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Abstract

In this paper, diagnosis is viewed as a two-stage process: domain knowledge is first in-
terpreted in a diagnostic sense; next, observed findings are interpreted with respect to
this interpreted knowledge and a given hypothesis, yielding a diagnosis. A set-theoretical
framework is briefly discussed that captures this view on diagnosis; it is used to formalize
various notions of diagnosis, those proposed in the literature included. Next, a theory
of flexible diagnosis, called refinement diagnosis, is proposed and defined in terms of this
framework. Relationships with notions of diagnosis known from the literature are inves-
tigated.
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1 Introduction

In recent years, several theories of diagnosis have been developed, providing different foun-
dations for diagnostic problem solving in intelligent systems. In particular, theories have
been proposed which try to capture the structure of diagnosis. Diagnostic problem solving
is variously described in terms of abductive reasoning (cf. [3, 7, 9, 10, 12]), as a specific form
of consistency-based reasoning (cf. [13, 4, 6, 12]), or as deductive reasoning (cf. [1]). In the
context of diagnosis, one usually speaks of abductive diagnosis, consistency-based diagnosis
and heuristic classification [2], respectively. Abductive diagnosis is primarily used in systems
incorporating causal models of normal or faulty behaviour. Consistency-based diagnosis ap-
pears especially suitable for models of normal structure and functional behaviour. Abductive
and consistency-based diagnosis are often classified as model-based approaches to diagnosis.
Heuristic classification is typically used in systems based on empirical knowledge.

Although the diagnostic frameworks mentioned above differ in several respects, in all of
them diagnostic problem solving can be viewed as a special instance of hypothetical reasoning
[11]. In solving a diagnostic problem, a hypothesis is first generated and next tested with
respect to diagnostic knowledge and observed findings. If it passes the tests, it is accepted
and called a diagnosis; when it fails to pass the tests, it is rejected. This view of diagnosis is
quite general, but it is still unnecessarily restrictive. Instead of simply rejecting a hypothesis
that does not comply with all requirements, it seems more natural to adjust or refine it, when
possible. Then, a diagnosis obtained after refinement of a hypothesis may be viewed as the



best possible solution in a particular sense, given the domain knowledge, the set of observed
findings and the hypothesis at hand. It, therefore, seems attractive to incorporate a principle
of refinement into the basic definition of diagnosis, yielding notions of refinement diagnosis.
The formalization of refinement diagnosis is the subject of this paper.

There are various reasons why refinement diagnosis may be a more appropriate basis for
diagnostic problem solving than the more rigorous notions of diagnosis mentioned above:

e Real-world knowledge bases are, almost without exception, incomplete, i.e. the mod-
elled problem domain has not been fully described. For example, knowledge of certain
interactions among defects may be missing.

e Real-world knowledge bases are not completely accurate, e.g. the meaning of the domain
knowledge may not have been captured sufficiently precisely, or may have been specified
incorrectly.

e The findings that may be observed, and interpreted by an expert system, are only part of
what might have been collected without limitations, such as available time and money.

e Part of the observed findings may be unreliable, due to impediments to the observation
process, such as limited available time.

Although a model-based approach is often thought to shield the developer from such problems
(cf. [13]), making simplifying assumptions will always be necessary in order to deal with real-
world problems, whether a model-based approach is followed or not. It is often essential to
establish a diagnosis, even when confronted with the imperfections mentioned above. In many
domains, in particular medicine, it is usually better to arrive at a diagnosis that does not
account for all observed findings, or that suggests findings that have not been observed, than
to establish no diagnosis at all. It is sometimes said that such a diagnosis underaccounts or
overaccounts for the set of observed findings.

The structure of this paper is as follows. In Section 2, a brief summary of a set-theoretical
framework used to define notions of diagnosis is presented. This framework is employed to
define notions of refinement diagnosis in Section 3. It is also suitable as a semantic framework
for the notions of diagnosis mentioned above, as briefly discussed in Section 2. The paper is
rounded off with a discussion of the achievements of the work presented in this paper.

2 A framework of diagnosis

In this section, we provide a brief overview of a set-theoretical framework of diagnosis that
is used in the remainder of the paper (cf. [8]). Its underlying assumption is that diagnosis
involves the interpretation of a knowledge base in terms of observable findings and possible
defects. The type of knowledge represented in a knowledge base, the way in which this
knowledge is interpreted in a diagnostic sense, as well as the interpretation of hypotheses and
observed findings in the context of this knowledge determine the diagnoses for a problem.

2.1 The representation of interactions

Consider the following piece of medical knowledge:
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Figure 1: Causal net.

“Influenza causes fever and infection of the trachea and bronchial tree, which
causes a sore throat, but if the patient suffers from asthma, dyspnoea will occur
as well.”

In Figure 1, the directed graph representation of the causal knowledge embodied in this
medical description is depicted, where an arc denotes a cause-effect relationship. The following
meaning is ascribed to the elements of the causal graph:

di = influenza

do = tracheobronchitis

d3 = asthma

fi = fever

fo = sore throat

f3 = dyspnoea (shortness of breath)

Elements d; are disorders; elements f; are observable findings. Note that in the graph the
disorders d; and dy are causally related to each other. Interactions among disorders can also
be captured by means of a mapping of sets of disorders to sets of observable findings, yielding
a diagnostic interpretation of this knowledge. Such a mapping will be called an evidence
function. Since the term ‘disorder’ is not used in technical domains, where instead the term
‘fault’ is commonly employed to indicate device problems, the term ‘defect’ will be used in
the following to denote both disorders in medicine and faults in technical devices.

More formally, let ¥ = (A, ®,e) be a diagnostic specification, where A denotes a set of
defects, and ® denotes a set of findings. Positive defects d (findings f) and negative defects
—d (findings —f) denote present defects (findings) and absent defects (findings), respectively.
It is assumed that — o = =, where ¢ is the identity function. If a defect d or a finding f is
not included in a set, it is assumed to be unknown. Let a set Xp denote a set of positive
elements, and let X denote a set of negative elements, such that Xp and X are disjoint.
It is assumed that A = Ap U Ay and ® = &p U @ . The power set of a set S is denoted by
©(S). Now, an evidence function e is a mapping

e:p(A) = p(@)U{Ll}
such that:

(1) for each f € ® there exists a set D C A with f € e(D) or —f € e(D) (and possibly
both);

(2) if d,~d € D then e(D) = L;



(3) if e(D) # L and D' C D then e(D’) # L.

If e(D) # L, it is said that e(D) is the set of observable findings for D (D is consistent);
otherwise, it is said that D is inconsistent.

According to the definition above, we may have that both f € e(D) and —f € e(D), which
simply means that these findings may alternatively occur given the combined occurrence of
the defects in the set D. In some domains it might hold that if e({d}) = e({d'}), it follows
that d = d', i.e. the defects d and d' are taken as synonyms for the same defect.

For the medical knowledge depicted in Figure 1, it holds, among others, that:

e({di}) = {f1,f2} e({ds}) =0
e({d2}) = {f2} e({d2,ds}) = {f2 fs}
e({dy,da}) = e({d1}) e({d1,dz,ds}) = {f1, f2, f3}

The property e({d;}) C e({d1,d2}), i = 1,2, formally expresses that the interaction between
d; and dy is monotonic; the evidence function e is monotonically increasing. An evidence
function may also be monotonically decreasing, or nonmonotonic. In particular, evidence
functions describing functional behaviour of devices are monotonically decreasing (an example
is given below).

Various semantic properties of a domain for which a diagnostic system must be built can
be expressed precisely in terms of evidence functions. Local as well as global interactions
between defects can be expressed readily. A typical global property of evidence functions
encountered in the literature is interaction freeness (cf. [9]). A set of defects A is called
interaction free iff

e(D) = e({d})

deD

for each consistent D C A. This shows that an evidence function can be partially specified.

2.2 Notions of diagnosis

A specific evidence function provides a semantic interpretation of a knowledge base in terms
of expected evidence for the combined occurrence of defects; yet, it does not yield a diagnosis.
To employ an evidence function for the purpose of diagnosis, it must be interpreted with
respect to actually observed findings. Such an interpretation of an evidence function and of
observed findings can be viewed as a notion of diagnosis applied to solve a diagnostic problem
at hand.

More formally, let P = (X, E) be a diagnostic problem, where E C ® is the set of observed
findings; it is assumed that if f € E then —f ¢ E, i.e. contradictory observed findings are not
allowed. Let Ry denote a notion of diagnosis R applied to X, then a mapping

Ry, : 9(3) = p(A) U {u}

will either provide a diagnostic solution for a diagnostic problem P, or indicate that no
solution exists, denoted by u (undefined). Here, H denotes a hypothesis, which is taken to be
a set of defects (H C A), and €1, called the resiricted evidence function of e, is a restriction
of e with respect to the power set p(H):

ey :p(H) = (@) U{L}
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Figure 2: Schema of notion of diagnosis, diagnostic problem and solution.

where for each D C H: eg(D) = e(D). A restricted evidence function ez can be thought
of as the relevant part of a knowledge base with respect to a hypothesis H. An R-diagnostic
solution, or R-diagnosis for short, with respect to a hypothesis H C A, is now defined as the
set

Rs.e y(E), where Ry ,(E) C H if a solution exists.

In Figure 2, the idea underlying the definition of a notion of diagnosis R and diagnostic
solution to a diagnostic problem is illustrated schematically.

A notion of diagnosis R provides the possibility to express interactions among defects and
observed findings at the level of diagnosis, which we call dependencies. We may also have that
a hypothesis can be split up into two subhypotheses, that can be examined independently:

RE7€\HUH’ (E) = Rz,elH(E) U RE,e‘H/ (E)

with Rz,el o (E) # u. This means that the diagnostic solution with respect to the hypothesis
H U H' is obtained as the union of the solutions for the two separately examined hypotheses
H and H'. This is called the independence (or compositionality) assumption. For many
notions of diagnosis described in the literature, in particular for abductive diagnosis and
consistency-based diagnosis, the independence assumption fails to hold.

To demonstrate how the definitions above can be employed, we consider a notion of
diagnosis U, such that Us,, (E) = H' if it holds that H' is the only subset of H such that
€| g (H') C E; otherwise, H' = u. This notion of diagnosis expresses that a diagnosis consists
of a set of defects which, on the one hand, can account for at least part of all observed
findings, and, on the other hand, every finding associated with the set of defects that is taken
as a diagnosis has been observed. Furthermore, there is only one such subset of the given
hypothesis H. Now, reconsider the medical example from Figure 1 with H = {d2,d3}. Some
interesting diagnostic conclusions are: Us.¢ , ({f2}) = {d2}, i.e. a patient with only sore throat
has tracheobronchitis, Us,e , ({f2, f3}) = u, i.e. there exists no unique diagnosis with respect
to H accounting for both sore throat and dyspnoea as signs, and finally, Uy, L{fs}) =H.
In the first case, it is said that the hypotheses has been adjusted, in the second case, that the



hypothesis H is rejected, and in the last case, that the hypothesis H has been accepted. This
example demonstrates the flexibility of the approach.

It is also straightforward to define notions of diagnosis proposed in the literature. For
example, consider the following typical instances of notions of diagnosis:

o Abductive diagnosis using ‘must’ relations (strong-causality diagnosis) [3]:

_ | H ifey(H)=E
SCs.eiu (E) = { u  otherwise
i.e. it is necessary that all observable findings e/ (H) are observed in order to accept
an hypothesis H as a diagnosis.

o Abductive diagnosis using ‘may’ relations (weak-causality diagnosis) [3, 9]:

_J H if 6|H(H) 2K
WCZ,6|H(‘E) - { u otherwise

i.e. all observed findings must be observable.

e Consistency-based diagnosis [13, 6]:

H ifoEE:f€e|H(H)V
CBE,e|H(E) = ~f ¢ 6|H(H)
u  otherwise

i.e. observed findings may not contradict with observable findings.

These notions of diagnoses are the set-theoretic analogues of the corresponding notions of di-
agnosis mentioned above. They will be used below as reference points for notions of refinement
diagnosis.

It is informative to relate these notions of diagnosis to each other in terms of a restriction
relation C; it holds that R C R’ iff the diagnoses resulting from the notion of diagnosis R are
a subset of those resulting from R’ (for any legal diagnostic specification X). It is easily seen
that: SC C WC C CB.

3 Refinement diagnosis

The following question now arises: what can be taken as a basis for notions of diagnosis
which incorporate certain principles of refinement? Obviously, there exists a wide range
of possibilities. Which of the possible choices yields the most natural result depends, to
a large extent, on the nature of the problem domain, which is partially expressed by the
characteristics of the evidence functions e. Dependencies between a notion of diagnosis R, on
the one hand, i.e. the interpretation of the set of observed findings given a specific knowledge
base, and properties of a given evidence function e, on the other hand, are of importance in
this respect.

Two classes of refinement diagnosis will be studied here. Firstly, the class of notions
of refinement diagnosis, called most general diagnosis, is examined, where the least upper
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Figure 3: Monotonically increasing (a) and decreasing (b) evidence functions.

bound of accepted hypotheses (with respect to set inclusion) is taken as a diagnostic solution.
Secondly, the class of notions of refinement diagnosis, called most specific diagnosis, based on
taking the greatest lower bound of accepted hypotheses is studied. In most general diagnosis,
the smallest set of defects that includes every accepted subhypothesis is considered most
plausible; in contrast, in most specific diagnosis, the largest set of defects that is included in
every accepted subhypothesis is considered most plausible.

3.1 Most general diagnosis

Notions of most general diagnosis capture the idea that if a specific diagnostic hypothesis
is not accepted, then the ‘nearest’ subhypothesis should be taken instead. The least upper
bound with respect to set inclusion of the set of accepted subhypotheses is an example of
such a ‘nearest’ subhypothesis. The notions of most general diagnosis enforce independence
or compositionality of diagnostic components in the sense of the previous section.

The notion of most general subset diagnosis, denoted by GS, is defined as follows:

if H is consistent, and

U H' CH H, .
GSyye y (E) = eu(H') CF JH'CH:ey(H')CE

u otherwise

Intuitively, a most general subset diagnosis is the smallest set of defects that includes all
accepted subhypotheses of a given hypothesis, where an accepted subhypothesis concerns
observable findings that all have been observed.

For the example in Figure 1 with E = {fi, fo}, we have that GSE,eHdl,dz}(E) = {d1,d2},
which is also an abductive diagnosis, because SCy ¢, 0, d2}(E) = {dy,dy2}. However, it holds
that GSx.e (., 4, ({f2}) = {d2}, where SCs¢ ., ,.,({f2}) = u. Hence, e({d1,dz}) predicts a
finding that cannot be accounted for, causing the defect d; to be ignored. This may be a
suitable approach to domains in which neglecting a particular defect may be dangerous.

In Figure 3, the relationship between diagnostic hypothesis H, the set of observed findings
E and the resulting diagnosis GSg,e‘ , (E) is summarized by schematically depicting these sets
as if they were real numbers and by taking set inclusion as the < total order on the real



numbers. If most general subset diagnosis is applied to a monotonically decreasing evidence
function, the resulting diagnosis is either undefined or equal to the given hypothesis H. This
contrasts with GS applied to a monotonically increasing evidence function, which may also
yield subsets of the hypothesis as a diagnosis. GSs,¢ ,, (F) = H " in Figure 3.(a) is intended to
illustrate that e(H") may even be a superset of E. If the evidence function e is nonmonotonic,
then the relationships between E and e g (H ") are investigated as before, but again, certain
interactions between defects may be ignored.

Where most general subset diagnosis can be viewed as a more flexible version of strong-
causality diagnosis SC, which for certain evidence functions is as little restrictive as consisten-
cy-based diagnosis, a similar, flexible notion of diagnosis can be designed for weak-causality
diagnosis. This suggests replacing the subset relation in most general subset diagnosis by the
superset relation, yielding the notion of most general superset diagnosis GO (the letter ‘O’
stands for ‘cOntains’).

The notion of most general superset diagnosis, denoted by GO, is defined as follows:

if H is consistent, and

Uwca H 1 . )
GOs e (E) = T SH'CH:ey(H)DE

u otherwise

Most general superset diagnosis has much in common with weak-causality diagnosis WC
defined in the previous section. If the notion of most general superset diagnosis is applied
to evidence functions that are monotonically decreasing, or nonmonotonic, for the resulting
diagnosis GOsx ,(E) = H' it may even hold that e(H') C E, although for each of the
diagnostic hypotheses H” C H that contribute to the diagnosis it holds that e z(H") 2 E.
Hence, the situation is the reverse of that for most general subset diagnosis discussed above,
as might be expected from their respective definitions. In Figure 4, the various possibilities
are schematically depicted.

As is true for weak-causality diagnosis WC, most general superset diagnosis restricted to
monotonically increasing evidence functions is very unrestrictive, which is revealed by the
fact that GOy, (@) = H if e(H) # L, meaning that all defects constituting the hypothesis
may have occurred, even if no findings have been observed. Note that the same diagnosis
would have been produced by weak-causality diagnosis WC in this case. By adopting some
criterion of parsimony, such as minimality according to set inclusion, the unrestrictiveness is
alleviated; the empty diagnosis @ would then be produced.

An alternative to the definition of subset diagnosis is to consider all sets of defects D
that have at least one finding f in common with the findings F observed. This leads to the
following definition of the notion of most general intersection diagnosis, denoted by GI:

if H is consistent, and (F = & or

Uwcn H' JH' C H :ey(H') =@ or
Gl , (E) = (E=oVeu(H)=2V e (H') N E # )
eg(H')NE # 2)
U otherwise

If the sets of observed and observable findings are nonempty, intersection diagnosis with
respect to H stands for the least upper bound of subsets of defects of H C A, where for
each subset of defects H' admitted to the most general intersection diagnosis Glye ; (E), the
associated set of observable findings e, g (H') is empty or has at least one finding in common
with the set of observed findings E.
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Figure 4: Monotonically increasing (a) and decreasing (b) evidence functions.

The advantage of most general intersection diagnosis over most general subset and superset
diagnosis is that only defects that have at least one associated observable finding that has
actually been observed, are included in a diagnosis. This will be an acceptable assumption
in a domain where not all findings associated with a set of defects need be observed and not
all observed findings need be accounted for. In representing a domain, it may be required to
restrict to those observable findings that are in some way ‘typical’ for the defects.

Most general intersection diagnosis can be viewed as a refinement version of a mixture of
the notions of weak-causality and strong-causality diagnosis.

EGS

SC GO
L

M1

WC

M1

GI

Figure 5: Restriction taxonomy of notions of diagnosis.

3.2 Comparison

Most general subset, superset and intersection diagnosis are three refinement approaches
to diagnosis. The restriction relationships between these notions of diagnosis are shown in
Figure 5. For most general subset diagnosis, all findings associated with a set of defects must
be observed if the set of defects is to be included as part of a diagnosis. Most general superset
diagnosis focusses on common findings of defects. For most general intersection diagnosis, at
least one finding associated with a defect must be observed if the defect is to be included as
part of a diagnosis. Notions of diagnosis can also be classified in terms of elements included in
individual diagnoses using set inclusion; the subdiagnostic relation < does exactly this. The
three notions of diagnosis discussed above stand in a subdiagnostic relation to each other:

GS < GI



GO QGI

This follows from the fact that if a set of observed findings is included in the set of observable
findings associated with a set of defects, or vice versa, the intersection of the set of observed
findings and observable findings is nonempty, given that neither the set of observed findings
E, nor the set of observable findings ¢, g (H'), is empty. For the empty cases, the most general
intersection diagnosis is always equal to the largest result with respect to set inclusion of GO
and GS. Hence, a most general intersection diagnosis will always contain at least as many
elements as most general subset and superset diagnosis.

3.3 Most specific diagnosis

Rather than taking the least upper bound of a set of accepted subhypotheses of a given hy-
pothesis, taking the greatest lower bound provides another approach to refinement diagnosis.
We shall refer to notions of diagnosis based on taking the greatest lower bound as notions
of most specific diagnosis. Where the concept of most general diagnosis formalizes notions
of diagnosis that yield diagnoses that include every accepted subhypothesis, most specific
diagnosis formalizes notions of diagnosis that yield diagnoses that are common to every ac-
cepted subhypothesis. In general it holds for a notion of most specific diagnosis S that if
Ssen(E) = @ and Sy, (E) = H", then, by definition, Sx.¢ , ., (E) = @. Hence, notions
of most specific diagnosis are very restrictive.

As with the notion of most general subset diagnosis, in the notion of most specific subset
diagnosis, subhypotheses are admitted to a diagnosis if their associated sets of findings are
included in the set of observed findings of a diagnostic problem. However, of these accepted
subhypotheses, only the defects the subhypotheses have in common constitute a diagnosis.
Hence, the notion of most specific subset diagnosis, denoted by SS, is defined as follows:

if H is consistent, and

ﬂ H CH H' 7] i '
SSE,e‘H(E) = elH(—H,) CE JH g H : 6|H(H) g FE

U otherwise

This notion of diagnosis is extremely restrictive. For example, if an evidence function is
interaction free, then the most specific subset diagnosis will almost always (with the exception
when only one subhypothesis is accepted) be equal to the empty set.

If the evidence function is monotonically decreasing, then most specific subset diagnosis
tries to construct the smallest diagnosis possible. It may be view as a flexible form of ker-
nel, consistency-based diagnosis in the sense of [6]. The reason for the similarity between
kernel diagnosis in consistency-based diagnosis and most specific subset diagnosis is that any
hypothesis H' for which ez (H') C E is also consistent with E.

The correspondence between kernel diagnosis and most specific subset diagnosis is illus-
trated by an example taken from [6]. Consider Figure 6, which depicts an electronic circuit
with three multipliers, referred to as My, My and M3, and two adders, denoted by A; and As.
Let ¥ = (A, ®,e) be a diagnostic specification representing the circuit. The fact that some
multiplier M; is defective, is denoted by m;; if it is nondefective, this is indicated by —m;.
A similar notational convention is adopted with regard to the two adders. It is convenient
to assume that the input to the circuit is fixed (as assumed in [5] and [6]), as indicated in
Figure 6. The normal output of the circuit, O; = 12 and Oy = 12, is denoted by 01 and o9;
abnormal output is denoted by —o;, j = 1,2.
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Figure 6: Multiplier-adder circuit.

The following values of the evidence function e are among those that correspond to the
circuit’s normal behaviour:

e({-mq, -mg, ~ms, nay, nas}) = {01,092}
e({—-m1, -mg, ~-ms,a1,-as}) = {o2}
e({~m1,~mg, ~mg3,a1,a2}) =&
({—~m1, ~mg, -m3,a1}) = {02}

(

(

o)

e
€

{a1}) = {02}

{_'mla —ma, _'m3}) — {013 02}

¢(2) ~ {o1,00)

(e(@) denotes that it is unknown whether defects are present or absent.) The most specific
subset diagnosis with respect to the hypothesis H = {a1} is equal to

SS% e (ayy ({701, 02}) = {a1}

which is indeed a kernel diagnosis for the diagnostic problem P = (3, E) using consistency-
based diagnosis. Note that

SSs.e ({01, 02}) = {ar}

if a1 € H, for example, H = {—my, ~mq, -m3, a1, "as}.

As discussed above, most general superset diagnosis will often yield a diagnosis that
contains too many defect elements, in particular when an evidence function is monotonically
increasing. Most specific superset diagnosis is a more restrictive, and possibly more suitable,
notion of diagnosis than most general superset diagnosis.

The notion of most specific superset diagnosis, denoted by SO, is defined as follows:

if H is consistent, and

ﬂ H CH H, .
SOE,e‘H(E) = €|H(_H')2E IH' CH: e|H(H,) DO FE

U otherwise

If the evidence function to which most specific superset diagnosis is applied, is monotonically
increasing, the result may be intuitively attractive. The basic idea of most specific superset
diagnosis is that the observed findings that are common to the accepted subhypotheses are
due to the common defects of accepted subhypotheses.

11



Reconsider Figure 1. For E = {fs, f3} (i.e. the patient has a sore throat and dyspnoea),
the most specific superset diagnosis is equal to

SOE,@Hdl,dg,d?,} (E) = {d3}

because, it holds that ey ({d1,d3}) 2 E, ejg({d2,d3}) 2 E and e|g({d1,d2,d3}) 2 E, where
H = {di,ds,ds}. All other subsets of H have associated sets of findings that are no supersets
of E. The defect ds stands for asthma. While both d; and do participate in subhypotheses
that also account for E, only the defect ds occurs in all accepted subhypotheses, i.e. it turns
out to be essential. It seems therefore intuitively right to accept d3 as the most plausible
diagnosis.

As the example above indicates, a most specific superset diagnosis need not account for
all observed findings on the basis of the given evidence function. If an evidence function
is interaction free, then most specific superset diagnosis is likely to produce a singleton set
diagnosis for a given hypothesis that is very plausible if the associated sets of observed findings
e({d}) are mutually disjoint.

As discussed above, the notion of most general intersection diagnosis is very unrestrictive.
All defects that, either individually or in combination with other defects, have findings in
common with the set of observed findings, are included in a diagnosis. The notion of most
specific intersection diagnosis, denoted by SI, is much more restrictive than most general
intersection diagnosis; it is defined as follows:

if H is consistent, and (E = & or

N wcu H' JH'CH:ep(H') =2 or
SIz.e n (B) = (E=oVven(H')=0v e (H')NE # o)
en(H')NE # 2)
U otherwise

If the evidence function e is monotonically increasing, the resulting diagnosis will be equal to
the empty set if the function values e({d}) have many observable findings in common.

3.4 Comparison

Although the notions of most specific diagnosis are very restrictive, they do not stand in a
simple restriction relation to the other notions of diagnosis. However, it is easy to see that

SSE,e‘H (E) g GSE,e‘H (E)

holds for each consistent H C A. Similar set inclusion relations hold for the other notions of
diagnosis. We state without proof that:

5SS 4GS
SO 4GO
SIAGI

4 Discussion

In this paper, we introduced a general set-theoretical framework as a tool for the formalization
of notions of diagnosis. As was shown, the particular properties of evidence functions to which
a notion of diagnosis is applied, are important with respect to the appropriateness of a notion

12



of diagnosis. Several new notions of diagnosis have been proposed that are less rigorous in
dealing with observed findings and evidence functions than common notions of diagnosis.
These are certainly not the only notions of diagnosis that may be useful in certain domains.

There are a number of ways in which the notions of diagnosis discussed above might be
enhanced. In the formalization of a diagnostic problem in Section 2, findings associated with
a set of defects were just listed, without making an explicit distinction between those findings
that are important and those that are not. However, the set of findings may be subdivided into
subsets according to several, not necessarily mutually exclusive, criteria, taken as measures
of the ‘importance’ or relevance of findings. Two examples of such criteria are:

e Frequency of occurrence: some findings may always be present given a set of present or
absent defects, while others may only be observed occasionally.

e Discriminatory power: the observation of a finding associated with some set of defects,
but not with other sets, makes the occurrence of that particular set of defects more likely
than the occurrence of the other sets. In medicine, findings with high discriminatory
power are known as pathognomonic findings.

Many other criteria are possible. These criteria could be incorporated into our notions of
diagnosis by decomposing an evidence function into several different evidence functions with
different meanings.

Finally, it is desirable to gather experimental evidence for the usefulness of refinement
diagnosis with respect to real-world diagnostic applications. An experimental comparison of
the results produced by the various notions of diagnosis in different applications will produce
more insight into the applicability of the theory, and may suggest improvements.
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