EFFECTIVE FUNCTION CACHE MANAGEMENT FOR
INCREMENTAL ATTRIBUTE EVALUATION

Joao Saraiva¥ Matthijs Kuiper and Doaitse Swierstra

Department of Computer Science, University of Utrecht
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands
email: {saraiva,kuiper,swierstra}@cs.ruu.nl

phone: +31 30 2536761

Abstract

This paper presents an effective strategy for function cache management in the context of
incremental attribute evaluation. The evaluators we study consist of pure functions which are
memoized to achieve incremental evaluation. To prevent unbounded growth of the function
cache a strategy for managing this cache is needed. Our strategy only keeps in the cache
the functions used in the reevaluation of the current input. This strategy has the following
properties: it efficiently handles Higher-order Attribute Grammars, it works well when a
sequence of modifications on the input exhibits some locality of work and measurements show
that for sequences of typical tree transformations the evaluator consumes only a fraction of
memory with our strategy than with a complete memoization, and is even slightly faster.

1 Introduction

This paper presents an effective strategy for function cache management in the context of
incremental attribute evaluation. The attribute evaluators we study consist of pure, recursive
functions. The incremental behaviour is obtained by memoizing function calls. To prevent un-
bounded growth of the cache a strategy to manage this cache is needed. We propose a simple
strategy which only uses dynamic information and is based on the assumption that the locations
of most changes in the input are strongly correlated. QOur strategy only keeps in the cache entries
for functions calls used in the reevaluation of the current input. It efficiently handles Higher-order
Attribute Grammars and it works well when a sequence of modifications on the input exhibits
some locality of work.

Several programming environments repeatedly apply a software tool to a sequence of similar
inputs. Examples include compilers, interpreters and text processors whose inputs are usually
incrementally modified text files. This motivates the development of incremental versions of such
tools, 1.e., tools which can efficiently recompute the result of a function when the input has changed
only slightly. Attribute grammars are a suitable formalism for specifying such tools [Kas91].
From an attribute grammar incremental attribute evaluators can be automatically derived which
evaluate any particular input [RTD83, Pen94]. Incremental attribute evaluation is particularly
suited to implement language-based editors where the performance of the evaluator is primordial,
since the feedback it provides may guide the user through the editing process.

The main question in the implementation of a function memoization scheme is which cache
management to employ. The complete memoization of functions quickly decreases the perfor-
mance of the evaluator due to the fast growth of the cache. We also show that traditional cache
management algorithms are not suited for incremental attribute evaluation.

*On leave from the Department of Computer Science, University of Minho, Braga, Portugal.

We implemented our strategy in the LRC system, a generator of incremental attribute evalua-
tors. Measurements show that for typical program transformations the evaluator is 7% faster with
our strategy than with the complete memoization strategy, using only a fraction of the memory.
These results also prove that it is possible to efficiently perform incremental attribute evaluation
without consuming too much memory.

The rest of this paper is structured as follows: section 2 briefly presents incremental attribute
evaluation. Section 3 discusses several visit-function cache updating strategies. Results of complete
memoization are presented and we show why traditional cache management strategies do not work
in incremental attribute evaluation. Section 4 presents an effective cache management strategy.
In section b results of our strategy are presented. Section 6 briefly compares our strategy with
other approaches. Section 7 presents the conclusions.

2 Incremental Attribute Evaluation

Higher-order attribute grammars (HAG) [VSK89] extend the classical attribute grammar for-
malism [AM91, Paa95]. In a HAG an attribute itself can have attributes (which can have at-
tributes, etc.). Such an attribute is called an attributable attribute (an ata). Traditional attribute
evaluators have problems with the incremental evaluation of ata’s. When an ata changes one
must recompute the attributes of the ata, unless one can reuse the values of the ata’s attributes
that were computed when decorating the ata. To achieve this reuse one must somehow compare
the new value of the ata with its old one and determine which parts of the ata have remained
unchanged. This is in general an expensive computation, because ata’s can be large trees.

Our approach to the incremental evaluation of HAGs is as follows. First, we use functional
evaluators that consist of pure functions, called wvisit-functions. Each function take as parameter
a tree and some inherited attributes of the root node of the tree and returns a subset of the
synthesized attributes of the tree. Second, attribute values are not stored in the nodes of the tree,
they only exist as function arguments and function results. Third, the calls to visit-functions are
memoized in a function cache. Each entry in a function cache stores the arguments and results of
one function call.

These evaluators efficiently handle the incremental evaluation of ata’s. When an ata changes
only slightly, many of the function calls to compute the attributes of the changed ata are found
in the cache. Our evaluator method has an additional advantage. When several equal trees (or
ata’s) are decorated with the same inherited attributes then only one instance is decorated. All
other decorations result in a cache hit.

3 Visit-Function Cache Updating

We now return to the problem of updating the visit-function cache. When considering different
update strategies the correctness of the attribute evaluator is not influenced, since it is always
possible to remove any element from the cache. Efficiency is the only concern. So, the main issues
of the cache updating algorithm are: which algorithm to use and when to invoke the removal
algorithm.

We distinguish between Attribute Grammar Dependent and Attribute Grammar Independent
caching managements strategies. The former includes all the strategies that use some knowledge
about the AG to define which visit-functions may or may not be cached. It is possible to use
static analysis in order to determine which visit-function calls may not be cached. For example,
visit-functions applied to subtrees that are instances of productions whose right-hand side consists
of terminal symbols only may not be cached. The latter consists of strategies that do not have
any knowledge about the AG. This includes all the probabilistic cache management strategies.

Incremental attribute evaluation is particularly suited to implement language-based editors,
i.e., for performing incremental semantic analysis of programs [RTD83]. The editor maintains
the abstract syntax tree of the input and each modification/edil action is described as a tree
transformation. A single tree transformation is denoted by ¢’ = t[r < 7’|, where ¢’ is the tree
resulting from replacing r by 7’ in ¢. This tree transformation is represented in figure 1. A tree
transformation may cause attributes to have inconsistent values, not only in the subtree where
the transformation was applied, but also elsewhere in the tree. The set of attribute instances that
require a new value is denoted by A.

t

Figure 1: Tree transformation ¢/ = t[r < »'].

We define Asreo(t) as the set of all attribute instances associated to the nodes of tree ¢. Each
step of a sequence of tree transformations is a single tree transformation. We call a tree transforma-
tion t' = t[r < 1] a global tree transformation, if |Asrec(t')] ~ |A|, and a local tree transformation
if [Atrec(t')] > |A|. The assumption of the editing model is that almost all tree transformations
are local.

3.1 Definition of Experiments

To measure the performance of incremental evaluators we used a PASCAL program and one
of the incremental attribute evaluators produced by the LRC system. The incremental evaluator
i1s a two-visit evaluator and performs semantic analysis, but no code generation. The PaSCAL
source program implements a text formatting program and has 19 procedures and consists of
about 500 lines (& 15000 characters). We have performed several modifications to this program.
We consider two different sequences of real program modifications/edit actions in that program:
one with 7 global tree transformations (GC) and another with 6 local tree transformations (LC).
These two sequences of program modifications will be used throughout this text.

As global tree transformations we have considered the following tree changes: change the
name of a global procedure and add a global variable (instruction nvalX:integer;). As local
tree transformations we have considered three different changes in two different procedures. The
two procedures are in different parts of the text, one is the second procedure in the source text
(procedure 2) and the other is the nineth (procedure 9). We refer the procedures by the position
they have in the text. The local changes were made in the following order: add a local variable
x:integer; to the procedure , add a small statement x := 0; at the beginning of the procedure
and add another statement x := x + 1; at the end of the procedure. These program modifications
are sumarized in table 1.

Note that, since our approach allows multiple tree transformations, it is possible to perform
all the edit actions before redecoration takes place. However, in order to analyse the incremental
behaviour of our approach we perform a redecoration after each edit action.

3.2 Complete Memoization of Visit-Function Calls

Global Changes Local Changes

t (pascal program) t (pascal program)

g° rename procedure 17 | [* add x:integer; to proc. 9
g* rename procedure 19 | % add x := 0; to proc. 9

gt rename procedure 8 [addx :=x + 1; toproc. 9
gt add global variable [ev add x:integer; to proc. 2
' add global variable v add x := 0; to proc. 2

g add global variable v add x := x + 1; to proc. 2
g

<

rename procedure 17

Table 1: Global and Local Program Modifications.

With complete memoization of visit-function calls, each different visit-function call finds a place
in the cache. The cache is organized as a hash array of collision lists. Locating a visit-function
call v in this cache includes traversing a list comparing the function and the arguments of v within
each element of the list. Thus, the cache overhead is strongly related too the size of these lists.

In table 2 we present results of processing the PASCAL program. We present the number
of misses (i.e., the number of function calls computed) and hits (the number of function calls
reused), the number of lookup operations performed (more precisely the number of visit-function
call comparisons), the number of bytes used to store the visit-functions in the cache and the
evaluator’s runtime (in seconds).

Cache Strategy Hash Array | Misses | Hits | Lookups | Cache Entries | Runtime

No Memoing - - - - - 0.96

(non incremental)

Full Memoing (I) 10007 8147 1542 5199 351516 1.07

Full Memoing (II) 1009 8147 1542 34931 351516 1.09

A Evaluation 1009 11391 0 55189 456552 1.25

(memoing without hits)

Cache Strategy Hash Global Changes Local Changes

Array Misses Hits Runtime Misses | Hits Runtime

No Memoing - - - 0.96 + (7 * 0.96) - - 0.96 + (6 * 0.96)

(non incremental) = 7.68 =6.72

Full Memoing 1009 34523 12483 1.09+ 5.02 13686 2728 1.094+ 0.74
=6.11 =1.83

Table 2: Results of decoration from scratch and incremental evaluation processing the PASCAL
program.

The first part of the table consists of processing the program from scratch using different con-
figurations. In the first row we use a conventional attribute evaluator. In the second and third
rows results using full memoing are presented. These two results were obtained using different
configurations of the cache. The evaluator’s performance is better in (I) since it performs fewer
lookup operations, i.e., it performs five times fewer lookup operations and the running time is 2%
better than in (I7). In this text we will use and compare our results with the second configuration
(IT). This is only due to practical reasons, since we will use two sequences of small tree trans-
formations as benchmarks and they would have a negligible impact in the growth of the cache in
configuration (I). Nevertheless, the results will be the same in (I) if we perform more tree trans-
formations, or when the size of the cache compared to the size of the tree becomes less favourable.
The full memoing version is 11% slower than the exhaustive version (i.e., non incremental) due
to the costs of memoization. The memoing version reuses 1542 visit-function calls (= 20% of all
the function calls)! This reuse is due to equivalent decorations of shared subtrees. For example,
in a normal PASCAL program all occurrences of a variable in the same scope are evaluated in the
same way. The same holds for statements like ¢ := ¢ + 1. The memoization overhead however
is not compensated completely by this sharing, and still a 11% time increase is present. In the

fourth row we changed the system to "really" evaluate the A attribute instances, i.e., we do not
reuse any visit-function and always store the new visit-function call in the cache. Obviously, the
runtime increases and is 17% greater than the full memoing version. This is what we have gained
with the sharing of equivalent subtrees.

In the second part of table 2 we present results of incremental evaluation. The runtimes
presented are divided into two groups: the first one is the time obtained in the initial processing
of ¢ to reach the point where the transformations were applied and the time of the evaluation of
the updates themselves. As expected, the incremental evaluator performs quite well with local
tree transformations. We have a speedup of 7.8 considering only the incremental evaluation of the
tree transformations (i.e., processing the modifications (¢, - - -, {*?) and a speedup of 3.7 with the
decoration from scratch. As to be expected, global tree transformations have poor incremental
behaviour (speedup of 1.3), since most of the attribute instances must be reevaluated and can
not be reused. However, global tree transformations are intrinsically hard problems giving poor
results in other approaches as well.

In figure 2 we present a graphical representation of the running times obtained for each tree
transformation. The horizontal line EE represents the time the Exhaustive Evaluation takes when
processing both sequences of tree transformations. Since the changes as such are minimal, all
these times are almost equal.

time

(sec.)

1 7? EE

750 P s GC

5

251 LC

- edit actions:

t g ¢ g gt g" ¢g" ¢"" global changes
t roorormrrr ™ local changes

Figure 2: Exhaustive, global and local running times.

In the sequence of global changes the evaluator’s performance decreases due to the growth
of the visit-function cache. Each global tree transformation induces many new entries in the
cache and consequently makes the lookup operations more and more expensive. Observe that, in
the program modifications ¢**, ¢* and ¢*’ the evaluator’s performance decreases when processing
similar transformations (add a global variable). Observe also that exactly the same modification
(rename procedure 17) performed in g and g% is processed 10% slower in g** due to the growth
of the cache.

In the sequence of local changes the cache’s growth is much smaller, since each tree change
only induces a few new entries in the cache. Tts growth did not have (yet) any impact on the
evaluator’s running time. Note however, that the running time decreases after three edit actions.
This happens because the modification [?V is the first change in the second procedure and the path
to root of this procedure is smaller, and fewer attribute instances must be reevaluated. The same
change in the first procedure ({?) is processed 3 times slower. Although the size of the visit-function
cache did not influence the evaluator’s performance in this sequence of local changes, its growth
will eventually influence 1t if we perform more and more edit actions.

3.3 Why Traditional Cache Management Algorithms Do Not Work

One of the most commonly used cache replacement strategies is the Least-Recently-Used (LRU)
algorithm. The algorithm is very simple and its update operation is fast. However, this simple
algorithm per se 1s not suited for incremental attribute evaluation. We will explain why by using
a simple example.

Without loss of generality, consider a two-pass attribute evaluator and assume that both passes
require the computation of approximately the same number of visit-functions. Let us assume that
the cache can only store 50% of the visit-functions needed to compute when processing a particular
input from scratch.

After processing this input from scratch the cache stores the calls to visit-functions performed
in the second pass of the evaluator. If we then change the input and call the evaluator it will have
a poor incremental behaviour: the evaluator starts the decoration by performing its first pass
and no visit-function call in this pass is found in the cache. Note that when the evaluator starts
its second pass the cache holds the entries from the previous pass. The cache always contains
the visit-functions applied in the "other" pass. The algorithm has been implemented in the Lrc
system and the results are presented in table 3. We used a fix bucket strategy, with 4 positions
per bucket.

Evaluation Global Changes Local Changes
Strategy Misses | Hits | Runtime || Misses | Hits | Runtime
Lru 72085 6919 8.76 33012 2977 3.56

Table 3: Results of the LRU cache updating algorithm processing the changes of table 1.

As we can see the performance of the incremental evaluator decreases in both sequences of
tree transformations. We can also observe that when processing the global transformations the
incremental evaluator’s performance is worse than the non-incremental one (8.76 > 7.68).

4 ULE Updating Strategy

Consider the single tree transformation t' = ¢[r < »'] and let u be a subtree of ¢ and ¢’ that
is not affected by the tree transformation, as represented in figure 1. The incremental evaluation
of t' reuses the visit-function applied to the root of u. However, all the visit-function applied to
the subtrees of u are not reused, since the hits occur at the top of the subtree and the evaluator
skips the visits to u. More generally, all the visit-functions applied to subtrees not affected by
a tree transformation are not reused in the incremental decoration of the resulting tree, with
the exception being the visit-functions applied to their roots. In figure 1 the nodes which are
parameters of the reused visit-functions are marked with a disk. Observe that, keeping all the
other entries in the cache decreases its speed and the evaluator only reuses them if a future tree
transformation affects those subtrees.

A possible cache strategy, which we called Used in Last Fvaluation (ULE), keeps only in the
cache the entries which were used in the redecoration of the current input. ULE assumes that if the
current tree transformation did not affect a set of subtrees U/, then the following transformation will
probably not affect I/, i.e., 1t assumes that a sequence of tree transformations exhibits locality. If
the following tree transformation does not affect any subtree in i, then this cache updating strategy
is optimal. By optimal we mean that the cache contains the minimum number of visit-function
entries that need to be applied to redecorate the subtrees in ¢ (the visit-functions applied to the
roots of the subtrees in /) and ensures that the incremental evaluator runs in O(JAU Apan(t', 7))
steps, where A, .45 (t', ") is the set of attribute instances associated to the nodes in the path from
the root of # to the root of #/, including the roots of # and r’. The overhead due to having more
visit-functions cached than needed in this case is zero.

Let new(t’, C) be the set of new visit-functions that need to be applied to compute the attribute
instances in A using cache C and let used(t’',C) be the set of entries of C which are used when
processing t'. Then the new cache obtained when processing t' is:

C' = used(t’,C) Unew(t',C)

The algorithm that determines C’ is simple. When processing t', every time a hit in C occurs,
the respective entry is copied from C to €/, since it is an element of used(t',C). When a miss occurs
it means a new visit-function is being applied, so a new entry must be stored in C’, since it is an
element of new(t', C). After decorating ¢’ the cache C’ contains the elements used(t’, C)Unew(t’,C).
In this algorithm, the size of the cache C’ is always smaller than the cache obtained when processing
the changed tree from scratch.

5 Performance of ULE Updating Strategy

We implemented the ULE cache updating strategy in the LRC system. Table 4 presents the
results of processing the two sequences GC and LC of edit actions.

Cache Global Changes Local Changes

Strategy Misses Hits Runtime Misses | Hits Runtime

ULe-Cache 40523 12268 | 1.094 4.84 13848 2709 | 1.09 4 0.69
= 5.93 1.78

Table 4: Results of the ULE cache updating strategy.

Comparing these results with those obtained using the full memoing strategy (see table 2), the
runtime decreases in both sequences of tree transformations, 4% and 3% in the global and local
tree transformations respectively. The memory needed for caching the visit-functions, decreases
in both strategies: after the sequence of global tree transformations, the size of the cache using
the ULE algorithm is 7.2 times smaller than when using complete memoing. After processing
the sequence of local tree transformations, the evaluator uses 8 times less memory! The total
number of visit-function call comparisons performed during the lookup operations also decreases
significantly, since the caches are smaller.

In figure 3 we present the running times (figure 3.a) and the memory used to store the visit-
function calls (figure 3.6) during both sequences of tree transformations. The results obtained
using the full memoing strategy are also presented (lines labelled with FM).

As we can see in the figure 3.a, in almost all the tree transformations the evaluator’s perfor-
mance using the ULE-cache is better than the full memoing version. As far as memory consump-
tion is concerned, in both sequences of tree transformations the evaluator uses much less memory
than when processing from scratch, and the memory used remains constant. Observe that the
ULE-cache evaluator has the same runtime when processing ¢¢ and g%, since the growth of the
cache does not affect its performance, as in the full memoing strategy. In the sequence of local
transformations the evaluator has also a better runtime when processing [/, % [V and [Y? since
the cache’s size is smaller than the full memoing version and consequently the lookup operation
is faster. However, the performance decreases when processing ¢'* and V. In these transfor-
mations the "user" jumped from one part of the tree to another. Using the ULE strategy, this
transformation implies that the smallest subtree, which contains the changed subtree and whose
visit-function calls applied to its root are stored in the cache, has to be redecorated from scratch.
This problem, that we call the jump edit action, will be analysed in detail in the next section.

5.1 The Jump Edit Action

time memory

(sec.) (Mbylt.e;)f FM (GO)
< ae
N1

121
g

gv‘z ‘gviiGC
" LC

g
ll’u

a)

liv lz lu &

lii

b)

Figure 3: Running times and memory consumption of the ULE strategy.

We defined a jump edit action as two consecutive transformations in different parts of the tree.
For example, when an user makes some changes in one procedure in a program and after that he
changes another procedure. We analyse the behaviour of our approach in this situation. Consider
the finite number of tree transformations:

tg—tH — - — 1,

Suppose that each ¢; is obtained from ¢;_1, with 1 <7 < n, by a subtree replacement in the same
subtree of 5. Let r be this subtree. Suppose also that the only attribute instances affected by the
tree transformations are A = Ay..(r) and those on the path to the root. Using the ULE cache
strategy, the incremental evaluator runs in less than or equal to O(|A U Apain (i, 7)|) steps, Le.,
with its best performance. The cache C; has the minimal number of entries needed to guarantee
that performance of the evaluator, i.e., it is specialised to perform incremental decorations in that
part of the tree. So, the overhead of the cache is minimal.

Consider now that after those n tree transformations the user jumps to another part of the
tree and replaces the subtree ¢’, as represented in figure 4.

Figure 4: The jump edit action: after a sequence of transformations in r the "user" changes a
subtree of q.

Let ¢ be the smallest subtree of ¢ which contains ¢’ and whose visit-function calls that have
these subtrees as arguments are stored in cache C. Note that the subtree ¢ was not affected by
the previous tree transformations. So, only the visit-functions applied to its root are cached. In
this case, the ULE strategy runs in less than or equal to O(|A U Ayrec(q) U Apain (2, q)|) steps. It
needs to redecorate the entire subtree ¢ from scratch. This happens when processing the change

[in LC (see figure 3).

Let us now assume that the user returns to subtree r. Then the subtrees r and s must be
redecorate from scratch, since only the visit-function applied to their parent are in the cache. This
happens when the user jumps to a deepest level of the tree. Note that in the sequence of local
transformations if we perform exactly the same edit actions but starting by changing procedure 2
and after that jumping to procedure 9, then the impact in the evaluator’s performance is larger.
In this case a large subtree containing all the procedures defined after procedure number 2 must
be redecorated from scratch. In table b we present the results obtained.

Cache Local Changes
Strategy Misses | Hits | Runtime
ULe-Cache 18189 3183 2.53

Table 5: Results of the ULE strategy processing L in reverse order.

As expected the runtime of the evaluator decreases significantly. Nevertheless, this performance
of the evaluator when processing some jump edit actions is not surprising, since our strategy
assumes that there exists some locality in the tree transformations. The jump edit action can
be efficiently handled in our approach if we keep in the cache a subset of visit-functions applied
in the subtrees not affected by the tree transformations. That is, if we memoize visit-functions
applied to subtrees of p, ¢ and s in the previous example. Determining which entries must remain
always in the cache might be done by performing a static analysis of the AG. However, since we
are only using dynamic information we can use the size of the subtree, where the visit-function
is applied, to decide whether we cache the visit-function or not. When performing incremental
attribute evaluation it is better to memoize large subtrees, since a hit in the respective entry
represents that visits to large subtrees can be skipped. In table 6 we present the results obtained
when processing the reverse of the sequence of local tree transformations and keeping in the cache
the visit-functions applied to those subtrees which are greater at least 10% of the input tree.

Cache Local Changes
Strategy Misses | Hits | Runtime
Ule-Cache 7389 1047 1.71

Table 6: Results of the ULE strategy keeping large subtrees in the cache.

Besides solving the problem of the jump edit action, this strategy also increases the performance
of the evaluator. The running time of the evaluator decreased 33% when compared with the pure
ULE-cache strategy (see table 5). This evaluator is also 7% faster than the full memoing evaluator
processing the same edit actions. This improvement of the performance is due to have a smaller
and consequently faster cache.

6 Brief Comparison with Other Approaches

There has been a lot of research on incremental attribute evaluation, ever since Reps [RTD83]
first used attribute grammars for performing incremental semantic analysis of programs. The goals
of the following approaches are very similar to ours, but they use a different methodology.

Change Propagation - Reps [RTD83] proposes a simple approach to incremental attribute
evaluation which involves propagating changes through the attributed tree. It uses a dependency
graph to ensure that an attribute instance is evaluated only after all the instances it depends on
have been assigned their final values. It needs also to keep track of which attributes changed
value. Furthermore, this approach only allows one single edit action before decoration takes place.
Yeh and Kastens [YK88] propose an approach that eliminates the need of the dependency graph
and that allows multiple tree transformations. Both approaches have an optimal running time
processing OAG’s. However, they consume too much memory and become extremely complicated
and far from when processing HAG’s [TC90].

Function Caching - Pugh [PT89] caches the semantic function calls in order to achieve incre-
mentality. Our approach is more efficient since a cache hit for a visit-function call means that
an entire visit to an arbitrarily large tree can be skipped. Observe also that a visit-function may
return the results of several semantic functions at same time.

7 Conclusions

This report presented a strategy for effective function cache management in the context of
attribute evaluation. The proposed function cache management strategy only keeps in the cache
entries for function calls used in the reevaluation of the input. This strategy solves the problem of
the infinite growth of the function cache. Moreover, it also improves the performance of the incre-
mental evaluator, since the resulting cache is smaller and consequently faster. We also presented
several optimisations to solve the problem of handling jump edit actions.

For experimental purposes, those strategies have been implemented in the LRC system. Mea-
surements show that for a small sequence of tree transformations our evaluator is 7% faster than
the full memoing evaluator. As far as memory consumption is concerned, our evaluator consumes
only a fraction of the memory and its consumption remains constant during the sequences of tree
transformations performed.

References

[AM91] H. Alblas and B. Melichar, editors. International Summer School on Attribute Grammars,
Applications and Systems, volume 545 of LNCS. Springer-Verlag, 1991.

[Kas91] Uwe Kastens. Attribute grammars as a specification method. In H. Alblas and B. Melichar,
editors, International Summer School on Attribute Grammars, Applications and Systems, volume
545 of LNCS, pages 16-47. Springer-Verlag, 1991.

[Paa95] Jukka Paakki. Attribute grammar paradigms - a high-level methodology in language implemen-
tation. ACM Computing Surveys, 27(2):196-255, June 1995.

[Pen94] Maarten Pennings. Generating Incremental Evaluators. PhD thesis, Utrecht University, Novem-
ber 1994. ftp://ftp.cs.ruu.nl/pub/RUU/CS/phdtheses/Pennings/.

[PSV92] Maarten Pennings, Doaitse Swierstra, and Harald Vogt. Using cached functions and construc-
tors for incremental attribute evaluation. In M. Bruynooghe and M. Wirsing, editors, Program-
ming Language Implementation and Logic Programming, volume 631 of LNCS, pages 130-144.
Springer-Verlag, 1992.

[PT89] William Pugh and Tim Teitelbaum. Incremental computation via function caching. In 16th
Annual ACM Symposium on Principles of Programming Languages, volume 1, pages 315-328.
ACM, January 1989.

[RTD83] Thomas Reps, Tim Teitelbaum, and Alan Demers. Incremental context-dependent analysis for
language-based editors. ACM Transactions on Programming Languages and Systems, 5(3):449—
477, July 1983.

[TC90] Tim Teitelbaum and Richard Chapman. Higher-order attribute grammars and editing environ-
ments. In ACM SIGPLAN’90 Conference on Principles of Programming Languages, volume 25,
pages 197-208. ACM, June 1990.

[VSK8&9] Harald Vogt, Doaitse Swierstra, and Matthijs Kuiper. Higher order attribute grammars. In ACM
SIGPLAN ’89 Conference on Programming Language Design and Implementation, volume 24,
pages 131-145. ACM, July 1989.

[VSK91] Harald Vogt, Doaitse Swierstra, and Matthijs Kuiper. Efficient incremental evaluation of higher
order attribute grammars. In J. Maluszynki and M. Wirsing, editors, Programming Language
Implementation and Logic Programming, volume 528 of LNCS, pages 231-242. Springer-Verlag,
1991.

[YK88] Dashing Yeh and Uwe Kastens. Improvements of an incremental evaluation algorithm for ordered
attribute grammars. ACM - SIGPLAN Notices, 23(12):45-50, December 1988.

10

