program works cor-
rectly regardless of its initial state, it will also do so in this new situation. In addition, once
the network is sorted, the situation will be maintained forever (or until the next interference
by the environment). Such properties are called self-stabilising properties and are clearly
very useful due to their failure-recovering behaviour. Self-stabilisation makes it possible to
write programs in an unstable environment, i.e. an environment that may produce tran-
sient errors, or undergo a spontaneous recon�guration which a�ect the consistency of the
variables upon which the program depends. Self-stabilisation is, however, a strong design
goal. Perhaps too strong as it may be either too di�cult to achieve or only be achievable
at the expense of other goals. As failures are not always arbitrary it is useful to consider
recovery from a restricted set of failures. The notion of self-stabilisation can therefore be
generalised to express this kind of weaker recovery. There is, however, another reason to
make such a generalisation: it may yield more attractive and useful calculational laws. The
de�nition for this generalised notion of self-stabilisation, which is also called convergence,
is given in de�nition 6.38.

De�nition 6.38 Convergence CON

J P` p q

=
q 2 Pred:(wP) ^ (9q0 :: (J P` p� q0 ^ q) ^ (P` �(J ^ q0 ^ q)))

J

6.4 Extended UNITY 32

So, J P` p q implies that under the stability of J , from p the program P will eventually
�nd itself in a situation where q holds and will remain to hold. J ` p q is pronounced
\given the stability of J , from p, P converges to q". The reader might wonder why the q0 is
necessary. Well, suppose that a program P can progress from p to q. However, P may not
remain in q immediately after the �rst time q holds. Instead, P may need several iterations
before it �nally remains within q. This can be encoded by requiring P to converge to a
stronger (than q) predicate. This predicate does not need to be fully described. It su�ces
to know that it implies q10.

Figure 11 lists properties of convergence. Notice that what distinguishes from � is
that the �rst is conjunctive (Theorem 6.45) and the second is not. The most important
properties, however, are shared by both. For example Bounded Progress, a consequence of
the well-founded induction principle, is applicable to either and�. This is very pleasant,
since well-founded induction is a standard technique to prove termination, moreover the 7!
version of the Bounded Progress law appears in [CM88] as a standard technique to prove
progress. An even stronger induction principle, called Round Decomposition (Theorem
6.47), exists for convergence. The principle exploits the conjunctivity of convergence |
a property which is not enjoyed by � or 7!. Imagine a tree of processes. Each process
collects the results of its sons, makes its own progress and then passes the result to its father.
Consider a node n with sons l and m. Suppose l and m make progress to, respectively, ql
and qm. The progress of l and m does not however combine to ql ^ qm because progress is
not conjunctive. However, if processes l and m converge to ql and qm then ql ^ qm can be
concluded. The process n may therefore make a stronger assumption to establish its own
progress. If each process n has the following convergence property:

(8m : "m is a proper descendant of n" : qm) qn

then by applying tree induction one may conclude that eventually the system will converge
to (8m : m 2 A : qm), where A is the set of all processes in the tree. The principle applies
not only to trees, but to any structure that can be ordered by a well-founded relation.

Theorem 6.47 Round Decomposition CON BY sWF i

For all �nite and non-empty sets A and all well-founded relations �2 A�A:

P :
(�J) ^ (8n : n 2 A : J ^ (8m : m � n : q:m) ` true q:n)

J ` true (8n : n 2 A : q:n)
J

The name Round Decomposition can be explained as follows.
In sequential programming, we have a law for decomposing a while-loop speci�cation into

the speci�cations of the loop's guard and body. In fact, the whole sequential programming
relies basically on loops. In UNITY we do not have loops. At least not explicitly. Recall
that any execution of a UNITY program is in�nite and that each action must be executed
in�nitely often. In this sense a UNITY program is actually one large while-loop. Such
a loop can be viewed in terms of rounds. Each iteration step makes the system advance
to the next round, until the �nal round is reached. In a sequential system the rounds
are totally ordered. This, however, does not have to be the case in a distributed system,

10This notion of convergence is what by Burns, Gouda, and Miller called pseudo-stabilisation [BGM90].

6.4 Extended UNITY 33

Theorem 6.39 Convergence Implies Progress CON IMP REACH

P; J :
p q

p� q

Theorem 6.40 Introduction CON ENSURES LIFT, CON IMP LIFT

P; J :

p; q 2 Pred:(wP) ^ (�J) ^ (�(J ^ q))
[p ^ J) q] _ (p ^ J ensures q)

p q

Theorem 6.41 Substitution CON SUBST

P; J :
[J ^ p) q] ^ [J ^ r) s] ^ p; s 2 Pred:(wP) ^ (q r)

p s

Theorem 6.42 Reflexivity CON REFL

P; J :
p 2 Pred:(wP) ^ (�J) ^ (�(J ^ p))

p p

Theorem 6.43 Transitivity CON TRANS

P; J :
(p q) ^ (q r)

p r

Theorem 6.44 Disjunction CON DISJ

P; J :
(8i : i 2 W : p:i q:i)

(9i : i 2 W : p:i) (9i : i 2W : q:i)
if W 6= �

Theorem 6.45 Conjunction CON CONJ

For all non-empty and �nite sets W :

P; J :
(8i : i 2 W : p:i q:i)

(8i : i 2 W : p:i) (8i : i 2W : q:i)

Theorem 6.46 Bounded Progress CON WF INDUCT

P; J :
(q q) ^ (8M :: p ^ (m =M) (p ^ (m �M)) _ q)

p q

With � a well-founded relation over A and m 2 State!A is a bound function.

Figure 11: Some basic properties of .
J

7 Embedding UNITY in HOL 34

although well-foundedness will still be required. In sequential programming, invariants are
used to specify the obligation of each iteration step. Imagine a distributed system that
iterates along a (�nite and well-founded) ordering � over the domain of rounds to establish
(8n : n 2 A : qn). Theorem 6.47 states that it su�ces to have:

J ^ (8m : m � n : qm) ` true q:n

for each round n. The above speci�es the obligation of each round. The predicate J ^ (8m :
m � n : qm) can be considered some sort of loop invariant.

7 Embedding UNITY in HOL

By embedding a logic into a theorem prover the theorem prover is extended by all de�nitions
required by the logic, and all basic theorems of the logic are made available |either by
proving them or declaring them as axioms11. There are two kinds of embedding: the so-
called deep embedding and shallow embedding. In a deep embedding, a logic is embedded
down to the syntax level, whereas in a shallow embedding only the semantic, or model,
of the logic needs to be embedded. A deep embedding is more trustworthy, but basically
more di�cult as we have to take the grammar of well-formed formulae in the logic into
account. In [Pra95] a shallow embedding of the whole UNITY logic and all extensions
(which were discussed in the previous section) is given in HOL. Basically, because whole
UNITY is available in HOL, a program derivation can now take place entirely within HOL.
Still, because of the
exibility of pencil and paper, sometimes it is very helpful that one
does the derivation by hand �rst, either in detail or only sketchy, and later verify it with
HOL. This current section discusses how UNITY programs are represented in HOL.

In section 6.2 a UNITY program was characterised as a quadruple (A; J; Vr ; Vw) where
A is a set of actions, J is a state-predicate describing allowed initial states, Vr is a set of
variables intended to be the read variables of the program, and Vw those to be written.
The universe of all variables are represented in HOL by a polymorphic type *var , and
the universe of all values that these variables can take are represented by *val . For a
concrete program one may want to, for instance, use strings to represent variables, and
natural numbers as the domain of values. In this case the polymorphic types *var and
*val simply have to be instantiated to string and num respectively. In practice, people
often want to have programs in which the variables have di�erent types |and, which may
include sophisticated types such as functions or trees. In other words, a multi-typed universe
of values is desired. This is possible, albeit not pleasant, as our universe of values is the
type *val and hence multi-typed values have to be encoded within *val. For example, if
one wishes both boolean and integer valued program variables, a new type must be de�ned:

define_type = `int_bool_DEF` `int_bool = INT int | BOOL bool` ;;

The above de�nes a new type called int bool. A member of this type has the form INT n

or BOOL b where n has the type int and b the type bool. Hence, instantiating *val with
this type makes it possible to accommodate both bool and integers values12.

The universe of program-states is represented by State:

11However, adding axioms, as remarked before, is not a recommended practice.
12This means however that all normal operations on integers and bool now have to be lifted to work on

7.1 Predicates and Predicate Operators 35

let State = ":*var -> *val" ;;

7.1 Predicates and Predicate Operators

State-predicates are mapping from program-states to B . The universe of state-predicates is
represented by Pred:

let Pred = ":^State -> bool" ;;

An example is (\s:^Pred. (s x = f (s y))) which is a predicate that characterises those
program-states s satisfying s:x = f:(s:y).

This predicate is usually and conveniently denotes as, x = f:y. This notation is over-
loaded in several places. Since this kind of overloading is not possible in HOL, basically
everything has to be made explicit using � abstractions as above. Frequently used operators
at the predicate-level, such as :, ^, _, and so on, are de�ned at the state-predicate-level by
using the functions given in de�nition below.

HOL-de�nition 7.1
|- TT = (\s. T) |- FF = (\s. F)
|- (NOT p) = (\s. ~p s) |- (p AND q) = (\s. p s /\ q s)
|- (p OR q) = (\s. p s \/ q s) |- (p IMP q) = (\s. p s ==> q s)
|- (p EQUAL q) = (\s. (p s = q s)) |- (!!i::P. Q i) = (\s. (!i::P. Q i s))
|- (??i::P. Q i) = (\s. (?i::P. Q i s)) |- |== p = (!s. p s)

J

So, for instance the predicate that is usually denoted by (x = f:y) ^ q will be denoted
in HOL as (\s. s x = f (s y)) AND q. Notice that (!!i::P. Q i) and (??i::P. Q i)

above denote (8i : P:i : Q:i) and (9i : P:i : Q:i) at the predicate level.
Predicate con�nement (de�nition 6.2) is de�ned as follows in HOL:

HOL-de�nition 7.2

|- !V A x. (V Pj A)x = (A x => V x | Nov)

|- !A p. A CONF p = (!s t. (s Pj A = t Pj A) ==> (p s = p t))
J

Where Nov is a HOL constant representing @. Note that A x means x 2 A, in other words,
sets are represented by predicates that given some value return true if this value is an
element of the set, and false otherwise. The reason for doing this is that HOL is nimbler
with predicates than with sets.

7.2 Actions

An action is de�ned as a relation13 on program-states, describing possible transitions the
action can make. The universe of actions can be represented by Action in HOL:

this new type, which is quite tedious. There is another way to represent a program, in which di�erently
typed variables are easy to represent. But this representation has its own problems too. See for instance
[BvW90, L�an94]

13Some people prefer to use functions instead of relations. If functions are used, then actions are deter-
ministic.

7.3 UNITY programs 36

let Action = ":^State -> ^State -> bool" ;;

For instance, the simultaneous assignment action x; y := E1; E2 from (6.7) can be de�ned
as follows in HOL:

let Assign2_DEF = new_definition

(`Assign2_DEF`,

"(Assign2 (x,y) (E1, E2)):^Action

= (\s t. (t x = E1 s) /\ (t y = E2 s))

rINTER

(SKIP a_Pj (\z:*var. ~(z=x) /\ ~(z=y)))") ;;

Where rINTER, SKIP and a_Pj are the HOL de�nitions for the synchronisation operator u,
the skip action from (6.5), and action-level projection from de�nition 6.3 respectively. Their
precise HOL de�nitions are given below:

HOL-de�nition 7.3

|- !a b. a rINTER b = (\s t. a s t /\ b s t)

|- SKIP = (\s t. s = t)

|- !a A. a a_Pj A = (\s t. a (s Pj A) (t Pj A))
J

So, the assignment x; y := x + 1; y + 2, which assigns values to two variables at the same
time can now be represented by:

Assig2n (x,y) ((\s. (s x) + 1), (\s. (s y) + 2)).

7.3 UNITY programs

The quadruple (A; J; Vr ; Vw) representing a UNITY program is represented by the product-
type:

(^Action) set # ^Pred # *var set # *var set

However, as HOL is nimbler with predicates than with sets it has been decided to
represent sets with predicates. So, instead, UNITY programs |or, to be more precise:
objects of type Uprog| are represented as:

let Uprog = ":(^Action -> bool) # ^Pred #

(*var -> bool) # (*var -> bool)"

The destructors a, ini, r, and w used to access the components of an Uprog object are
called PROG, INIT, READ, and WRITE in HOL.

HOL-de�nition 7.4
|- !P In R W. PROG(P,In,R,W) = P
|- !P In R W. INIT(P,In,R,W) = In
|- !P In R W. READ(P,In,R,W) = R
|- !P In R W. WRITE(P,In,R,W) = W

J

7.4 Program properties 37

1 let Sort = new_definition
2 (`Sort`,
3 "Sort Labels V vOrd pOrd =
4 (CHF{Assign2 (V i, V j) (Min vOrd (V i) (V j), Max vOrd (V i) (V j))
5 | (i IN Labels) /\ (j IN Labels) /\ (pOrd i j)})
6 ,
7 TT
8 ,
9 CHF{V i | i IN Labels}

10 ,
11 CHF{V i | i IN Labels}"
12) ;;

Figure 12: The HOL de�nition of the program Sort.
J

The parallel composition [] is called PAR in HOL:

HOL-de�nition 7.5
|- !Pr Qr.

Pr PAR Qr = (PROG Pr) OR (PROG Qr),(INIT Pr) AND (INIT Qr),
(READ Pr) OR (READ Qr),(WRITE Pr) OR (WRITE Qr)

J

To illustrate the representation of a UNITY program in HOL, consider again the program
in �gure 10. In applying this program to the network in Figure 9 the universe of values
*val will be the natural numbers. But notice that in order to sort the network, *val can
be any set of values on which a total order is de�ned. The code in Figure 12 is the HOL
representation of this program. The code de�nes the constant Sort that has four parameters:
the set Labels that contains the labels of the nodes in the network; the function V which
given a label returns the data value that resides at the node with that label; the orderings
�v (vOrd) and �p (pOrd) that de�ne orderings on the data values and labels respectively.
Note that these parameters are kept implicit in the hand de�nition in Figure 10. Lines 4
and 5 de�ne the predicate which represents the set of actions of which the program Sort

consists. The constant function CHF, which is de�ned in the library theory sets[Mel90], is
used to convert a set to a predicate which given an element returns true if this element is in
the set, and false otherwise. Line 7 speci�es the initial condition, which is true. And �nally,
lines 9 and 11 are the predicates which represent the sets of read and write variables of the
program respectively.

7.4 Program properties

7.4.1 Well-formedness

De�nition 6.9 de�ned the predicate Unity to characterise all well-formed UNITY programs.
The de�nition is re-displayed below:

Unity:P = (8a : a 2 aP : �Ena) ^ (wP � rP) ^

(8a : a 2 aP : (wP)c 8 a) ^ (8a : a 2 aP : (rP)c 9 a)

7.4 Program properties 38

The HOL de�nitions of always-enabledness, ignorance and invisibility are given below, fol-
lowed by the HOL de�nition of the predicate Unity.

HOL-de�nition 7.6
|- !A. ALWAYS_ENABLED A = (!s. ?t. A s t)
|- !V A. V IG_BY A = (!s t. A s t ==> (s Pj V = t Pj V))
|- !V A. V INVI A =

(!s t s' t'.
(s Pj (NOT V) = s' Pj (NOT V)) /\ (t Pj (NOT V) = t' Pj (NOT V)) /\
(s' Pj V = t' Pj V) /\ A s t
==>
A s' t')

J

Now, the HOL de�nition of the predicate Unity:

HOL-de�nition 7.7
|- !P In R W. UNITY(P,In,R,W) = (!A :: P. ALWAYS_ENABLED A) /\

(!A :: P. (NOT W) IG_BY A) /\
(!x. W x ==> R x) /\
(!A :: P. (NOT R) INVI A)

J

For example, the program shown in Figure 12 can be shown to satisfy the predicate
UNITY above.

7.4.2 Safety, progress and self-stabilising properties

In section 6.3 primitive operators for expressing safety, progress and self-stabilising prop-
erties of UNITY programs were discussed. The main operators were: the unless opera-
tor which is used to reason about safety properties; the stable operator to describe stable
properties; the ensures operator that de�nes one-step progress properties; the reach (�)
operator that describes general progress; the convergence () operator to express stabili-
sation. Below the HOL de�nitions for hoare triples, unless , stable and ensures are given.

HOL-de�nition 7.8
1 |- !p A q. HOA(p,A,q) = (!s t. p s /\ A s t ==> q t)
2 |- !Pr p q. UNLESS Pr p q = (!A :: PROG Pr. HOA(p AND (NOT q),A,p OR q))
3 |- !Pr p. STABLE Pr p = UNLESS Pr p FF
4 |- !Pr p q. ENSURES Pr p q = UNITY Pr /\
5 UNLESS Pr p q /\ (?A :: PROG Pr. HOA(p AND (NOT q),A,q))

J

Compare them with their hand de�nition14:

i. fpg a fqg = (8s; t :: p:s ^ a:s:t) q:t)

ii. P` p unless q = (8a : a 2 aP : fp ^ :qg a fp _ qg)

iii. P`�p = P` p unless false

14Notice that in the hand de�nition P` p ensures q does not explicitly require that P is a UNITY program.
This de�nition implicitly assumes that UNITY programs are considered. This assumption is not crucial for
safety laws, but it is for some progress laws. In HOL, however, implicit assumptions can not be made, so it
will have to be made explicit. Prasetya chose to resolve that by putting it in the de�nition of ENSURES.

7.4 Program properties 39

iv. P` p ensures q = (P` p unless q) ^ (9a : a 2 aP : fp ^ :qg a fqg)

In illustration, consider once again the program from �gure 12. A property of this pro-
gram is that during the execution of the program, the function V remains a permutation
of the initial value of V (i.e. the value of V with which the program starts). Let V 0 denote
the initial value of V , then this property can be expressed in hand notation as:

` �9f:(8i : i 2 Labels: (f i) 2 Labels)^(f is a bijection)^(8i : i 2 Labels: (V i) = (V 0 (f i)))

In HOL this would be:

STABLE (Sort Labels V vOrd pOrd)

(?f. (!i:: (\i. i IN Labels). (f i) IN Labels)

/\ (BIJECTION f) /\ (!i::(\i. i IN P). V i = V' (f i)))

Consider again the de�nition of the 7! (leads-to) operator (6.24). It is de�ned as the
smallest transitive and disjunctive closure of ensures. Let Trans:R means that R is a tran-
sitive relation and Ldisj means that R is disjunctive with respect to its left argument (i.e.
for all q and all non-empty sets W (8p : p 2 W : R:p:q)) R:(9p : p 2 W : p):q holds (cf.
the 3th item in de�nition 6.24)). Let TDC be de�ned as follows:

TDC:R:p:q = (8S : R � S ^ Trans:S ^ Ldisj:S : S:p:q)

So, TDC:R is the smallest closure of R which is transitive and left-disjunctive, and 7! can
be de�ned as (�p; q: P` p 7! q) = TDC:(�p; q: P` p ensures q). Introducing TDC is not
only adding
avour to the notation, many useful properties of an operator thus de�ned are
actually pure properties of TDC. Consequently, it would be desirable if the new� operator
could also be de�ned with TDC. Now let ensures be de�ned as follows:

J P` p ensures q = p; q 2 Pred:(wP) ^ (P`�J) ^ (P` J ^ p ensures q)

Compare this with the �rst item of de�nition 6.29. The progress operator � can now be
de�ned as the TDC of ensures :

(�p; q: J P` p� q) = TDC:(�p; q: J P` p ensures q)

The HOL de�nitions are as follows:

HOL-de�nition 7.9
1 |- !r s. r SUBREL s = (!x y. r x y ==> s x y)
2 |- !r. TRANS r = (!x y z. r x y /\ r y z ==> r x z)
3 |- !U. LDISJ U = (!W y. (?x. W x) /\ (!x::W. U x y) ==> U (??x::W. x) y)
4 |- !U x y. TDC U x y = (!X. (SUBREL U X) /\ (TRANS X) /\ (LDISJ X) ==> X x y)
5 |- !Pr J p q.
6 B_ENS Pr J p q =
7 ENSURES Pr(p AND J)q /\ STABLE Pr J /\ (WRITE Pr) CONF p /\ (WRITE Pr) CONF q)
8 |- !Pr J. REACH Pr J = TDC(B_ENS Pr J)

J

Finally the HOL de�nition of the convergence operator is:

8 How to design and verify UNITY programs with HOL 40

HOL-de�nition 7.10
CON:
|- !Pr J p q.

CON Pr J p q =
(WRITE Pr) CONF q /\
(?q'. REACH Pr J p(q' AND q) /\ STABLE Pr(q' AND (q AND J)))

J

8 How to design and verify UNITY programs with HOL

This section discusses how the apparatus, set out in sections 5 up to and including 7 can
be used to formally design and mechanically verify a UNITY program. For those who
skipped some or all of these sections, �rst a recapitulation is given. Section 5 describes
HOL [GM93], an interactive theorem proving environment for classical higher-order logic.
Section 6 deals with UNITY, a programming logic invented to support the design and
veri�cation of distributed programs. It outlines the basic foundations of UNITY (from
[CM88]), and several extensions regarding compositionality and convergence (as reported
in [Pra95]). Finally section 7, considers an embedding of the programming logic UNITY
within HOL, which makes it possible to represent and specify UNITY programs inside the
theorem prover.

The process of formally designing programs can roughly be described in seven phases.
The �rst four phases regard the formal speci�cation and construction of the program, the
remaining phases are concerned with the proofs that are carried out in HOL.

Informally describe what the program is to do. That is write an informal speci�ca-
tion, which re
ects what the program is required to do. These informal speci�cations
are usually written in natural language. For software companies, which write software
pursuant to the wishes of their customers, this is a very important stage of developing
software.

During this phase, the company must try to obtain a clear idea of what its customers
want, need and expect. This is, however, not the only point in which the client must
play a role. Since, especially in this informal phase, misinterpretations of the customers
requirements can arise, constant interaction between the software developers and their
clients is necessary throughout the whole process of software design.

Create a formal speci�cation of what the program is to do (i.e. formally spec-
ify which problem is to be solved).

A speci�cation must focus on the task and not on its eventual implementation, in
other words it must specify what is to be done rather than how. A formal speci�cation
is a speci�cation that is written in some speci�cation language or logic, which has a
sound mathematical basis. Writing a formal speci�cation is central in applying formal
methods to the development of programs. Formal speci�cations help to crystallise
vague ideas, to reveal ambiguities and to expose incompleteness introduced in the
requirements in the previous phase. They serve as a contract, a valuable piece of
documentation, and a means of communication among a client, a speci�er and an

8 How to design and verify UNITY programs with HOL 41

implementer. There are many15 speci�cation languages or logics, which di�er most in
their choice of semantic domain. The best notation to use, is the one which relates most
to the characteristics of the speci�c product being developed and the background of
the individuals involved. In this report (following [Pra95]) the UNITY logic is chosen,
for we want to design distributed programs, and UNITY is explicitly developed for
these purposes. Furthermore it is simple and has a high level of abstraction.

Re�ne and decompose the formal speci�cation. Much of program development in the
UNITY methodology [CM88] consists of re�ning speci�cations (i.e. adding detail to
them) and decomposing speci�cations (i.e. splitting them up into smaller and prefer-
ably simpler speci�cations). Re�nement and decomposition commences by proposing a
general solution strategy, by means of which the program solves the speci�ed problem.
Then the formal speci�cation is re�ned according to this opposed solution strategy.
Finally, the re�ned speci�cation is decomposed into a set of smaller speci�cations.
Decomposition of the speci�cation must continue until the progress parts of the spec-
i�cation are solely expressed in terms of ensures . The reason for this is that ensures

describes one-step progress, which { with a view to the next step { makes it easier to
construct a program from the re�ned decomposed speci�cation. Sundry basic laws to
re�ne and decompose formulae of the UNITY logic were presented in section 6.

Construct a UNITY program which satis�es this re�ned speci�cation. The idea
in this step is that a UNITY program is formed, for which it is provable that is satis�es
the re�ned and decomposed speci�cation. This may however be quite di�cult, since
re�nement and decomposition can result in a myriad speci�cations. Nevertheless, re-
�ned speci�cations usually give a clear hint as to what kind of actions should or should
not be in the program, since the opposed solution strategy added some detail to how
the speci�ed problem could be solved. Moreover, decomposition is often motivated by
some ideas related to the implementation of the resulting program. For example, in
distributed environments designers may extensively exploit the compositionality laws,
so that they will have a separate speci�cation for each part of the program instead of
a large set of speci�cations for the complete program.

Once a UNITY program (i.e. a program which satis�es the predicate Unity from
de�nition 6.9) has been constructed, it is recommendable to make a pencil-and-paper
proof of the program's satis�ability to the speci�cation, despite the fact that machine-
checked veri�cation will be done in the next steps. A common mistake is to think that
since mechanical veri�cation is done later, precision and formal proofs are not required
at this stage because all mistakes shall be �ltered out during mechanical validation.
Although the latter is partially true, such an attitude can cost lots of time and e�ort
when a theorem prover is used. Discovering mistakes during veri�cation in HOL
is marvellous, for it demonstrates the necessity of using such a mechanical theorem
prover. On the other hand, however, encountering such mistakes require that HOL
de�nitions have to be changed and that proofs must be redone accordingly, a tedious
and time consuming process which sometimes could have been prevented by more
accuracy during this current stage. So summing up the motto is: \Do not get sloppy
during this stage just because mechanical veri�cation will be done in later stages, it

15There exists, for instance also an embedding of Z in HOL [].

8 How to design and verify UNITY programs with HOL 42

can save you lots of time". Another advantage of doing formal pencil-and-paper proof
during this phase, is that these proofs can considerably help in doing HOL proofs. To
prove a complicated theorem in HOL, you must have some sort of proof strategy in
mind with which the theorem can be proved. A pencil-and-paper proof can serve as
this proof strategy, and therefore facilitates constructing a HOL proof.

This ends the formal speci�cation and construction of a program in UNITY, the next four
steps proof the correctness of the program with the aid of HOL.

Represent the program in the HOL embedding of UNITY. This also includes de-
termination of how each component of the program is represented. For example, if
arrays are used in the program then the representation of these arrays in
uences the
ease with which certain manipulation can be carried out.

Proof that the program is well-formed. To prove the well-formedness of a program
(i.e. prove that it satis�es the predicate Unity), four conditions have to be checked:

1. each action is always enabled.

2. the declared write variables should also be declared as read variables.

3. no variable not declared as a write variable is written by the program

4. no variable not declared as a read variable can in
uence the program.

The �rst two conditions are easy to proof. The third condition requires that the vari-
ables occurring at the left-hand sides of the assignments are collected and compared
with the declared set of write variables. The fourth condition turns out to be [Pra95]
very di�cult to prove if a shallow embedding of the programming logic is not avail-
able. In the case study in section 9 the UNITY embedding will therefore be made
deeper than the one presented in [Pra95], and a tactic shall be constructed which
automatically proves this fourth condition for an arbitrary UNITY program.

Proof that the program satis�es the speci�cation. First the speci�cation must be
formalised in HOL. Second, a proof tree must be constructed according to the re-
�nement and decomposition method from the second step. Closing this proof tree
constitutes of proving that the program satis�es this re�ned and decomposed speci�-
cation

Observe that designing a program shall never proceed by consecutively working through
step one up to and including seven. Program development is by no means a straight-forward
one-pass process, but rather an iterative and non-linear process. A developer cannot make
claims to having determined all of the requirements just because the third stage in the
development process has been reached. Moreover, such claims should be considered dubious
even during post-implementation phases. Thus more than once, it will be inescapable that
one has to revise previous steps. For instance, because one got an additional idea, because
one forgot something or simply because the customer says so. It is obvious, though very
important, that when one, say for example, is in step i and wants to go back to step j to
change or add something, one also has to adjust the steps in between i and j.

9 Case study 43

9 Case study

In [Pra95] a formal and mechanically veri�ed design of Lentfert's FSA algorithm is presented,
following the process described in section 8. Since the aim of this present report is to
highlight the contribution to the �eld of formal methods and mechanical veri�cation, this
case study tackles a much simpler problem. Due to this separation of method's complexity
and problem complexity, close attention can be paid to the process of formally developing a
self-stabilising program without serious distraction from di�cult properties of the program
itself.

An instance of the sorting program, which will be studied here, was already given in
section 6.4.2. The formal design of a slight generalisation of this sorting program will be
illustrated in nine subsections, corresponding to the nine steps from section 8. Once again
it must be stressed that designing a program does not mean consecutively working through
these steps. As with most stepwise development methods it shall be necessary to revise
previous steps, and work through all the steps once again. When studying the seven steps
in which we designe and verify the sorting algorithm, the reader should keep this in mind.

Before the whole design process will be discussed, �rst some general concepts will be
formally de�ned in the next subsection.

9.1 Some notational conventions and necessary de�nitions

The reason for exactly de�ning general concepts of which it can be assumed that every-
body has a notion of what they are is to obtain unequivocalness. For experience shows
that minor di�erences between notions that people have about formal concepts can cause
major confusion. Moreover, when automated theorem provers are used, absolute accuracy
is mandatory.

9.1.1 Notation

Sometimes 8x; y : x; y 2 A : Q and 9x; y : x; y 2 A : Q are abbreviated by 8x; y 2 A : Q
and 9x; y 2 A : Q respectively. Furthermore, for any set S, jSj is used to denote the
cardinality of S (i.e. the number of elements in the set S). In writing an expression of the
form p) (q) r) we sometimes leave out the brackets.

9.1.2 Relations and orderings

Given sets A and B, a binary relation R from A to B is any subset of the cartesian
product A � B. Where A � B is short-hand for f(x; y)jx 2 A ^ y 2 Bg. If (x; y) 2 R,
sometimes x R y is written. A binary relation on a set A is a binary relation from A to A.

Some fundamental de�nitions about relations and orderings are given in Figure 13.

9.1.3 Graphs

For modelling the network structure graph theoretic concepts are needed. A graph G is
modelled by a pair of sets (V;E), where the set V is called the vertex set of G and set E
is called the edge set of graph G. There are two kinds of graphs: directed and undirected
ones.

9.1 Some notational conventions and necessary de�nitions 44

Let R be a binary relation on set A, i.e. R � A�A.

De�nition 9.1

� R is re
exive i� 8x 2 A : x R x REFL REL

� R is anti-re
exive i� 8x 2 A : :(x R x) ANTI REFL REL

� R is symmetric i� 8x; y 2 A : (x R y) ^ (y R x) SYM REL

� R is anti-symmetric i� 8x; y 2 A : :(x = y)) :((x R y) ^ (y R x)) ANTI SYM REL

� R is transitive i� 8x; y; z 2 A : ((x R y) ^ (y R z))) (x R z) TRANSITIVE REL

De�nition 9.2 Partial Ordering PARTIAL ORDER DEF

R is a partial order i� R is re
exive, anti-symmetric and transitive.

De�nition 9.3 Total Ordering TOTAL ORDER DEF

R is a total order i� R is a partial order and 8x; y 2 A : (x R y) _ (y R x) holds.

De�nition 9.4 Transitive reflexive closure Transitive Refl Closure

The transitive re
exive closure of R is denoted by Rtr, and is de�ned as follows:

(x; y) 2 R
tr , 9n 2 N0 : 9z0; z1; : : : ; zn 2 A : (x = z0) ^ (z0 R z1 R : : : zn�1 R zn) ^ (zn = y)

where N0 denotes f0; 1; 2; : : :g.

De�nition 9.5 Symmetric closure Symmetric Closure

The symmetric closure of R is denoted by Rsym, and is de�ned as follows:

R
sym = R [f(x; y)j(y; x) 2 Rg

Figure 13: Properties of relations.
J

De�nition 9.6 Directed Graph Graph DEF

G = (V;E) is an directed graph if and only if

� the vertex set V is a �nite, non-empty set of vertices

� the edge set E is a binary relation over V .

J

In directed graphs G = (V;E) the edges have direction. We say that (u; v) 2 E is an
outgoing edge of vertex u and an incoming edge of vertex v.

To each binary relation � over a set V corresponds a directed graph:

G� = (V; f (u; v) j u � v g).

9.2 Informally describe what the program is to do. 45

De�nition 9.7 Undirected Graph Graph DEF

G = (V;E) is an undirected graph if and only if

� the vertex set V is a �nite, non-empty set of vertices

� the edge set E is a set of unordered pairs of vertices, in which self-loops are
forbidden. That is

{ E = Esym

{ (u; u) 62 E.
J

9.1.4 Functions

Finally, some de�nitions about functions are needed. A function f that assigns to each
element of a set S, a unique element in a set T is denoted by f 2 S ! T . The set S is called
the domain of f , denoted by Dom(f); the set T is called the co-domain of f , denoted by
CoDom(f). For all x 2 Dom(f), f x is called the image of x under f . The set of all images
f x is a subset of T called the image of f and is denoted by Im(f) or f(S).

De�nition 9.8 Injective function
A function f 2 S ! T is injective if and only if:
8x; y 2 S : (f x = f y)) (x = y).

De�nition 9.9 Surjective function
A function f 2 S ! T is surjective if and only if:
8y 2 T : (9x 2 S : f x = y).
In other words, f : S ! T is surjective if and only if T = Im(f).

De�nition 9.10 Bijective function
A function f 2 S ! T is bijective if and only if: f is both injective and surjective.

De�nition 9.11 Equal functions
Two functions f 2 S ! T and g 2 S ! T are equal, denoted by f = g if and only if:
8x 2 S : (f x) = (g x).

J

9.2 Informally describe what the program is to do.

Our �nal goal is to design a self-stabilising program which sorts a network of processes in
an unstable environment. To be more precise, we presume a network of processes in which:

1. every process has a unique label which is used to identify its address

2. every process has a unique local variable taken from the universe Var of all program
variables (see section 6.1). These local variables can store a data value taken from the
universe Val

9.3 Create a formal speci�cation of what the program is to do 46

3. some process pairs are connected via links, over which two processes can exchange data
values. These links provide the only way in which two processes can communicate with
each other. Communication over these connections is restricted, in that a process can
only communicate with one other process at the same time.

Since we assume an unstable environment, processes and connections between them can
disappear and re-appear, and external agents can tamper with the data values of the pro-
cesses. Consequently, we want to design a program that does not alter the multi-set of the
processes's values, and (according to some prede�ned orderings, �p and �v, on the labels
and the data values respectively) will bring the network in a state which, for any pair of
processes, satis�es that the ordering (�p) on the labels of these processes is re
ected in the
ordering (�v) on the data values that reside at these processes.

9.3 Create a formal speci�cation of what the program is to do

This subsection will start with a formal model of the network of processes in an unstable
environment. After that a formal speci�cation of the program will be constructed in terms
of the convergence-operator.
A network of processes is modelled by a triple (P;C; V), where

� P is a set containing the labels of all processes in the network. Consequently, since
every process has a unique label this implies that jP j equals the number of processes
in the network.

� C is the set of present connections between the processes, and connections are modelled
by a tuple of process labels. Consequently, C � P � P .

� (P;C) is considered to be an undirected graph, so according to de�nition 9.7 there is
at least one process, the number of processes is �nite and C = Csym.

� V is a function that maps a process-label to the local variable which stores the data
value that resides at that process. So V 2 P ! Var. Since every process has a unique
local variable the following predicate holds:

8i; j 2 P : i 6= j) (V i) 6= (V j) (9.1)

A triple (P;C; V) which is in compliance with the constraints above shall be denoted by
Network(P;C; V). As already informally speci�ed above, such a network will be called16

sorted, when the following property is satis�ed:

8i; j 2 P : i �p j) (V i) �v (V j) (9.2)

where �p and �v are orderings on the labels and the data values respectively.
Let us start with the assumption that �v is a total order and determine which properties

the ordering �p must satisfy under this assumption. Ordering �p has to satisfy three
properties. In the �rst place it must be anti-symmetric. This can be illustrated with an

16Be aware of the overloading, which was mentioned in section 6.1, on the symbol �v

9.3 Create a formal speci�cation of what the program is to do 47

example. Consider a network in which every process contains a di�erent data value, that
is 8i; j 2 Labels :(i 6= j)) ((V i) 6= (V j)) . Suppose that �p is not anti-symmetric, so
it is possible that there are labels i and j (i 6= j) for which i �p j and j �p i are both
valid. Since every process contains a di�erent value, it can be concluded from (i 6= j)
that (V i) 6= (V j). From this and the anti-symmetric property of �v it can be derived
that (V i) �v (V j) and (V j) �v (V i) cannot both hold at the same time. But because
i �p j and j �p i both hold, the sorted network must satisfy (V i) �v (V j) as well as
(V j) �v (V i), which is unachievable. In the second place �p must satisfy the transitivity
property, for again consider a network in which every process contains a di�erent data value.
Suppose that �p is not transitive, so it is possible that there are i, j and k (i 6= j 6= k)
such that i �p j and j �p k and k �p i simultaneously hold. Again it can be concluded
from the fact that every process contains a di�erent value, and the anti-symmetry property
of �v, that it is impossible to sort the network. Whether �p is re
exive, anti-re
exive, or
neither makes no di�erence. Because if i �p i holds, (9.2) is valid since �v is re
exive;
and if :(i �p i) holds then 9.2 is trivially valid. Finally, we assume that �p is non-empty.
Although reasons for this assumption will become apparent in later stages, it also can easily
be justi�ed at this stage, since if �p= ; then 9.2 is a tautology and consequently there
is no use in constructing a sorting program. Note that since reasons for this assumption
shall be given in a later phase, obviously the need for it became clear in a later phase.
Consequently, this is typically a result of program development not being a straightforward,
one-pass process but rather an iterative and non-linear process.

Now a formal de�nition of a sorted network can be given. For this de�nition and the
ones in the rest of this section, we shall adapt the convention that the subscript under the
de�nition's name denotes the arguments of the de�nition.

De�nition 9.12 Sorted Network Sorted DEF

Let (P;C; V) be a network. Let �p be a non-empty, anti-symmetric, transitive ordering on
the processes' labels, and let �v be a total ordering on the data values of the processes.
This network is de�ned to be sorted if it satis�es:

Sorted(P;V;�p;�v) = 8i; j 2 P : i �p j) (V i) �v (V j)
J

By contrast, compare de�nition 9.12 with the informal description that was given in the
previous section. It is clear that the former is less confusing than the latter.

Until now, we have made the following assumptions about the environment in which
the program will operate. First, we assumed an unstable environment in which external
agents can cause arbitrary transient errors. Second, we assumed a network of processes, in
which two processes can only compare their data values if they have a connection between
them, and a process can only compare its value with one other value at the same time. In
order to sort all the data values of a network, a su�cient number of these values have to be
compared (i.e. a su�cient number of connections must be present) and appropriate actions
must be taken according to the result of this comparison. Of course the way these values are
compared and which actions will be taken accordingly are matters of how the program will
achieve what it is to do, and must not be part of the speci�cation. But conditions on the
environment in which the program is required to operate are matters of what the program

9.3 Create a formal speci�cation of what the program is to do 48

2

12

11

8

5

a

b
c

d

e

Figure 14: A network which cannot be sorted.
J

is to do, viz. under what circumstances it must ful�ll its requirements. Although, at this
stage, we may not make assumptions whatsoever on how the program will achieve the re-
quested results, nevertheless we have to take full account of the limitations the environment
imposes upon the possible implementations of the program, by specifying and if necessary
strengthening the properties of this environment17. It is obvious that, in this case, we have
to curtail the set of possible failures that can change the environment, and settle for con-
vergence instead of self-stabilisation. As it happens, we cannot allow arbitrary connections
to disappear. Consider for example the network in Figure 14, where the labels (written
above the processes) are characters, and the data values (written inside the processes) are
numbers. As a result of an environmental failure, the connection between processes b and c

has disappeared. Let �p and �v be the lexicographic order on characters and the less-than-
or-equal (�) order on numbers respectively. There exists no implementation whatsoever
which does not alter the multi-set of the processes's values and can sort this network, since:

- the values of processes a, c, d and e are already sorted according to de�nition 9.12, so
these processes shall not undertake any action18

- the same holds for the processes a and b

- process b cannot compare its value with any of processes c, d and e, so nothing will be
done by process b either.

As exempli�ed above, we cannot allow arbitrary failures of connections. As a consequence
we must formalise a condition which states when there are still enough connections left for
any implementation to sort the network. This condition then imposes a restriction on the
set of failures from which the convergent program can recover. A minimal and su�cient

17It can occur that the limitations the environment enforces upon the possible implementations do not
become clear till one reaches the implementation phase. In this case one has to return to the speci�cation
phase and modify the latter.

18Note that by concluding that no action will be undertaken, we do not make assumptions about the
eventual implementation. We merely use the fact that a convergent program is being designed, which
means that if the program �nds itself in the required situation it will stay there.

9.3 Create a formal speci�cation of what the program is to do 49

condition on the extant connections must imply that if the network is not yet sorted, then
there always must be processes which \know" that their values are not sorted; in other
words, among the pairs of connected processes whose labels are ordered by �p, there must
at least be one pair whose values are out-of-order. For, if this condition is satis�ed, it will
always be possible to undertake some action if the network is not yet sorted. Consequently,
situations as sketched in the example above cannot arise. Before this condition is formalised,
�rst some de�nitions and theorems19 are given.

De�nition 9.13 Wrong Pairs Wrong Pairs DEF

WrongPairs(P;V;�p;�v) = f(i; j)ji 2 P ^ j 2 P ^ (i �p j) ^ :((V i) �v (V j))g

De�nition 9.14 Wrong Pair Wrong Pair DEF

WrongPair
(i;j)

(P;V;�p;�v)
= (i; j) 2 WrongPairs(P;V;�p;�v)

Theorem 9.15 Nr Of Wrong Pairs GREATER 0 IMP EXISTS WP

:Sorted(P;V;�p;�v) , 9i; j 2 P : WrongPair
(i;j)

(P;V;�p;�v)
, jWrongPairs(P;V;�p;�v)j > 0

Theorem 9.16 WRONG PAIRS EMPTY EQ SORTED, Nr Of WrongPairs 0 EQ WrongPairs EMPTY

Sorted(P;V;�p;�v) , (WrongPairs(P;V;�p;�v) = fg), jWrongPairs(P;V;�p;�v)j = 0

J

Thus the condition, from now on called Cond, which we are looking for must satisfy:

Cond) : Sorted(P;V;�p;�v)) 9u; v 2 P : (u; v) 2 Csym^u �p v :WrongPair
(u;v)

(P;C;V;�p;�v)
(9.3)

Where Csym is used to model the bi-directional property of the connections in the network.
Now, we state that the following de�nition of Cond satis�es 9.3, the proof of which shall be
given below.

Cond = (�p� (�p \ (Csym))tr) (9.4)

In order to prove that de�nition 9.4 of Cond satis�es 9.3, it su�ces to prove that, under the
assumptions

ass1 (�p� (�p \ (Csym))tr)

ass2 :Sorted(P;V;�p;�v)

it holds that (9u; v 2 P : (u; v) 2 Csym ^ u �p v : WrongPair
(u;v)
(P;C;V;�p;�v)

).

Assumption ass2 imparts that there exist a pair of processes, say i and j, of which the
values are not sorted, i.e. i �p j and :(V i �v V j) hold at the same time. Consequently,
assumption ass1 tells us that (i; j) 2 (�p \ (Csym))tr . Then by expanding de�nition 9.4
the following can be derived:

19The proofs of the theorems are not given, for they follow trivially from the de�nitions 9.12, 9.14 and
9.13.

9.3 Create a formal speci�cation of what the program is to do 50

9n 2 N0 :

(9z0; z1; : : : ; zn 2 P :

(i = z0) ^ (z0 �p z1 �p : : : zn�1 �p zn) ^ (zn = j)) ^ :((V z0) �v (V zn))

^ (9.5)

(8k : 0 � k < n : (zk; zk+1) 2 (Csym))

Instantiate 9.5 with n 2 N0; and instantiate the left conjunct of the resulting predicate with
z0; z1; : : : ; zn 2 P . Then it can be proved that

9k : 0 � k < n : :(V zk) �v (V zk+1) (9.6)

For, suppose 9.6 does not hold (i.e. 8k : 0 � k < n : (V zk) �v (V zk+1)), then we can
conclude, from the transitivity of �v, that ((V z0) �v (V zn)), which evidently contradicts
with the instantiation of 9.5. From 9.5 and 9.6 it can be easily derived that

9k : 0 � k < n ^ (zk; zk+1) 2 Csym ^ zk �p zk+1 : WrongPair
(zk;zk+1)
(P;C;V;�p;�v)

) (9.7)

which trivially establishes the proof that:

(9u; v 2 P : (u; v) 2 Csym ^ u �p v : WrongPair
(u;v)
(P;C;V;�p;�v)

)

.
Thus, the minimal and su�cient condition on the extant connections can be formally

de�ned by the following de�nition.

De�nition 9.17 Sufficient Connection In Network For Sorting

Let (P;C; V) be a network. Let �p be an ordering on the processes' labels.

Su�cientConnections(C;�p) = (�p� (�p \ (Csym))tr)
J

And the theorem which follows from 9.3 , 9.4 and the proof sketched above.

Theorem 9.18 Nr of Wrong Pairs GREATER 0 IMP EXISTS CONNECTED WP

For any network of processes Network(P; V; C), total ordering �v on the processes' data
values, and non-empty, anti-symmetric and transitive ordering �p on the processes' labels:

Su�cientConnections(C;�p) ^ (:Sorted(P;V;�p;�v))

9u; v 2 P : (u; v) 2 Csym ^ u �p v : WrongPair
(u;v)
(P;C;V;�p;�v)

)

J

Now, we are almost ready to construct the formal speci�cation of what the program
is to do. We have de�ned what the program must establish, i.e. sort a particular kind

9.4 Re�ne and decompose the speci�cation 51

of network of processes (de�nition 9.12), we have de�ned under which conditions it must
achieve that, i.e. there is a total ordering on the processes' data values; there is an anti-
symmetric and transitive relation on the processes' labels; and there is a restriction upon
the failures that may occur (de�nition 9.17). There is, however, one, important but obvious,
thing that must be embodied in the speci�cation. During the activity of sorting the network,
we want the distribution of the values among the processes to remain a permutation of the
initial distribution (i.e. the one with which the program started). If we do not require
this, a simple program which just assigns the same value to all processes would achieve, by
re
exitivity of �v, a sorted network (according to de�nition 9.12). And this is obviously not
what we want. Evidently, the distribution of the values among the processes in a network
Network(P;C; V), is described by the function V . So if we presume that V 0 is the initial
value of V , we demand that, during the whole execution of the program, V is a permutation
of V 0. In other words, we require that Permutation(P;V;V 0) (see de�nition 9.19 below) is an
invariant of our program.

De�nition 9.19 Permutation Perm DEF

Let P be a set of values, and let V and V 0 be two functions such that

{ Dom(V) = Dom(V 0) = P

{ Im(V) = Im(V 0)

Then V is a permutation of V 0 if:

Permutation(P;V;V 0) =

9f 2 P ! P : (8i 2 P : (f i) 2 P) ^ (Bijectionf) ^ (8i 2 P : (V i) = (V 0(f i)))

J

We are now ready to present the formal speci�cation of the program in terms of the con-
vergence operator.

Speci�cation 9.20

Network(P;C; V) ^ Total(�v; V) ^ (�p 6= ;)
AntiSymmetric(�p; P) ^ Transitive(�p; P) ^ Su�cientConnections(C;�p)

(` �Permutation(P;V;V 0)) ^ (Permutation(P;V;V 0) ` (V = V 0) Sorted(P;V;�p;�v))
J

9.4 Re�ne and decompose the speci�cation

This subsection describes the re�nement and decomposition of convergence-part of speci�ca-
tion 9.20. Since HOL veri�cation is done in latter stages, the intermediate predicates, which
result from re�nement or decomposition by applying UNITY rules, are written down with
accuracy. Consequently, some predicates may appear strange to the reader, because these
predicates contain super
uous information. The validity of Network(P;C; V), Transitive(�p),

9.4 Re�ne and decompose the speci�cation 52

Su�cientConnections(C;�p), AntiSymmetric(�p) and Total(�v) shall be implicitly assumed.
Consequently, the speci�cation which will be re�ned is:

S0 : Permutation(P;V;V 0) ` (V = V 0) Sorted(P;V;�p;�v)

The solution strategy20 which shall be used to re�ne S0, is one that reduces the number
of wrong pairs of processes. In other words, during the execution of a program { which
uses this strategy to sort a network (as speci�ed by S0) { the number of wrong pairs of
processes must be reduced. Let jWrongPairs(P;V;�p;�v)j denote the number of elements in
the set WrongPairs(P;V;�p;�v), that is the number of wrong pairs in the network. The-
orem 9.16 imparts that in a sorted network there are no wrong pairs of processes (i.e.
jWrongPairs(P;V;�p;�v)j = 0). Consequently, since jWrongPairs(P;V;�p;�v)j is always a value
from N0, the less-than (<) is known to be a well-founded relation on N0, and since the
value of jWrongPairs(P;V;�p;�v)j reduces during the execution of a program that exploits our
solution strategy, the network shall eventually get sorted. We shall now re�ne S0 according
to this opposed solution strategy. For the sake of readability:

� all predicate con�nement constraints, which must be satis�ed in order for some laws
to be applicable, are gathered into a set called Conf, which shall be expanded at the
end of this section.

� The stability requirements (i.e. Permutation(P;V;V 0) in S0) are omitted from the spec-
i�cations. So S0 becomes:

S0 : (V = V 0) Sorted(P;V;�p;�v)

Before we continue it must be pointed out that when mechanical veri�cation is attempted,
one must be prepared to deal with every detail explicitly.

Let us start by rewriting speci�cation S0 into a more suitable form. Since everything
implies true and Sorted(P;V;�p;�v) = (jWrongPairs(P;V;�p;�v)j = 0), we can use substitu-

tion (theorem 6.41) to derive:

S0 : (V = V 0) Sorted(P;V;�p;�v)

((substitution 6.41)

S1 : true (jWrongPairs(P;V;�p;�v)j = 0)

where, behind the scenes, the set Conf becomes:

f(V = V 0); Sorted(P;V;�p;�v)g

Now S1 shall be re�ned according to the solution strategy informally described above. Recall
the Bounded Progress principle for (theorem 6.46).

P; J :
(q q) ^ (8M :: p ^ (m =M) (p ^ (m �M)) _ q)

p q

20There are other possible solution strategies, see for example [CM88].

9.4 Re�ne and decompose the speci�cation 53

The principle states that if A is a set of values on which a well-founded relation � is de�ned
and if m 2 A, then in a UNITY program P which will either establish q or decrease m,
eventually q will hold since � is well-founded and hence cannot be decreased forever. Evi-
dently our solution strategy is an instance of this principle. Let us apply this principle to S1:

S1 : true (jWrongPairs(P;V;�p;�v)j = 0)

((Bounded Progress 6.46, < well-founded on N0, jWrongPairs(P;V;�p;�v)j 2 N0)

S2 : (jWrongPairs(P;V;�p;�v)j = 0) (jWrongPairs(P;V;�p;�v)j = 0)
^
S3 : 8m 2 N0 :

jWrongPairs(P;V;�p;�v)j = m (jWrongPairs(P;V;�p;�v)j < m_jWrongPairs(P;V;�p;�v)j = 0)

S2 can be decomposed into smaller speci�cations, using Reflexivity and �Conjunc-

tion:

S2 : (jWrongPairs(P;V;�p;�v)j = 0) (jWrongPairs(P;V;�p;�v)j = 0)

((Reflexivity 6.42)

S2a : �Permutation(P;V;V 0)

^
S2b : �(Permutation(P;V;V 0) ^ jWrongPairs(P;V;�p;�v)j = 0)

((�Conjunction 6.22)

S2c : (�Permutation(P;V;V 0)) ^ (� jWrongPairs(P;V;�p;�v)j = 0)

Decomposing S3 is much more di�cult since it requires some important observations. First,
observe that for the case that m = 0, S3 boils down to S2. Since speci�cations S2a
and S2b already cover this, we can assume m > 0 in decomposing S3. Consequently,
(jWrongPairs(P;V;�p;�v)j = m) equals (jWrongPairs(P;V;�p;�v)j > 0), which is the same as
:Sorted(P;V;�p;�v). As a result, the following lemma can easily be proved for all m > 0
using Theorem 9.18 and the implicit assumption that Su�cientConnections(C;�p).

Lemma 9.21 Nr of Wrong Pairs GREATER 0 IMP EXISTS CONNECTED WP

(jWrongPairs(P;V;�p;�v)j = m) ^m > 0

9i; j 2 P : (i; j) 2 Csym ^ i �p j : (jWrongPairs(P;V;�p;�v)j = m) ^WrongPair
(i;j)

(P;V;�p;�v)
))

J

The following lemma is trivially true for all m. We will need it in a moment in order to
apply Substitution (6.41) to S3, in order to prepare the latter for Disjunction (6.44).

9.4 Re�ne and decompose the speci�cation 54

Lemma 9.22

9i; j 2 P : (i; j) 2 Csym ^ i �p j : (jWrongPairs(P;V;�p;�v)j < m)

(jWrongPairs(P;V;�p;�v)j < m) _ (jWrongPairs(P;V;�p;�v)j = 0)

J

Now, we can rewrite S3 as follows:

S3 : 8m 2 N0 :
jWrongPairs(P;V;�p;�v)j = m (jWrongPairs(P;V;�p;�v)j < m_jWrongPairs(P;V;�p;�v)j = 0)

((Substitution 6.41, lemmas 9.21 and 9.22 and m > 0)

S4 : 8m : m > 0 :
9i; j 2 P : (i; j) 2 Csym ^ i �p j : (jWrongPairs(P;V;�p;�v)j = m) ^WrongPair

(i;j)

(P;V;�p;�v)

9i; j 2 P : (i; j) 2 Csym ^ i �p j : jWrongPairs(P;V;�p;�v)j < m

In order to be able to apply Disjunction to S4, it must hold that:

f(i; j) j i; j 2 P ^ (i; j) 2 Csym ^ (i �p j)g 6= fg

Now one rationale for the assumption �p 6= ;, which was made on page 47, pops up, because
the set f(i; j) j i; j 2 P ^ (i; j) 2 Csym ^ (i �p j)g cannot be proved non-empty if �p can be
empty. Since �p 6= ; is a natural assumption, we were not reluctant to add it in order to
proceed this line of re�nement. Consequently, at this point we went back to phase two and
added the assumption �p 6= ;, thereby endorsing that program development is an iterative
and non-linear process.

The proof that f(i; j) j i; j 2 P ^ (i; j) 2 Csym ^ (i �p j)g is not empty is given after the
following lemma that formally states this proof obligation:

Lemma 9.23 EXISTS AT LEAST ONE CONNECTION THAT CAN BE A WP

�p 6= ; ^ Su�cientConnections(C;�p)

f(i; j) j i; j 2 P ^ (i; j) 2 Csym ^ (i �p j)g 6= ;
J

We shall prove this lemma by contradiction.
Assume �p 6= ;, Su�cientConnections(C;�p) and f(i; j) j i; j 2 P ^ (i; j) 2 Csym ^ (i �p

j)g = ;. The last assumption implies that (�p \C
sym) = ;. From Su�cientConnections(C;�p)

it can then be derived that �p= ;, which contradicts the assumptions.

9.4 Re�ne and decompose the speci�cation 55

Now Disjunction can be applied to S4:

S4 : 8m : m > 0 :
9i; j 2 P : (i; j) 2 Csym ^ i �p j : (jWrongPairs(P;V;�p;�v)j = m) ^WrongPair

(i;j)

(P;V;�p;�v)

9i; j 2 P : (i; j) 2 Csym ^ i �p j : jWrongPairs(P;V;�p;�v)j < m

((Disjunction 6.44 and lemma 9.23)

S5 : 8m : m > 0 :
8i; j 2 P : (i; j) 2 Csym ^ i �p j :

((jWrongPairs(P;V;�p;�v)j = m)^WrongPair
(i;j)

(P;V;�p;�v)
) (jWrongPairs(P;V;�p;�v)j < m)

((Introduction 6.40)

S6a : 8m : m > 0 :
�(Permutation(P;V;V 0) ^ jWrongPairs(P;V;�p;�v)j < m)

^
S6b : 8m : m > 0 :

8i; j 2 P : (i; j) 2 Csym ^ i �p j :

Permutation(P;V;V 0) ^ ((jWrongPairs(P;V;�p;�v)j = m) ^WrongPair
(i;j)

(P;V;�p;�v)
)

ensures

jWrongPairs(P;V;�p;�v)j < m

The re�nement is now completed since the progress parts are solely expressed in terms of
ensures . So we have decomposed and re�ned speci�cation S0 into:

S0 (S2c ^ S6a ^ S6b ^ Conf

Which, after applying �Conjunction to S6a, comes down to:

S0 : Permutation(P;V;V 0) ` (V = V 0) Sorted(P;V;�p;�v)

(

S2c : (�Permutation(P;V;V 0)) ^ (� jWrongPairs(P;V;�p;�v)j = 0)
^
S6a : (8m : m > 0 : �(jWrongPairs(P;V;�p;�v)j < m))
^
S6b : 8m : m > 0 :

8i; j 2 P : (i; j) 2 Csym ^ i �p j :

(Permutation(P;V;V 0)) ^ ((jWrongPairs(P;V;�p;�v)j = m) ^WrongPair
(i;j)

(P;V;�p;�v)
)

ensures

jWrongPairs(P;V;�p;�v)j < m

^

Conf

9.5 Construct a program which satis�es this re�ned speci�cation 56

prog Sort

read fV i j i 2 Pg
write fV i j i 2 Pg
init V = V 0

assign []i; j : (i; j 2 P) ^ (i �p j) ^ (i; j) 2 Csym ::
(V i); (V j) :=min�v

(V i; V j), max�v
(V i; V j)

Figure 15: The sorting program
J

Where Conf is the set:

f (V = V 0); Sorted(P;V;�p;�v),
(jWrongPairs(P;V;�p;�v)j = 0),

jWrongPairs(P;V;�p;�v)j = m;

jWrongPairs(P;V;�p;�v)j < m;

WrongPair
(i;j)

(P;V;�p;�v)

g

9.5 Construct a program which satis�es this re�ned speci�cation

Now, a UNITY program must be constructed from the re�ned and decomposed speci�cation
which was given at the end of the previous section. Considering the properties of the network
{ principally the property that a process can only communicate with one other process at
the same time { it is evident that the only thing two connected processes can do is compare
their values and swap them if they are out-of-order with respect to the processes' labels. The
resulting program, which di�ers only slightly from the one given in Figure 10, is presented
in Figure 15. Note that the program performs a topological sort on the directed acyclic
graph G�p

.
To prove that the program in Figure 15 is a well-formed UNITY program. According

to section 6.2.2 we must show that the program is an element of the language generated by
the grammer which was presented in section 6.2.1, and that the following four requirements
are met.

i. The actions of the program should be always-enabled

ii. A write variable is also readable.

iii. The actions of a program should only write to the declared write variables.

iv. The actions of a program should only depend on the declared read variables.

The validity of these requirements can trivially be established by inspecting the program
code in Figure 15.

In order to verify that the UNITY program Sort satis�es speci�cation 9.20, we have
to show that, if Network(P;C; V),Su�cientConnections(C;�p), AntiSymmetric(�p), Total(�v)

9.5 Construct a program which satis�es this re�ned speci�cation 57

and Transitive(�p) hold, then the program satis�es S0 and (` �Permutation(P;V;V 0)). Before
we do this, let us �rst look more closely at the program and some of its properties.

All actions, which can be non-deterministically selected during the execution of the pro-
gram, do the same: the data values of two connected processes are compared and swapped
if and only if these values are out-of-order with respect to the processes's labels. Swapping
the data values of two connected processes i and j, means that process i stores the data
value of process j in its local variable and vice versa. Furthermore, during the execution
of an action only the values that reside in wrong pairs of processes are swapped, and only
two processes at the same time are considered so that the data values of all other processes
are unchanged. The following de�nition states the predicate which holds after executing an
action which swapped two data values. Since we are considering state transitions caused by
singular actions, we have to abandon the overloading mentioned in section 6.1 and explicitly
write down the states in this de�nition. While the only variables present in the program are
those returned by the function V , we can simply eliminate the overloading by composing all
occurrences V with the right state. And because, as a notational convention, the subscripts
of the predicates (e.g. WrongPairs) contained the arguments of the predicate, replacing V

by for example (s � V) raises no problems.

De�nition 9.24 Two processes have swapped their values Two Elts Swapped DEF

For all a 2 aSort, if a:s:t holds then executing action a in state s resulted in swapping two
data values of a wrong pair of processes if and only if the predicate Swapped(s;t;P;V;�p;�v)

holds.
Swapped(s;t;P;V;�p;�v) =

9i; j 2 P : WrongPair
(i;j)
(P;(s�V);�p;�v)

^ (8k 2 P : (k 6= i ^ k 6= j)) (s�V) k = (t�V) k)
^ (s�V) i = (t�V) j ^ (s�V) j = (t�V) i

J

Every action swaps the data values of two connected processes only if these values are out-
of-order, and does nothing otherwise. Consequently, the following can be easily inferred for
all actions a 2 aSort and all states s and t:

a:s:t

Swapped(s;t;P;V;�p;�v) _ (s � V) = (t � V)
(9.8)

Now let us turn to our speci�cation and show that our program satis�es S2c, S6a and S6b.
It can easily be veri�ed that program Sort satis�es S2c. Firstly, if an action of the pro-

gram results in changing a process' data value then this value is exchanged (i.e. substituted)
for a data value of another process. Consequently, the distribution of the data values among
the processes remains a permutation of the initial distribution, i.e. Permutation(P;V;V 0) is
stable. Secondly, since only out-of-order-pairs are swapped no swapping whatsoever will
be done if the network is sorted, so (jWrongPairs(P;V;�p;�v)j = 0) is stable. Less trivial,
however, is to recognise that the stability predicate S6a and the progress property S6b are
satis�ed. In order to show their satis�ability, it turns out to be su�cient to prove that
our program employs the solution strategy which was introduced in section 9.4, that is if

9.5 Construct a program which satis�es this re�ned speci�cation 58

two processes swap their data values, then the total number of wrong pairs of processes
decreases. In other words, we must prove that if the program �nds itself in some state s in
which holds that there still exist wrong pairs of processes, then if t is the state in which the
program results after swapping the data values of some connected wrong pair (which exists
because of theorem 9.18), then the number of wrong pairs in state t is less than the number
of wrong pairs in state s. More formally, in order to show that S6a and S6b are satis�ed by
the program, it su�ces to betoken that for all m 2 N0 and states s and t:

jWrongPairs(P;(s�V);�p;�v)j = m ^ Swapped(s;t;P;V;�p;�v)

jWrongPairs(P;(t�V);�p;�v)j < m
(9.9)

Let us �rst assume that 9.9 holds and prove that the program satis�es S6a and S6b.

S6a : (8m : m > 0 : �(jWrongPairs(P;V;�p;�v)j < m))

= (de�nition 6.16 and 6.13)

8m : m > 0 : (8a 2 aSort : fjWrongPairs(P;V;�p;�v)j < mgafjWrongPairs(P;V;�p;�v)j < mg)

= (6.2)

8m : m > 0 : (8a 2 aSort : 8s; t ::
(jWrongPairs(P;(s�V);�p;�v)

j < m ^ a:s:t)) jWrongPairs(P;(t�V);�p;�v)
j < m)

So, to show that S6a is satis�ed it must be demonstrated that for all m > 0, for all actions
a 2 aSort and for all states s and t holds that:

jWrongPairs(P;(s�V);�p;�v)
j < m ^ a:s:t

jWrongPairs(P;(t�V);�p;�v)
j < m

Assume jWrongPairs(P;(s�V);�p;�v)j < m and a:s:t, then, following 9.8, there are two possible
cases that can be distinguished:

Case (s � V) = (t � V) is easy, since (s�V) = (t�V) implies that WrongPairs(P;(s�V);�p;�v)

equals WrongPairs(P;(t�V);�p;�v), which immediately establishes the proof.

Case Swapped(s;t;P;V;�p;�v)| From the assumption that jWrongPairs(P;(s�V);�p;�v)j < m

we can deduce that there exists a k < m such that jWrongPairs(P;(s�V);�p;�v)j = k.
From 9.9 we then know that jWrongPairs(P;(t�V);�p;�v)j < k, which establishes the
proof since k < m.

This proves the requirement that S6a is satis�ed by the program from Figure 15. Now let
us turn to S6b.

S6b : 8m : m > 0 :
8i; j 2 P : (i; j) 2 Csym ^ i �p j :

Permutation(P;V;V 0) ^ (jWrongPairs(P;V;�p;�v)j = m) ^WrongPair
(i;j)

(P;V;�p;�v)

ensures

9.5 Construct a program which satis�es this re�ned speci�cation 59

jWrongPairs(P;V;�p;�v)j < m

= (de�nition of ensures 6.11)

8m : m > 0 :
8i; j 2 P : (i; j) 2 Csym ^ i �p j :

Permutation(P;V;V 0) ^ (jWrongPairs(P;V;�p;�v)j = m) ^WrongPair
(i;j)

(P;V;�p;�v)

unless

jWrongPairs(P;V;�p;�v)j < m

^
9a 2 aSort :
fPermutation(P;V;V 0) ^ (jWrongPairs(P;V;�p;�v)j = m)^

WrongPair
(i;j)

(P;V;�p;�v)
) ^ :(jWrongPairs(P;V;�p;�v)j < m)

g a fjWrongPairs(P;V;�p;�v)j < mg

So, to con�rm that S6b is satis�ed it must be argued that for allm, for all actions a 2 aSort,
for all processes i and j and for all states s and t the following two conjectures hold:

(C1) After rewriting with de�nition 6.10 and with (6.2) (the latter which can be found
on 17)

a:s:t ^ m > 0 ^ (i; j) 2 Csym ^ Permutation(P;(s�V);V 0)

WrongPair
(i;j)

(P;V;�p;�v)
^ (jWrongPairs(P;(s�V);�p;�v)

j = m)

: (jWrongPairs(P;V;�p;�v)j < m)

(Permutation(P;(t�V);V 0) ^ (jWrongPairs(P;(t�V);�p;�v)
j = m)

WrongPair
(i;j)

(P;(t�V);�p;�v)
) _ jWrongPairs(P;(t�V);�p;�v)

j < m

(C2)

9a 2 aSort :

a:s:t ^ m > 0 ^ (i; j) 2 Csym ^ Permutation(P;(s�V);V 0)

WrongPair
(i;j)

(P;(s�V);�p;�v)
^ (jWrongPairs(P;(s�V);�p;�v)

j = m)

: (jWrongPairs(P;(s�V);�p;�v)
j < m)

jWrongPairs(P;(t�V);�p;�v)
j < m

Conjecture C1 can be easily proved, for if, after executing action a:

� (s � V) = (t � V) holds, then the �rst disjunct of C1's conclusion trivially holds

� Swapped(s;t;P;V;�p;�v) holds, then 9.9 immediately con�rms the second disjunct ofC1's
conclusion.

In order to prove conjecture C2, we must show that there exists an action which reduces
the number of wrong pairs of processes, given that there exists at least one connected wrong
pair of processes. Because (i; j) 2 Csym can be assumed, this action is:

a = (t � V) i); (t � V) j) := min�v
((s � V) i; (s � V) j);max�v

((s � V) i; (s � V) j),

9.5 Construct a program which satis�es this re�ned speci�cation 60

5

1

6

2

2

4

4

7

3

3

1i j

Figure 16: The possible edges in the set WrongPairs(P;(s�V);�p;�v), when (i; j) 2
WrongPairs(P;(s�V);�p;�v).

J

which, since WrongPair
(i;j)
(P;(s�V);�p;�v)

can be assumed, equals

a = (t � V) i; (t � V) j := (s � V) j; (s � V) i).

Instantiating C2's assumptions with this action a, validates Swapped(s;t;P;V;�p;�v) and
(jWrongPairs(P;(s�V);�p;�v)j = m), which, using 9.9, establishes C2.

Recapitulating, we have shown that if 9.9 holds, then our program Sort satis�es the
sub-speci�cations S6a and S6b. So to �nish the veri�cation of our program's satis�ability
to S0, it su�ces to show that all elements of Conf are elements of Pred:(wSort), and that
theorem 9.9 holds. The latter is repeated below for convenience:
for all m 2 N0 and states s and t:

jWrongPairs(P;(s�V);�p;�v)j = m ^ Swapped(s;t;P;V;�p;�v)

jWrongPairs(P;(t�V);�p;�v)j < m
(9:9)

Assume jWrongPairs(P;(s�V);�p;�v)j = m and Swapped(s;t;P;V;�p;�v). From these assump-
tions we can infer that there exists a pair of processes of which the data values are swapped
during the state-transition from s to t, let us call this pair (i; j). Now, for an arbitrary state
s, we look at WrongPairs(P;(s�V);�p;�v) and split this set up in seven disjoint sets using i

and j.

For any state s:

WrongPairs(P;(s�V);�p;�v)
= WP

1
s [WP

2
s [WP

3
s [WP

4
s [WP

5
s [WP

6
s [WP

7
s (9.10)

where

9.5 Construct a program which satis�es this re�ned speci�cation 61

WP1
s = f(x; y)jx; y 2 P ^ x �p y ^ :((s � V)x �v (s � V)y) ^ x 6= i ^ x 6= j ^ y 6= i ^ y 6= jg

WP2
s = f(x; y)jx 2 P ^ x 6= i ^ x 6= j ^ x �p i ^ (y = i _ y = j) ^ :((s � V)x �v (s � V)y)g

WP3
s = f(x; y)jy 2 P ^ y 6= i ^ y 6= j ^ j �p y ^ (x = i _ x = j) ^ :((s � V)x �v (s � V)y)g

WP4
s = f(x; y)j((x = i ^ y 6= j ^ i �p y ^ y �p j) _ (y = j ^ x 6= i ^ i �p x ^ x �p j))

^:((s � V)x �v (s � V)y)g

WP5
s = f(i; j)ji �p j ^ :((s � V)i �v (s � V)j`)g

WP6
s = f(i; y)jy 6= j ^ i �p y ^ :(j �p y) ^ :(y �p j) ^ :((s � V)i �v (s � V)y)g

WP7
s = f(x; j)jx 6= i ^ x �p j ^ :(x �p i) ^ :(i �p x):((s � V)x �v (s � V)j)g

and:

8k; l : k; l = 1; 2; : : : ; 7 ^ k 6= l : WP
k
s \ WP

l
s = ; (9.11)

From Figure 16, which shows the directed graph G�p
, one can deduce how the edges in

the set WrongPairs(P;(s�V);�p;�v) are divided among the seven sets above. The numbers
associated with the edges correspond with the set WPs in which they reside. Edges in set
WP1

s, are edges between two nodes which are neither i nor j. Edges inWP2
s are the incoming

edges of i, and those incoming edges of j which result from the transitivity of �p on the
incoming edges of i and the edge (i; j). Set WP3

s consists of the outgoing edges of j, and
those outgoing edges of i which result from �p's transitivity on the outgoing edges of j
and the edge (i; j). WP4

s contains the incoming edges of a node k, which is neither i nor j,
and for which holds that i �p k �p j. Set WP5

s is the singleton set with edge (i; j). WP6
s

comprises the edges (i; k), where k is not �p-related to j (i.e. neither k �p j nor j �p k

hold). Finally, WP7
s is the set of the edges (k; j), where k is not �p-related to i.

From 9.10 and 9.11, the validation of which are left as simple exercises to the reader, it
follows that:

jWrongPairs(P;(s�V);�p;�v)
j = jWP

1
sj+ jWP

2
sj+ jWP

3
sj+ jWP

4
sj+WP

5
s + jWP

6
sj+ jWP

7
sj(9.12)

The proof of 9.9 now proceeds by comparing the cardinality of the di�erent WP's in tran-
sition states s and t.

jWP1
sj = jWP1

t j, because the assumption Swapped(s;t;P;V;�p;�v) indicates that the data values
of processes other than i and j do not change.

jWP2
sj = jWP2

t j| In order to prove this equality, it su�ces to show that there exists a bijec-
tion f from WP2

s to WP2
t . Below a function f is given which satis�es this constraint.

f = �(x; y):if y = i then (x; j) else (x; i).

The proof that f is a bijection is left as an exercise to the reader.

jWP3
sj = jWP3

t j| A similar proof as the one for jWP2
sj = jWP2

t| applies. A satisfactory
bijection is:

�(x; y):if x = i then (j; y) else (i; y).

9.5 Construct a program which satis�es this re�ned speci�cation 62

jWP4
t j � jWP4

sj| To prove this it is su�cient to verify that WP4
t � WP4

s, i.e. 8(x; y) ::
(x; y) 2 WP4

t) (x; y) 2 WP4
s. Suppose we have a pair (x; y) 2 WP4

t , now we must
show that (x; y) 2 WP4

s. From the de�nition of WP4
t we learn that there are two

possibilities:

�1 x = i, y 6= j and :((t � V)i �v (t � V)y).

Assuming these conditions, we must show that (i; y) 2WP4
s. Because we already

have that x = i, y 6= j, i �p y and y �p j, we only have to prove that :((s�V)i �v

(s � V)y), which is equal to (s � V)y �v (s � V)i since �v is a total order. From
the assumption that :((t � V)i �v (t � V)y) it can be deduced that:

1. y 6= i, because of the re
exivity of �v and the fact that :((t�V)i �v (t�V)y)
holds.

2. (t � V)y �v (t � V)i, for �v is a total order.

From the assumption Swapped(s;t;P;V;�p;�v) and its presumed instantiation with
(i; j), the following can be inferred:

3. (t � V)i �v (t � V)j

4. (t � V)j = (s � V)i

5. (s �V)y = (t �V)y, because from 1 we can conclude that y is neither i nor j.

Now the transitivity and totality of �v establishes that (s � V)y �v (s � V)i,
since:

(s � V)y
(5)
= (t � V)y)

(2)
�v (t � V)i

(3)
�v (t � V)j

(4)
= (s � V)i

�2 y = j, x 6= i and :((t � V)x �v (t � V)j).

In this case we must show that (x; j) 2WP4
s, which again comes down to showing

that (s � V)j �v (s � V)x holds. Analogous to the previous proof this can be
done by showing:

(s � V)j = (t � V)i �v (t � V)j �v (t � V)x = (s � V)x

.

jWP5
t j < jWP5

sj, because jWP5
sj and jWP5

t j equal 1 and 0 respectively.

jWP6
t j � jWP6

sj and jWP7
t j � jWP7

sj, since �1 and �2 from the proof that jWP4
t j � jWP4

sj show,
that WP6

t �WP6
s and WP7

t �WP7
s respectively.

Since, the above seven items indicate that

jWP1
t j + jWP2

t j + jWP3
t j + jWP4

t j + WP5
t + jWP6

t j + jWP7
t j <

jWP1
sj + jWP2

sj + jWP3
sj + jWP4

sj + WP5
s + jWP6

sj + jWP7
sj

this completes the proof of 9.9, because, according to 9.12, this means:

jWrongPairs(P;(t�V);�p;�v)j < jWrongPairs(P;(s�V);�p;�v)j:

9.6 Represent the program in the HOL embedding of UNITY 63

To complete the proof that the program satis�es speci�cation 9.20, we still have to verify
that the following:

1. 8p 2 Conf: p 2 Pred:(wSort)

2. (` �Permutation(P;V;V 0))

Veri�cation of the �rst condition is left as an exercise to the reader, and the second condition
can easily be proved by applying de�nition 6.17 and S2c.

9.6 Represent the program in the HOL embedding of UNITY

In order to represent the whole UNITY program from Figure 15 in HOL, we must start
by de�ning the HOL-representation of processes, connections and networks of processes.
Since processes can be uniquely identi�ed by their labels, a process can be represented by
its label. In HOL this can be established by:

let process = ":*pType";;

That is, the type variable *pType denotes the type of the processes's labels, and a process
is modelled by something of this type. The ordering �p on the processes's labels and the
ordering �v on the processes's data values now have types process_Ord and value_Ord

respectively.

let process_Ord = ":^process -> ^process -> bool";;

let value_Ord = ":*val -> *val -> bool";;

Since connections are tuples of processes, they are modelled by the following type:

let connection = ": ^process # ^process";;

The function V that, given a process, returns the local variable of that process has the type
proc_vars (which is short for process variables):

let proc_vars = ":^process -> *var";;

And the function that results from the composition of the function V with some state s has
the following type:

let proc_vals = ":^process -> *val";;

Since a network of processes is a triple (P;C; V), where P is a set of processes, C is a set
of connections and V a function of type proc_vars, the type of a network of processes is
de�ned in HOL as:

let connections = ":(^connection)set";;

let processes = ":(^process)set";;

let network = ":^processes # ^connections # proc_vars";;

9.7 Proof that the program is well-formed 64

let Sort_PROG = new_definition

(`Sort_PROG`,

"Sort ((P, C, V):^network)

(V':^proc_vals)

(vOrd:^value_Ord)

(pOrd:^process_Ord) =

(CHF{Assign2 (V i, V j) (Min vOrd (V i) (V j),

Max vOrd (V i) (V j)) | (i IN P) /\ (j IN P) /\ (pOrd i j)

/\ (i,j) IN (Symmetric_Closure C)},

(VALUES_EQ V V'),

CHF{A (i:^process) | i IN P} ,

CHF{A (i:^process) | i IN P})");;

Figure 17: The HOL de�nition of the program Sort.

J

Before the HOL representation of the UNITY program can be made, we have to resolve the
overloading on the symbol = in the initial condition of the program in Figure 15. Following
de�nition 9.11, we de�ne the following in HOL:

let Values_EQ = new_definition

(`Values_EQ`,

"Values_EQ (V:^proc_vals) (V':^proc_vals)

= !(i:^process). (V i = V' i)");;

and the \lifted" version:

let VALUES_EQ = new_definition

(`VALUES_EQ`,

"VALUES_EQ (V:^proc_vars) (V':^proc_vals)

= (\s:^State. Values_EQ (s o V) V')");;

As an aside, throughout our HOL code we use the convention that for every state-dependent
de�nition there are two HOL de�nitions, viz. one that de�nes the intended concept and a
lifted version, written in small letters and capital letters respectively.

Now the construction of the HOL representation of the UNITY program is straightfor-
ward, and depicted in Figure 17.

9.7 Proof that the program is well-formed

To prove the well-formedness of the UNITY program, we must check the validity of the �ve
conditions of which the predicate Unity consists.

Unity:P = (8a : a 2 aP : �Ena) ^ (wP � rP) ^

(8a : a 2 aP : (wP)c 8 a) ^ (8a : a 2 aP : (rP)c 9 a)

Whereas the �rst three conditions are easy to prove, the last condition, from now on called
the read constraint, turns out to be [Pra95] very di�cult to prove if a shallow embedding

9.7 Proof that the program is well-formed 65

of the programming logic is not available. As promised in section 8 the UNITY embedding
shall therefore be made deeper than the one presented in [Pra95]. Moreover, a tactic shall
be presented that automatically proves the read constraint on an arbitrary syntactically
correct (see page 20) UNITY program.

We start with de�ning the notion of invisibility for state-expressions, that is for some
expression e and for some set V of variables we de�ne a su�cient condition that states when
the variables in V are invisible to e and hence do not in
uence e.

De�nition 9.25 variables Invisible-to expressions Exp INVI DEF

V 9e e

=
(8s; s0 :: (s�V c = s0 �V c)) e:s = e:s0)

J

Next, we formalise state-expressions in HOL. Below are some HOL de�nitions for conditional
expressions (i.e. . . . =) . . .� . . .), expressions consisting of only a variable, expressions for
adding, and boolean expressions (i.e. state-predicates) that compare if their �rst argument
is less-than their second argument.

let Expr = ":^State -> *val";;

let num_Expr = ":^State->num";;

let bool_Expr = ":^State->bool";;

let VAR_EXPR_DEF = new_definition

(`VAR_EXPR_DEF`,

"VAR_EXPR (v:*var) = (\(s:^State). (s v))");;

let COND_EXPR_DEF = new_definition

(`COND_EXPR_DEF`,

"COND_EXPR (P:^bool_Expr) (E1:^Expr) (E2:^Expr)

= (\s. (P s) => (E1 s) | (E2 s))");;

let ADD_EXPRS_DEF = new_infix_definition

(`ADD_EXPRS_DEF`,

"ADD_EXPRS (E1:^num_Expr) (E2:^num_Expr)

= (\(s:^State). (E1 s) + (E2 s))");;

let LT_DEF = new_infix_definition

(`LT_DEF`,

"LT (E1:^num_Expr) (E2:^num_Expr) = (\(s:^State). (E1 s) < (E2 s))");;

Now we must construct and prove theorems that state when these expressions are invisible
to a set of variables, see Figure 18. Since these theorems will be used to prove the read
constraint (i.e. (8a : a 2 aSort : (rSort)c 9e a)), they state when expressions are invisible
to the complement of a set of variables.

Finally we can create theorems that state when actions are invisible to the complement
of a set of variables, see Figure 19. Theorem 9.30 expounds when a simultaneous assignment
action, the de�nition of which was given in 6.7 on page 18 and the HOL representation of
which was presented in section 7.2, is invisible to the complement of some set. Other single

9.7 Proof that the program is well-formed 66

For some set R of variables:

Theorem 9.26 VAR EXPR SAT RC

Let v be a variable.

(R v)

(Rc
9e (�s:(s v)))

Theorem 9.27 COND EXPR SAT RC

Let P be some state-predicate (i.e. boolean expression), and
let E1 and E2 be two state-expressions:

(Rc
9e P) ^ (Rc

9e E1) ^ (Rc
9e E2)

(Rc
9e (�s:P:s =) E1:s � E2:s))

Theorem 9.28 ADD EXPRS SAT RC

let E1 and E2 be two state-expressions:

(Rc
9e E1) ^ (Rc

9e E2)

(Rc
9e (�s:E1:s+E2:s))

Theorem 9.29 ALL ORD GUARD SAT RC

let E1 and E2 be two state-expressions, and let � be some ordering
on elements with values from Val:

(Rc
9e E1) ^ (Rc

9e E2)

(Rc
9e (�s:E1:s � E2:s))

Figure 18: Invisibility of state-expressions.
J

actions have similar theorems, we only present this one here since it is used in our sorting
program from �gure 17. Theorem 9.31 expresses the conditions that have to be satis�ed in
order to show invisibility of a guarded action.

With all se theorems we can easily prove that the read constraint is satis�ed for a
syntactically correct UNITY program. For example, for a UNITY program of which the as-
signments can only assign to two variables at the same time, the following tactic immediately
proofs the read constraint:

REPEAT

(PROVE_IS_ELT_TAC

ORELSE MATCH_MP_TAC Assign2_SAT_RC

ORELSE MATCH_MP_TAC Guard_Action_SAT_RC

ORELSE MATCH_MP_TAC COND_EXPR_SAT_RC

ORELSE MATCH_MP_TAC ALL_ORD_GUARD_SAT_RC

ORELSE MATCH_MP_TAC ADD_EXPRS_SAT_RC

ORELSE MATCH_MP_TAC VAR_EXPR_SAT_RC

ORELSE REPEAT CONJ_TAC

)

9.7 Proof that the program is well-formed 67

For some set R of variables:

Theorem 9.30 Assign2 SAT RC

Let x; y 2 Var, let E1 and E2 be two state-expressions, and let R be
a set of variables (i.e. R � Var).

(R x) ^ (R y) ^ (Rc
9e E1) ^ (Rc

9e E2)

(Rc
9 assign2:(x; y):(E1; E2))

Theorem 9.31 Guard Action SAT RC

Let g be some state-predicate (i.e. boolean-expression), let a and b

be two actions, and let R be a set of variables (i.e. R � Var).

(Rc
9e g) ^ (Rc

9 a) ^ (Rc
9 b)

(Rc
9 if g then a else b)

Figure 19: Invisibility of actions
J

where PROVE_IS_ELT_TAC is a tactic that proves that a variable is an element of the declared
read variables. Applied to a read constraint, this tactic basically works as a loop (see Figure
9.7). During the �rst iteration, it tries to match one of the the conclusions of theorems 9.26
up to and including 9.31 with the proof goal, thereby generating a new subgoal. Looking at
the hypothesis of theorems 9.26 up to and including 9.31 we see that this generated subgoal
can take three forms:

1. (R v), i.e. it must be proved that a variable is a declared read variable.

2. another invisibility predicate, i.e. (Rc
9e e) or (R

c
9 a)

3. a conjunction of forms 1 and 2.

During the subsequent iterations the tactic is repeatedly applied to the generated subgoals.
Subgoals of the form (1) are immediately proved by the tactic PROVE_IS_ELT_TAC. Subgoals
of form (2) or (3), cause the generation of new subgoals. From a subgoal g of form (2), a
new subgoal of form (1), (2) or (3) is generated by matching g to one of the the conclusions
of theorems 9.26 up to and including 9.31. From a subgoal g of form (3), new subgoals of
forms (1) or (2) are generated by REPEAT CONJ_TAC, which repeatedly splits the conjunctive
goal g into its di�erent conjuncts. Since, ultimately all generated subgoals shall have form
(1), the tactic eventually proves every conjecture of the form (Rc

9 a).
Although we now have a tactic which automatically proves the read constraint on the

UNITY program of Figure 17, what we really want is a tactic that proves the read constraint
for every syntactically correct UNITY program, i.e. UNITY programs whose assignment
actions can assign values to an arbitrary number of variables at the same time.

The way in which we currently represent assignment actions in HOL is by a separate
HOL de�nition for every number n, n > 0, where n denotes the number of variables to
which some value is assigned by the assignment statement. Consequently, in order to be

9.7 Proof that the program is well-formed 68

goals = f read-constraint g

while there still exists a g 2 goals
do

if g has the form (Rc
9e e) or (R

c
9 a)

then match g to one of the conclusions of theorems 9.26 up to and including
9.31, and add the hypothesis of the matching theorem to the set goals.

if g has the form R v

then prove goal g by PROVE_IS_ELT_TAC

if g is a conjunction
then split g into its di�erent conjuncts by REPEAT CONJ_TAC

and add these to the set goals

goals = goals �g

od

Figure 20: Proving a read constraint.
J

able to automatically verify the read constraint of a UNITY program which also contains
assignment actions that assign to three variables at the same time, we must:

� add a new HOL-de�nition for \triple-assignment actions":

assign3:(x1; x2; x3):(E1; E2; E3)
=

(�s; t: t:x1 = E1:s) u (�s; t: t:x2 = E2:s) u (�s; t: t:x3 = E3:s) u (skip�fx1; x2; x3g
c)

� prove the following theorem:

Theorem 9.32 Assign3 SAT RC

Let R be a set of variables, let x1; x2 and x3 be three variables, and let E1; E2 and E3 be three
state-expressions.

(Rc
9e E1) ^ (Rc

9e E2) ^ (Rc
9e E3) ^ (R x1) ^ (R x2) ^ (R x3)

(Rc
9 assign3:(x1; x2; x3):(E1; E2; E3)

J

� change our tactic by adding the following line to the inner tactic:

ORELSE MATCH_MP_TAC Assign3_SAT_RC

9.7 Proof that the program is well-formed 69

Evidently this is not very e�cient. Moreover, it will not be possible to construct a tactic
which shall automatically prove the read constraint for an arbitrary UNITY program, since
a limit on the number of variables to which can be assigned at the same time must always be
made. Consequently, we must change our representation of assignment actions, and come
up with one de�nition for every possible assignment statement. Obviously, this can be
achieved by using lists of variables and lists of expressions, since lists can contain arbitrary
numbers of elements.

In the new de�nition of assignment actions, which we are about to give, some well-known
functions that stem from Functional Programming (a good introduction to which can be
found in [BW88]) are used. The de�nitions of these functions are given below by pattern
matching with [] and :. Here [] denotes the empty list, and : is the cons operator on lists
which inserts a value as a new �rst element of a list, e.g. 1:[2,3] = [1,2,3].

map f [] = []

map f (x:xs) = (f x) : map f xs

For instance, map (+2) [1,2,3,4] = [3,4,5,6].

zip [] ys = []

zip xs [] = []

zip (x:xs) (y:ys) = (x,y) : zip xs ys

For instance, zip [1,2,3] [4,5,6] = [(1,4), (2,5), (3,6)].

foldr op e [] = e

foldr op e (x:xs) = x op (foldr op e xs)

For instance, foldr + 0 [1,2,3,4] = 1 + 2 + 3 + 4 + 0. Now we can give the de�ni-
tion of an assignment action;

assign:lv:le = (�s t:(#lv = #le) ^ (#le > 0)) (9.13)

u

foldr(u)(�s t: true)(map update (zip lv le)) (9.14)

u

(skip�(�x::(x 2l lv))) (9.15)

where x 2l xs denotes that x is an element in the list xs; # is an operator which given a
list, returns the number of elements in that list; and update is the following function:

update x e = (�s t: t:x = e:s)

9.13 states that the number of variables at the left hand side of an assignment should be
equal to the number of expressions at the right hand side. Moreover, it expresses that
an assignment action should assign a value to at least one variable.

9.14 describes the state-transition the assignment action should make. In other words, it
de�nes the values of the variables in the new state.

9.8 Prove that the program satis�es the speci�cation 70

9.15 argues that only that values of the variables that occur at the left hand side of the
assignment change, i.e. variables not present in the list lv are left intact.

Furthermore, we need the following theorem, which states the condition an assignment
action must satisfy in order for it to be invisible to the complement of a set of variables.

Theorem 9.33 Assign SAT RC

Let R be a set of variables, let lv be a list of variables, and let le be a list of state-expressions.

(8x 2l lv : (R x)) ^ (8E 2l le : Rc
9e E)

(Rc
9 assign:lv:le

)

J

As a result, the tactic which automatically proves the read constraint for an arbitrary
UNITY program is:

REPEAT

(PROVE_IS_ELT_TAC

ORELSE (MATCH_MP_TAC Assign_SAT_RC

THEN CONVERT_INTO_CORRECT_FORM_TAC)

ORELSE MATCH_MP_TAC Guard_Action_SAT_RC

ORELSE MATCH_MP_TAC COND_EXPR_SAT_RC

ORELSE MATCH_MP_TAC ALL_ORD_GUARD_SAT_RC

ORELSE MATCH_MP_TAC ADD_EXPRS_SAT_RC

ORELSE MATCH_MP_TAC VAR_EXPR_SAT_RC

ORELSE REPEAT CONJ_TAC

)

Note that we have just substituted the tactic MATCH_MP_TAC Assign2_SAT_RC by the tactic
MATCH_MP_TAC Assign_SAT_RC THEN CONVERT_INTO_CORRECT_FORM_TAC.

The tactic CONVERT_INTO_CORRECT_FORM_TAC is a tactic which converts the hypothesis of
Theorem 9.33 into subgoals of the forms (1), (2) or (3) (see page 67).

9.8 Prove that the program satis�es the speci�cation

In order to prove that the program satis�es its speci�cation, we must construct a HOL-proof
which veri�es the following theorem:

Theorem 9.34 Program Sort satisfies the specification SORTING PROG SPECIFICATION

Network(P;C; V) ^ Total(�v; V) ^ (�p 6= ;)
AntiSymmetric(�p; P) ^ Transitive(�p; P) ^ Su�cientConnections(C;�p)

Permutation(P;V;V 0) Sort` (V = V 0) Sorted(P;V;�p;�v)

J

Until now, we have not yet seen a formal de�nition of the predicate Network(P;C; V). Since
we need the HOL de�nition of this predicate in order to represent the above theorem in
HOL, this de�nition is presented in Figure 21. Because a network of processes is represented
as an undirected graph, the HOL de�nitions for graphs are also included in Figure 21.

9.8 Prove that the program satis�es the speci�cation 71

let direction_Axiom =

define_type `direction_Axiom` `direction = DIRECTED | UNDIRECTED`;;

let edge = ":*vType#*vType";;

let vertex = ":*vType";;

let edges = ":(^edge)set";;

let vertices = ":(^vertex)set";;

let info = ":(^vertex -> *infoType)";;

let graph = ":^vertices # ^edges # ^info # direction";;

let Edges = new_definition(`Edges`,

"Edges ((V, E, f, D):^graph) = E");;

let Vertices = new_definition(`Vertices`,

"Vertices ((V, E, f, D):^graph) = V");;

let Info = new_definition(`Info`,

"Info ((V, E, f, D):^graph) = f");;

let Direction = new_definition(`Direction`,

"Direction ((V, E, f, D):^graph) = D");;

let POSSIBLE_EDGES_DEF = new_definition (`POSSIBLE_EDGES_DEF`,

"POSSIBLE_EDGES (V:(*vType)set) (D:direction) =

(D = DIRECTED) => {(u,v) | (u IN V) /\ (v IN V)}

| {(u,v) | (u IN V) /\ (v IN V) /\ ~(u=v)}");;

let Graph_DEF = new_definition (`Graph_DEF`,

"Graph (G:^graph)

= (FINITE (Vertices G))

/\ (~((Vertices G) = {}))

/\ ((Edges G) SUBSET (POSSIBLE_EDGES (Vertices G) (Direction G)))");;

let Conns = new_definition (`Conns`,

"Conns ((P, C, V):^network) = C");;

let Procs = new_definition (`Procs`,

"Procs ((P, C, V):^network) = P");;

let Vals = new_definition (`Vals`,

"Vals ((P, C, V):^network) = V");;

let Network_DEF = new_definition (`Network_DEF`,

"Network (NW:^network)

= Graph (Procs NW, Conns NW, Vals NW, UNDIRECTED) /\

(!(i:^proces) (j:^proces). (~(i=j)) ==> (~(A i = A j)))");;

J

Figure 21: HOL de�nitions for graphs and networks.

9.8 Prove that the program satis�es the speci�cation 72

S0

Values_Eq => true Theorem 9.16

Well founded < S2

lemma 9.21 lemma 9.22 S4 S2c

lemma

S6a S6b

Conf

CON_SUBST

S1

CON_WF_INDUCT

S3

CON_SUBST CON_REFL, STABLE_SIMPLE_CONJ

CON_DISJ

S5

CON_ENSURES_LIFT

Figure 22: The proof tree which must be constructed to prove that the program satis�es
the speci�cation.

J

9.8 Prove that the program satis�es the speci�cation 73

The HOL term which represents speci�cation 9.34 is:

"!(P:^processes) (C:^connections) (V:^proc_vars)

(pOrd:^proces_Ord) (vOrd:^value_Ord).

((Network (P,C,A))

/\ (Sufficient_Connections_In_Network_For_Sorting pOrd (P,C,A))

/\ (SORT_ORDER vOrd P A) /\ (ANTI_SYMM pOrd P) /\ (TRANSITIVE pOrd P)

/\ (NOT_EMPTY pOrd)

==>

!(V':^proc_vals).

(CON ((Sort (P, C, V) V' vOrd pOrd):

(((*var -> *val) -> ((*var -> *val) -> bool)) -> bool)

(((*var -> *val) -> bool)

((*var -> bool)

(*var -> bool))))

(PERM P A A')

(VALUES_EQ A A')

(SORTED P A vOrd pOrd))"

where the HOL de�nition of SORT_ORDER vOrd P A is:

let SORT_ORDER_DEF = new_definition

(`SORT_ORDER_DEF`,

"SORT_ORDER (vOrd:^value_Ord) (P:^processes) (A:^proc_vars) =

!(s:^State). TOTAL_ORDER vOrd {(s o A) i | i IN P}");;

Note that this additional de�nition is necessary because overloading like (V i) �v (V j) on
the symbol �v is not possible in HOL. Consequently, we must de�ne �v to be a total order
on (s � V) for every state s explicitly.

In order to prove the theorem, a proof tree must be constructed using the re�nement and
decomposition method presented in section 9.4. Figure 22 shows the resulting proof tree.
The UNITY inference rules which were applied in section 9.4, are denoted by their HOL
equivalents. At the root of this proof tree we �nd the speci�cation S0, and at the leaves
are the proof obligations among which S2c, S6a, S6b and Conf. To prove that the program
meets the speci�cation, we must build a closed proof tree, which boils down to proving all
the conjectures at the leaves, and construct the tree by backward or forward proof. Since
HOL provides better support for backward proof than it does for forward proof, and as
well as that has the facility to interactively construct a backward proof we shall choose to
construct the tree by backward proof, that is from top to bottom.

10 Re
ections 74

Refine & Decompose

Specify Informally

Specify Formally

Construct Program

Verify Program on paper

Encode Program in HOL

Mechanically Verify Well−formedness

Mechanically Verify Correctness

Time

Figure 23: A rough, proportionate estimate of the time spend on the individual steps from
section 8.

J

10 Re
ections

Whoever destroys a single life is as

guilty as though he has destroyed the

whole world; and whoever rescues a

single life earns as much merit as

though he had rescued the entire world.

{Sanhedrin 37:a

The Talmud

Sketched in broad outlines, our experiences with formal methods and theorem provers
used during the development process of (distributed) programs are twofold:

1. They are hard to sell, especially to industry.

2. Using them takes time.

In the light of experience 1, we would like to compare constructing safety-critical software
with driving a car. Within this context, we collate driving a car under the in
uence of alcohol
to constructing safety critical software without the use of formal methods and mechanical
veri�cation.

Even without alcohol car crashes can and do happen, there is no getting away from
that. All human activity involves risks, and the only way in which \risk-free tra�c" could
be achieved is by prohibiting every form of transportation altogether. Needless to say, a
very unlikely thing to happen. Nevertheless, it is nowadays widely accepted that driving
under the in
uence of alcohol signi�cantly augments the risk of car accidents, and as a
result intoxicated driving is prohibited by law. Unfortunately, there are still people that
do not restrain themselves from intoxicated driving. By pointing out the dangers to them,
frequently heard defences are: \Yes, but I can drive very well", or, \I am always very careful
when I drink and drive.". Everyone shall agree that these are not very solid pleas.

10 Re
ections 75

Similar arguments can be made, however, for formal methods and mechanical veri�ca-
tion and their use in the development of safety-critical software. Although we are convinced
that formal methods and mechanical veri�cation of safety critical software are inescapably
necessary, we do not pretend as though using them shall solve all problems and make soft-
ware inherently safe. Moreover a safe alternative may not always be available (the safest
air-plane is the one that never leaves the ground). Even when formal methods and me-
chanical veri�cation are used software can be incorrect since the real world is not a formal
system. A proof, therefore, does not show that in the real world things shall happen as one
expects. All engineering disciplines, however, are concerned with making models of the real
world, there is no getting away from that. Needless to say, nothing can achieve perfection.
Nevertheless, many believe that formal methods currently o�ers the only intellectually de-
fensible method for increasing the reliability of safety-critical software. Unfortunately, most
of the safety-critical software is constructed without using any formal method not to men-
tion mechanical veri�cation. By pointing out the dangers, frequently heard defences are
\Well, we are always very accurate in distinguishing all cases", or, \Yes, but we always test
very well.". Obviously, considering the increasing complexity of (safety-critical) software,
and an often quoted remark that \Program testing can be used to show the presence of
bugs, but never their absence."[DDH72, page 6], these defences are by no means adequate
for not being formal.

In the light of experience 2, formally developing and mechanically verifying the sorting
program took approximately 6 man months, which included

� getting acquainted with HOL, UNITY and Prasetya's embedding of the latter in HOL.

� working through all the steps described in section 8. (see Figure 23)

This is a great amount of time, considering the complexity of the problem solved. Looking
back, it can be said, with a vast degree of certainty, that half of this time was spend on the
machine-checked proofs.

Two important questions arise:
\Are these large amounts of time justi�able ?".
\Are these large amounts of time acceptable in industrial applications?"

The answer to the �rst question is de�nitely yes. If only one single human life can be spared
as a result of applying formal methods and mechanical veri�cation to the development
of safety critical software, then any amount of time that is spend on mechanical formal
veri�cation is justi�able. The work of Mu�y Thomas [Tho94a, Tho94b] uncovered several
errors in the software which was used in the Therac-25, by using formal speci�cation and
veri�cation techniques.

Obviously, the answer to the second question is no. Consequently, one important goal
of future research in the area of formal methods and mechanical veri�cation must be the
development of tools and techniques that reduce the time which is necessary to formally
and mechanically develop and verify safety critical software. In 1994 a so-called HOL2000
initiative was created, with the goal to try to put together a design for the next generation
of HOL-like theorem proving environments. The latter should not be a redesign from zero,
but an evolution from the current state using the accumulated wisdom among HOL users
about HOL's strengths and weaknesses. Some issues that have been suggested are:

10 Re
ections 76

Better user interface. The obvious motivation for better user interfaces to HOL are sim-
ple: HOL is an excellent theorem proving system, but is has a crude, command-line
interface. The following list of possible bene�ts, which is drawn from [Sym95], indi-
cates how HOL users can bene�t from a good graphical user interface (GUI).

� Much better ways of visualising theory development. The current interface to
HOL is weak, particularly in the area of visualisation.

� HOL will get more accessible.

� HOL will be easier to learn with a good GUI. The present text interface provides
little help in reducing the steepness of the learning curve.

� Users expect high quality data presentation in the tools they use. The command-
line user interface to HOL does not currently provide this.

Currently, the following user-interfaces are available:

� a HOL and the Emacs editor. Here the Emacs editor is used as an interface to
HOL.

� An X Windows based graphical Interface to HOL, called xhol [SB94]. Interaction
with HOL is accomplished through an emacs-style input window, a utility tool-
bar, and a collection of windows that display information about the state of the
proof. Featured is a graphical display of the entire proof tree. This display
does not only presents a road map of what has and has not been proven, it also
provides the user with clues about what techniques or tactics may be useful in
proving the remaining unsolved subgoals.

� An X-based User Interface to HOL called CHOL [Th�e93]. CHOL o�ers a \better
user-interface for the HOL theorem prover". It has been developed following a
general approach for building user-interfaces for theorem provers [TBK92]. Its
characteristics are the following: Graphic interface: Multi fonts and colours are
used to display formulas and commands; Structured editing: The proof of a
proposition is presented as the structured editing of the tactic that proves the
proposition; Rewriting tool: A tool has been developed that �lters the theorems
of the database with respect to the term to rewrite; Separation between the
interface and the prover: The X interface and HOL run as two separate processes.

� a Tcl/Tk User Interface to HOL. TkHOL [Sym95] is an interface for HOL90 im-
plemented using the Tk/Tcl toolkit. It is an extensible set of tools for viewing
and browsing theories, searching the theory hierarchy for particular theorems,
performing backward proofs and making (recursive type) de�nitions. The com-
mand line HOL interface is still available.

Improved error messages, which give more clues as to where the error can be sought,
and might even give hints as to what to correct.

More libraries and accompanying tools. The HOL system's library facility provides a
repository for reusable tools and theories. Each library is a self-contained piece of
work with its own documentation, written according to a prescribed standard. The

10 Re
ections 77

standard requires that there be a reference manual for the library which is compatible
with the main HOL Reference Manual. A selection of libraries of the HOL system can
be found on http://lal.cs.byu.edu/lal/holdoc/library.html. The UNITY embedding
described in this report is an example of a library for HOL, an other UNITY library
is also available [And92]. An other example is the arith library by Boulton [Bou94],
the main tool of which is a partial decision procedure, ARITH_CONV, for Presburger
natural number arithmetic [Coo72]. This tool enables users of the HOL system to
automatically prove arithmetic lemmas in a practical amount of time.

The availability of all sorts of libraries are valuable in theorem provers. If, for example,
the UNITY library was not available we would not have been able to verify our
convergent distributed sorting program in six months. Because, if we insisted on
using UNITY as a speci�cation language, we ourselves ought to have created the
embedding of UNITY within HOL, which would have cost us much more than six
months. So, the availability of a HOL embedding of some speci�cation language can
signi�cantly reduce the time which is spend on the mechanical veri�cation of software
speci�ed within that particular language. Consequently, we shall need libraries for
various speci�cation languages, so that the software developer can choose among many
speci�cation languages and pick that one which relates most to the characteristics
of the speci�c product being developed. This will also make HOL more accessible
since the unavailability of one's favourite and most suitable speci�cation language's
embedding in HOL is no longer a barrier for using HOL.

Decision procedures are an important tool in theorem provers. They allow much low-
level reasoning to be performed automatically. Lemmas and theorems that appear
trivial may take many minutes or even days to prove by hand, especially for inexperi-
enced users. Decision procedures can relieve users of some of this burden. ARITH_CONV,
for example, was very useful to us, and saved us lots of time. Unfortunately, the
HOL system su�ers from a relative lack of decision procedures, in addition to the
Presburger procedure, the taut library, written by [], provides a decision procedure
for propositional tautologies, the library faust, written by Schneider, Kropf, and Ku-
mar [SKR91], provides a decision procedure to check the validity of many formulae
from �rst order predicate logic. A limitation of decision procedures is that formulae
to be proved rarely conform to one theory. Usually, these formulae involve symbols
from other theories for which there may or may not be a decision procedure available.
Sometimes, the replacement of such \non-conforming" symbols with new variables
does not a�ect the truth of the formula, and consequently proving the generalised
formula followed by re-instantiation is successful. Often, however, the decision proce-
dure cannot be used. For this reason there is much interest in decision procedures for
combinations of theories [Bou95].

More e�ciency HOL is a fully-expansive theorem prover [Bou93], which means that
proofs generated in the system are composed of applications of the primitive inference
rules of the underlying logic. The advantages of a fully-expansive theorem prover
are twofold. Firstly, the soundness of the system depends only on the implemen-
tations of the primitive inference rules. Secondly, users are free to write their own
proof procedures without the risk of making the system unsound. The disadvantage,
however, is that the insistence on resolving proofs into simple primitive inferences can

10 Re
ections 78

make HOL slow, and thus performance is compromised. The work of Richard Boulton
[Bou93] focuses on the improvement of fully-expansive theorem provers by eliminating
duplicated and unnecessary primitive inferences.

Combining theorem proving with model checking. Model checking is a very success-
ful technique for automatically verifying �nite-state programs. A model-checking algo-
rithm exhaustively traverses all possible executions of a program, extensively enough
to be able to answer a given question about the program's behaviour. The advantage
is that we are relieved from the pain of constructing proofs, because the whole process
is automated. A disadvantage, however, is that this technique only works for pro-
grams with a �nite state-space, and, unfortunately, state spaces of most safety-critical
programs are in�nite. Since mechanical veri�cation techniques can cope with in�nite
state spaces, an interesting topic is to extend or combine interactive theorem provers
with various automatic tools such as model checkers. [KKS91, Bou92, Bus94].

Time can not be reduced for ever, there must always be some amount of time which shall
be necessary to understand the problem to be solved completely.

A HOL de�nitions and pre-proved theorems 79

A HOL de�nitions and pre-proved theorems

This appendix provides lists of de�nitions and veri�ed theorems as they are in HOL. Not all
de�nitions and theorems that we produced will be listed |it would take too much space.
Only those we consider relevant or interesting for the reader will be included. As warned
previously, there will be a discrepancy between the HOL de�nitions and theorems and the
'hand' versions as presented in earlier chapters.

A.1 Relations, orderings and permutations

Some standard de�nitions on relations, orderings and permutations. Note that in HOL
relations are modelled by predicates.

p2s
/* Converts a predicate P over two sets S1

and S2 (i.e. P has type S1->S2->bool) into
the following set:

{(x,y)|(x in S1) /\ (y in S2) /\ (P x y)} */

|- !Ord. o2s Ord = SPEC(UNCURRY Ord)

CARTHES_PROD_DEF
|- !Set1 Set2.

CARTHES_PROD Set1 Set2
= {(x,y) | x IN Set1 /\ y IN Set2}

RELATION_DEF
|- !R Set1 Set2.

RELATION R Set1 Set2
= (p2s R) SUBSET (CARTHES_PROD Set1 Set2)

ORDERING_DEF
|- !R Set. ORDERING R Set = RELATION R Set Set

REFL_ORD_DEF
|- !Ord Set.

REFL_ORD Ord Set = (!x. x IN Set ==> Ord x x)

ANTI_REFL_ORD_DEF
|- !Ord Set.

ANTI_REFL_ORD Ord Set
= (!x. x IN Set ==> ~Ord x x)

ANTI_SYMM_ORD_DEF
|- !Ord Set.

ANTI_SYMM_ORD Ord Set =
(!x y. y IN Set /\ x IN Set

==> ~(x = y) ==> ~(Ord x y /\ Ord y x))

SYM_ORD_DEF
|- !Ord Set.

SYM_ORD Ord Set =
(!x y. y IN Set /\ x IN Set

==> Ord x y ==> Ord y x)

TRANSITIVE_ORD_DEF
|- !Ord Set.

TRANSITIVE_ORD Ord Set =
(!x y z.

y IN Set /\ x IN Set /\ z IN Set ==>
Ord x y /\ Ord y z ==>

Ord x z)

PARTIAL_ORDER_DEF
|- !Ord Set.

PARTIAL_ORDER Ord Set =
ORDERING Ord Set /\
REFL_ORD Ord Set /\
ANTI_SYMM_ORD Ord Set /\
TRANSITIVE_ORD Ord Set

TOTAL_ORDER_DEF
|- !Ord Set.

TOTAL_ORDER Ord Set =
PARTIAL_ORDER Ord Set /\
(!x y. y IN Set /\ x IN Set

==> Ord x y \/ Ord y x)

SORT_ORDER_DEF
|- !vOrd P A.

SORT_ORDER vOrd P A
= (!s. TOTAL_ORDER vOrd{(s o A)i | i IN P})

INDEX_ORDER_DEF
|- !Ord Set.

INDEX_ORDER Ord Set =
RELATION Ord Set /\ ANTI_SYMM_REL Ord Set /\
TRANSITIVE_REL Ord Set

Symmetric_Closure
/*Here Ord is represented as a set*/

|- !Ord. Symmetric_Closure Ord
= Ord |_| {(u,v) | Ord v u}

Transitiv_Refl_Closure
/*Here Ord is represented as a set*/

|- !Ord Set.
Transitive_Refl_Closure Ord Set =
SPEC
(\p.

?n f.
(!i. i <= n ==> (f i) IN Set) /\
(f 0 = FST p) /\ (f n = SND p) /\
(!i. i < n ==> (f i, f(SUC i)) IN Ord))

Values_EQ
|- !A A'. Values_EQ A A' = (!i. A i = A' i)

A.2 Graphs and networks 80

Perm_DEF
|- !P A A'.

Perm P A A' =

(?f.
(!i. i IN P ==> (f i) IN P) /\
BIJECTION f /\
(!i :: \i. i IN P. A i = A'(f i)))

A.2 Graphs and networks

Edges |- !V E f D. Edges(V,E,f,D) = E

Vertices |- !V E f D. Vertices(V,E,f,D) = V

Info |- !V E f D. Info(V,E,f,D) = f

Direction |- !V E f D. Direction(V,E,f,D) = D

POSSIBLE_EDGES_DEF
|- !V D.

POSSIBLE_EDGES V D =
((D = DIRECTED) =>
{(u,v) | u IN V /\ v IN V} |
{(u,v) | u IN V /\ v IN V /\ ~(u = v)})

Graph_DEF
|- !G.

Graph G =
FINITE(Vertices G) /\
~(Vertices G = {}) /\
(Edges G) SUBSET

(POSSIBLE_EDGES(Vertices G)(Direction G))

is_Edge_DEF
|- !u v E D.

is_Edge(u,v)E D =

((D = DIRECTED) => (u,v) IN E
| ((u,v) IN E \/ (v,u) IN E))

is_Vertex_DEF |- !v V. is_Vertex v V = v IN V

Conns |- !P C V. Conns(P,C,V) = C

Procs |- !P C V. Procs(P,C,V) = P

Vals |- !P C V. Vals(P,C,V) = V

POSSIBLE_CONNECTION_DEF
|- !P.

POSSIBLE_CONNECTIONS P
= {(i,j) | i IN P /\ j IN P /\ ~(i = j)}

Network_DEF
|- !NW. Network NW

= Graph(Procs NW,Conns NW,Vals NW,UNDIRECTED)

Network_IMP_FINITE_PROCESSES
|- !NW. Network NW ==> FINITE(Procs NW)

Network_IMP_PROCESSES_NOT_EMPTY
|- !NW. Network NW ==> ~(Procs NW = {})

A.3 Predicate Operators

Below are the de�nition of the boolean operators :, ^, 8, 9, and so on, lifted to the
predicate level.

pSEQ_DEF: % everywhere operator %
|- !p. |== p = (!s. p s)

RES_qOR:
|- !W P. (??i::W. P i) = (\s. ?i. W i /\ P i s)

RES_qAND:
|- !W P. (!!i::W. P i) = (\s. !i. W i ==> P i s)

EQUAL_DEF:
|- !p q. p EQUAL q = (\s. p s = q s)

pIMP_DEF:
|- !p q. p IMP q = (\s. p s ==> q s)

pOR_DEF:
|- !p q. p OR q = (\s. p s \/ q s)

pAND_DEF:
|- !p q. p AND q = (\s. p s /\ q s)

pNOT_DEF:
|- !p. NOT p = (\s. ~p s)

FF_DEF:
|- FF = (\s. F)

TT_DEF:
|- TT = (\s. T)

A.4 Variables, Actions and Expressions 81

A.4 Variables, Actions and Expressions

Below are some de�nitions and results which were discussed in sections 6 and 9.7.

Pj_DEF: % projection on functions %
|- !V A x. (V Pj A)x = (A x => V x | Nov)

CONF_DEF: % predicate confinement %
|- !A p.

A CONF p
=
(!s t. (s Pj A = t Pj A) ==> (p s = p t))

HOA_DEF: % Hoare triple %
|- !p A q.

HOA(p,A,q) = (!s t. p s /\ A s t ==> q t)

a_Pj_DEF: % projection of actions %
|- !a A.

a_Pj a A = (\s t. a (s Pj A) (t Pj A))

rINTER
|- !a b. a rINTER b = (\s t. a s t /\ b s t)

ALWAYS_ENABLED: % always enabled action %
|- !a. ALWAYS_ENABLED a = (!s. ?t. a s t)

SKIP_DEF
|- SKIP = (\s t. s = t)

Update_DEF
|- !v E. Update (v,E) = (\s t. t v = E s)

Assign_DEF
|- !lv le.

Assign(lv,le) = (\s t.
(LENGTH lv = LENGTH le) /\ (LENGTH le) > 0)
rINTER
((FOLDR $rINTER(\s t. T)(MAP Update(ZIP(lv,le))))
rINTER
(SKIP a_Pj (\x. ~IS_EL x lv))

)

Guard_Action_DEF
|- !g a1 a2.

Guard_Action g a1 a2 =
(\s t. (g s ==> a1 s t) /\ (~g s ==> a2 s t))

COND_EXPR_DEF
|- !P E1 E2. COND_EXPR P E1 E2

= (\s. (P s => E1 s | E2 s))

VAR_EXPR_DEF |- !v. VAR_EXPR v = (\s. s v)

LT_DEF |- !E1 E2. E1 LT E2 = (\s. (E1 s) < (E2 s))

IG_BY_DEF: % ignored variables %
|- !V A.

V IG_BY A
=
(!s t. A s t ==> (s Pj V = t Pj V))

INVI_DEF: % invisible variables %
|- !V A.

V INVI A =
(!s t s' t'.

(s Pj (NOT V) = s' Pj (NOT V)) /\
(t Pj (NOT V) = t' Pj (NOT V)) /\
(s' Pj V = t' Pj V) /\
A s t ==>
A s' t')

Exp_INVI_DEF
|- !V E. V Exp_INVI E =

(!s s'. (s Pj (NOT V) = s' Pj (NOT V))
==> (E s = E s'))

ALL_ORD_GUARD_SAT_RC
|- !Ord.

(NOT R) Exp_INVI E1 /\ (NOT R) Exp_INVI E2 ==>
(NOT R) Exp_INVI (\s. Ord(E1 s)(E2 s))

Assign_SAT_RC
|- (!v. IS_EL v lv ==> R v) /\

(!E. IS_EL E le ==> (NOT R) Exp_INVI E) ==>
(NOT R) INVI (Assign(lv,le))

Guard_Action_SAT_RC
|- (NOT R) Exp_INVI G /\

(NOT R) INVI a1 /\ (NOT R) INVI a2 ==>
(NOT R) INVI (Guard_Action G a1 a2)

A.5 Core UNITY

Below are the de�nition of the predicate Unity, de�ning the well-formedness of a UNITY
program, and the de�nitions of all basic UNITY operators.
UNLESS:
|- !Pr p q.

UNLESS Pr p q =
(!A :: PROG Pr. HOA(p AND (NOT q),A,p OR q))

ENSURES:
|- !Pr p q.

ENSURES Pr p q =
UNITY Pr /\
UNLESS Pr p q /\

(?A :: PROG Pr. HOA(p AND (NOT q),A,q))

LEADSTO:
|- !Pr. LEADSTO Pr = TDC(ENSURES Pr)

STABLE:
|- !Pr p. STABLE Pr p = UNLESS Pr p FF

Inv: % invariant %
|- !Pr J.

A.6 Convergence 82

Inv Pr J =
|==((INIT Pr) IMP J) /\ UNLESS Pr J FF

PROG: % the action set of a program %
|- !P In R W. PROG(P,In,R,W) = P

WRITE: % the write variables set of a program %
|- !P In R W. WRITE(P,In,R,W) = W

READ: % the read variables set of a program %
|- !P In R W. READ(P,In,R,W) = R

INIT: % the initial condition of a program %
|- !P In R W. INIT(P,In,R,W) = In

UNITY: % define a UNITY program %
|- !P In R W.

UNITY(P,In,R,W) =
(!A :: P. ALWAYS_ENABLED A) /\
(!A :: P. (NOT W) IG_BY A) /\
(!x. W x ==> R x) /\
(!A :: P. (NOT R) INVI A)

A.6 Convergence

The convergence operator is de�ned as follows in HOL:

CON:
|- !Pr J p q.

CON Pr J p q =
(WRITE Pr) CONF q /\
(?q'. REACH Pr J p(q' AND q) /\ STABLE Pr(q' AND (q AND J)))

Below is a list of some its basic properties, which were also depicted in Figure 11.

CON_ENSURES_LIFT:
|- !Pr J p q.

(WRITE Pr) CONF p /\ (WRITE Pr) CONF q /\
STABLE Pr J /\ STABLE Pr (q AND J) /\
ENSURES Pr (p AND J) q
==>
CON Pr J p q);

CON_REFL:
|- !Pr J p.

UNITY Pr /\ (WRITE Pr) CONF p /\
STABLE Pr J /\ STABLE Pr(p AND J)
==>
CON Pr J p p

CON_SUBST:
|- !Pr J p q r s.

(WRITE Pr) CONF r /\ (WRITE Pr) CONF s /\
|==((r AND J) IMP p) /\
|==((q AND J) IMP s) /\
CON Pr J p q
==>
CON Pr J r s

CON_WF_INDUCT: % bounded progress induction
principle for convergence %

|- ADMIT_WF_INDUCTION LESS /\
CON Pr J q q /\
(!m. CON Pr J

(p AND (\s. M s = m))
((p AND (\s. LESS(M s)m)) OR q))

==>
CON Pr J p q

CON_BY_sWF_i: % the round decomposition
principle %

|- sWF A U /\ ~(A = {}) /\ FINITE A /\
STABLE Pr J /\
(!y::\y. y IN A.

CON Pr
(J AND
(!! x :: \x. x IN A /\ U x y. Q x))

TT
(Q y))

==>
CON Pr J TT(!! y :: \y. y IN A. Q y)

A.7 Parallel Composition

Below is the de�nition of UNITY parallel composition together with some other operators.

PAR: % parallel composition of programs %
|- !Pr Qr.

Pr PAR Qr =
(PROG Pr) OR (PROG Qr),

(INIT Pr) AND (INIT Qr),
(READ Pr) OR (READ Qr),
(WRITE Pr) OR (WRITE Qr)

UNLESS_PAR_i:
|- UNLESS Pr p q /\ UNLESS Qr p q

=
UNLESS(Pr PAR Qr)p q

STABLE_PAR_i:

A.8 The sorting program and related de�nitions 83

|- STABLE Pr p /\ STABLE Qr p
=
STABLE(Pr PAR Qr)p

Inv_PAR:
|- !J Pr Qr.

Inv Pr J /\ Inv Qr J ==> Inv(Pr PAR Qr)J

ENSURES_PAR:
|- !Pr :: UNITY. !p q Qr.

UNLESS Pr p q /\ ENSURES Qr p q

==>
ENSURES(Pr PAR Qr)p q

CON_TRANSPARANT:
% transparency law for convergence %
|- !Pr Qr J p q.

UNITY Qr /\ Pr <w> Qr /\
STABLE Qr J /\ CON Pr J p q
==>
CON(Pr PAR Qr)J p q

A.8 The sorting program and related de�nitions

Sorted_DEF
|- !P A vOrd pOrd.

Sorted P A vOrd pOrd =
(!i j.

i IN P /\ j IN P /\ pOrd i j
==> vOrd(A i)(A j)

)

Wrong_Pairs_DEF
|- !P A vOrd pOrd.

Wrong_Pairs P A vOrd pOrd =
{(i,j)
| i IN P /\ j IN P /\
pOrd i j /\ ~vOrd(A i)(A j)}

Wrong_Pair_DEF
|- !P A i j vOrd pOrd.

Wrong_Pair P A i j vOrd pOrd =
i IN P /\ j IN P /\
pOrd i j /\ ~vOrd(A i)(A j)

Nr_Of_Wrong_Pairs_DEF
|- !P A vOrd pOrd.

Nr_Of_Wrong_Pairs P A vOrd pOrd
= CARD(Wrong_Pairs P A vOrd pOrd)

Nr_Of_Wrong_Pairs_GREATER_0_IMP_EXISTS_WP
|- !P A vOrd pOrd s.

FINITE P /\ SORT_ORDER vOrd P A ==>
(Nr_Of_Wrong_Pairs P(s o A)vOrd pOrd) > 0
==>

(?p.
CHF(POSSIBLE_CONNECTIONS P) p /\
Wrong_Pair P (s o A)(FST p)(SND p)vOrd pOrd)

Two_Elts_Swapped_DEF
|- !P C A A' vOrd pOrd.

Two_Elts_Swapped P C A A' vOrd pOrd =
(?i j.

i IN P /\
j IN P /\
pOrd i j /\
Connected(i,j)C /\
(!k. k IN P /\ ~(k = i) /\ ~(k = j)

==> (A k = A' k)
) /\ (A i = A' j) /\
(A j = A' i) /\
~vOrd(A' i)(A' j))

Sufficient_Connections_In_Network_For_Sorting
|- !pOrd NW.

Sufficient_Connections_In_Network_For_Sorting pOrd NW
=

(p2s pOrd) SUBSET
(Transitive_Refl_Closure
(p2s pOrd) INTER (Symmetric_Closure(Conns NW))
(Procs NW))

EXISTS_AT_LEAST_ONE_CONNECTION_THAT_CAN_BE_A_WP
|- !P C A pOrd.

Network(P,C,A) /\
Sufficient_Connections_In_Network_For_Sorting pOrd(P,C,A)
==>

(?i j. pOrd i j /\ Connected(i,j)C /\ i IN P /\ j IN P)

Nr_of_Wrong_Pairs_GREATER_0_IMP_EXISTS_CONNECTED_WP
|- !P C A vOrd pOrd s.

Sufficient_Connections_In_Network_For_Sorting pOrd(P,C,A)
/\ INDEX_ORDER pOrd P /\
Network(P,C,A) /\
(Nr_Of_Wrong_Pairs P(s o A)vOrd pOrd) > 0 /\
FINITE P /\
SORT_ORDER vOrd P A ==>
(?e :: CHF{(i,j) | i IN P /\ j IN P /\ pOrd i j

/\ Connected(i,j)C}.
Wrong_Pair P(s o A)(FST e)(SND e)vOrd pOrd)

Sort_PROG
|- !P C A A' vOrd pOrd.

Sort(P,C,A)A' vOrd pOrd =
CHF
{Assign2(A i,A j)(Min vOrd(A i)(A j),Max vOrd(A i)(A j)
| i IN P /\ j IN P /\ pOrd i j /\ Connected(i,j)C},

(\s. VALUES_EQ A A' s),CHF{A i | i IN P},CHF{A i | i IN P}

MAIN_THEOREM_FOR_BOUNDED_PROGRESS
|- !s t A A'' vOrd pOrd m.

SORT_ORDER vOrd P A /\
INDEX_ORDER pOrd P /\
FINITE P /\
Values_EQ (s o A)A'' /\
(Nr_Of_Wrong_Pairs P(s o A)vOrd pOrd = m) /\
Two_Elts_Swapped P C(t o A)A'' vOrd pOrd ==>
(Nr_Of_Wrong_Pairs P(t o A)vOrd pOrd) < m

ENSURES_COND_FOR_SORTING_PROGRAM
|- !P C A pOrd vOrd A.

SORT_ORDER vOrd P A /\
INDEX_ORDER pOrd P /\

A.8 The sorting program and related de�nitions 84

i IN P /\
j IN P /\
pOrd i j /\
Connected(i,j)C /\
m > 0 /\
FINITE P ==>
ENSURES
(Sort(P,C,A)A' vOrd pOrd)
(((\s. Nr_Of_Wrong_Pairs P(s o A)vOrd pOrd = m) AND
(WRONG_PAIR P A i j vOrd pOrd)) AND

(PERM P A A'))
(\s. (Nr_Of_Wrong_Pairs P(s o A)vOrd pOrd) < m)

SORTING_PROG_SPECIFICATION
|- !P C A pOrd vOrd A.

Network(P,C,A) /\
Sufficient_Connections_In_Network_For_Sorting pOrd(P,C,A)
/\ SORT_ORDER vOrd P A /\
INDEX_ORDER pOrd P ==>
(!A'.
CON
(Sort(P,C,A)A' vOrd pOrd)
(PERM P A A')
(VALUES_EQ A A')
(SORTED P A vOrd pOrd))

REFERENCES 85

References

[And92] Flemming Andersen. A Theorem Prover for UNITY in Higher Order Logic. PhD
thesis, Technical University of Denmark, 1992.

[BBL93] J.P. Bowen, P Breuer, and Kevin Lano. A compendium of formal techniques for
software maintenance. IEE/BCS Software Engineering Journal, 8(5):253{262,
September 1993.

[BGM90] J. Burns, M. Gouda, and R. Miller. Stabilization and pseudo-stabilization. Tech-
nical report, University of Texas, TR-90-13, May 1990.

[BH95a] J.P. Bowen and M Hinchey. Seven more myths of formal methods. IEEE Software,
12(4):34{41, July 1995.

[BH95b] J.P. Bowen and M Hinchey. Ten commandments of formal methods. IEEE Com-
puter, 28(4):56{63, April 1995.

[Bou92] R. Boulton. The hol arith library. Technical report, Computer Laboratory Uni-
versity of Cambridge, July 1992.

[Bou93] Richard John Boulton. E�ciency in a Fully-Expansive Theorem Prover. PhD
thesis, University of Cambridge, Decembre 1993.

[Bou94] R.J. Boulton. E�ciency in a fully-expansive theorem prover. Technical Report
337, University of Cambridge Computer Laboratory, 1994.

[Bou95] Richard J. Boulton. Combining decision procedures in the HOL system. In E. T.
Schubert, P.J. Windley, and J. Alves-Foss, editors, Proceedings of the 8th Inter-
national Workshop on Higher Order Logic Theorem Proving and its Applications,
pages 75{89, Aspen Grove, Utah, USA, September 1995. Lecture Notes in Com-
puter Science volume 971, Springer-Verlag.

[Bow93] J.P. Bowen. Formal methods in safety-critical standards. In Proc. 1993 Software
Engineering Standards Symposium (SESS'93), pages 168{177, Brighton, UK, 30
August - 3 September 1993. IEEE Computer Society Press.

[BS92] J.P. Bowen and V. Stavridou. Formal methods and software safety. In H.H. Frey,
editor, Safety of computer control systems 1992 (SAFECOMP '92), pages 93{98,
Z�urich, Switzerland, October 1992. Proc. IFAC Symposium, Pergamon Press.

[BS93a] J.P. Bowen and V Stavridou. The industrial take-up of formal methods in safety-
critical and other areas: A perspective. In J.C.P. Woodcock and P.G. Larsen,
editors, FME'93: Industrial-Strength Formal Methods, pages 183{195. Springer-
Verlag, LNCS 670, 1993.

[BS93b] J.P. Bowen and V. Stavridou. Safety-critical systems, formal methods and stan-
dards. IEEE Software Engineering Journal, 8(4):189{209, July 1993.

REFERENCES 86

[Bus94] H. Busch. First-order automation for higher-order-logic theorem proving. In T.F.
Melham and J. Camilleri, editors, Lecture Notes in Computer Science 859: Higher
Order Theorem Proving and Its Application, pages 97{122. Springer-Verlag, 1994.

[But93] R.W. Butler. Formal methods for life-critical software. In AIAA Computing in
Aerospace 9 Conference, pages 319{329, San Diego, October 19-21 1993.

[BvW90] R.J.R. Back and J. von Wright. Re�nement concepts formalized in higher order
logic. Formal Aspects of Computing, (2):247{272, 1990.

[BW88] R. Bird and Philip Wadler. Introduction to functional programming. Prentice
Hall, 1988.

[CG92] D. Craigen and S. Gerhart. An international survey of industrial applications of
formal methods. In Z User Workshop, London 1992, pages 1{5. Springer-Verlag,
1992.

[CGR93] D. Craigen, S. Gerhart, and T Ralston. Formal methods reality check: Industrial
usage. In J.C.P. Woodcock and P.G. Larsen, editors, FME'93: Industrial-Strength
Formal Methods, pages 250{267. Springer-Verlag, LNCS 670, 1993.

[CM88] K.M. Chandy and J. Misra. Parallel Program Design { A Foundation. Addison-
Wesley Publishing Company, Inc., 1988.

[Coo72] D.C. Cooper. Theorem proving in arithmetic without multiplication. In
B. Meltzer and D. Michie, editors,Machine Intelligence
, chapter 5, pages 91{99.
Edinburgh University Press, 1972.

[DDH72] J. Dahl, O, E.W. Dijkstra, and C.A.R. Hoare. Structured programming. Academic
Press, Orlando, 1972.

[GCR94] S. Gerhart, D. Craigen, and T. Ralston. Experience with formal methods in
critical systems. IEEE Software, pages 21{28, January 1994.

[GM93] Mike J.C. Gordon and Tom F. Melham. Introduction to HOL. Cambridge Uni-
versity Press, 1993.

[Hal90] A. Hall. Seven myths of formal methods. IEEE Software, pages 11{19, September
1990.

[Kem90] R.A.. Kemmerer. Integrating formal methods into the development process. IEEE
Software, pages 37{50, September 1990.

[KKS91] R. Kumar, T. Kropf, and K. Schneider. Integrating a �rst order automatic prover
in the hol environment. In Proceedings of the 1991 International Workshop on
the HOL Theorem Proving System and Its Applications. IEEE Computer Society
Press, August 1991.

[L�an94] T. L�angbacka. A hol formalization of the temporal logic of actions. In T.F. Mel-
ham and J. Camilleri, editors, Lecture Notes in Computer Science 859: Higher Or-
der Theorem Proving and Its Application, pages 332{345. Springer-Verlag, 1994.

REFERENCES 87

[Len93] P.J.A. Lentfert. Distributed Hierarchical Algorithms. PhD thesis, Utrecht Uni-
versity, April 1993.

[LT93] N.G. Leveson and C.S. Turner. An investigation of the Therac-25 accidents. IEEE
Computer, pages 18{41, July 1993.

[Mel90] T.F. Melham. The HOL sets library. http://128.187.2.182/lal/holdoc/library.html,
1990.

[Neu95] Peter G. Neumann. Computer Related Risks. Addison-Wesley Publishing Com-
pagny, 1995.

[Nic91] J.E. Nicholls. Domains of application for formal methods. In Z User Workshop,
York 1991, pages 145{156. Springer-Verlag, 1991.

[Pau87] Lawrence C. Paulson. Logic and Computation:Interactive Proof with Cambridge
LCF. Cambridge University Press, 1987.

[Pra95] Wishnu Prasetya. Mechanically Supported Design of Self-stabilizing Algorithms.
PhD thesis, Utrecht University, October 1995.

[Rus94] J. Rushby. Critical system properties: Survey and taxonomy. Reliability Engi-
neering and System Safety, 43(2):189{219, 1994.

[RvH93] J. Rushby and F. von Henke. Formal veri�cation of algorithms for critical systems.
IEEE Transactions on Software Engineering, 19(1):13{23, January 1993.

[SB94] Tom Schubert and John Biggs. A tree-based, graphical interface for large proof
development. In 1994 International Workshop on the HOL Theorem Proving
System and its Applications, 1994.

[SKR91] K. Scneider, T. Kropf, and Kumar R. Integrating a �rst-order automatic prover
in the hol environment. In M Archer, Joyce J.J., Levitt K.N., and Windley P.J.,
editors, Proceedings of the 1991 International Workshop on the HOL Theorem
Proving System and Its Applications. IEEE Computer Society Press, 1991.

[Sym95] Donald Syme. A new interface for HOL - ideas, issues and implementation. In
1995 Conference on Higher Order Logic Theorem Proving and its Applications,
Aspen Grove, Utah, 1995.

[TBK92] Laurent Th�ery, Yves Bertot, and Gilles Kahn. Real theorem provers deserve
real user-interfaces. Technical Report 1684, Institut National de Recherche en
Informatique et en Automatique., 1992.

[Th�e93] Laurent Th�ery. A proof development system for the HOL theorem prover. In
International Workshop on Higher Order Logic and its applications, Vancouver,
1993.

[Tho94a] Mu�y. Thomas. A proof of incorrectness using the lp theorem prover: the editing
problem in the Therac-25. High Integrity Systems Journal, 1(1):35{48, 1994.

REFERENCES 88

[Tho94b] Mu�y. Thomas. The story of the Therac-25 in lotos. High Integrity Systems
Journal, 1(1):3{15, 1994.

[WW93] D Weber-Wul�. Selling formal methods to industry. In J.C.P. Woodcock and
P.G. Larsen, editors, FME'93: Industrial-Strength Formal Methods, pages 671{
678. Springer-Verlag, LNCS 670, 1993.

Index

[p], 17
Action, 17
u, 18
8, 21
�, 24
9, 22
9e, 65
[], 26
State, 15
Var, 15
unlessV , 28
Val, 15
@, 15
Sc, 17
ensures , 23
7!, 26
free:p, 17
�, 15
�, 28
� , 24
unless , 23
p 2 Pred:V , 17
*val, 34
*var, 34
define type, 34

action, 17
always enabled, 18
assignment, 17, 18
atomic, 19
guarded, 17
multiple assignment, 18
skip, 17

always enabled action, 18
anti-quotations, 9
assignment action, 17
axiom

BOOL_CASES_AX, 10
ETA_AX, 10
IMP_ANTISYM_AX, 10
INFINITY_AX, 10
SELECT_AX, 10
extending HOL by adding an, 11

backward proof, 12

CHOL, 76
closure

symmetric, 44
transitive re
exive, 44

closure, transitive re
exive, 44
compositionality, 6, 27
con�nement

predicate, 17
convergence, 6, 31

bounded progress property, 33
conjunction property, 33
de�nition, 31
disjunction property, 33
re
exivity property, 33
transitivity property, 33

decision procedure, 14, 77
�rst order predicate logic, 14
Presburger arithmetic
ARITH CONV, 14

propositional logic, 14

embedding
deep, 34
shallow, 34

extension
conservative, 11
de�nitional, 11

formal methods
three levels of usage, 4
what is meant by, 4

formal proof, 9
formal speci�cation

advantages, 5
forward proof, 12
FSA algorithm, 6
fully-expansive theorem prover, 77
function

bijective, 45
equality, 45
injective, 45

89

INDEX 90

surjective, 45

goal, 12
graph

directed, 44
undirected, 45

guarded action, 17

higher order logic, 7
hoare triple, 17

HOL de�nition, 12
HOL

's 8 primitives inference rules, 10
's �ve axioms, 10
compound types, 9
formula, 8
logical terms, 8
primitive types, 9
theorem, 9
type constructors, 9
type-variables, 9
user interfaces, 76

HOL2000, 75

ignored-by
8 (variables by actions), 21

inference rule
derived, 9, 10
MATCH_MP, 10
REWRITE_RULE, 10

primitive, 9
ABS, 10
ASSUME, 10
BETA_CONV, 10
DISCH, 10
INST_TYPE, 10
MP, 10
REFL, 10
SUBST, 10

invariant
de�nition, 24

invisible variables, 22
invisible-to

9 (variables to actions), 22
9e (variables to expressions), 65

justi�cation function, 13

LCF (Logic of Computable Functions), 7
library

arith, 14
faust, 14
taut, 14

meta-language types, 8
model checking, 78
modularity principle, 27
multiple assignment action, 18

network of processes
su�cient connections for sorting, 50

object language types, 8
overloading of symbols, 16

parallel composition
de�nition, 26
modelling of, 26

pencil-and-paper proofs
the advantages, 42

permutation
de�nition, 51

predicate con�nement
de�nition, 17
HOL de�nition, 35

program state, 15
program union, 26
progress property, 22

ensures

compositionality property, 27
conjunction property, 24
de�nition, 23
post-weakening, 24
PSP property, 24

leads-to(7!)
de�nition, 26

reach (�)
bounded progress property, 29
de�nition, 28
disjunction property, 29
PSP property, 29

projection
of a function, 15
of an action, 18

INDEX 91

proof
formal, 9
forward, 12
goal-directed,top-down,backward, 7, 12

proof tree, 12
pseudo-stabilisation, see convergence

relation
anti-re
exive, 44
anti-symmetric, 44
binary, 43
partial order, 44
re
exive, 44
symmetric, 44
symmetric closure, 44
total order, 44
transitive, 44
transitive re
exive closure, 44

restriction, see projection
round decomposition, 32

principle, 32

safety critical systems, 5
safety property, 22

unless

compositionality property, 27
conjunction property, 25
de�nition, 23
disjunction property, 25
post-weakening, 25

safety-critical processes, 4
self-stabilisation, 6, 31
Singh law, 29
skip action, 17
solution strategy, 52
speci�cation

decomposition, 41
formal, 40
language, 41
re�nement, 41

stable
predicate
compositionality property of, 27
conjunction property of, 25
de�nition, 24
disjunction property of, 25

properties, 24
state

expression, 17
of a program, 15
predicate, 16

statement, see action
sub-goal package, 14
sub-goals, 12
synchronisation operator, 18

rINTER, 18

tactic, 12
ACCEPT_TAC, 12
CONJ_TAC, 12
MATCH_MP_TAC, 12
RES_TAC, 12
combinators, see tactical
higher order, see tactical

tactical, 13
ORELSE, 13
REPEAT, 13
THEN, 13

Therac-25, 4, 75
TkHOL, 76
transparency Law, 30

UNITY, 15
's fairness condition, 19
program development methodology, 41
speci�cations, 22

UNITY program
execution of a, 19
syntax of a, 20
well-formedness of a, 21
HOL de�nition, 38

universe of
action
Action, 17
HOL de�nition, 36

program states
State, 15
HOL de�nition, 35

program variables
Var, 15

state predicates
Pred, 16

INDEX 92

HOL de�nition, 35
values
Val, 15

well-formedness of a UNITY program, 21
WrongPair of processes, 49

xhol, 76

