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Abstract

Probabilistic inference with a belief network in general is computationally ex-

pensive. Since the concept of structural relevance provides for identifying parts

of a belief network that are irrelevant to a context of interest, it allows for al-

leviating to some extent the computational burden of inference: inference can

be restricted to the network's relevant part. The structurally relevant part of a

belief network, however, is not static. It may change dynamically as reasoning
progresses. We address the dynamics of structural relevance and introduce the

concept of an independence projection to capture these dynamics.

1 Introduction

Complex problem domains that are fraught with uncertainty are in the focus of at-
tention of arti�cial-intelligence research and have been so for some time now. One
of the most promising frameworks for dealing with uncertainty that have emerged
from this research is the framework of (Bayesian) belief networks [Pearl, 1988]. This
framework is �rmly rooted in probability theory. It provides a powerful and intuitively
appealing formalism for representing a probability distribution; informally speaking,
a belief network consists of a qualitative part, encoding a domain's variables and the
probabilistic independences among them in a directed graph, and a quantitative part,
encoding probabilities over these variables. In addition, the framework o�ers a set of
algorithms for probabilistic inference. The belief-network framework is becoming in-
creasingly popular for building knowledge-based systems, and more and more real-life
applications employing the framework are being realised.

As applications of the belief-network framework grow larger, the networks involved
increase in size accordingly. For large belief networks, probabilistic inference shows
a tendency to become rather time-consuming. Since probabilistic inference is known
to be NP-hard [Cooper, 1990], this tendency may not be denied in general. In many
real-life problem domains, however, reasoning with a belief network concentrates on
only some variables of interest. In a medical diagnostic application, for example,
the main objective is to establish values for the variables modeling possible disorders
and reasoning will concentrate on these variables. In essence, every variable in a
belief network may at some time during reasoning be relevant to the variables of
interest. Yet, rarely will all of them be of direct relevance. Knowledge of relevance
to the variables of interest can be exploited to identify part of a network to which



probabilistic inference can be restricted, thereby providing for a reduction of the
computational burden involved.

The concept of relevance can be captured in many di�erent ways [Druzdzel &
Suermondt, 1994]. One way of capturing relevance in belief networks is by structural
relevance. Structural relevance builds on the probabilistic independences among the
domain's variables that are re
ected by a belief network: a variable is deemed struc-
turally relevant to a variable of interest if and only if the topological properties of the
network's digraph do not imply these variables being independent. At any time dur-
ing reasoning with a belief network, the set of variables that are structurally relevant
to the variables of interest is unique. However, as reasoning progresses and evidential
information is processed, this set may change: the evidence may cause previously
structurally relevant variables to become irrelevant, and vice versa. These changes
in relevance are not arbitrary but are strictly de�ned by the belief network at hand.
In this paper, we introduce the concept of an independence projection to investigate
these changes. Building on this concept, we will show that it is possible not only to
identify at any time during reasoning the set of variables that are relevant to the vari-
ables of interest, but also to identify sets of variables that will never become relevant
(anymore) no matter which further evidential information may be processed.

The paper is organised as follows. In Section 2, we review the belief-network for-
malism. The concept of structural relevance is detailed in Section 3. In Section 4,
we introduce the concept of an independence projection for investigating structural
relevance; in Section 5, we distinguish between strong and weak independence projec-
tions to allow for predicting changes in relevance. In Section 6, we brie
y address the
computation of the various types of independence projection. The paper is rounded
o� with some conclusions and directions for further research in Section 7.

2 The Belief-Network Formalism

The belief-network formalism provides for a concise representation of a probability dis-
tribution on a set of statistical variables; such a representation is called a (Bayesian)
belief network. A belief network comprises a qualitative part and a quantitative part.
The qualitative part of a belief network is a graphical representation of the indepen-
dences among the variables holding in the distribution at hand. It takes the form of
an acyclic directed graph. In this digraph, each vertex represents a statistical variable
that can take one of a �nite set of values. The arcs of the digraph with each other
model the independences among these variables. Informally speaking, we take an arc
Xi ! Xj in the digraph to represent a direct causal relationship between the linked
variables Xi and Xj; the direction of the arc designates Xj as the e�ect of the cause
Xi. Absence of an arc between two vertices means that the corresponding variables
do not in
uence each other directly, and hence are (conditionally) independent. As-
sociated with the qualitative part of a belief network is a set of probabilities from the
distribution at hand, constituting the network's quantitative part. As in this paper
we will be concerned with the qualitative part of a belief network only, we will not
elaborate on its quantitative part; for further information, the reader is referred to
[Pearl, 1988].

We consider once more the set of arcs of the digraph of a belief network. These
arcs with each other model the independences holding in the probability distribution



that is represented by the network. We de�ne the probabilistic meaning assigned to
acyclic digraphs more formally.

De�nition 2.1 Let G = (V;A) be an acyclic digraph. Let s be a chain in G and let
Y � V . Then, s is blocked by Y in G, denoted hs=Y iG, if s contains three consecutive
variables V1, V2, V3, for which one of the following conditions holds:

1. arcs V1  V2 and V2 ! V3 are on the chain s, and V2 2 Y ;

2. arcs V1 ! V2 and V2 ! V3 are on the chain s, and V2 2 Y ;

3. arcs V1 ! V2 and V2  V3 are on the chain s, and ��(V2) \ Y = ?, where
��(V2) denotes the set of variables comprising V2 as well as all its descendants.

In de�ning the concept of a blocked chain, we have distinguished between three con-
ditions. Figure 1 serves as a reference for these conditions; in the chains representing
the conditions 1 and 2, variable V2 is drawn with shading to indicate that it is included
in the blocking set for the chain at hand.

V1 V2 V3Condition 1.

V1 V2 V3Condition 2.

V1 V2 V3Condition 3.

Figure 1: Chain Blocking.

The concept of blocking is de�ned for single chains only. Building on this concept
we de�ne the d-separation criterion to apply to sets of chains.

De�nition 2.2 Let G = (V;A) be an acyclic digraph. Let X; Y; Z � V . The set of
variables Y is said to d-separate the sets X and Z in G, denoted hX j Y j ZidG, if
for every chain s between any variable from X and any variable from Z we have that
hs=Y iG.

The following de�nition relates the d-separation criterion, which is graph-theoretic in
nature, to the probabilistic concept of independence.

De�nition 2.3 Let G = (V;A) be an acyclic digraph. The independence model MG

of G is the set of statements I(X; Y; Z) such that I(X; Y; Z) 2 MG if and only if
hX j Y j ZidG, for all mutually disjoint sets of variables X; Y; Z � V .

A statement I(X; Y; Z) of an independence model is coined an independence state-
ment; the statement signi�es that the sets of variables X and Z are conditionally
independent given the set of variables Y . Note that independence statements apply
to mutually disjoint sets of variables only; in the sequel, we will assume disjointness
of sets of variables, unless explicitly stated otherwise.



3 Structural Relevance

A probability distribution may embed various independences among its variables.
With a distribution Pr we associate an independence model including all of Pr's in-
dependence statements: the independence model MPr of Pr is the set of statements
I(X; Y; Z) such that I(X; Y; Z) 2 MPr if and only if the sets of variables X and Z
are conditionally independent given Y in Pr. Upon representation of a probability
distribution by a belief network, a digraph is constructed that captures this distribu-
tion's independence model. Unfortunately, there are probability distributions whose
independence model cannot be represented faithfully by a directed graph, that is,
there are probability distributions Pr for which there does not exist a digraph G such
that MG = MPr [Pearl, 1988]. For representing a probability distribution Pr by a
belief network, therefore, a digraph G is created whose independence model MG is a
(maximal) subset of the independence model MPr of Pr. Note that any independence
statement that can be read from such a digraph G by the d-separation criterion is
guaranteed to actually hold in the distribution Pr; some independences holding in
Pr, however, may have escaped representation in G. The concept of structural rele-
vance now applies to the independences that can be read from the digraph of a belief
network [Druzdzel & Suermondt, 1994].

De�nition 3.1 Let G = (V;A) be an acyclic digraph and let MG be its independence
model. Let X; Y; Z � V . We say that the sets of variables X and Z are structurally
relevant to each other given the set Y if and only if I(X; Y; Z) 62MG.

From the above observations, it will be evident that the concept of structural relevance
does not coincide with the concept of dependence. Building on structural relevance for
restricting probabilistic inference to the relevant part of a belief network, may therefore
in general not preclude all irrelevant computation. Determining structural relevance,
however, requires less computational e�ort than determining dependence: structural
relevance can be determined qualitatively by inspecting a belief network's digraph,
whereas determining dependence requires extensive manipulation of probabilities. We
will return to this observation in Section 6. In the sequel, we build on the concept of
structural relevance; for ease of exposition, however, we will use the phrases structural
(ir)relevance and (in)dependence interchangeably.

4 Independence Projections

The independence model of the digraph of a belief network comprises all independence
statements that can be read from the digraph by means of the d-separation criterion.
It may therefore be looked upon as a static description of all independences among
the variables discerned, conditional on all possible sets of variables. We observe that,
at any time during reasoning with the network, there is a unique set of variables for
which evidence has actually been processed; in the sequel, we will refer to this set of
variables as the current body of evidence. To the current body of evidence only some of
the independence statements of the digraph's model apply; these are the statements
that are conditional on the body of evidence. The set of independence statements
that apply to the current body of evidence is termed the independence projection of
the model given the evidence.



De�nition 4.1 Let G = (V;A) be an acyclic digraph and let MG be its independence
model. Let Y � V be the current body of evidence. The independence projection of
MG given Y , denoted IG(Y ), is the set

IG(Y ) = f(X;Z) j I(X; Y; Z) 2 MGg

The dependence projection of MG given Y , denoted DG(Y ), is the set

DG(Y ) = f(X;Z) j I(X; Y; Z) 62MGg

Note that when the current body of evidence is empty, the independence projection
of a digraph's model includes only unconditional independence statements. The fol-
lowing properties are easily veri�ed for any body of evidence Y :

� IG(Y ) \DG(Y ) = ?;

� IG(Y ) [DG(Y ) = P(V )� P(V );

where P(V ) denotes the power set of the set of variables V ; furthermore, we have
that

� fI(X; Y; Z) j (X;Z) 2 IG(Y )g �MG, for any Y � V ;

�
S
Y�V fI(X; Y; Z) j (X;Z) 2 IG(Y )g =MG;

that is, the independence projection of a digraph's model given any body of evidence
Y indicates a subset of the entire set of independence statements that can be read
from the digraph, and the independence projections for all Y � V with each other
once again span the entire model of the digraph.

The d-separation criterion provides for reading from a belief network's digraph
any independence projection, as is stated more formally in the following lemma.

Lemma 4.2 Let G = (V;A) be an acyclic digraph and let MG be its independence
model. Let Y � V and let IG(Y ) be the independence projection of MG given Y .
Then, for all sets of variables X;Z � V , we have that (X;Z) 2 IG(Y ) if and only if
hX j Y j ZidG.

When reasoning with a belief network, the body of evidence changes: it grows mono-
tonically as a result of processing evidential information. Also, the set of independence
statements given the evidence may change: variables that are independent given the
current body of evidence may become dependent upon observing an additional piece
of evidence, and vice versa. Note that these changes may be non-monotonic in nature.

We consider the digraph G of a belief network and its associated independence
modelMG. Let Y be the current body of evidence and let IG(Y ) be the independence
projection of MG given Y . Now suppose that new evidential information becomes
available for some of the variables in the network and that the new body of evidence
equals the set of variables Y 0 with Y � Y 0. We compare the new independence
projection IG(Y

0) given this set Y 0 with the independence projection IG(Y ). For two
sets of variablesX and Z, it is possible that both (X;Z) 2 IG(Y ) and (X;Z) 2 IG(Y

0).



X1 X2 X3

Figure 2: (fX1g; fX3g) 2 IG(?) and (fX1g; fX3g) 2 IG(fX2g).

Example 4.3 Consider the digraph G shown in Figure 2. Exploiting the d-separation

criterion, we �nd that fX1g and fX3g are d-separated by ? as well as by fX2g, that
is, hfX1g j ? j fX3gi

d
G and hfX1g j fX2g j fX3gi

d
G. From Lemma 4.2, it follows that

(fX1g; fX3g) 2 IG(?) and (fX1g; fX3g) 2 IG(fX2g). So, the variables X1 and X3 are

independent, and remain to be so when evidence for X2 is processed. 2

For two sets of variables X and Z, it is also possible that (X;Z) 62 IG(Y ) and (X;Z) 62
IG(Y

0).

Example 4.4 Consider the digraphG shown in Figure 3. From this digraph, it is easily seen

that the chain X1 ! X3 between the variablesX1 andX3 cannot be blocked, and hence that

the sets of variables fX1g and fX3g can never be d-separated | not by ?, and not by fX2g.
From Lemma 4.2, it follows that (fX1g; fX3g) 62 IG(?) and (fX1g; fX3g) 62 IG(fX2g). So,
the variables X1 and X3 are dependent and remain to be so when evidence for the variable

X2 is processed. 2

X1

X2

X3

Figure 3: (fX1g; fX3g) 62 IG(?) and (fX1g; fX3g) 62 IG(fX2g).

New independences may arise as further evidential information is processed, that is, for
two sets of variables X and Z it is possible that (X;Z) 62 IG(Y ) and (X;Z) 2 IG(Y

0).

Example 4.5 Consider the digraph G shown in Figure 4. From this digraph, we read that

fX1g and fX3g are not d-separated by the empty set. From Lemma 4.2, it follows that

(fX1g; fX3g) 62 IG(?). However, fX1g and fX3g are d-separated by the set fX2g, and
therefore (fX1g; fX3g) 2 IG(fX2g). So, the variables X1 and X3 initially are dependent

but become independent upon processing evidence for the variable X2. 2

X1

X2

X3

Figure 4: (fX1g; fX3g) 62 IG(?) and (fX1g; fX3g) 2 IG(fX2g).

To conclude, we observe that independences may also disappear as reasoning pro-
gresses, that is, for two sets of variables X and Z it is possible that (X;Z) 2 IG(Y )
and (X;Z) 62 IG(Y

0).



Example 4.6 Consider the digraph G shown in Figure 5. From this digraph, we read that
fX1g and fX3g are d-separated by the empty set; we conclude that (fX1g; fX3g) 2 IG(?).
However, fX1g and fX3g are not d-separated by the set fX2g, and therefore (fX1g; fX3g) 62
IG(fX2g). So, the variables X1 and X3 initially are independent, yet become dependent

upon processing evidence for the variable X2. 2

X1

X2

X3

Figure 5: (fX1g; fX3g) 2 IG(?) and (fX1g; fX3g) 62 IG(fX2g).

The following lemma summarises the above observations.

Lemma 4.7 Let V be a set of (at least three) variables. For any digraph G = (V;A)
and any set of variables Y � V , let IG(Y ) be the independence projection of the
independence model MG of G given Y . Then,

� there exist a digraph G = (V;A) and sets of variables X; Y; Y 0; Z � V with
Y � Y 0 such that (X;Z) 2 IG(Y ) and (X;Z) 2 IG(Y

0);

� there exist a digraph G = (V;A) and sets of variables X; Y; Y 0; Z � V with
Y � Y 0 such that (X;Z) 62 IG(Y ) and (X;Z) 62 IG(Y

0);

� there exist a digraph G = (V;A) and sets of variables X; Y; Y 0; Z � V with
Y � Y 0 such that (X;Z) 62 IG(Y ) and (X;Z) 2 IG(Y

0);

� there exist a digraph G = (V;A) and sets of variables X; Y; Y 0; Z � V with
Y � Y 0 such that (X;Z) 2 IG(Y ) and (X;Z) 62 IG(Y

0).

5 Strong and Weak Independence Projections

In the previous section, we have shown that an independence projection may change
as the body of evidence grows during reasoning with a belief network. In addition,
we have argued that the changes incurred may be non-monotonic in nature. Now, for
exploiting the concept of structural relevance for restricting probabilistic inference to
part of a network, it is worthwhile to distinguish between independences that hold
given the current body of evidence and remain to hold no matter which information
may further be processed, and independences that may be invalidated as further
evidence becomes available. For this purpose, we de�ne the concepts of strong and
weak independence projection.

De�nition 5.1 Let G = (V;A) be an acyclic digraph and let MG be its indepen-
dence model. Let Y � V be the current body of evidence. The strong independence
projection of MG given Y , denoted SG(Y ), is the set

SG(Y ) = f(X;Z) j I(X; Y
0; Z) 2MG for all sets of variables Y 0 with Y � Y 0 � V g



The weak independence projection of MG given Y , denoted WG(Y ), is the set

WG(Y ) = f(X;Z) j I(X; Y; Z) 2MG and I(X; Y 0; Z) 62MG for some set of

variables Y 0 with Y � Y 0 � V g

The following properties are easily veri�ed for any body of evidence Y :

� SG(Y ) \WG(Y ) = ?;

� SG(Y ) [WG(Y ) = IG(Y ).

As for independence projections in general, the d-separation criterion provides for
reading from a network's digraph any strong or weak independence projection. Before
stating this property more formally, we distinguish between two di�erent ways of
blocking a chain.

De�nition 5.2 Let G = (V;A) be an acyclic digraph. Let s be a chain in G and let
Y � V . Then, s is blocked by Y in G by presence of information, denoted hs=Y;2iG,
if s contains three consecutive variables V1; V2; V3, for which one of the following con-
ditions holds:

� arcs V1  V2 and V2 ! V3 are on the chain s, and V2 2 Y ;

� arcs V1 ! V2 and V2 ! V3 are on the chain s, and V2 2 Y .

The chain s is blocked by Y in G by absence of information, denoted hs=Y; 62iG, if s
is blocked by Y in G and s is not blocked by Y in G by presence of information.

Building on the two di�erent ways of blocking a chain, we distinguish between strong
and weak d-separation.

De�nition 5.3 Let G = (V;A) be an acyclic digraph. Let X; Y; Z � V . The set of
variables Y is said to strongly d-separate the sets of variables X and Z in G, denoted
hX j Y j ZiSdG , if for every chain s between any variable from X and any variable from
Z we have that hs=Y;2iG. The set Y is said to weakly d-separate the sets X and Z,
denoted hX j Y j ZiWd

G , if hX j Y j ZidG and Y does not strongly d-separate X and Z.

Note that in a digraph G two sets of variables X and Z are weakly d-separated by a
set Y if they are d-separated by Y and there exists at least one chain in G between a
variable from X and a variable from Z that is blocked by Y by absence of information.

The following lemma now states that any strong independence projection can be
read from a belief network's digraph by exploiting the strong d-separation criteri-
on, that is, by inspecting the chains in the digraph that are blocked by presence of
information. The basic idea underlying the lemma is that, once a chain is blocked
by presence of information, it can never become unblocked upon processing further
evidence.

Lemma 5.4 Let G = (V;A) be an acyclic digraph and let MG be its independence
model. Let Y � V and let SG(Y ) be the strong independence projection of MG given
Y . Then, for all sets of variables X;Z � V we have that (X;Z) 2 SG(Y ) if and only
if hX j Y j ZiSdG .



Note that the property stated in the lemma allows for verifying strong independence
without having to check the independence projections for all bodies of evidence larger
than the current one.

The following lemma states that weak independence projections can be read from a
belief network's digraph by exploiting the weak d-separation criterion. The basic idea
underlying the lemma is that only chains that are blocked by absence of information
can become unblocked upon processing further evidence.

Lemma 5.5 Let G = (V;A) be an acyclic digraph and let MG be its independence
model. Let Y � V and let WG(Y ) be the weak independence projection of MG given
Y . Then, for all sets of variables X;Z � V we have that (X;Z) 2 WG(Y ) if and only
if hX j Y j ZiWd

G .

We consider once more the digraph G of a belief network and its associated indepen-
dence model MG. Let Y be the current body of evidence and let SG(Y ) and WG(Y )
be the strong and weak independence projections of MG given Y , respectively. Now
suppose that new evidential information is processed for some of the variables in the
network and that the new body of evidence equals the set Y 0 with Y � Y 0. We
compare the new independence projections SG(Y

0) and WG(Y
0) given this set Y 0 with

the independence projections SG(Y ) and WG(Y ), respectively.
For two sets of variables X and Z, if X and Z are strongly independent given Y ,

then they are also strongly independent given Y 0. This property follows directly from
De�nition 5.1; for completeness of presentation, the property is stated in the following
lemma.

Lemma 5.6 Let G = (V;A) be an acyclic digraph and let MG be its independence
model. For any set of variables Y � V , let SG(Y ) be the strong independence projec-
tion of MG given Y . For all sets of variables X;Z � V and for all sets of variables
Y; Y 0 � V with Y � Y 0, if (X;Z) 2 SG(Y ) then (X;Z) 2 SG(Y

0).

We now turn to the dynamics of weak independence projections. For two sets of
variables X and Z, it is possible that (X;Z) 2 WG(Y ) and (X;Z) 2 DG(Y

0).

X1

X2

X3

X4

Figure 6: (fX1g; fX3g) 2 WG(?) and (fX1g; fX3g) 2 DG(fX4g).

Example 5.7 Consider the digraph G shown in Figure 6. Exploiting the d-separation

criterion, we �nd that fX1g and fX3g are d-separated by ?. Since for the chain s between
X1 and X3 we have that hs=?; 62iG, we �nd that fX1g and fX3g are weakly d-separated

by ?. From Lemma 5.5 we conclude that (fX1g; fX3g) 2 WG(?). From the digraph

we further read that fX1g and fX3g are not d-separated by fX4g. We conclude that

(fX1g; fX3g) 2 DG(fX4g). 2



For two sets of variables X and Z, it is also possible that (X;Z) 2 WG(Y ) and
(X;Z) 2 WG(Y

0).

Example 5.8 Consider the digraph G shown in Figure 7. Exploiting the d-separation

criterion, we �nd that fX1g and fX3g are d-separated by ?. Since for the chain s between
X1 and X3 we have that hs=?; 62iG, we �nd that (fX1g; fX3g) 2WG(?). From the digraph

we further read that fX1g and fX3g are also weakly d-separated by fX4g. We conclude

that (fX1g; fX3g) 2WG(fX4g). 2

X1

X2

X3

X4

Figure 7: (fX1g; fX3g) 2 WG(?) and (fX1g; fX3g) 2 WG(fX4g).

To conclude, for two sets of variables X and Z, it is possible that (X;Z) 2 WG(Y )
and (X;Z) 2 SG(Y

0).

Example 5.9 Consider the digraph G shown in Figure 8. From the digraph, we read that

fX1g and fX3g are weakly d-separated by?. Using Lemma 5.5, we �nd that (fX1g; fX3g) 2
WG(?). From the digraph we also read that fX1g and fX3g are d-separated by fX4g. Note
that for the chain s in G between X1 and X3 we have that hs=fX4g;2iG. From De�nition

5.3, we therefore have that fX1g and fX3g are strongly d-separated by fX4g. From Lemma

5.4, we conclude that (fX1g; fX3g) 2 SG(fX4g). 2

X1

X2

X4

X3

Figure 8: (fX1g; fX3g) 2 WG(?) and (fX1g; fX3g) 2 SG(fX4g).

The following lemma summarises the above observations.

Lemma 5.10 Let V be a set of (at least four) variables. For any digraph G = (V;A)
and any set of variables Y � V , let DG(Y ), WG(Y ), and SG(Y ) be the dependence
projection, the weak independence projection, and the strong independence projection,
respectively, of the independence model MG of G given Y . Then,

� there exist a digraph G = (V;A) and sets of variables X; Y; Y 0; Z � V with
Y � Y 0 such that (X;Z) 2 WG(Y ) and (X;Z) 2 DG(Y

0);

� there exist a digraph G = (V;A) and sets of variables X; Y; Y 0; Z � V with
Y � Y 0 such that (X;Z) 2 WG(Y ) and (X;Z) 2 WG(Y

0);

� there exist a digraph G = (V;A) and sets of variables X; Y; Y 0; Z � V with
Y � Y 0 such that (X;Z) 2 WG(Y ) and (X;Z) 2 SG(Y

0).



We now turn to the dynamics of dependence projections. For two sets of variables X
and Z, it is possible that (X;Z) 2 DG(Y ) and (X;Z) 2 DG(Y

0); we refer to Example
4.4 and Figure 3 for an illustration of this observation. For two sets X and Z, it is
also possible that (X;Z) 2 DG(Y ) and (X;Z) 2 SG(Y

0).

Example 5.11 Consider once more the digraph G shown in Figure 4. Exploiting the d-

separation criterion, we �nd that fX1g and fX3g are not d-separated by ?, and hence

that (fX1g; fX3g) 2 DG(?). From the digraph, we further read that fX1g and fX3g are
d-separated by fX2g. Since for the chain s between X1 and X3 we have that hs=fX2g;2iG,
we conclude that (fX1g; fX3g) 2 SG(fX2g). 2

To conclude, for two sets of variables X and Z, it is possible that (X;Z) 2 DG(Y )
and (X;Z) 2 WG(Y

0).

Example 5.12 Consider the digraph G shown in Figure 9. Exploiting the d-separation

criterion, we �nd that fX1g and fX3g are not d-separated by ?. We conclude that

(fX1g; fX3g) 2 DG(?). From the digraph, we further read that fX1g and fX3g are d-

separated by fX2g. Note that for the chain s = X1 ! X4  X3 between X1 and X3

we have that hs=fX2g; 62iG. From De�nition 5.3, we have that fX1g and fX3g are weakly

d-separated by fX2g. By Lemma 5.5, we conclude that (fX1g; fX3g) 2WG(fX2g). 2

X2

X1 X3

X4

Figure 9: (fX1g; fX3g) 2 DG(?) and (fX1g; fX3g) 2 WG(fX2g).

The following lemma summarises the above observations.

Lemma 5.13 Let V be a set of (at least four) variables. For any digraph G = (V;A)
and any set of variables Y � V , let DG(Y ), WG(Y ), and SG(Y ) be the dependence
projection, the weak independence projection, and the strong independence projection,
respectively, of the independence model MG of G given Y . Then,

� there exist a digraph G = (V;A) and sets of variables X; Y; Y 0; Z � V with
Y � Y 0 such that (X;Z) 2 DG(Y ) and (X;Z) 2 DG(Y

0);

� there exist a digraph G = (V;A) and sets of variables X; Y; Y 0; Z � V with
Y � Y 0 such that (X;Z) 2 DG(Y ) and (X;Z) 2 WG(Y

0);

� there exist a digraph G = (V;A) and sets of variables X; Y; Y 0; Z � V with
Y � Y 0 such that (X;Z) 2 DG(Y ) and (X;Z) 2 SG(Y

0).

The Lemmas 5.6, 5.10, and 5.13 with each other describe the behaviour of the strong
independence projection, the weak independence projection, and the dependence pro-
jection of a digraph's independence model given a body of evidence, under processing
of further evidential information. From these lemmas it is easily veri�ed that

� SG(Y ) � SG(Y
0);

� DG(Y ) [WG(Y ) � DG(Y
0) [WG(Y

0);

for all bodies of evidence Y and Y 0 with Y � Y 0.



6 Algorithmic Considerations

We have argued before that the concept of structural relevance allows for alleviat-
ing the computational burden of probabilistic inference with a belief network since it
provides for restricting inference to a relevant part of the network. For this purpose,
algorithms for e�ciently computing (strong and weak) independence projections of a
digraphs's independence model are required. By exploiting the d-separation criteri-
on and the concepts of strong and weak d-separation, any independence projection
can be computed in O(n2) time, where n is the number of variables in the digraph.
Algorithms to this end build on a (modi�ed) graph traversal [Geiger et al., 1990].

7 Conclusions

The concept of structural relevance provides for identifying part of a belief network
that is relevant to a context of interest. We have shown that the relevant part of
a belief network may change dynamically as reasoning progresses. For investigating
the dynamics of structural relevance, we have introduced the concept of independence
projection. We have distinguished between strong and weak independence projections
to allow for predicting changes in relevance. More in speci�c, these types of projection
provide for identifying parts of a network that will never become relevant (anymore)
during reasoning with the network. We have shown that independence projections
can be read from a belief network's digraph. To conclude, we have argued that
algorithms for e�ciently computing strong and weak independence projections are
easily designed. The design of dynamic algorithms that provide for computing new
independence projections from previous ones remains as a challenging subject for
further research.
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