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Abstract

We give one overall system for describing the knowledge in a group
of m agents, in which distributed knowledge, everybody’s knowledge and
common knowledge can be dealt with at the same time. The canonical
model for this complete epistemic logic for m agents appears to lack two
desirable properties. We combine several validity-preserving techniques to
transfer the satisfiability of an epistemic formula between classes of mod-
els; thus eventually proving completeness for the logic under consideration
with respect to the class of models containing all the desired properties.
Although the full procedure for achieving this seems, we admit, quite
formidable, the method consists in essence of applying three standard
techniques: firstly, we show how a filtration technique of Goldblatt can be
used to gain one of the desired properties of the models. Next, we unravel
this finite filtration, following ideas that were introduced by Sahlqvist for
the mono-modal case. Finally, we use an equivalence relation to iden-
tify unravelled paths, the equivalence classes of this relation becoming
the worlds that together constitute a new model. Thus, we eventually
obtain a class of models for which, on the one hand, the given epistemic
system is a sound and complete axiomatization, and on the other hand
appealing mathematical properties can be proven. In passing, we prove
the epistemic system to be decidable.
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1 Introduction

In the field of AI and Computer Science, the modal system S5 is a familiar
logic to model knowledge. Although the system on the one hand models an
idealized notion of knowledge (the epistemic agent is assumed to be fully in-
trospective, for example, and S5 knowledge also suffers from the problem of
logical omniscience—the agent knows all logical validities, and his knowledge
is closed under logical consequence— see [20] for a discussion and relaxations
of these properties), its nice mathematical properties, on the other hand, often
motivate researchers to adopt this system in their first exploration of the field.
Then, for specific purposes, such as decision- and game-theoretic applications,
some or many of these idealizations concerning introspective properties or log-
ical omniscience are given up or, sometimes, replaced by weaker assumptions
about knowledge.

It is a well-known fact that the idealized modal system S5 exactly describes
the valid formulas of Kripke models in which the accessibility relation is an
equivalence relation. In the case of one agent, one may use a result about
preservation of truth under taking so-called generated sub-models (the formulas
that are true in a word w in a Kripke model M are exactly those that are
true in w and M’, where M’ is the restriction of M to only those worlds that
are accessible from w—in any number of steps) to conclude that we may even
assume this relation to be universal (cf. [11, 5, 6]). The latter fact guarantees
many pleasant properties of the logic of knowledge, like the existence of small
models and the superfluity of iteration of modal operators (cf. [16]). However,
since the logic S5 was first used as an epistemic logic, many extensions and
adaptions of it have been proposed.

A first extension satisfies the need to have a logic that describes the knowl-
edge in a group of, say, m agents (the operator K; expressing what is known by
agent ¢). A shift from the bare system S5 to $5,, did not give rise to any logical
complications, even though completeness with respect to universal models had
to be sacrificed; the underlying accessibility relations R; (i < m) may still be
taken to be equivalences. Later, researchers interested in the kinds of knowl-
edge that emerge in a group of agents proposed enriching the language with
operators E (‘Everybody knows’), C (‘it is Common knowledge that’) and D
(‘it is Distributed knowledge that’) (cf. [5, 11]). (Initially, the operator I —for
Implicit knowledge— was introduced instead of D, but to avoid confusion with
Levesque’s notions of Explicit and Implicit knowledge, it was later replaced by
D, cf. [2].) Apart from these extensions, we may mention in passing various
proposals for combining the notion of knowledge with that of belief ([8, 15}),
time ([8]) or probability ([3]).

When they are treated as primitive operators, K, ... K,,,C, D and E all are
interpreted as necessity operators with respect to accessibility relations Ry, ...,
R,.,Rc,Rp and Rg in a Kripke model. The relations between the various
kinds of knowledge, as expressed syntactically in the axioms of the logic, give



rise to the enterprise of finding corresponding connections between the acces-
sibility relations associated with these knowledge operators. The exact nature
of the semantic counterparts of the modal axioms has been subject of folklore
conjectures and assertions in the AI-community for some time now. It has also
been claimed that several known results from the literature of modal logic ap-
ply. For instance, the relation between the operators E and C is much like a
relation between some special modal operators studied in Dynamic Modal Logic
by Goldblatt in [4]. His result concerning a semantical characterisation of these
operators is often referred to when giving a completeness proof for §5,,(EC),
which is our notation for an ‘S5-like’ modal logic for knowledge incorporating
the operators E and C (such a completeness proof can be found in [6]). Claiming
such a correspondence seems to invoke an implicit assumption of some ‘modu-
larity’ principle, i.e. that the exact dependency between the E and K;-operators
does not undermine Goldblatt’s technique of manipulating Kripke models.

Another example regards the system S5,,(D), the logic that combines the
knowledge of m agents with the notion of distributed knowledge. Halpern and
Moses claimed ([5]) completeness with respect to models in which Rp = R; N
Ryn...NR,. Although, on the one hand, it turned out that this property was
not modally definable (cf. [17]), on the other hand it appeared that the claim
of Halpern and Moses could be proven using some non-standard techniques
(12, 17).

However, where Goldblatt’s technique was essentially successful since he
was able to build a finite model, the techniques used to prove completeness
for the case of distributed knowledge yielded infinite models, so that a naive
combination of the techniques will not do the trick. This, of course, raises the
question of the completeness of §5,,(CDFE) which, as far as we know, has not
been stated—Ilet alone solved—explicitly in the literature!.

Taking into account the claims and partial proofs we mentioned above, this
paper is written to solve the following questions. Firstly, it does provide a com-
pleteness proof for $5,,(CDE), the epistemic logic that deals with Common,
Distributed and Everybody’s Knowledge in a group of m agents. Secondly, it
shows how the techniques used by Goldblatt can be applied in the .55 environ-
ment. Thirdly, as a consequence of the techniques we apply, we also obtain
finite models for the cases in which distributed knowledge is involved, and from
that, we easily get decidability of 55,,(D) and S$5,,(CDE). Finally, we con-
sider this paper as an application of the modular approach of [17], where it was
claimed that one can use one uniform ‘unravelling-and-rewriting technique’ to
transform models, keeping track of various properties of the relations in the un-
derlying Kripke model (although, in the present paper, the rewrite technique is
implicitly represented by an equivalence relation on paths, for reasons of space).
It will appear, on the one hand, that this principle of modularity indeed takes

1We like to mention that Dimiter Vakarelov posed this question in a private communication,
though.



care of keeping the models S5-like, but on the other hand, that to achieve the
intended properties for the relations concerning the operators C, D and E, we
have to make some additional decisions about how the equivalence relation is
affected by the relations associated with those operators.

The rest of this paper is organised as follows. In Section 2 we define a rich
system L for reasoning about the various kinds of knowledge in a group of m
agents. In Section 3 we investigate the Kripke models for this logic. In 3.1 we
show how, in general, one constructs a canonical model for a modal logic; we
also argue how a modal scheme (or axiom) in such a logic affects the kind of
models (and frames) for it. In Section 3.2, we compare the canonical model of L
with the models that are usually considered the standard (or ‘preferred’) models
for L and we notice two main differences. In Section 4 we give some techniques
that transfer truth from one model to another one. In particular, in Sections
4.1 and 4.2 we apply several of such transfer techniques on the canonical model
of Section 3 for L, thus showing how one achieves the completeness of L with
respect to the preferred models. In Section 5 we argue that the order in which we
applied our techniques to our models, is not arbitrary, after which we conclude
the paper.

2 A system for knowledge of m agents

For convenience, we repeat the definition of the general logic for knowledge in
a group of m agents, starting by giving its language.

Definition 2.1 Let P be a non-empty set of propositional variables, and
m € IN be given. The language L is the smallest superset of P such that

e, € L= -, (pAY),Kip,Cp,Dp,Ep € L (i <m).

We also assume to have the usual definitions for v, + and > as logical connec-
tives, as well as the special formula L =4.¢ (p A —p). In the sequel, we will use
O as a variable over the operators OP = {Kj,..., K,,, C,D, E}. Indices ¢ and
J will range over {1,...m}.

The intended meaning of K,y is ‘agent ¢ knows ¢’, Dy means ‘p is dis-
tributed knowledge’, or ‘yp is implicit knowledge of the m agents’. Ep has to be
read as ‘everybody knows ¢’ and Cy is ‘it is common knowledge that ¢’. How-
ever, we do not know of any presentation of a system that combines all these
notions together. Although the separate notions are supposed to be familiar to
the reader, (all the operators appear in [5, 6, 11]), let us briefly try and indicate
the intended meaning of the operators.

Distributed knowledge is the knowledge that is implicitly present in a group,
and which might become explicit if the agents were able to communicate (how-



ever, see also [18]). For instance, it is possible that no agent knows the asser-
tion 1, while at the same time Dvy may be derived from Kip A Ka(p — 9)).
A common example of distributed knowledge in a group is for instance the
fact whether two members of that group have the same birthday. The mean-
ing of ‘everybody knows ¢’ is simply that all members of the group know
that ¢, and Common knowledge of ¢ is supposed to be Eo A EEp A EEEp
A .... Suppose everybody at a meeting receives a note with the announcement
. Then, of course, Ey holds, but not Cy. If everybody then receives a second
note saying that everybody has received the same first note, we have EEyp, but
still not Cp. The latter formula may be obtained if somebody at the meeting
rises and announces ‘p!” However, to really achieve Cy in this case, everybody
must be convinced that everybody has heard the announcement (EE¢), but
also that everybody knows this latter fact (EEEy),? ad infinitum.

Definition 2.2 The logic $5,(CDE), or L for short, has the following ax-
ioms:
Al  any axiomatization for propositional logic

A2 (KipAKi(p 9 9¥)) > Ky
A3 Kip—p

A4 K;p = K;K;p

A5 -Kip - Ki-K;p

A6 Ep & (KipA--ANKnpp)
AT Cp-o o

A8 Cyp— ECyp

A9 (CoAC(p— 1)) = Cy
A10 Clp — Ep) = (¢ = Cy)
All K;p = Dy

Al12 (Do AD(p = 9)) = Dy
Al3 Dp—

Al4 Dy — DDy

Al5 -Dy — D-Dyp

2which means that it should be ruled out that agent 1 thinks it is possible that agent 2
thinks it is possible that agent 3 allows -y to be true



On top of that, we assume the following derivation rules:
Rl Foblbo—=v =>F9y

R2 Fe =FKyp foralli<m
R3 Fo =FCp

In words, we assume a logical system (Al, R1) for rational agents, (that the
agents are taken to be rational, is perhaps best reflected by the fact that we
have the properties (OpAQ(p — 1)) — O for all O € OP —which follows from
A2, A9, A12 and, in the case of E, with a simple calculation using 46). Individ-
ual knowledge, common knowledge and distributed knowledge are all supposed
to be veridical (A3, A7 and A13, respectively). The agents are assumed to be
fully introspective: they are supposed to have positive (A4) as well as negative
(A5) introspection; properties we also ascribe to distributed knowledge (A14
and Al5, respectively). Both properties of introspection can be shown to hold
for common knowledge, as we will see in an example derivation in Proposition
2.4 below. Axiom A6 can be understood as the definition of E, whereas A8
says that all common knowledge is known by everybody as such. Axiom A10 is
also known as the induction aziom; this terminology will become clearer when
reading the proof of Lemma 3.12. The axiom tells how one can derive that ¢ is
common knowledge: by deriving ¢ itself together with some common knowledge
about ¢ = Ey. An illustration of a derivation using this induction axiom is
provided in Proposition 2.4 below. Finally, the rules B2 and R3 express an-
other rationality principle of the (group of) agents we consider: it guarantees
that L-derivable formulas give rise to the derivability in L of the same formula,
prefixed by any of the operators from OP:

Lemma 2.3 The following are derivable in L (¢, 8 € L), O € OP:
l1Fa =0
2Fa—=8 =>F0a—08
3Fa— B = F-O-a—-0-4
dFra—syFy=sB =2>Fa—=p
5 - Ki~K;~K;a - K;a
6 FCa— Ea
Proof: We give informal proofs:

1 For O € {K3,...K,C} this is expressed by R2 and R3. For E, this
follows from R2 and A6, for D, from R2 and All.



2 From item 1, it follows from - oo — f that F O(a — 8). We already
observed that we also have F O(a = ) = (Oa — 0Op8), and then the
conclusion follows with R1.

3 Using Al and R1, we obtain from F a = 8 that F =38 = -a. Item 2 now
yields F O-8 — O-¢; by Al and R1 we then obtain F -0O-a — -0~

4 Use the assumption and R1, applied to the following Al-principle:
Fla=7-2>((v—=8 = (e—p)

5 We use the principle that F (¢ A =9) — L implies + ¢ — 9 (which is
validated by Al and R1), so that it is sufficient to prove I (K;-~K;~K;aA
-K;a) = L): which is done by applying the property of item 4 to the
following sequence:

F (Ki~Ki~K;a A ~K;a) & (~K;-K;a A-K;a)  (use A1, Rl and A3)
F ('WK,'-'K,'O! A —»K,-a) - (—|Ki—|Kia A K,;‘!K,'a) (use Al, R1 and A5)
+ (—|K,-—-Kia A K,--»K,-a) =1 (use Al)

6 By applying item 2 to A7, we obtain F ECa — Eaq; to this, and A8 one
applies item 4 to obtain the desired result.

Proposition 2.4 In L, common knowledge satisfies both positive and nega-
tive introspection, i.e.: '

1. FCyp = CCyp
2. F=Cyp - C-Cyp
Proof:

1. Positive introspection for C:
a FC(Cp— ECp)— (Cp—= CCyp) (A10)
b FC(Cyp — ECyp) (R2, A8)
¢ (Cp—=CCyp) (R1,a,b)



2. Negative introspection for C:

a F "!K,"‘!Ca — Ki—-K,--\Ca (A5)
b FCa— K,Ca (A6, A8, 2.3(4))
¢ F-K;-Ca— —IK,'—\K.'CC! (b, 2.3(3))
d FK,-K,-Ca— K;~K;-K;Ca (c, 2.3(2))
e F-K;~Coa— K;~K;-~K;Co (a, d, 2.3(4))
f F Ki—-Ki—‘K,-Ca — KiCa (23(5))
g F-K,~Ca— K,Ca (e, £, 2.3(4))
h F-K;-Ca— Ca (g, A3, 2.3(4))
i F-Ca-— K;-Ca (h, A1, R1)
j FC(-Ca— K;~Ca) (i, R3)
k FC(=Ca— K;-Ca) = (-Ca = C-Ca) (A10)
I F(-Ca—- C-Ca) (R1, j, k)

3 Semantics

Now we will present a Kripke semantics for L. It will emerge that there are in
fact several classes of such models which can be related to the logic L.

3.1 General Kripke models

Definition 3.1 A (general) Kripke model M is a tuple M = (W,V, Ry, ...,
R..,Rc,Rp, Rg), where

e W is a non-empty set (of worlds)

e V is a truth assignment of the propositional atoms, for each world: V :
W x P — {true, false}

e Ry,...,R,,,Rc,Rp,RE C W x W are called the accessibility relations

e Truth of a formula ¢ (written M, w |= ¢) is defined on pairs M, w straight-
forwardly. For any O € OP we let Rg be the ‘corresponding’ relation: if
0O = K; then Rp = R;; if O = C then Rp = R and so forth. The modal
case then reads

M,wEOp & Yo(Rowv = M,v [ @)

We refer to this general class of models as Kgpg, or, when m = 1 as K. A
model in KZp g with £ = m + 3 relations is called k-dimensional.

Although it is standard to take the pair M,w as the semantic unit, there is
some variety concerning this, according to the level of truth and validity under
study:



Definition 3.2 Let (W,V,Ry,...,R,,,Rc,Rp, Rg) be given.
e We say that ¢ is true in M, written M EF o, if Miw Epforalw e W

e o is valid on a class of models C, if ¢ is true in all models M of C. We
write =¢ ¢ in such a case

e Abstracting away from the particular valuation V', we obtain a frame
F = (W,Ry,...,Rn,Rc,Rp,Rg). We then write F,V,w &= ¢ as an
abbreviation for (W,V,R;,...,Rm,Re,Rp,RE) = ¢. The truth of ¢ in
F,w is defined as: F,w = ¢ if for all V, F,V,w |= . Validity on a frame
(F | ¢) and on a class of frames F (=7 ¢) are defined as straightforward
generalizations of the corresponding notions for models.

The models of Definition 3.1 are too general for our logic of Section 2; in
fact, one easily proves that validity on the class of models of Definition 3.1 finds
a sound and complete axiomatization in a logic that consists of the axiom Al
of L, together with A2 for all the operators O in OP and the rules R1 and
R2— the latter for all O in OP. Following terminology of Chellas ([1]), we will
call a modal logic that satisfies A1, A2 and R1, R2 for its operators, a normal
modal logic (we write K™ for the logic that exactly satisfies the axioms and
rules mentioned or, in the case of only one operator, K).

Such a completeness proof is generally obtained by constructing a canonical
model for the logic under consideration. In such a case the semantic units are
constituted from mazimal consistent sets®.

Definition 3.3 A set of formulas ¥ is a mazimal consistent set (m.c.s.) if:
e ¥ is consistent
e Forall pe L: SU{ ¢ }is consistent & peX

The next lemmas show why an m.c.s. is suitable to play the role of our
semantic unit.

Lemma 3.4
o Every consistent set of formulas I" can be extended to a m.c.s. ¥ D T.
e Let ¥ be maximal consistent, ¢, s, € L Then:

L (o1t Ap) €L © p1eElandpr €L
2. (p1 V) EL & pr€Zorps €L
3.ppeTand (p1 22 €)= Y €X

3although we should define these notions with respect to some logic X, we sometimes omit
reference to X here.



4, €Y & pd€X
5 ped & Tlop

Lemma 3.5 Let X be a modal logic, that is sound with respect to some class
of models X, i.e. for which we have Fx ¢ = |=x ¢. Then, for any model
M € X, and world w € W, the set Th({M,w)) = {¢|M,w | 9} is maximal
consistent with respect to X.

Proof: First, Th({M,w)) is of course consistent, otherwise we would have
Th({M,w)) Fx 1, and, by soundness, M,w | 1, which is absurd. Next,
suppose Th({M,w)) U {¢} is consistent, for some ¢. If ¢ & Th({M,w)), then
M,w [ ¢, so M,w = ¢ and thus ~¢ € Th({M,w)), contradicting our as-
sumption that Th({M,w)) U {¢} is consistent. n

Definition 3.6 Let X be some modal logic in a language L’ with a set of
modal operators OP’ = {Oy,...,0r}. Then, the canonical model for X is the
model Mg = (We, V¢, Rf,..., RS), where

e We ={Z C L'|Z is maximal consistent in X}
e REZA & forall O,pel’, (O,peT=> peA)
o for all atoms p: V¢(X)(p) = true & pe X

Crucial in the completeness proof for X is then the following lemma:
Lemma 3.7 Truth Lemma ([7,11]) Forallpel',p €L & Mg, T

Now, to show that a modal logic X is complete with respect to validity
in some class X' of models, i.e. that for all p, Fx ¢ = Fx ¢, the standard
argument runs as follows: suppose that t/x ¢, i.e. - is consistent. Then, by
Lemma 3.4 there is some m.c.s. ¥ with - € L. By the Truth Lemma then,
M = ~p. If we moreover can prove that Mg € X we find [£x . Note that
the whole procedure runs by a standard argument on m.c.s.’s, and the main
non-standard part consists of proving that the canonical model My is of the
right kind, i.e. a member of X

It is well-known, that adding some properties for O to a modal logic (like
Oy — O0y), often implies that, semantically, one has to put some additional
constraints on Rp in order to regain completeness (like transitivity of Rn). This
is a good place to make the following distinction:

Definition 3.8 Let ¢ be a modal scheme, and ® some (generally first order)
condition on frames.

10



o We say that ¢ corresponds to ® (¢ ~cor @) iffor all frames F, F = ¢ & F

satisfies ®. In such a case ® is called definable (in the modal language at
hand).
There is also a notion of correspondence and definability relative to some
class of frames F: ¢ corresponds to @ relative to F, if for all frames
F e F, F = ¢ & F satisfies ® We then say that ¢ defines ® on the
class F.

e ¢ is canonical for ® (¢ ~can @) if the canonical model for the logic con-
taining the axiom ¢ has property ®

o ¢ is complete for ® (¢ ~com ®) if K + ¢ is complete with respect to the
class of models that satisfies property ®.

To give some examples of correspondences (for a thorough treatment, cf. [14])
we have O¢ — ¢ ~cor YERozz, "0 = O0-0¢ ~cor V2, ¥, 2((Rozy A Rozz) —
Rnyz), and, to give some multi-modal examples (see also [11]), O1¢p — 02 ~cor
Rn, C Ro,, (Oi1p — O39) A (O2¢p = O39) ~cor Ro, € (Ro, U Ro,) and
Oy (D29 A O3¢) ~cor Ro, = Ra, URp,. We have ¢ ~can @ = @ ~com ®,
but it is important to notice that these notions are really different. To give
some examples, let ¢ be O¢y — OOy and P transitivity of Ro; then ¢ ~cor @,
@ ~can ® and @ ~com ®. Taking the modal formula ¢ = A3 A A4 A A5 and &
is Vz,yRizy then ¢ cor @ @ #ean B, ~com ®. The latter modal formulas
does correspond to a first order formula: we have ¢ ~¢or (R; is an equivalence
relation).

Related to these different notions is the fact that some logic X can be com-
plete with respect to validity in several classes of models. As an example, we
could take the normal modal logic K. This logic is complete with respect to the
class of arbitrary Kripke models K, but is also sound and complete with respect
to the class of irreflexive Kripke models Z C K. The argument for this runs as
follows: suppose I/ ¢, then - is consistent in K, and, by completeness, there is
a model M € K for which M, w | —p. This model then can be unravelled (cf.
Section 4.2 and [12]) into an irreflexive model M’ for which M',w’ |= -, and
hence [z . Similarly, an argument about generated sub-models (cf. Lemma
4.1) can be put to work to show that S5 is sound and complete both with re-
spect to the class of models in which R is an equivalence relation, and the class
in which R is universal.

In the sequel, we will see several cases where an axiom ¢ of L raises, on
semantic grounds, the expectation that it is canonical for some property @, but
it is not; and neither does ¢ correspond to ®. For those cases, we will apply
some validity-preserving technique in order to derive completeness for a class of
models satisfying ®.

This is how our completeness proof in the next Sections will proceed:

e We give classes of models C C Kgp g, for which we provide arguments to
support the claim that L is sound or complete for them. In particular,

11



these models satisfy a number of first-order properties ®, (to be intro-
duced in Definition 3.11) so that we also will write KZpg ({®1, P2, P34,
D3y, Pua, Bap}) for L. This class L C KGpg is the class of models satis-
fying all the properties ®, that are relevant here, and for which we aim
to prove that L is both sound and complete for it.

e We then start reasoning from My, showing that this canonical model for
L is in fact not a member of £; it is a member of a class KZpz ({21, P2,
35, ®45}) D L. For this class we show that L is complete for it, but at
the same time, it does lack vital properties ®4, and ®3,, concerning R¢
and Rp, respectively.

o We then show that, as far as completeness and soundness are concerned,
one might restrict oneself to a class of models KZpp({®1, ®2, P35, Paq,
®45}), with £ C KZpp({®1, B2, P3p, Paa, Pas}) C KZpr ({21, 82, P3p,
®,4,}), thus obtaining models that do have the desired property for R¢ with
respect to Rg. We also show that in fact the subclass FIN (K% pp({®1,
@2, @31,, ¢4a, ‘I>4b})) of ﬁm’te models of ’CTCnDE({Ql, @2, @31,, ®4a, @45})
validates exactly the L-derivable formulas, implying decidability of L.

o The class KZpp({®1, ®2, Psp, Paa, Pas}) appears to still suffer from not
being intended with respect to Rp. We show that we may ‘throw away’
the ‘bad’ models from this class, ending up in £, whereas this procedure
does not affect the valid formulas of these classes.

As will be explained in Section 5 the order in which we apply the respective
techniques, seems to be crucial.

3.2 Models for L

In Section 3.1 we mentioned that one can obtain completeness for a modal logic
if one inspects the canonical model for that logic (cf. our remarks following the
Truth Lemma). It belongs to the folklore on epistemic modal logic that the
axioms A3 — A5 enforce the relations R to be reflexive, transitive Euclidean
relations: i.e. the relations R{ are equivalence relations. Moreover, it is easily
seen that A6 ~., Ry = R§{U...U RS, so the model My is such that R% is
the union of the R’s. Let us consider R and R},. The argument that follows
applies to arbitrary relations that are associated with the operators C, D and
E; therefore, for the moment, we will not consider them as relations in the
canonical model; we will discuss for instance R¢ instead of RE;.

Definition 3.9 Let R be a binary relation on W. Then we define, for any
w € W, R(w) = {v |Rwv }. Moreover, we define R°zy iff £ = y; R"zy iff
there is a z for which Rzz and R"'zy (n > 0). The transitive closure R* of
R is the set {(z,y)|3n : R"zy}. For any model M = (W,V,R,,...,Rn.,Rc¢,
Rp,Rg) and world w in M, we let M, be the model generated by w: it is the

12



restriction of M to those worlds that are (R, U...UR,,, UR¢c U Rp U Rg)*-
reachable from w. For arbitrary k-dimensional models M = (W,V, Ry, ... R;),
the worlds in M,, are those that are (R; U... U Ry)*-reachable from w. The
definition of R™ also has a syntactical counterpart: we define 0% =4.¢ ¢ and
D"‘(p =def Dn—l‘:](p'

Lemma 3.10 Let R be an equivalence relation on W. Then, for all w,v € W:
Rwv = R(w) = R(v)

Axiom A9 tells us that we might hope that C is indeed the necessity operator
for some relation Rc. Axiom A8 guarantees that Cy — (EpAEEpAEEEyp...).
In fact, the intended meaning of the C-operator is that it equals all possible
nestings of E-operators. So, if we would allow for infinite conjunctions, we have
the following:

Co (EoANEEpAEEEp...) (1)

In fact, Halpern and Moses ([6]) impose this semantically by defining M, w =
C iff for all k, M,w = E*¢. If we would have the displayed equivalence (1),
the axioms A8 and A10 would easily follow. Keeping this is in mind, we can
unravel the truth definition for Cy:

MwkECy & Muwk(EpANEEpAEEEy...)
& Vo with Rpww, (M,v E ¢
and VYu with Rgvu, (M,u = ¢
and V¢t with Rgut,(...)))
& Vs with Rpws, M,s = ¢

Thus, a reasonable guess seems to be that Rc = R}.

Finally, we consider Rp. Halpern and Moses ([5]) approach distributed
knowledge semantically: they define Dy to be true at w iff ¢ is true in all
worlds v such that (R, N...N Ry )wv. In other words, ¢ is distributed knowl-
edge iff ¢ is true in all those worlds that are epistemic alternative for all the
agents. Using terminology of Halpern and Moses, whereas we may relate the
E-operator to the knowledge of ‘any fool’ (since all the agents know ¢ if Eyp is
true), we may relate the D-operator to the ‘wise man’ (since in the truth defi-
nition of D, any epistemic alternative is given up as soon as one of the agents
rejects this alternative). This notion of distributed knowledge is often related to
communication in the group: ¢ should be distributed knowledge iff ¢ would be
a conclusion if all the agents put their knowledge together. One way to formalize
this is the following:

M,wE Dy & 3p1,...0m :MwEKip;and F(p1 A Apm) 29 (2)
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However, we demonstrated in [18] that, with the semantical definition of
D above, the ‘=>’-direction of (2) cannot be guaranteed. So, when thinking of
D-knowledge as the knowledge of the ‘wise man’, this wise man may know more
than the agents ‘know together’. For more technical aspects of this issue, we
refer to our full paper [18]. Now, we return to the semantics of L, since we are
ready to define our ideal, or intended class of models.

Definition 3.11 We define the following first order properties on the class of
models K%y with typical elements M = (W,V,R:1,...,Rm,Rc, Rp, RE)

®,: The relations R; are equivalence relations (¢ € {1,...,m, D})
&, Re=R1U...UR,

®3,: Rp D RiN...0R,

®3,: Rp CRiN...NR,

@4, Rc C Rg

®4: Ro 2 Ry

For any subclass C € K, c,D,E, and any subset F C {®1, P2, P34, P35, P4as D4}
the class C(F) C C is the subset of models from C that satisfy the properties of
F. The class of models K, c,p,5({®1, ®2, B3a: P35, P1a, Bap}), ie. the models
that satisfy all the properties denoted above, is abbreviated by L.

Lemma 3.12 (Soundness) L is sound for KZp 5 ({®1, @2, P3p; Paas Pas}):
FL @ = Erpp o ({21,22,200,240,20)) P

Proof: As an illustration, we show validity of the induction axiom (A10).
Let M be a model in £, and suppose M,w | C(¢ = Ep) A . Let v be any
world for which Rcwv, i.e. Rgwv. This means that there is a sequence vp, ... vn
such that w = vy,v = v, and Rgvrvk+1 (k < n). All these vi’s are Ro-related
to w, so in all of them, ¢ — E¢ is true. By assumption, ¢ is true in w. By the
observation above, Ey must be true in w, and hence ¢ in v;. Repeating this
argument n times, we end up with ¢ being true in v, = v. Since this was an
arbitrary Rc-successor of w, we have M, w = Cop. =

That the property ®4, is necessary for soundness was observed in [9]; in
Theorem 3.14 we will see that it is not needed for completeness. In the rest of
this paper we are concerned with proving completeness of L with respect to L.
First we note, that the canonical model My is not of the proper kind:

Proposition 3.13 Consider the canonical model Mf for L. This model has
all the properties of being an £-model, except for the properties ®3, and P4,
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Proof: That My satisfies the properties ®;, @2 and ®3; is due to the fact that
(A3 A A4 A A5) and (A13 A A14 A A15) are canonical for ®1; A6 ~.qn, P2 and
All ~;on ®35. These facts belong to the folklore on modal logic, the reader
may consult [14] for a general treatment, or [11] for these specific cases. Let us
now show that My also satisfies ®4;. To do so, suppose that for ', A € W*° we
have R;I'A; it means that there are ; =T', ¥s,...,E, = A such that for each
Zx with k < n there is an i, < m such that Rf ¥x%;.1. We have to show that
RETA; so suppose Cp € T, we now have to demonstrate that ¢ € A. Using A6
and A8 we see that Fr, Cy — K;, Cv. This implies that K;, Cyp € X whenever
Cyp € Zi. Since Cp € X1, we have K;,Cyp € X; and, since R ¥, we have
Cyp € Xy. Repeating this argument, we obtain Cy € ,, = A. By axiom A7,
we conclude that ¢ € A.

We will now show that Mf does not satisfy ®3, and ®4,.

®3, Let us consider a system for two agents (m = 2) and consider the following
model M € L.

o W ={z1,23,91,¥2}
o V(z1) = V(22); V(x1)(p) =true and V(y1) = V(y2); V(y1)(p) =false

e The equivalence classes for Ry are {z1,¥:1} and {z2,y2}, for Ry they
are {z1,y2} and {y1,z2}. Furthermore, Rp = {(w,w)|w € W}, and
Rg =Ry URy;, Rp = (RE)*.

Obviously, M is a model from £. Moreover, an easy induction on modal
formulas shows that

Th({M,z1)) = Th({M,z3)) and Th({M,31)) = Th({M, y2))

Combining the Lemmas 3.5 and 3.12, the sets ¥ = Th({(M,z;}) and
A = Th({M,y,)) are maximally consistent with respect to L. Hence, they
appear in the canonical model M* for L as two worlds, with the property
that R{ZA, RSEA, but not RLEA. The latter holds because Dp € %,
but p & A.

®,4, The fact that M does not satisfy &4, was already observed by Goldblatt
in [4]; for a formal verification of the following argument we refer to [11].
Consider the set

T'={Ep,EEp,EEEp,...} U{-Cp}

This set is consistent in our logic L; we showed in [11] that all of its finite
subsets are KZpp ({®1, P2, P3s, Pav})-satisfiable, and hence consistent.
By the first item of Lemma 3.4, there must be a m.c. set ¥ D I". Now,
consider the set @ = {-p} U {¢y| Cy € £}. Consistency of T implies
that  is also consistent, so, again with Lemma 3.4 we find a m.c. set
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A D Q. By the definition of the canonical model, (cf. Definition 3.6) the
sets £, A are worlds in W* for which R EA, but not (RE)* XA, so that
the canonical model for L does not satisfy ®4,. That we do not have this
is seen as follows. Suppose that (R%)*XA would hold, then, for some n we
would have (RS)"EZA. But, as one easily verifies, the fact that E"p € &
then implies that p is in A, which is a contradiction, since A 2 {-p} is a
consistent set.

Theorem 3.14 Let KZpp(F) be among the classes of models of Defini-
tion 3.11 in £ and L as before. Then we have:

1. Soundness:
F2{®1,9:,%35, 24,20} © (FLe = Fxp, (R ¥)

2. Completeness:
F C{®1,83,95,%0) = (FLe < Fxz, (7)) ¥)

Proof:

1. Let G = {¢1,§2,§3b,§4a,§4b} To prove ‘=, if F D G, then I=K;m (@)
¢ = Exp,o(F) ¢ and the conclusion follows from Lemma 3.12. Con-
versely, if 2 G, we can find a model M € KZpg(F) that does not
satisfy one of the axioms of L. Here, the examples of correspondences
that we gave in section 3.1 following Definition 3.8 are helpful. For, sup-
pose that for a &, € G \ F we know that there is a modal formula ¢,
such that ¢, ~cor @ and Fr, @,. By correspondence, we find a model
M € KZpp(F), such that M [~ ., and this is sufficient to disprove
soundness of L with respect to KZpg(F). Since we know that the con-
junction ¢; = A3A A4A A5 corresponds to ¥4, (in case ¢ < m; ifi = D, we
take p; = A13AA14A A15),if &; € G\ F, we find a model M € KZpp(F)
such that M £ ;. Similarly, if ®2 € G\ F, we find Exp (r) A6, and
if &3, € G\ F, we have bé,cm 5(F) All. Flnally, if ®4, € G\F by an
argument of [9] we have bé,cm o(F) A10 and, if ®3, € G\ F then one may
choose M = (W,V,R;,.. Rm,RC, Rp,Rg) such that Rc = 0, and M
satisfies all the properties of F. Obviously, one easily chooses V such that
M V: A7, SO %)anDE(p) AT.

2. Suppose /1, @, that is, - is L-consistent and thus ~¢ € ¥ for some
maximal L-consistent set . From Proposition 3.13 we know that there is
a model in KZpg({®1, P2, P35, s }), i.e. the canonical model Mf, such
that M§, L |= —~¢. Obviously, this model My is a K@ p g(F) model, for any
F C {®,,®;, 3, D45}, and hence, for each such F, we have [Excm (r) ¢-
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Our conclusion so far is, that the epistemic logic L can be proven to be
complete with respect to those K%, g~ Kripke models that need not satisfy ®3,
and ®4,, since the canonical model for L does not satisfy those properties. This
implies that no subset of axioms of L is canonical for ®3, or ®4,. In the sequel
(Corollary 4.29) we will also learn that none of the properties ®3, and @4, is
definable.

4 Transferring Truth

We know from Theorem 3.14 that our epistemic logic L is complete with respect
to the class of models KZpp ({81, 2, ®3s, ®4s}). In particular, the theorem
implies that every L-consistent formula ¢ is satisfied in some model M € KGpp
({®1, ®2, B35, Pap}), which means that for some world w in M, we have M, w |=

®.

Lemma 4.1 Let C;,C; C KZpp be two classes of Kripke models, and ¢ a
modal formula. Suppose that for every Mi,w; (with M; € C;) for which
M, w; k= ¢, we can find a pair My, wy (with Mz € C3) such that Ms, w2, = ¢.
Then any logic J that is complete with respect to C; is also complete with
respect to Cy.

Proof: Easy: completeness of J with respect to C; simply means that every
J-consistent formula is satisfied at some pair My, w, with M; € C;. The con-
ditions of the lemma then immediately yield that there is a pair M, ws with
M, € C, that satisfies ¢, which implies that J is complete with respect to C,. =

So our strategy will be, given a KZpp ({®1, ®2, $35, $4s})-model M; that
satisfies a formula ¢ at some world w1, to find a model M, € £ with a world ws,
that satisfies ¢ as well. In this way, we establish completeness of L with respect
to £: we already know from the first item of Theorem 3.14 that L is also sound
with respect to £. In fact we implement the strategy mentioned above in a
number of steps; we will find models M in several classes, that all preserve the
truth of ¢. To prove such preservation, we will often use the following construct:

Definition 4.2 A function f between two models M; = (W;,V}, R;) and
M, = (W2, Vo, Ry) is called a p-morphism if it satisfies the following conditions:

e f is surjective

o Ywy, v € Wi Riwnvr = Rowave

o Yw, € Wy, v € Wo: Rof(wi)ve = Fvg € Wit Riwivg and f(vq) = vy
e Vp € P,Vw € Wi : Vi(wr,p) = Va(f(w1),p)
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Segerberg ([13] introduced the notion of p-morphism (for ‘pseudo-morphism’)
for standard modal logic. Later on, this notion was generalized to p-relation
or zigzag-connection, which, on its turn, is a special case of a bi-simulation
(see [14]), a familiar notion in the field of process-algebra. The notion of p-
morphism is straightforwardly extended to k-dimensional Kripke models: from
now on, when we say that f is a p-morphism between two models M; and Mj,
we assume that the two models have the same number of accessibility relations
R;,,...R;, (i € {1,2}), and that f satisfies the conditions above for each pair
le,RZj (.7 S k)

Lemma 4.3 Let f be a p-morphism between M; and M. Then, for all for-
mulas ¢:

1. forallw; e Wi: Mj,wi Fo & M, fwn) e
2. MiEe & MoEy

Proof: With induction on the (multi-) modal formula ¢; see for instance [14]. m

Before we start off, we give one more truth preserving result on models that
we will need in the sequel:

Lemma 4.4 Let M be a multi-modal model with some world w, and let M,,
be the model generated by w (Cf. 3.9). Then, for all formulas :

LMwEe & My,wkEe
2 MEe = MyEo

4.1 Filtrations

Definition 4.5 Let M be a general Kripke model, and £ C L a set of formulas.
The relation =5 on W defined as

w=Egve forallce: (MwkEoe MvEo)

defines an equivalence on W; we denote its equivalence classes with [w]s; we
will often omit the subscript T, though. The model M/ = (WS Vf RI, ...
R{,, RL, RL, RL) is a filtration of M through ¥ if

o W/ = {[u] lw e W}
o Each R satisfies the properties Min/ and Maz':

Minf For all [w],[v] € W/, if Rowv then Rf[w][v]
Maz' If Rb[w][v] then, for all Oy € S(M,w =0y = M,v =)
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o VI([w],p) =V(w,p)

Lemma 4.6 Let M/ be a filtration through £ of M. Then, for all [w} € W/
andallo € &,
MuwkEoe M [uEc

Definition 4.7 Let ¢ be a formula in L, and
o 3 = {¥, 9 |¢ is a sub-formula of ¢}
o T = {K1¢,~K1¢ |EyY € L1}
o T3 = {EC%,~EC4%, K1Cy,~KiCy |Cy € I1}
o Iy = {DK;%,~DKp | K;pp € 3 UEUZ3,i <m}

Then £ = X; U...U Xy is called the suitable set of formulas for ¢ (or just: ‘Z
is suitable for ¢’).

Lemma 4.8 Let ¥ be suitable for ¢. Then:
e X is finite

e T is ’semi-closed’ under negation: if ¥ € T is not of the form -3’ then
€L

o For all formulas ¥, 1 < m:
1.CYe¥ = ECYeX

2. Kipel = DKiwel
3. Bye¥ = Kipel

Definition 4.9 Let M = (W,V,Ry,...,Rn,Rc,Rp,Rg) be a model in
KZoe ({81, ®2, 35, B4p}). Furthermore, let ¢ be a formula and T suitable
for ¢. We define M+ = (W, V*+,Rf,..., R}, RE, R}, RY) as follows

o Wt ={[t] |lve W}
o The relations in M+ are defined as follows:

1. Rf[w][v] & forall Oy € T : (M,w = Oy & M,v = Oy,)
for all Ro € {Ry1,...Rm,Rp}

2. Rt =(RfU...UR})
3. R} = (R})*

o V¥([w))(p) = V(w)(p)
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Lemma 4.10 Let M+ be defined as in Definition 4.9 above. Then, for each
A C W+ there is a formula 04 such that for all [w] € W;

MwEos & [weA

Proof: Let Form(w) be the conjunction of formulas in ¥ that are true in M, w.
From the definition of [], it is clear that we have M,v |= Form(w) & [w] = [v].
Now, let 04 be the disjunction of all Form(a) for which [a] € A; it is easily seen
that this o4 satisfies the lemma. ™

Lemma 4.11 Let M be a model in KZpp ({®1, 2, 35, Pas}) and MT asin
Definition 4.9. Then M* is a filtration through .

Proof: We have to show that each Rp satisfies the properties Min’ and Maz/,
respectively.

e Suppose RE € {R{,...,R%,RE}.

To prove Min/, let [w],[v] € Wt and Rowv, and suppose Oy € L. In
order to prove that Rt [w][v], we have to show that M,w | Oy & M,v |
O¢. But this follows immediately from the fact that Ro(w) = Ra(v)
which on its turn follows from Lemma 3.10.

To prove Maz! for the R}’s under consideration, suppose Ri[w][v], and
M,w |= Ot. By definition of R, we have M,v |= O¢. Since all the Ro’s
under consideration are reflexive, we get M,v = .

e Consider RE. To prove Min/, suppose Rpwv. Since Rg = R1U...URp,,
for some i < m we have R;wv. the M inf condition for R; guarantees that
R} [w][v] and hence, by definition of R, also R} [w][v).

To check Mazf, suppose R[w][v], and Ey € . If M,w |= E% then, by
definition of Rg, we also have M, w | K1¢. By Lemma 4.8 we also have
K19 € . The Maz/ condition for R; then guarantees that M,v |= 4.

o The claim that Min/ holds for R} is essentially an argument given by
Goldblatt in [4]. We give the argument, modified to our set-up: suppose
Rcwv. Let A be the set

A= {[u] |RE[w][] }

Let 04 be the formula that satisfies the condition of Lemma 4.10. Now
we claim that

*) M,wkECoa

In that case we are done: for (*) implies that M,v = 04 and hence, that
[v] € A, which expresses that R5[w][v]. To prove claim (*), we use the
fact that the model M is an element of the class Kgpp ({®1, @2, Pas,
®43}), in particular, it satisfies the induction axiom, so that we have:
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(1) M,w = C(04 = Eoa) = (04 = Coa)

We now observe that the antecedent of the formula given at (1) is also
true:

(2) M,w = C(04 = Eca)

To see (2), suppose Rowz, and M,z |= 04. We have to show M,z |= Eca.
For this, suppose Rpzy. Since [z] € A, we have R} [w][z], or, equivalently,
(RE)*[w][z]. The latter says that there is some n such that (RE)™[w][z].
Since the condition Min/ holds for R}, we have Ri[z][y]. All together,
we have (R})™[w][y], so RE[w][y] a.nd thus [y] € A. The latter, together
with Lemma 4.10 implies that M,y |= a4, which proves (2).

Next, since RE[w][w], we also have

(3) MiwkEoa

Obviously, the items (1), (2) and (3) are sufficient to prove (*).

To see that Maz/ holds for R, suppose RE[w][v] and M,w | Cy
for some ¢ € ¥. By definition of RE, we have that there are [w] =
[w], [wa],- . ., [wa] = [v] with RE[wi][wiy1], (i < n). M satisfies axiom A8,
so that we ha,ve M,w;, E Cy = M,w; = ECy. Since T is suitable,
we obtain, given Cy € ¥ that ECy € I. The relation RY is known to
satisfy Mazf, so that M,w; = EC%y implies M, w1 = Ct. Observing

that C is preserved in the sequence of w;’s and v = w,, we eventually
get M,v = Cv. Since M satisfies A7, we get M,v |= 7.

Corollary 4.12 Let M be in KZpp ({®1, 82, P31, Ps}), and M+, T as
above. Then, for all c € X, w € W:

MuwkEoe MY |wEo
Proof: Combine 4.6 with 4.11 ]

Not only is the model M+ a filtration through M, it is, in some sense, also
a nicer model than M.

Theorem 4.13 Let M be a model in KT, 5 ({®1, D2, ®3b, Bav}). Then M+
is a model in K, c,p,e({®1, ®2, P35, P4a, Pas})

Proof:

®; The relations R; are equivalence relations, as follows immediately from
the definition of R}, i € {1,...,m, D}

&, Immediately from the definition of RE

21



&3, Suppose R} [w][v]. Then, for all Dy € X, we have M,w | Dy &
M,v | Dy¢. Now suppose that for some i < m, we have K;9) € &
and M,w = K;i. By construction of & (Cf. X4), we then also have
DKy € . Since M satisfies A4, we have M,w |= K;K;9 and hence,
using Al11, M,w |= DK. Thus, M,v = DK;9. Since M satisfies A13,
we have M, v |= K;9. Thus, we have R} [w][v].

®4a Immediately from the definition of R}
®4b Like the proof of ®4,

Remark 4.14 Note the asymmetry in the definitions of the relations Ry, ...,
R}, RE on the one hand, and that of RE and Rg on the other. By defining RE
and R as we did, the properties ®3, ®4, and @4, of M are easily established,
be it that it took more effort to prove Minf and Maz’ for them. Note that,
since we do not have that Rg is an equivalence relation, a definition like

(*) Ri[wl[v] & forall Oy € & : (M,w | Oy & M,v |= Ot)

would not have worked for O = E. To see this, let ¢ be Ep A Kip. Let M be
a model in KZpp ({®1, B2, P3p, P4p}) such that p is true in world w,z and y,
but not in z. Suppose the equivalence classes for R; are {w,z}, {y} and {2}, for
R, they are {w,y}, {z, 2}. Then, Ep is true at w, but not at z. So, although
we do obtain R; [w][z] (we know that R} satisfies Min’ and we had Rywz),
using definition (*) for R}, we would lose property ®; for the filtration M.
Moreover, once we define R}, in terms of the R} ’s, rather than in terms of prop-
erties of the underlying model M, it is obvious that, when aiming for ®4,, ®4s,
this is achieved most easily by imposing these properties immediately upon Rg.
Finally, note that there is also an asymmetry in the definition of the suitable set
¥ for ¢ in Definition 4.7, in the sense that it seems that the index 1 of K plays
a special role. In fact, any of the indices 1,...,m would have done here: but one
of them is necessary to prove the second item of Lemma 4.11. For the M ax!
condition of R}, we want to establish that v satisfies ¢ whenever w satisfies Ep
and R}j[w][v]. But, since this Maz/ is already established for all i < m, and
we have Ep — K;p as a validity, the formula ¢ can be ‘carried over’ to v by
Mazf of any of the R;" ’s, 4+ < m. In other words, the fact that we have chosen
index 1 n Definition 4.7 is arbitrary, but sufficient.

We now have achieved, as for the conditions of Definition 3.11, that the
model M7 satisfies those of M, but it moreover satisfies the condition that
R} = (RE)*.

Corollary 4.15 For every formula ¢ and every model My € KgZpg ({21,
®,, B35, Pgp}) with world w; such that M, w; = ¢, there is a model M; €
KZpe({®1, ®2, P35, B4a, P4p}) and a world wy such that My, w2 = .
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Proof: Immediate from Corollary 4.12 and Theorem 4.13. [

Theorem 4.16 The logic L is sound and complete with respect to the class
KZoe({®1, ®2, P35, Psa, Pas})

Proof: Soundness follows from Theorem 3.14. To prove completeness, we
combine Corollary 4.15 with Lemma 4.1, with C; = KZpp ({®1, ®2, ®35, Bas})
and C; = KZpg({®1, ®2, 835, Paa, Pap}).

Corollary 4.17 The logic L is decidable

Proof: Let ¢ be a formula. It is satisfiable iff it is satisfied in the canonical
model € KZpg ({®1, 2, ®3p, Pas}). Let T be suitable respect to ¢; we know
from Corollary 4.12 that ¢ is satisfiable iff it is satisfied in the filtration Mt
through Me¢. This filtration has at most 2I%l worlds, so we only have to inspect
finitely many models from KZpg({®1, ®2, B35, Paa, Pss}) to check whether ¢
is satisfiable. ]

4.2 TUnravelling and Identifying

We now give a procedure to show that L is indeed also complete for those
models in KZpg({®1, B2, P3b, Paa, Pas}) that satisfy ®3,. We establish this
by applying a technique that we developed in [17]; however, there we did not
need to bother about keeping appropriate properties for Rg and R¢, and our
presentation here will abstract away from the underlying rewrite techniques (a
thorough embedding of the ideas explored here into the field of term-rewriting
is planned in [19]). Roughly, our strategy is as follows. Consider the example
model N = (W,V, Ry, Ry, Rc,Rc, Rg), where W = {w,a,b}, Ry = Ry =
W xW,and Rp = {(z,z) |z € W}U{(a,b),(b,a)}, Re =W xW = Rc¢. Then,
N is a KZpp({®1, ®2, P3b, Paa, Pap})-model, that does not satisfy @3,. We
want to transform it into a model NZ that is a a model of KZpy ({21, P2,
®3,, P35, Paa, Pap}) and such that there is a world w’ in N3 such that for all
¢, (N,wE ¢ & NI, v | ¢). The first step in the procedure to construct
NZ from N is by ‘unravelling’ all the paths in N, thus obtaining sequences of
worlds and relations that connect them (Definition 4.18). Then, an equivalence
on these paths is defined (also in 4.18). The equivalence classes thus obtained
become the worlds in the new model N5 (Definition 4.21). In the sequel, we
will come back to the example model N in order to clarify these two steps.

Definition 4.18 Let M = (W,V,R;,...,Rn,Rc,Rp,RE) € KEpE.
e A path in M is either a one-world sequence (z) with £ € W, or of the

form @ = (z1, k!, 22, k%,..., k" L, z,), withz; e W (i <n)and k* € [ =
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{1,...,m,D} (i < n) such that Ryiz;z;1; holds for all ¢« < n. For such
a path, we define fst(@) = z1, lst(@) = z,. If fst(@) = w, @ is called
a w-path. Sets of paths of this form, with z; € W and the indices k' in
some set I are denoted with P(M,I). The set of all w-paths in P(M,I)
is denoted with P, (M, I).

e For two paths @ = (z1,k',z2,k2, ..., k" 1,2,) and ¥ = (y1,m!, ...,
m™1,y,) for which z, = y we define their concatenation as 4;v =
(zy, kL. . k" Y zn,mt, yo,...m" Ly, If st(@) # fst(¥), concatenation
is not defined. If lst(@) = fst(&), @™ is just n concatenations of #. We
will slightly abuse notation when writing a concatenation, for instance
(@; k*,y) just means &, concatenated with (Ist(id),k*,y).

e We define an equivalence relation on a set of paths P(M, I) in three steps:

=,: We stipulate & =; ¥ and ¥ =, @ iff one of the following cases holds
(i e{1,...,m,D}):

eq i =7
Ref(i) @ = (z,i,z) and 7 = (z)
Te(i) @@= (z,i,y,i,2)and 7= (z,i,2)

D(i) @ ={z,i,y)and ¥=(z,D,y)
=,: @ =, ¥ iff for some 7,7, ,7 € P(M,I) € = &,@';§, ¥ = %;7; 7 and
' =1 7.

Finally, we put = to be the transitive closure of =;. The relation =
is easily seen to be an equivalence on P(M,I); we denote its classes
with |i],€ € P(M,I)

From now on, we will use k%, I*, m* or just 4 and j for typical elements of I =
{1,...,m, D}, and z,y, 2,u,v,w as typical elements of W, and, finally, we use
3,1, %, 7 and 7 as typical elements of P(M, I). Note that a path is an alternating
sequence of worlds from W and indexes of the relations R;,..., R, Rp in M.
In fact, the technique of unravelling was introduced by Sahlqvist ([12]) for the
mono-modal case. He then uses such paths as worlds to construct a new model
verifying the same formulas as M. We will use the equivalence classes of the
paths to construct a new model M= (4.21). A few words on this equivalence re-
lation are in order here. Firstly, for @ and 7 to be equivalent, it is necessary that
they are both members of the set of paths P(M, I). Let us consider our exam-
ple model N again: elements of P(N,I) are (w), (w,1,w), {w,2,w), {w, D, w),
(w,1,a), {w,1,b), (w,2,a), (w,1,a,1,b), (w,1,a,2,b) and (w,1,a,D,b). When
defining the equivalence relation on those paths, we followed the properties
of the relations in M ‘as much as possible”: in the example model, we ob-
tain, since R; is reflexive, that (w) = (w,1,w) and, by transitivity of R; that
(w,1,a,1,b) = (w,1,b). On the other hand, note that we can use the rule D(z)
to prove that (w,1,a,2,b) = (w,1,a,D,b), but not (w,1,a) = (w, D, a), since
the latter path, (w, D,a) is not an element of P(N,I)!
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Observation 4.19 As indicated before, we feel that the best mathematical
context to neatly prove properties of =, is by conceiving the =, pairs as rewrite-
instructions, thus obtaining a rewrite system on paths. With this alternative
view on =, a variety of tools from rewrite theory becomes available. However,
we think that this alternative presentation of = is too far from the current
context. Conceptually, when deciding whether € = ¥ for paths #,7 € P(M,I),
it may be helpful to think of each path having a normal form, induced by =.
Roughly speaking, such a normal form nf(#) of a path  is a specific shortest
path in M from fst(i) to Ist(&), such that all worlds that occur in nf(i), also
occur in #. To be more precise, we stipulate that nf({w)) = (w) (base case),
nf({i4,1st(@))) = nf(@) (omitting loops); and nf((;1,y,1,2)) = nf((&;1,2))
(taking short cuts). Finally, if none of the previous clauses is applicable, we
stipulate the inductive clauses nf((@;1,y)) = nf({nf(@); D,y)) if in M we have
Rplst(@)y, and nf({(T;1,y)) = nf((nf(@),i,y)) else. These two clauses make
sure that in a path in normal form, a D-step is taken between two worlds,
whenever there is one in the model M. One may then prove that nf is well
defined, and that @ = 7 iff nf(@) = nf(?).

Before using the =-classes to build our new model M3, we record some
properties of = in Lemma 4.20.

Lemma 4.20 Let @,7 be paths, 7,5 € I,i # D, z,y € W and = as defined
above. Then:

(i) (@;i,y) € P(M,I) & @€ P(M,I) & Rilst(i)y
(i) T=7 = Ist(id) = Lst(7)

(@1) B=T = (i;i,y) = (T;1,y), provided that (@;3,y) € P(M,I) or (7;1,y) €
P(M,I)

() (Ti,y) = (@ 5,9), 1 #J & (G4,y) =(&D,y), i #J
Proof:

(i) Immediately from the definition of paths: a path can only be extended if
there is another R;-step in M.

(i1) Note that there is no =;-clause (and hence no =-clause) that affects the
last world in a path: only ‘in-between’ worlds may be removed (by Te(q)).

(#43) If & = ¥, there must be a number of =,-steps that ‘transfer’ 7 into 7. We
already know from item (i) that the last world of @ is not affected here.
But then, we can mimic this =,-transfer, starting with (i;1,y) leading
to (#;1,v), and thus we have =-equivalence between those two extended
paths.
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(fv) From right to left is obvious: if (@;1,y) = (@; D,y) then in M, we must
have Rplst(#)y and hence R;lst(@)y so that (@;j,y) € P(M,I) and, by
D(z) and D(j), we have (#@;i,y) = (@; D,y) = (@;j,y). Although the con-
verse is also clear at first sight (the basic observation being that a change
of index in a path can only be effected by the D(i)-clause of the definition
of =), we feel that a full mathematical proof here needs an inductive ar-
gument. That is, such a proof is best given if one replaces our definition of
= by a more cautious approach using rewrite rules, that together establish
those equivalences. We think that introducing the machinery of rewriting
systems is beyond the scope of the present paper: such an approach is
taken in [19]., where one may also find a thorough proof of this item.

As an immediate consequence of Lemma 4.20.(37) we observe that the func-
tion Lst(|@]) = lst(&) is well-defined.

Definition 4.21 Let M = (W,V,Ry,...,Rm,Rc,Rp,Rg), we W and I =
{1,...,m,D}. Then the model M3 = (W',V',R},..., R,,, Ry, R}, Ry) is the
following model:

e W' = {U|U = || for some w-path @ in P(M,I)}
e RIUV iffVieU3teV3iz e W: ¥ = (i;i,xz)

e Rp=R{U...UR;,

* R =(Rg)"

V'(U)(p) = V(Lst(U))(p)

Let us informally see how the definition of =, together with that of M3
guarantees that our example model N7 satisfies all the properties of KZpp
({®1, B2, P30, P3p, Pua, P4p}), knowing that N € KEpp({®1, 22, B3p, Pua,
®,4,}). First of all, the relations Ry, and Ry are okay by definition. To see
that R} is reflexive, take any world U of N3, induced by a path @ € P(N,I).
Let @ € U be arbitrary. Since R; in N is reflexive, we know that the path
¥ = (i;1,1st(%)) is also a path in P(N,I). By Ref(i), we have ¥ = @ and
hence ¥ € U. By definition of R}, we have R{UU. The cases of transitivity
and Euclidicity are similar, cf. the proof of Lemma 4.25. We also see that we
get R, C R;: suppose that Rp|d| |7]. Then we know, that for every & = 4,
thereis af = ¥ and z € W with { = (8, D,z). But we know that Rp C Ry,
so every such f is equivalent to a & = (8;1,z). The definition of R} then
guarantees that R}|@| |7]. Note that we do not have R} C R},: although in
NZ we have R} |(w)| |(w, 1,a)|, we do not have R}, |(w)| |{w, 1, a)| which is seen
as follows. Suppose we would have Rp|[{w)| |[{w,1,a)|. By definition of R}, it
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would mean that for some z € W, we have a ¥ € P(N,I) with ¥ € |[(w,1,a)|
and ¥ = (w, D, z). Applying Lemma 4.20.(i¢) we see that ¥ = (w, D, a), and we
already argued (just before Observation 4.19) that then ¥ ¢ P(N,I).

The following lemma eases the reasoning about the relations R’ in M3.

Lemma 4.22 Let M= and I be as before, ¢ € I. The following are equivalent:
() RUV

(1) VEeU3deV3zeW: 7= (i;i,z)
(i) VEe€eU3Te V3 e W : 7= (i;i,x2)
(w) ICeU3deVizeW: 7= (i;i,x2)
(v) JeUIeVIzeW: ¥=(d;i,z)

Proof: We have (i) < (i) by definition of R} and (¢%) = (ii4) by definition of
=. Since the equivalences classes U are not empty, we also have (4ii) = (iv).
The implication (4v) = (v) is also easy: if ¥ = (@;¢,z) and ¥ € V, then also
# = (@;i,x) € V, thus we have @ € U, %) € V with 4 = (@;4,z). We finally
show that also (v) = (¢¢) holds. Suppose that @ € U,¥ € V are such that
# = (@;%,z). In particular, this means that in M, we have R;ist(@)z. Let
§e U. By Lemma 4.20.(i11) we have ¥ = (§,1,z). Thus, for arbitrary € U we
find £ = (5i,z) € V. .

Lemma 4.23 Let KZpp ({®1, P2, ®3b, Bap})-model M = (W,V, Ry,..., Ry,
Rc, Rp, Rg), and suppose M is generated by w. Let the model M7, be as
defined in Definition 4.21. Then the function Lst : W' — W, defined above is a
p-morphism.

Proof:

o First of all, Lst is obviously surjective if M is generated by a world w: then,
every v is reachable from w, giving rise to a path (w,...,v) in P,(M,I),
and hence to a class U = | (w,...,v) | in MZ, with Lst(U) = v.

e We have to check, that for every Rg € {Ri1,..., Rm, Rp,REg,Rc} the
following holds:
For all U,V € W'; RUV = RuLst(U)Lst(V).
Let U = |u],V = |9

— First, suppose i € {1,...,m,D}. Since RUV, we must have some
7 € V,z € W with ¢ = (@;4,z). By Lemma 4.20.(:) we have
R;lst(@)lst(¥") and, since lst(T') = Ist(7) (4.20.(i1)) and by definition,
Lst(|7]) = lst(¥), we have R;Lst(U)Lst(V).

— Suppose RyUV. By definition of R} this means that for some i <
m, RIUV. We already checked that then we have R;Lst(U)Lst(V).

Since M is a model in KZpg ({®1, P2, P3s, Pap}), we have R; C Rg
and hence RgLst(U)Lst(V).
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— If R,UV, then, by definition of R{;, there must be a sequence Uy =
U,...,Up =V with RgU;Uiy1(i < n). We already know that then we
also have RgLst(U;)Lst(U;+1)(i < n), and, since M satisfies R¢ =
(Rg)*, we conclude R¢ Lst(U)Lst(V).

e Now we must verify that for all Rg € {Ry,...,Rm Rp,Rg,Rc} the fol-
lowing holds:
Suppose we have a U = [(w,...,u)| € W’ with RaLst(U)v. Then there
must be a world V € W’ for which both R;UV and Lst(V) = v.

— We start by assuming 1 € {1,...,m,D}. We know that R;uv. But
then, the path ¥ = (w,...,u,%,v) is an element of W’'. Let V = |7,
then we have R.UV and Lst(V) = v.

— Suppose RgLst(U)v; then there must an i < m with R;Lst(U)v; in
the previous item we have found a V € W' with R.UV and Lst(V) =
v. By definition of R}, then, we also have R7UV.

— If RoLst(U)v, then there must be a sequence vi,...v, with v; =
Lst(U),v, = v and Rgv;vi41(3 < n). We already know that we then
must have a sequence V; = U,...,V, =V with RpV;V;11(i <n) and
Lst(V;) = vi(t < n). By definition of Ry, we find a V with R,UV
and Lst(V) =v.

o By definition of M=, we have V'(U)(p) = V(Lst(U))(p)

Lemma 4.24 Let M be a model in KFpp ({®1, ®2, P3p, Pap}) with a world
w, and MZ defined for M as above. Then:

Muwee Mg, |(w)Fe

Proof: Combine Lemma 4.3 with Lemmas 4.23 and 4.4 ]

Lemma 4.25 Let M be a model in KZpg({®1, 2, B35, Psa, Pas}) and M3
defined as in Definition 4.21. Then M3 € KZpp ({®1, B2, P34, P3p, Paa, Ba}).

Proof: The cases 2 and P4,, P4y follow immediately from the definition of
'z and Ry, respectively; so let us consider the other cases.

®, We prove that R(: < m) is an equivalence relation by proving that R;
is reflexive, transitive and Euclidean. That R, is an equivalence relation
follows from the fact that all R} are equivalence relations (i < m) and the
fact that MZ satisfies ®3, and ®3;, to be proven below.

e We use Lemmad4.22(i7). In order to prove reflexivity of R}, choose
U € W', let @ be an arbitrary element of U and suppose Lst(U) = z.
We know that R; is reflexive, hence R,zz. Thus 4;i,2) € P(M,I)
and, by Ref(?), @ = (#;1, z), so that (¥;7,2) € U.
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e To prove transitivity of R;, suppose R.UV and R;VT. Let @ € U;
then there must bea @ € V,z € W with # = (@;i,z) anday € W, e
T with § = (i;4,z,4,y). Let &= (if;,4,y). Using the rule Te(i), we
see that §= & and thus § € T. Since for arbitrary @ € U we have
found an § € T such that § = (&;,%,y), we may use Lemma 4.22(37)
to conclude that RUT.

¢ For Euclidicity, suppose R.UV, R\UT; to show that R.VT. Let @
be an arbitrary representative of U; since V and T are both R!-
successors of U, we find @ € V,f € T for which there are z,y € W
with @ = (@;4,x), £ = (if;4,y). This implies that in M we have
R;lst(@)z and R;lst(i)y. Since R; is Euclidean, we have R;xy. Now
consider & = (&;4, z,1,y). Using Te(i), we see that f = &, hence ¥ € T,
and, since § = (71, y), we have R[VT.

@3, Suppose that for all j € {1,...,m}, R;UV. Let @ € U. By definition
of R}, we find #,...7, and z; € W with ¥; = (@, j,z;), for all j < m.
By Lemma 4.20.(i1) we know that all z;’s are the same, say y. Hence,
each 7; is of the form @; = (if;4,y). All these ¥;’s are elements of the
same equivalence class V, so that we have (&;1,y) = (#;2,y). From the
definition of R}, and Lemma 4.20(iv) we obtain R,,UV.

®3, This property is directly inherited from the fact that M satisfies ®3;, and
the rule D(3): Suppose that U and V € W’ are such that R;,UV, and
let # € U. By definition of R}, there is a ¥ € V with ¥ = (@; D, y).
Since M satisfies Rp C R; we have (#;i,y) € P(M,I) and, by D(3),
(@; D,y) = {@;4,y). Now, given & € U we found a ¥ € V and y € W such
that @ = (¥;1,y) and hence, by Lemma 4.22(iii), we have RUV.

Remark 4.26 Again, in the definition of the model M3, there is an asym-
metry between the definition of the relations Rj, ..., R, R}, on the one hand,
and Ry and R on the other. This is what would have gone wrong if we had
involved rules for Rg in our equivalences. Let us go back to the example model
N for this. Obviously, in order to have R, = R; UR}, in N, we should add a
rule E(z) to Definition 4.18, saying

—~

i=; Jand ¥ =, €if € = (z,1,y) and ¥ = (z, E,y) 3)
It is clear that with the clause (3), in P(N,I) we have {w,1,a) = (w,E,a) =
(w,2,a). Thus, when writing U for |{(w}| and V for |[{w,1,a}|, in N5 we would
obtain R{UV, and R,UV, but not RpUV, so that NI would not satisfy ®3,.

Note that we also do not want R,UV to hold: suppose that the atom p is true
in N only at the world w. Then we have N,w |= Dp, but if R,UV would hold,
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we would also have NZ |(w)| = ~Dp, so that the process of going from N,w to
NZ would not preserve truth.

We are now ready to state and prove our Main Theorem:

Theorem 4.27 The logic L is sound and complete with respect to validity in
the class ’CTCn'DE ({Q;[, @2, (1)30,, @35, Q4a, @45}).

Proof: For completeness, combine Lemma 4.1, with C; = KZpg({®1, P2, ®3s,
D44, Dap}), and Co = KZpp ({®1, B2, P3a, B35, Paa, Pav}), with Lemma’s 4.24
and 4.25. For soundness, use Theorem 3.14. [ ]

Remark 4.28 We already proved in Corollary 4.17 that our logic L is decid-
able. Doing so, we used the fact that one finds a finite model for any satisfiable
formula. Note however, that this model is not one in the class that we are con-
sidering here: it need not satisfy property ®3,. We do not know whether the
problem

“%s any L-consistent formula satisfiable in KZpg ({®1, ®2, P3a, P3b, Pia,
3}

is decidable.

We conclude with the observation that the properties $3, and ®4, are not
modally definable. For any class of models C, let F(C) be the class of frames on
which the models of C are based.

Corollary 4.29

o The property ®3, is not modally definable, even not relative to the class
Km,c,0,e({®1, ®2, B35, Paa, Pas})

e The property ®,, is not modally definable, not even relative to the class
Km,c,p,e({®1, ®2, P3b, Pap}).

Proof: We show that ®3, is not modally definable relative to K, c,p,e({®1,
®,, P3p, Py, Pav}), the other cases are similar.

Suppose there would be a formula (3, that relatively defines ®3,. Let F be
a frame in K,,, ¢,p0,({®1, 2, ®3p, P4a, Pap}) that does not satisfy ®3,. Since
3a relatively corresponds to ®3,, there is a valuation V' and a world w such
that F,V,w = —@3,. Let the model M = (F,V). We can now define the model
corresponding model MZ (cf. Definition 4.21), to find a model in KXgZp ({21,
&y, P35, P4a, Pgs}) with the property that MZ,w' | —p3.. However, the
frame F' based on M7 is a frame that satisfies ®3,, and hence we also have
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MZ,w' E ¢34, a contradiction. "

Note that the the proof of Corollary 4.29 indicates that the undefinability
of @3, and P4, is in some necessary to let our construction from My to (M£)3
be successful: we have ¢ %can @z & @ ~eom Pz = @ Feor Bx(x € {3a,4a}).

5 Conclusion

The canonical model for a complete epistemic logic for m agents appeared to
lack two desirable properties. We combined several validity-preserving tech-
niques to transfer the satisfiability of a multi-modal formula between classes of
models, thus eventually proving completeness for the logic under consideration.
Although the full procedure to achieve this seems, we admit, quite formidable,
we essentially applied three existing techniques: firstly, we used a filtration
technique of Goldblatt ([4]) to obtain a finite model from the canonical one.
That filtration gained one of the essential properties that was needed for the
completeness proof. Secondly, we unravelled the filtrated model, following ideas
that were, we think, introduced by Sahlqvist ([12]). Finally, we used our rewrite
technique ([17]) to identify worlds in this unravelled model to obtain a model
in the class of models we were aiming for.

Let us spend some words on the order in which we applied the respective
techniques. For instance, it looks tempting to do the filtration as a last step: it
would solve the question we raised in Remark 4.28, for instance. However, we
feel that doing filtration as a last step would not work out properly. To see this,
let us reconsider the KZp g ({®1, 2, ®35, Paa, ®4,}) model of Proposition 3.13,
in the first item of the proof. Here, we had a situation in which the world z; had
an Rj-successor y; and an Ry-successor y, that satisfied the same theory. This
implies that, no matter the granularity of the filtration (one may even consider
to filtrate through the whole language L), one obtains [y1] = [y2]. Since R{ and
RS in the filtration have to satisfy Min/, we must have R![z1][w], for i = 1,2.
But then the filtration cannot satisfy ®3,, since, if Dp is a sub-formula of the
filtration formula, we must prevent RJ, to satisfy R£ [z1]}[y1], since Dp was true
in zy, but not at y;.

Although some of these techniques or related ones have been applied before
in sub-logics of L—[6] builds finite models for the logic $5,(CE) in a way that is
related to our filtration method and the same holds for [10]; furthermore, [2] and
[17] give completeness proofs for $5,,(D), both yielding infinite models— we
do not know of any attempt that solves the problem for our full system. Doing
so, we did, on the one hand, employ the modular approach of [17], enabling
us to take care of various properties of the relations in the underlying Kripke
model, but, on the other hand, we had to make some ad hoc decisions as well.
Finally, there is a lesson to be learnt from the complexity of the proof of the
completeness of $5,,(CDE) and how it is related to the completeness proofs of
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S5m(CE) and S5,,(CE), respectively: in general, it seems hard to predict if,
and if so, how, the methods of proving the sublogics complete can be used or
combined to prove completeness of the whole system.
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