
Stricti�cation of Lazy Functions

Jo~ao Saraiva�, Doaitse Swierstra, Matthijs Kuiper and Maarten Pennings

Department of Computer Science, University of Utrecht

P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

emails: fsaraiva,kuiper,swierstrag@cs.ruu.nl

penningm@natlab.research.philips.com

Abstract

This papers describes a transformation from lazy functions into e�cient non-lazy ones.
The functions we study perform multiple traversals over a data structure. Our transfor-
mation performs a global analysis of the calling structure of a set of mutually recursive
lazy-functions in order to transform them into sets of functions which must be called in
sequence. Many of the resulting functions can be eliminated by the optimizations pre-
sented in this paper. We present measurements that show that transformed and optimized
functions allow e�cient incremental execution. The paper contains examples that were
automatically constructed with a generator of incremental functional programs.

1 Introduction

One of the more intricate parts of the world of functional programming deals with the con-
struction of so-called circular programs, with the program repmin of Bird acting as the canon-
ical representative of this class [Bir84]. For almost everyone, when �rst introduced to such
programs, it takes a while before (s)he actually is convinced that such a program may work
indeed as claimed by their authors. It is the use of lazy evaluation which does the trick.

For those who have not seen such programs before, we present here again the example
of [Bir84]. The goal of this program is to compute a binary tree with integers in the leaves,
which has the same shape as the argument tree, but with all leaves replaced by the minimal
value in the original tree.

repmin t = r

where (r;m) = repmin0 t m

repmin0 (Fork l r) m = (Fork lr rr); lm min rm)
where (lr; lm) = repmin0 lt

(rr; rm) = repmin0 rt

repmin0 (Leaf v) m = (Leaf m; v)

The curious thing here is that part of the result of the initial call to repmin0, i.e. m, is
also passed as an argument to repmin0.

For those who are well acquainted with attribute grammars such dependencies come as no
surprise, they are well used to thinking in terms of setting up equations between attributes,

�On leave from the Department of Computer Science, University of Minho, Braga, Portugal.

1

and letting the system worry about the order in which the computations are actually sched-
uled. It has furthermore been noticed by [KS87, Joh87] that there exists a direct translation
from attribute grammars into this class of circular programs. Those acquainted with cata-
morphisms will furthermore recognise a catamorphims which returns a higher order type in
the above program [MFP91].

In recent years we have been interested in the incremental evaluation of (higher order)
attribute grammars [VSK91, SV91, PSV92, Pen94]. The main aspect of the method being
used is that attribute grammars are transformed into large sets of mutually recursive strict

functions, the calls to which are being cached in order to avoid unnecessary reevaluations. The
fact that the arguments to these functions can be evaluated before the call, without changing
the termination properties, makes the resulting evaluators e�cient and simple, and thus there
is no need anymore to implement the much more complicated, and much less e�cient, caching
of lazy functions [Hug85].

In this paper we present the techniques we present our techniques in the setting of func-
tional languages and transformations thereof. One might foresee that these methods �nd
their way into a compiler, as has happened with techniques like deforestation and virtual
data structures [Wad90, SdM93].

It is relatively easy to see how the program repmin0 might be splitted into two functions:
one that computes the minimal value of all the leaves, and one that constructs the resulting
tree. In this way the circular dependency is broken. In section 2 we introduce an example
program that can not be splitted so easily because the circular dependencies not only occur
at the top level call, but also inside the recursive calls.

In section 3 we show how, after analysing the dependencies between the function argu-
ments, the functions can be transformed into sequences of functions, which have to be called
one after the other for each subtree. For this transformation to work we introduce so-called
bindings: a kind of explicitly constructed environment part of the closure that would otherwise
have been constructed.

When looking at the set of functions constructed in this way we will see that many
functions actually do very little work. Thus we show in section 4 how by unfolding some
de�nitions, several of the generated functions become super
uous, and may be removed from
the program.

In section 5 we �nally show that certain nodes of the trees have lost their semantic meaning
for certain calls of functions; in order to get a better caching behaviour the programmay again
be transformed so that such nodes will no longer have to occur in the trees. Finally we have
reached the situation in which only relevant calls remain, thus guaranteeing an optimal use of
the function cache, in which we have a canonical representation for each subcomputation. We
demonstrate the e�ectiveness of our approach by presenting a few results of re-evaluations of
functions generated by our system.

In section 6 we �nally present some conclusions.

2 The Example

Our approach will be introduced through an example. We present a program that generates
code for a simple language called Block. This language deals with the scope of variables in
a block structured language. A variable from a global scope is visible in a local scope only if
is not hidden by a variable with the same name in the local scope. A program in Block is

2

a list of declarations (such as dcl a), statements (such as use a) and blocks, where a block is
also a list of declarations, statements and nested blocks. A concrete sentence in this language
looks as follows:

(use x; dcl x; dcl w;
(use z; use y ; dcl x; dcl z; use x);

dcl y; use y)

where blocks are surrounded by parenthesis. The local usage of x refers to the local declaration
and the global usage of x refers to the global declaration. The usage of y and z refer to their
only declaration (global and local respectively).

The structure of the language leads naturally to a two pass compiler: the �rst pass collects
all the declarations of blocks, and the second one actually uses the constructed environment.

The objective of the program is to generate code for a Block program. The code consists
of a sequence of three types of instructions: Enter(d) which enters a block with d local
declarations; Leave(d) which leaves a block with d local declarations and Access(l; d) which
accesses the d'th variable (displacement) of the l'th nested block (level). The code for example
above is:

Enter 3; Access 1 0;
Enter 2; Access 2 1; Access 1 2; Access 2 0; Leave 2;

Access 1 2; Leave 3

The abstract syntax of the language Block is de�ned by the following recursive data
de�nitions:

data Program = P Items

data Items = NilItems

j Cons Items Item Items

data Item = Block Items

j Use Name

j Decl Name

data Name = Ident STR

and the data type for the environment is:

data Env = Consenv Name Level Displacement Env

j Emptyenv

The abstract syntax of the generated code is de�ned by:

type Code = [Instr]
type Level = Int

type Displacement = Int

data Instr = Access Level Displacement

j Enter Int

j Leave Int

Implementing the compiler in a functional language (e.g. Gofer) is "straightforward".
The complete program is presented in �gure 1.

Where the function access takes as arguments the environment and the variable being
accessed and returns the appropriate instruction.

Observe that this program is a circular program (in the sense of [Bir84]), that is, one of
the results of a function call is also one of its arguments. This occurs twice in the program: in
function travProgram with argument/result dclo and in the alternative Block of function

3

travProgram :: Program! Code

travProgram (P items) = code

where (code;dclo;nodo) = travItems items 0 0 Emptyenv dclo

travItems :: Items! Level! Displacement! Env ! Env ! (Code;Env;Displacement)
travItems (Cons Items item items) lev nodi dcli env = (code1++code2; dclo2; nodo2)
where (code1; dclo1; nodo1) = travItem item lev nodi dcli env

(code2; dclo2; nodo2) = travItems items lev nodo1 dclo1 env

travItems (NilItems) lev nodi dcli env = ([]; dcli;nodi)

travItem :: Item! Level ! Displacement! Env ! Env ! (Code;Env;Displacement)
travItem (Decl name) lev nodi dcli env = ([];Consenv name lev nodi dcli; nodi+ 1)

travItem (Use name) lev nodi dcli env = (code;dcli; nodi)
where code = [access env name]

travItem (Block items) lev nodi dcli env = ([Enter nodo] ++ code1 ++ [Leave nodo]; dcli;nodi)
where (code1; dclo;nodo) = travItems items (lev+ 1) 0 env dclo

Figure 1: Circular Program.

travItem . The dependency graph induced by the latter is presented in �gure 2.

nododclolev

0

nodi dcli env

+1

code

travItems

travItem
(Block items)

items dclo nodo code

f

lev

envdclinodi

Figure 2: Dependency graph induced by the function applied to Block.

Circular programs require lazy evaluation in order to handle such circular dependencies.
In the next section we present our approach which avoids the need for this lazy evaluation.

3 The strict version

This section presents a strict version of the example program and explains how this version
was obtained.

Each function of the set of circular functions is translated into one or more functions and
some additional data types. We call the functions in the translated version sub-traversals
because each one corresponds to a part of the original function. The basic idea in obtaining
the sub-traversals is to partition the results of an original function into groups and to associate
a new function with each group of results. In our example function travItem is split into
two functions. The �rst function computes dclo and nod and the second computes code.

The construction of the sub-traversals exploits the particular structure of the functions
in the example program. The example is special in that all functions have as �rst parameter

4

a recursive data type and the recursion structure of the functions \follows" the structure
of their �rst argument. Each function has several de�nitions that are distinguished by the
constructor used in the �rst argument. The sub-traversals in the transformed program have
as �rst parameter the same recursive data type as the original traversal.

The strict version is obtained in 5 steps.

1. analysis of dependencies among arguments and results of traversal functions

2. linearization of dependencies

3. de�nition of interfaces of sub-traversals

4. dealing with interdependencies between sub-traversals

5. generation of Gofer code

The �rst step determines how arguments and results of functions may depend upon each
other, and is based on well known attribute grammar analysis techniques [Kas80]. This step
builds two kinds of dependencies: those among the arguments and results of one function
and those among all arguments and results of all calls occurring in a function body. Once
the dependencies are known we can see whether an argument in a call depends on a result
in the same call. This is illustrated in �gure 2 by the dependency from the result dclo of
travItems to the argument env.

The second step linearizes the dependencies. This step works on all dependency graphs
of all function de�nitions. This step computes an order in which the arguments and results
must be computed. The computed order is compatible with the dependencies from the �rst
step, meaning that if x ! y is a dependency from step 1 then x comes before y in the order
computed in this step. In our example the order computed for travItems is lev, nodi, dcli,
dclo, env, nodo, code.

The third step determines the interfaces of the sub-traversals. Arguments and results of
a function are grouped into a sequence of ([argument],[result]) pairs. Each pair will give rise
to one sub-traversal function, that computes the [result] from [argument]. For example, for
function travItems , the constructed sequence consists of two pairs: �rst ([lev; nodi; dcli],
[dclo]) and then ([env],[nodo; code]).

The fourth step deals with interdependencies among sub-traversals. An example of such
an interdependency is the case where an argument of a function is used in more than one sub-
traversal. For example consider the parameter lev in �gure 2. This parameter is needed in �rst
and second sub-traversal of that function. Since for all calls of travItem the interface should
be the same, the parameter lev is passed to �rst sub-traversal corresponding to travItem:
it may be that the alternative Decl has to be dealt with, in which lev is used to extend the
list of declarations. If the alternative however is a Block the parameter lev is actually only
used in the second sub-traversal of travItem, since that is the one which contains the call
to the �rst sub-traversal for the Block.

To handle such interdependencies among sub-traversals this step introduces bindings.
Bindings contain precisely those values that should be passed from one sub-traversal to the
next. They are constructed in one traversal |values that should be passed are included|
and destructed in the next so that the values are available for use. Bindings are terms with
a structure much like the tree that is being traversed.

5

Suppose we have n di�erent, mutually recursive, data types Ti (1 � i � n) and that we
have ti traversals on data type Ti. These traversals have the following types, where 1 � i � n

and 1 � v � ti

travvTi : : Ti : : : inputs : : :! h: : :outputs : : :i

These functions are augmented with bindings, a change that is re
ected in their types.
The function for sub-traversal v for data type Ti may return binding information for all
subsequent sub-traversals, that is to say for sub-traversals w with v + 1 � w � ti. Besides
that, this function may also be passed bindings from all its predecessors, i.e. traversals w with
1 � w � v � 1. In other words, the types are changed to:

travvTi : : Ti : : : inputs : : :! T 1!v
i ! T 2!v

i ! : : :! T v�1!v
i

! h: : :outputs : : : ; T v!v+1
i ; T v!v+2

i ; � � � ; T v!ti
i i ;

where T v!w
i is the type of the binding computed during traversal v to Ti and used during

traversal w to Ti.
We must now determine the constructors for the bindings T v!w

i . Suppose that there are
ni constructors coni;k (where 1 � k � ni) on type Ti. With each of these constructors we
associate a set of so called binding constructors conv!w

i;k on T v!w
i with de�ning traversal v

(1 � v � ti � 1) and using traversal w (v + 1 � w � ti). In other words, for any type Ti,
1 � i � n, we have 1

2
ti(ti � 1) associated binding types T v!w

i , 1 � v < w � ti, each with ni

binding constructors:

data T v!w
i = conv!w

i;1 : : :

j conv!w
i;2 : : :

...
j conv!w

i;ni
: : : :

Now that we have set up a framework for bindings, we are �nally able to discuss the shape
of the binding constructors. A binding constructor conv!w

i;k binds objects that are computed
in traversal v of an instance of constructor coni;k and that are used in traversal w of that same
node. Binding constructors bind two kinds of objects namely local results and arguments to
be used later and bindings for sons . In our example, a Block node puts a lev in a binding,
and a Cons Items node puts the binding for each son in a binding.

Bindings may be empty, and most of them probably are. That is to say, the mutual
recursive de�nitions of the bindings is such that for a particular binding, the (in�nite) set
of all producible terms contains no term that binds a (non-binding) value. The fourth step
determines which bindings are guaranteed to be empty and these are not added to the sub-
traversals. The bindings added in this step require the de�nition of extra data types. The
bindings induced by our example are:

data Item1!2 = Use1!2

j Decl1!2

j Block1!2 Int -- type(lev)

data Items1!2 = NilItems1!2 Int -- type(nodo)

j Cons Items1!2 Item1!2 Items1!2

The �fth and �nal step constructs the Gofer code for the sub-traversals. The code of
the transformed program is presented in �gure 3.

6

trav1Program (P Items = (code)
where (dclo; Items1!2) = trav1Items Items Emptyenv 0 0

(code;nodo) = trav2Items Items dclo Items1!2

trav1Items (Cons Items Item Items) dcli nodi lev = (dclo2;Cons Items1!2 Item1!2 Items1!2)
where (dclo1; nodo; Item

1!2) = trav1Item Item dcli nodi lev

(dclo2; Items1!2) = trav1Items Items dclo1 nodo lev

trav1Items (NilItems) dcli nodi lev = (dcli;NilItems1!2
nodi)

trav2Items (Cons Items Item Items) env (Cons Items1!2 Item1!2 Items1!2) = (code1++code2; nodo2)
where code1 = trav2Item Item env Item1!2

(code2; nodo2) = trav2Items Items env Items1!2

trav2Items (NilItems) env (NilItems1!2 nodo) = ([];nodo)

trav1Item (Decl name) dcli nodi lev = (Consenv name lev nodi dcli; nodi+ 1;Decl1!2)

trav1Item (Use Name) dcli nodi lev = (dcli; nodi;Use1!2)

trav1Item (Block Items)dcli nodi lev = (dcli;nodi; ;Block1!2 (lev+ 1))

trav2Item (Decl name) env Decl1!2 = ([])

trav2Item (Use name) env Use1!2 = (code)
where code = [access env name]

trav2Item (Block Items) env (Block1!2 lev) = ([Enter nodo] ++ code1 ++ [Leave nodo])
where (dclo; Items1!2) = trav1Items Items env 0 lev

(code1; nodo) = trav2Items Items dclo Items1!2

Figure 3: Strict Compiler.

4 Further Optimizations

When looking at the functions of �gure 3 we see that some of them do very little work. In
this section we show how, after unfolding some de�nitions, some functions may be removed
from the program.

4.1 Unfolding Redundant Data Types

Observe that neither the lazy nor the strict version of our compiler do compute any value when
traversing nodes of type Items. They only pass arguments and results.We will now statically
transform the program, preserving its semantics, in order to avoid these unnecessary steps
in the computation. More e�cient programs are obtained if we unfold the de�nition of data
type Item:

7

data Program = P Items

data Items = Cons Item Block Items Items

j Cons Item Use Name Items

j Cons Item Decl Name Items

j NilItems

data Name = Ident STR

and then write the corresponding functions. The bindings for the strict program are also
simpli�ed:

data Items1!2 = NilItems1!2 Int -- type(nodo)

j Cons Item Block1!2 Int Items1!2 -- type(lev)

Consider the functions trav1Item and trav2Item applied toUse andDecl respectively.
The compiler does not perform any computation when traversing Use nodes, since only in
the second traversal the uses are processed. The same holds for Decl nodes in the second
traversal. In this traversal the program is only computing the code and no declarations are
collected in the environment anymore. So, instances of such nodes can be removed from the
tree for the �rst and second traversal respectively. This can be achieved if we use di�erent
representations of the tree for di�erent traversals, i.e., if we split the tree.

4.2 Splitting

A split tree T is a tuple [T1; : : :Tn] of terms, where n is the number of traversals performed on
T . Term Tv includes only that part of T that is actually inspected during traversal travvT ,
with 1 � v � n.

In our example nodes of type Items are traversed twice, inducing the split data type

Itemss = (Items1; Items2). The complete splitted data types are:

data Program
1

= P1 Items1 Items2

data Items1 = NilItems1
j Cons Item Decl1 Name Items1
j Cons Item Block1 Items1
j Cons Item Use1 Items1

data Items2 = NilItems2
j Cons Item Decl2 Items2
j Cons Item Block2 Items2 Items1 Items2
j Cons Item Use2 Name Items2

Note that the data type Name is only included in the type constructorCons Item Decl1
for the �rst traversal and in the Cons Item Use2 for the second one. In the other traversals
it is not needed. The constructor Cons Item Block2 has three children: the �rst one
de�nes the tree for second traversal (which contains the block) and the other two de�ne the
two traversals to the body of the block.

Next we present the functions that split the tree according to the previous data types.

splitProgram (P Items) = (P1 Items1 Items2)
where (Items1; Items2) = splitItems Items

splitItems (Cons Item Decl Name Items2) = (Cons Item Decl1 Name Items
2

1;Cons Item Decl2 Items
2

2)
where (Items21; Items

2

2) = splitItems Items2

splitItems (Cons Item Use Name Items2) = (Cons Item Use1 Items
2

1;Cons Item Use2 Name Items
2

2)
where (Items21; Items

2

2) = splitItems Items2

The traversal functions must be changed in order to use the split data types. A pattern
p(� � �) selecting an alternative function is changed to the pattern pv(� � �). A recursive call
to a complete tree travvT T is mapped into a recursive call to a split tree travvT Tv. For
example, the split version of the function applied on P1 is:

8

trav1Program (P1 Items
1
Items

2
= (code)

where (dclo; Items1!2) = trav1Items Items
1
Emptyenv 0 0

(code; nodo) = trav2Items Items
2
dclo Items1!2

trav1Items (Cons Item Use1 Items
1
) dcli nodi lev = (dclo; Items1!2)

where (dclo; Items1!2) = trav1Items Items
1
dcli nodi lev

4.3 Elimination

As a result of splitting an important optimization can be performed: the elimination of some
data types and some redundant functions consisting of copy rules only. Consider the function
trav1Items presented above, this function does not perform any usefull computation. It
directly passes arguments and results to a recursive call to itself. The split version of the
strict program contains two redundant functions: the alternatives applied to the split data
type constructors Cons Item Decl1 and Cons Item Use2. Thus, these alternatives can
be eliminated. Nodes that are instances of those type constructors can be eliminated too.
Elimination requires three steps:

1. First the redundant type constructors are eliminated;

2. Second the split functions are transformed in order to deal with the fact that nodes that
are instances of such constructors have disappeared.

In the running example the transformed split functions are:

splitItems (Cons Item Decl Name Items2) = (Cons Item Decl1 Name Items
2

1; Items
2

2)
where (Items21; Items

2

2) = splitItems Items2

splitItems (Cons Item Use Name Items2) = (Items21;Cons Item Use2 Name Items
2

2)
where (Items21; Items

2

2) = splitItems Items2

3. Finally, the redundant functions are eliminated.

Observe that, without the unfolding of the Item data type the copy operations were
hidden, that is, the program would need to pattern-match nodes of type Item in order to
know which particular instance it was.

Although we have presented the splitting and elimination as transformations of the pro-
gram and the associated tree structures, our system actually generates code which directly
constructs the splitted and contracted trees.

5 Attribute Grammars

We have developed a system which performs the global analysis described in section 3 and the
splitting and elimination optimizations. The programs are speci�ed by an attribute grammar
and the strict functional programs are automatically generated. The bindings, the split data
types and the split functions are induced by the attribute grammar too.

We have implemented a generator for the construction of incremental evaluation of at-
tribute grammars. This generator uses the techniques from this paper. Experience shows that
large functional programs can be e�ciently implemented with our techniques. The generator
is bootstrapped: it generates itself from a rather large speci�cation. The original program has
90 traversal functions that work on data types which together have 307 di�erent constructors.

9

The transformed program consists of 866 sub-traversal functions which require 2188 binding
constructors. Some traversal functions are transformed in as many as 12 sub-traversals.

5.1 Attribute Evaluator

We have incorporated a new back-end to the Lrc system [Pen94] in order to produce Gofer
based evaluators. The code presented in �gure 4 has been automatically generated by our
system, starting from the attribute-grammar-equivalent of the initial circular program. In
order to stick with our Gofer-based presentation we have only replaced some semantic
functions by their Gofer equivalents.

trav1Program (P1 Items1 Items2) = (Program:code)
where (Items:dclo; Items1!2) = trav1Items Items1 Emptyenv 0 0

(Program:code; Items:nodo) = trav2Items Items2 Items:dclo Items1!2

trav1Items (NilItems1) Items:dcli Items:nodi Items:lev = (Items:dcli;NilItems1!2 Items:nodi)

trav1Items (Cons Item Decl1 Name Items
2

1) Items:dcli Items:nodi Items:lev = (Items:dclo; Items1!2)
where (Items2:dclo; Items1!2) = trav1Items Items21 Items:dcli (Items:nodi + 1) Items:lev

Items:dclo = Consenv Name Items:lev Items:nodi Items2:dclo

trav1Items (Cons Item Block1 Items
3

1) Items:dcli Items:nodi Items:lev =
(Items:dclo;Cons Item Block1!2 (Items:lev + 1) Items1!2)
where (Items:dclo; Items1!2) = trav1Items Items31 Items:dcli Items:nodi Items:lev

trav2Items (NilItems2) Items:env (NilItems1!2 Items:nodo) = ([]; Items:nodo)

trav2Items (Cons Item Use2 Name Items
2

2) Items:env Items1!2 = (Items:code; Items:nod)
(Items2:code; Items:nodo) = trav2Items Items22 Items:env Items1!2

Items:code = [access Items:env Name] ++ Items2:code

trav2Items (Cons Item Block2 Items
3

2 Items
2

1 Items22) Items:env (Cons Item Block1!2 Items2:lev Items1!2) =
(Items:code; Items:nodo)
where (Items3:code; Items:nodo) = trav2Items Items32 Items:env Items1!2

(Items2:dclo; Items1!2) = trav1Items Items21 Items:env 0 Items2:lev

(Items2:code; Items2:nodo) = trav2Items Items22 Items
2:dclo Items1!2

Items:code = [Enter Items2:nodo] ++ Items2:code ++ [Leave Items2:nodo] ++ Items3:code

Figure 4: Splitted Compiler.

5.2 Incremental Behaviour

In next table we present results of two di�erent incremental reevaluations of the example
sentence (see section 2): one modi�cation of the last use statement in the global block into
use w and one modi�cation of the declaration decl w into decl u. Both reevaluations started
in a state where all functions applied when processing the initial sentence were stored in the
cache.

10

Items = Cons Item Decl Name Items2

Items:used = Consuse(Name; Items2:used)
j Cons Item Use Name Items2

Items:used = Items2:used

j Cons Item Block Items2 Items3

Items2:dcli = project(Items:env; Items2:used)
Items:used = Items3:used

j NilItems

Items:used = Emptyuse()

Figure 5: Attribute Grammar notation.

Strict Compiler of �g. 3 Splitted Compiler of �g. 4
Modi�cation Hits Misses Hits Misses

Change global use: 6 15 6 5
Change global decl: 3 25 3 15

When processing the �rst modi�cation the splitted compiler has a better behaviour since
it does not need to reevaluate the declarations. Modifying a global variable usually has a
poor incremental behaviour, since all the environment change. Both evaluators only reuse
3 functions and have to recompute most of the functions. The di�erence in the number of
misses are due to the absence of calls to eliminated functions.

In our example however the nested block does not use that changed global variable at all.
Nevertheless, since its total environment has changed, all the functions applied to process that
block are recomputed. We can easily write an AG dealing with this problem by letting each
block synthesize a list of those variables which actually occur in aUse constructor and project
the environment on that list. This is easily achieved by adding the following attribution rules
to the AG as presented in �gure 5.

Where the type of the attribute used is a list of Names and project is a simple semantic
function which implements the projection.

In the table below we present the results of the splitted evaluator using such a projection.
The resulting splitted evaluator is a 3 visit-evaluator.

Modi�cation Hits Misses

Change global use: 8 5
Change global decl: 7 10

When reevaluating the second modi�cation the number of misses decreases and the number
of hits increases. The nested block is reevaluated without recomputing any visit-function. It
reuses all three functions: the one that synthesizes the list of used variables, the one that
synthesizes the declarations and the one that synthesizes the code.

Note that this e�cient program transformation was performed without changing any
recursive function. The attribution rules presented above were added to the AG using its
natural structural decomposition.

6 Conclusions

This paper presented a transformation from lazy into non-lazy ones. A function is trans-
formed into one or more functions that must be called in sequence. Extra data types and

11

arguments are added to the non-lazy functions when values computed in one function are
needed in another. Measurements show that the transformed and optimized functions can be
executed incrementally with a function cache. The techniques can be used to combine several
catamorphisms on mutual recursive data types.

References

[Bir84] R. S. Bird. Using circular programs to eliminatemultiple traversals of data. Acta Informatica,
(21):239{250, January 1984.

[Hug85] John Hughes. Lazy memo-functions. In Jean-Pierre Jouannaud, editor, Functional Program-

ming Languages and Computer Architecture, volume 201 of LNCS, pages 129{146. Springer-
Verlag, September 1985.

[Joh87] Thomas Johnsson. Attribute grammars as a functional programming paradigm. In G. Kahn,
editor, Functional Programming Languages and Computer Architecture, volume 274 of
LNCS, pages 154{173. Springer-Verlag, September 1987.

[Kas80] Uwe Kastens. Ordered attribute grammars. Acta Informatica, 13:229{256, 1980.

[KS87] Matthijs Kuiper and Doaitse Swierstra. Using attribute grammars to derive e�cient
functional programs. In Computing Science in the Netherlands CSN'87, November 1987.
ftp://ftp.cs.ruu.nl/pub/RUU/CS/techreps/CS-1986/1986-16.ps.gz.

[MFP91] Erik Meyer, Maarten Fokkinga, and Ross Patterson. Functional programming with bananas,
lenses and barbed wire. In Functional Programming Languages and Computer Architecture,
1991.

[Pen94] Maarten Pennings. Generating Incremental Evaluators. PhD thesis, Utrecht University,
November 1994. ftp://ftp.cs.ruu.nl/pub/RUU/CS/phdtheses/Pennings/.

[PSV92] Maarten Pennings, Doaitse Swierstra, and Harald Vogt. Using cached functions and con-
structors for incremental attribute evaluation. In M. Bruynooghe and M. Wirsing, editors,
Programming Language Implementation and Logic Programming, volume 631 of LNCS, pages
130{144. Springer-Verlag, 1992.

[SdM93] S. Doaitse Swierstra and O. de Moor. Virtual data structures. In Bernhard M�oller, Helmut
Partsch, and Steve Schuman, editors, Formal Program Development, volume 755 of LNCS,
pages 355{371, 1993.

[SV91] Doaitse Swierstra and Harald Vogt. Higher order attribute grammars. In H. Alblas and
B. Melichar, editors, International Summer School on Attribute Grammars, Applications

and Systems, volume 545 of LNCS, pages 48{113. Springer-Verlag, 1991.

[VSK91] Harald Vogt, Doaitse Swierstra, and Matthijs Kuiper. E�cient incremental evaluation of
higher order attribute grammars. In J. Maluszynki and M. Wirsing, editors, Programming

Language Implementation and Logic Programming, volume 528 of LNCS, pages 231{242.
Springer-Verlag, 1991.

[Wad90] Philip Wadler. Deforestation: transforming programs to eliminate trees. Theoretical Com-

puter Science, 73:231{248, 1990.

12

