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Abstract

Most facility location problems are computationally hard to solve. The standard technique
for solving these problems is branch-and-bound. To keep the size of the branch-and-bound tree
as small as possible it is important to obtain a good lower bound on the optimal solution by
deriving strong linear relaxations. One way of strengthening the linear relaxation is by adding
inequalities that de�ne facets of the convex hull of feasible solutions. Here we describe some
simple, but computationally very useful classes of inequalities that were originally developed
for relaxations of the facility location problems. Algorithms for generating violated inequalities
belonging to the described classes have been implemented as system features in various branch-
and-bound software packages, so as long as the software can recognize the relaxations for
which the inequalities are developed, the inequalities will be generated \automatically". Here
we explicitly add the variables and constraints that are necessary to describe the relaxations
which means that we actually add information that is redundant both with respect to to the
integer formulation and the linear relaxation. We present computational results indicating
that the reformulations are useful as the generated inequalities close a substantial part of the
duality gap. Due to the smaller branch-and-bound tree, the time needed by the branch-and-
bound algorithm to solve the problem to optimality is reduced by up to ninety percent.
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1 Introduction.

Facility location problems are central in combinatorial optimization since they can be associated
with a large variety of applications, and since they form relaxations of many involved distribution
type problems. Most facility location problems are NP-hard, and therefore have to be solved by
enumerative methods. In order to keep the enumeration tree as small as possible it is crucial to
�nd good lower bounds on the optimal solution. Here we will discuss simple ways of reformulating
capacitated facility location problems such that the linear relaxations associated with the various
models yield good lower bounds on the optimal value. Structural properties of the location prob-
lems treated here have been studied by e.g. Leung and Magnanti (1989), Cornu�ejols, Sridharan
and Thizy (1991), Aardal (1992), and Aardal, Pochet and Wolsey (1995).

It is well-known that adding inequalities that de�ne high-dimensional faces of the convex hull
of feasible solutions to the initial formulation strengthens the lower bound obtained from the linear
relaxation. This so-called cutting plane technique has made it possible to solve large-scale instances
of several hard combinatorial optimization problems, see Aardal and Van Hoesel (1995,1996).

When developing valid inequalities for a certain problem type one typically starts by investigat-
ing the facial structure of various relaxations of the problem. The advantage is that the inequalities
that are valid for a relaxation RP of a polyhedron P is also valid for P , and in several cases we
have that inequalities that de�ne high-dimensional faces of the convex hull of RP (conv(RP )) also
de�ne high-dimensional faces of conv(P ). Moreover, it may be possible to adapt the inequalities
developed for RP to better re
ect the structure of P . An example in this spirit is the family of
two-matching inequalities, see Edmonds (1965), that were developed for the two-matching poly-
tope. The constraints de�ning the two-matching polytope form a subset of the constraints de�ning
the traveling salesman polytope, so the two-matching constraints are also valid for the traveling
salesman polytope. The two-matching constraints were generalized by Chv�atal (1975) to the class
of comb inequalities that is valid for the traveling salesman polytope.

Here we shall discuss various classes of inequalities that have proved computationally e�cient
for capacitated facility location problems. These inequalities de�ne facets of relaxations of the
location problems, precisely as in the case of the two-matching inequalities with respect to the
two-matching polytope, but here the relaxations are slightly less obvious, as they are not formed by
simply taking a subset of the location constraints. An aspect that make these classes particularly
useful is that their associated separation problem, i.e., the problems of identifying violated inequal-
ities belonging to the classes, can be solved approximately by e�cient heuristics. Moreover, these
separation algorithms have been implemented in standard software packages such as MPSARX
(Van Roy and Wolsey (1987)), and MINTO (Savelsbergh et al. (1994)). To make it possible for
such software to \recognize" the relaxations in order to generate the inequalities, we have to state
the relaxations explicitly, which in our case means that we have to add redundant information
to the models. As we shall demonstrate, the increase in the size of the problem is fairly limited,
whereas the improvement of the lower bound is quite large. Some of the inequalities treated here
have also served as a starting point for developing new classes of inequalities designed to re
ect
the structure of the location problems more closely. These more specialized classes of inequalities
are not treated here, but can be found in the articles of Leung and Magnanti, and of Aardal,
Pochet and Wolsey. The computational usefulness of the inequalities developed for the relaxations
discussed here supports the study of the facial structure of polytopes that occur as relaxations of
several more involved polytopes.

We will consider two di�erent capacitated facility location problems; the single-level capaci-
tated facility location problem, and the two-level capacitated facility location problem. For both
problems we will derive simple relaxations, and give examples of strong valid inequalities that are
valid for the relaxations, and therefore also for the location problems. We �nish by presenting
our computational experience. The results demonstrate that the inequalities are very useful in
reducing the duality gap and the size of the branch-and-bound tree.

1



2 The single-level capacitated facility location problem.

The problem is de�ned as follows. We are given a set N = f1; : : : ; ng of clients. Client k 2 N has
demand dk of a certain type of goods. The goods are delivered from facilities, and we are given a
set M = f1; : : : ;mg of possible sites where facilities can be located. A facility located at site j has
capacity mj . The �xed cost of setting up a facility at site j is fj > 0, and the cost of transporting
one unit from facility j to client k is cjk � 0.

To model the problem we use variables yj , which take value one if a facility is opened at site
j and value zero otherwise, and variables vjk that denote the 
ow from facility j to client k. The
mathematical programming formulation is as follows.

minf
X

j2M

X

k2N

cjkvjk +
X

j2M

fjyj : (v; y) 2 Xcflg

where

Xcfl = f(v; y) 2 IRm�n+ � ZZm+ :
X

j2M

vjk = dk; k 2 N; (1)

X

k2N

vjk � mjyj ; j 2M; (2)

0 � vjk � dkyj ; j 2M; k 2 N; (3)

yj � 1; j 2Mg: (4)

Throughout this section we will assume that
P

j2M mj � mr �
P

k2N dk, for all r 2 M , which

ensures that Xcfl is full-dimensional.
The location problem can be illustrated by a bipartite graph G = ((U; V ); A), where the vertices

in Uand V represent the facility sites and clients respectively. An arc (j; k) is introduced between
the vertices j 2 U and k 2 V if cjk <1, see Figure 1.

m1 m2 m3 mm

d1 d2 d3 dn

Figure 1: Representing the facility location problem by a bipartite graph.

Now, assume that we aggregate the clients to one \super client", which implies that we also
aggregate all 
ow from a certain facility. Let

vj �
X

k2N

vjk = 0; (5)

and let d(S) =
P

k2S dk. By using the aggregate 
ow vj in the capacity constraint (2) we obtain

vj � mjyj ; (6)

and by adding all demand constraints together we obtain
X

j2M

vj = d(N ): (7)
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Using (6) in (7) gives X

j2M

mjyj � d(N ): (8)

We de�ne the surrogate knapsack polytope Xk as:

Xk = fy 2 ZZm+ :
X

j2M

mjyj � d(N ); yj � 1; j 2Mg:

Proposition 1 (Aardal, Pochet, Wolsey (1995).) The polytope Xk is a relaxation of Xcfl, i.e.,
Xk � Xcfl.

Consider a subset J � M such that
P

j2J mj >
P

j2M mj � d(N ). We call such a set J a cover
with respect to M and N , and if

P
j2S mj �

P
j2M mj�d(N ) for all S � J , then we say that J is

a minimal cover. Since the capacity of the set M n J is too small to satisfy d(N ) we can conclude
that the cover inequality X

j2J

yj � 1 (9)

is valid for Xk, and since Xk is a relaxation of Xcfl we also know that (9) is valid for Xcfl.
Wolsey (1975) gave su�cient conditions for the cover inequalities to be facet de�ning for conv(Xk).
For the facility location polytope the following holds:

Theorem 2 (Aardal, Pochet, Wolsey (1995).) Let mmin = minj2J mj . If J � M is a minimal
cover with respect to M and N , and if

P
j2MnJ mj +mmin > d(N ), then the cover inequality (9)

de�nes a facet of conv(Xcfl) \ fy 2 f0; 1gm : yj = 1 for j 2M n Jg.

The most general form of a cover inequality is obtained by choosing a subset M 0 � M and by
initially setting yj = 0 for all j 2M nM 0. We can now obtain a facet as in Theorem 2 for a minimal
cover J 0 �M 0 with respect to M 0 and N . By applying lifting to the variables yj ; j 2M nM 0 that
are currently set to zero, and yj; j 2M 0 nJ 0 that are currently set to one, we obtain an inequality
of the following form:

X

j2MnM 0

�jyj +
X

j2M 0nJ 0

�jyj +
X

j2J 0

yj � 1 +
X

j2M 0nJ 0

�j : (10)

The coe�cients �j; j 2 M nM 0 and �j ; j 2M 0 n J 0 are nonnegative and have to be chosen such
that the inequality (10) remains valid, see e.g. Nemhauser and Wolsey (1988).

Crowder, Johnson and Padberg (1983) developed an algorithm for �nding violated lifted cover
inequalities (10), and such an algorithm has been implemented in for instance the software package
MINTO. As long as MINTO \recognizes" the surrogate knapsack structure it will automatically
generate violated cover inequalities (10). This suggests us to modify the formulation of the facility
location problem by adding the constraints de�ning the aggregate 
ow (5), and the aggregate
demand constraint (7), and replacing the capacity constraints (2) by the aggregate capacity con-
straints (6). It total we introduce m new variables and m + 1 new constraints.

Our next relaxation takes the 
ow into consideration as well, but again uses aggregate infor-
mation only. Consider the following single-node 
ow polytope, Xsnf.

Xsnf = f(v; y) 2 IRm
+ � ZZm+ :

X

j2M

vj = d(N ); vj � mjyj ; yj � 1; j 2Mg:

The single-node 
ow model is illustrated in Figure 2.

Proposition 3 (Aardal, Pochet, Wolsey (1995).) Xsnf � Xcfl.

De�nition 1 A subset J � M is called a 
ow cover with respect to N if
P

j2J mj = d(N ) + �,
where � > 0.
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d(N )

0 � vj � mjyj

m1 m2 mm

Figure 2: The single-node 
ow relaxation of the location problem.

If we open all arcs j 2 J , then the maximum
ow along these arcs is equal to d(N ), since the set J
has excess capacity � > 0. If we close arc k 2 J and leave all arcs in Jnfkg open, then the maximum

ow along the open arcs is equal to minfd(N );

P
j2J mj �mkg = minfd(N ); d(N )� (mk � �)g =

d(N ) � (mk � �)+. This is the intuition behind the 
ow cover inequalities (11) that have been
developed for Xsnf , see Padberg, Van Roy and Wolsey (1985).

X

j2J

vj � d(N )�
X

j2J

(mj � �)+(1� yj) (11)

As long as there exists at least one j 2 J such that mj > �, the 
ow cover inequalities (11)
de�ne facets of conv(Xsnf). For conv(Xcfl) we obtain a similar result.

Theorem 4 (Aardal, Pochet, Wolsey (1995).) Let J � M be a 
ow cover with respect to N . If
maxj2J mj > �, then the 
ow cover inequality (11) de�nes a facet for conv(Xcfl).

An algorithm for solving the separation problem based on the 
ow cover inequalities approxi-
mately, was presented by Van Roy and Wolsey (1987). Again, since such an algorithm belongs to
the systems features of MINTO, 
ow cover inequalities will be generated automatically given the
formulation (1), (3){(7). It is worth noting that we can generate the cover inequalities (10), and
the 
ow cover inequalities (11) for any subset K � N .

Aardal, Pochet, and Wolsey (1995) have studied the e�ective capacity inequalities and the
submodular inequalities for Xcfl, which can both be viewed as generalizations of the 
ow cover
inequalities.

We conclude this section by giving an example of a knapsack cover inequality and a 
ow cover
inequality.

Example 1 Consider the following instance of the capacitated facility location problem, see Fig-
ure 3. First, we consider a knapsack cover inequality. Let M 0 = f2; 3; 4; 5;6g. The set J 0 = f2; 4g
de�nes a cover with respect to M 0 and N . The inequality

y2 + y4 � 1

de�nes a facet of conv(Xcfl) \ fy 2 f0; 1g6 : y3 = y5 = y6 = 1; y1 = 0g: If we lift variable y3 we
need to �nd a value of the lifting coe�cient � � 0 such that the inequality �y3 + y2 + y4 � 1 + �
is valid. By choosing the maximum value of � we increase the dimension of the face induced by
the lifted inequality by one. The maximum value of � is found by solving the following problem:

� = min[y2 + y4 : f(y2 + y4) 2 f0; 1g
2 : 25y2 + 20y4 � 55� 15y5 � 10y6; y5 = y6 = 1g]� 1 = 1;

which yields the inequality
y2 + y3 + y4 � 2:
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1 2 3 4 5 6

d(N ) = 55

mj 35 25 15 20 15 10

v1 v2 v3 v4 v5 v6

Figure 3: Aggregated facility location instance.

The lifting coe�cient of variables y5; y6 are both equal to zero. Next, we lift the variable y1 that
is currently set equal to zero. Here we want to �nd the minimum value of � � 0 such that the
inequality �y1 + y2 + y3 + y4 � 2 is valid, wich is done by solving the problem

� = 2�min[y2+y3+y4 : f(y2+y3+y4 2 f0; 1g
3 : 25y2+15y3+20y4+15y5+10y6 � 55�35g] = 2:

We have now obtained the inequality

2y1 + y2 + y3 + y4 � 2;

which de�nes a facet of conv(Xcfl).
Next, we will give an example of a 
ow cover inequality. The set J = f2; 4; 5; 6g de�nes a 
ow

cover with respect to N . The excess capacity � = 70� 55 = 15, which gives rise to the 
ow cover
inequality v2 + v4 + v5 + v6 � 55� 10(1� y1)� 5(1� y2): If we express this inequality in the 
ow
variables vjk we obtain:

X

k2N

v2k +
X

k2N

v4k +
X

k2N

v5k +
X

k2N

v6k � 55� 10(1� y1)� 5(1� y2):

The above inequality de�nes a facet of conv(Xcfl).

3 The two-level capacitated facility location problem.

A typical application of the two-level capacitated facility location problem is as follows. We are
given a set of clients, as in the single level case, and two sets of di�erent facilities. The \higher-
level", or major, facilities could for instance be regional distribution centers, and the \lower-level",
or minor, facilities could be local distribution centers. The goods are transported form the regional
distribution centers by large trucks to the local ones, and from there the goods are distributed
further to the clients.

Modeling the two-level problem is slightly less straightforward than the one-level problem.
Two obvious ways of formulating the problem is the \multicommodity formulation" and the \
ow
formulation". In the multicommodity formulation we consider the 
ow on the path (i; j; k), where
i is a major facility, j is a minor facility, and k is a client. In the 
ow formulation we consider the

ow at each level, and require conservation of 
ow at the minor depot level. We can prove, see
Aardal (1992), that the linear relaxation of the multicommodity formulation is at least as strong
as the linear relaxation of the 
ow formulation, and for many instances the di�erence can be quite
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large. A drawback with the multicommodity formulation is, however, that it grows rapidly as the
size of the problem instance grows. For realistic problem sizes this means that it is impossible to
keep all variables in the formulation. An alternative would then be to consider column generation
rather than constraint generation. We however wanted to investigate whether it was possible to
strengthen the 
ow formulation in an e�cient way to obtain a lower bound of the same quality
as the lower bound produced by the multicommodity formulation. For a set of relatively small
instances we could conclude that the time needed to improve the linear relaxation of the 
ow
formulation to the level produced by the linear relaxation of the multicommodity formulation by
letting MPSARX generate various types of valid inequalities, was shorter than the time it took to
solve the linear relaxation of the multicommodity formulation, see further Section 4.

Let vjk and yj be as in the formulation of the single-level problem, and let L = f1; : : : ; lg be the
set of major facilities. Let xi be one if a major facility is opened at site i 2 L, and zero otherwise,
and let wij denote the 
ow between major facility i and minor facility j. The 
ow formulation of
the two-level problem is given below.

minf
X

i2L

X

j2M

dijwij +
X

j2M

X

k2N

cjkvjk +
X

i2L

gixi +
X

j2M

fjyj : (v; y) 2 Xtcflg

where

Xcfl = f(w; v; x; y) 2 IRl�m
+ � IRm�n

+ � ZZl+ � ZZm+ :
X

j2M

wij � uixi; i 2 L; (12)

X

i2L

wij � mjyj ; j 2M; (13)

X

i2L

wij �
X

k2N

vjk = 0; j 2M; (14)

X

j2M

vjk = dk; k 2 N; (15)

X

k2N

vjk � mjyj ; j 2M; (16)

vjk � dkyj ; j 2M; k 2 N; (17)

xi � 1 i 2 L; (18)

yj � 1; j 2Mg: (19)

Again we will assume that Xtcfl is full-dimensional, which is the case if
P

j2M mj �mr �
d(N ), for all r 2 M , and if

P
i2L ui � us � d(N ), for all s 2 L. The two-level problem can be

illustrated by the network shown in Figure 4.
Since the one-level problem is a relaxation of the two-level problem, we can use the inequalities

mentioned in Section 2 for the two-level problem as well.

Theorem 5 Let umin = mini2I ui. If I � L is a minimal cover with respect to L and N , and ifP
i2LnI ui + umin > d(N ), then the cover inequality

X

i2I

xi � 1 (20)

de�nes a facet of conv(Xtcfl) \ fx 2 f0; 1gl : xi = 1; l 2 L n Ig.

The cover inequality
P

j2J yj � 1, (9), de�nes a facet of conv(Xtcfl)\fy 2 f0; 1gm : yj = 1; j 2
M nJg under the same condition as given in Theorem 2, and by applying lifting to inequalities (9)
and (20), as described in Section 2, we can obtain cover inequalities containing variables whose
indices do not belong to the cover, c.f. inequality (10).

6



u1 u2 ul

m1 m2 mm

d1 d2 dn

Figure 4: Network representation of the two-level problem.

Similarly, we can generate 
ow cover inequalities for both levels. The 
ow cover inequalities
(11) de�ne facets of conv(Xtcfl) usder the same condition as given in Theorem 4, and for the
major level we obtain a similar result. Let

wi �
X

j2M

wij = 0: (21)

Theorem 6 Let I � L be a 
ow cover with respect to N , and let
P

i2I ui = d(N ) + � where
� > 0. If maxi2I ui > �, then the 
ow cover inequality

X

i2I

wi � d(N )�
X

i2I

(ui � �)+(1� xi) (22)

de�nes a facet of conv(Xtcfl).

In order for MPSARX or MINTO to generate the knapsack and 
ow cover inequalities au-
tomatically we need to reformulate the two-level location problem as follows. Add the de�ning
constraints (5) and (21), and the aggregate demand constraints (7) and

X

i2L

wi = d(N ): (23)

Moreover, substitute the current capacity constraints (12), and (16) by the aggregate capacity
constraints (6) and

wi � uixi: (24)

In total we have added l +m variables and l +m + 2 constraints.
Next, we will consider a relaxation of the two-level problem that involves both facility levels.

Consider the path (i; j; k) given in Figure 5. Let �mij = minfui;mjg for i 2 L; j 2 M , and let
�djk = minfmj ; dkg for j 2 M; k 2 N . The structure illustrated in Figure 5 can be described by
the following constraints.

wi �
X

p2Mnfjg

wip �wij = 0; (25)

wij +
X

l2I�Lnfig

wlj �
X

q2Nnfkg

vjq � vjk = 0; (26)
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i

j

k

dk

M n fjg

N n fkg

M n fjg

L n fig

wi

wij

vjk

Figure 5: The path relaxation of the two-level problem.

vjk +
X

p2Mnfjg

vpk = dk; (27)

wi � uixi; i 2 L; (28)

wij � �mijxi; i 2 L; j 2M; (29)

vjk � �djkyj ; j 2M; k 2 N: (30)

Proposition 7 The polytope Xp, de�ned as all vectors satisfying constraints (25){(30), forms a
relaxation of Xtcfl.

In the �xed charge path inequalities (Van Roy and Wolsey (1987)) we want to express an upper
bound on the 
ow on a subset of the in
ow arcs in terms of possible out
ow. If we for instance
consider the in
ow to node i, we note that the 
ow can either continue along the path (i; j; k),
or it can exit along a subset of out
ow arcs (M n fjg) [ (N n fkg). For a path of length three we
obtain the following family of inequalities.

Proposition 8 Let J+ �M n fjg be a subset of the in
ow arcs to node k, and let J� �M n fjg
be a subset of the out
ow arcs from node i. Moreover, let I � L n fig, and K � N n fkg. The
following family of �xed-charge path inequalities is valid for Xtcfl:

wi +
P

l2I wlj +
P

p2J+ vpk � (
P

p2J� �mip +
P

q2K
�djq + dk)xi+

X

l2I

(
X

q2K

�djq + dk)xl +
X

p2J+

dkyp +
X

p2(Mnfjg)nJ�

wip +
X

q2(Nnfkg)nK

vjq: (31)

An example of a path inequality is given below.

Example 2 Consider the instance of the two-level capacitated facility location problem illustrated
in Figure 6 (a). Next, consider the path (i; j; k) = (3; 5; 6) and the subsets of in- and out
ow arcs
as shown in Figure 6 (b). In this example we have I = ;; J+ = f3; 4g; J� = ;; and K = f4g.
The inequality

w3 + v36 + v46 � (30 + 10)x3 + 30y3 + 30y4 + w31 + w32 + w33 + w34 + v51 + v52 + v53 + v55

is valid for this particular instance.
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(a) The structure of a fractional solution. (b) The path (3; 5; 6).

w3

w35

v56

v54

v36

v46

30

3

5

6

Figure 6:

For the software to recognize the path structure it is not necessary to add more redundant
information to the model than we already have, but it is important to present the constraints in
the right form, as the sign of a variable indicates whether or not it represents in
ow or out
ow.
Therefore it is important for instance to write constraints (21) as wi �

P
j2M wij = 0, and notP

j2M wij �wi = 0, (c.f. the node balance constraints (14)).

4 Computational Experience

Here we consider the computational e�ect of adding knapsack cover inequalities to the linear
relaxation of the single-level formulation, and knapsack cover, 
ow cover and �xed charge path
inequalities to the two-level formulation. The interested reader is referred to Aardal (1995) for
more computational results regarding the single-level problem, and to Aardal (1992) for results
regarding the two-level problem.

We have considered single-level instances of 5 di�erent sizes a� b, where a denotes the number
of clients and b the number of facilities. The problem characteristics of the instances are given
in Table 1. For each size we have 5 instances. All instances except the ones of size 100 � 75
were provided by J.-M. Thizy, and were also generated, and used as test instances by Cornu�ejols,
Sridharan and Thizy (1991). The 100 � 75-instances were generated by the author according to
same principles as the smaller ones. For more details about the instances we refer to Cornu�ejols
et al.

In Table 2 we use the following notation. Each instance is labeled aaabbc, where aaa is the
number of clients, bb the number of facilities, and c the number of the instance in the group
of instances having the same size. The duality gap is de�ned as the relative di�erence between
optimum value, z� and the value of the linear relaxation, zlp, i.e., (z� � zlp)=z�. The computing
time is given in seconds. The percentage duality gap closed is calculated as (zcut� zlp)=(z�� zlp),
where zcut denotes the value of the linear relaxation after all the violated inequalities that have
been identi�ed in the root node has been added. We do add violated cover inequalities in all nodes
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of the branch-and-bound tree.

problem
type # variables # constraints # nonzeros
25 � 8 216 242 832
50 � 16 832 883 3,264
50 � 33 1,716 1,767 6,732
50 � 50 2,600 2,651 10,200
100� 75 7,650 7,751 30,300

Table 1: Problem characteristics for the single-level instances.

In the �rst part of Table 2 we show the duality gap of the instances, the number of branch-and-
bound nodes, and the computing time needed to solve the instances to optimality using branch-
and-bound only. In the second part of the table we show the e�ect of letting MINTO automatically
add violated knapsack cover inequalities (10). In the last column of Table 2 we present the average
decrease in the computing time over the instances having the same size. We use MINTO Version
1.6a, in combination with CPLEX 2.1 Callable Library (CPLEX Optimization, Inc. (1989)), on a
SUN Sparc ELC computer.

duality # B&B # cover % gap # B&B % time ave. % time
problem gap (%) nodes time inequalities closed nodes time reduction reduction

025081 5.7 31 5 5 94.0 3 4 20.0
025082 6.4 70 17 10 78.1 9 5 70.6
025083 5.9 21 6 5 69.0 5 6 0.0 28.9
025084 1.3 9 4 3 100.0 1 4 0.0
025085 5.5 71 13 4 82.8 7 6 53.8
050161 2.2 61 59 31 68.1 17 51 13.6
050162 0.4 19 17 2 48.0 13 20 �17.6
050163 2.3 143 129 16 82.0 13 48 62.8 22.9
050164 2.1 141 173 33 33.7 35 109 37.0
050165 0.9 43 43 24 52.3 15 35 18.6
050331 1.5 1,361 1,813 34 81.8 41 173 90.5
050332 1.2 797 860 118 65.7 129 476 44.7
050333 0.2 31 66 0 0.0 31 66 0.0 57.1
050334 1.0 1,349 2,606 130 10.8 175 975 62.6
050335 1.6 1,617 2,050 46 78.4 49 255 87.6
050501 0.3 143 278 3 100.0 1 54 80.6
050502 0.1 67 116 9 37.2 7 93 19.8
050503 0.4 361 681 10 32.4 7 107 84.3 39.7
050504 0.2 123 283 43 38.9 47 356 �25.8
050505 0.0 1 75 LP optimal { { { {
100751 0.7 4,077 22,977 295 40.9 611 10,560 54.0
100752 0.6 15,419 74,351 648 55.4 1,423 20,055 73.0
100753 0.1 183 761 48 12.5 59 844 �10.9 44.7
100754 0.3 6,687 40,604 228 9.1 537 11,076 72.7
100755 0.1 117 621 9 34.6 23 406 34.6

Table 2: Results from adding knapsack cover inequalities using MINTO.

The number of branch-and-bound nodes needed to solve the instances to optimality decreased,
after adding cover inequalities, for all instances except one (050333), where it remained the same.
The computing time also decreased for all instances except 6; for three of these instances the
computing time remained the same. For eleven of the twenty-�ve instances the relative reduction
in computing time is larger than 50 %.

Aardal (1995) present computational results from adding 
ow cover inequalities and generaliza-
tions of the 
ow cover inequalities to the linear relaxation. The average percentage time reduction
after adding all these inequalities, including the knapsack inequalities was 30.3 %, 47.7 %, 81.9 %,
72.4 %, and 52.7 % for the di�erent problem sizes.
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Next we will present our computational experience with adding knapsack cover, 
ow cover,
and �xed-charge path inequalities to the linear relaxation of the two-level problem. Here we use
formulation (13)-(15), (17)-(19), (5)-(7), (21), (23), (24). For convenience of comparison, we give
the formulation below.

X

i2L

wij � mjyj ; j 2M; (13)

X

i2L

wij �
X

k2N

vjk = 0; j 2M; (14)

P
j2M vjk = dk; k 2 N; (15)

vjk � dkyj; j 2M; k 2 N; (17)

xi � 1; i 2 L; (18)

yj � 1; j 2M; (19)

vj �
X

k2N

vjk = 0; j 2M; (5)

vj � mjyj ; j 2M; (6)
X

j2M

vj = d(N ); (7)

wi �
X

j2M

wij = 0; i 2 L; (21)

wi � uixi; i 2 L; (24)
X

i2L

wi = d(N ): (23)

The instances are generated according to the same principles as the single-level instances. In
Table 3 we present the problem characteristics for the two-level instances. We considered small
and medium size problems a� b� c where a denotes the number of clients, b the number of minor
facilities, and c the number of major facilities.

problem
type # variables # constraints # nonzeros
25 � 8� 4 256 280 1,194
25 � 16� 6 540 526 2,430
50 � 16 � 6 940 951 4,480

Table 3: Problem characteristics for the two-level instances.

In Table 4 we show the results from solving the two-level instances by pure branch-and-bound.
In the branch-and-bound phase we give the xi-variables higher priority than the yj-variables, i.e.,
as long as there are fractional xi-variables we branch on such a variable before selecting a yj-
variable. We use the notation aabbcd for the instances, where aa denotes the number of clients, bb
the number of minor facilities, c the number of major facilities, and d the number of the instance
in the set having the same size. For the computation we use MPSARX (Van Roy and Wolsey
(1987)) implemented on a Data General MV 15000 computer. This computer is slow compared to
the SUN Sparc ELC, but what we want to demonstrate is the decrease in computing time if we
add inequalities, and not the absolute time needed to solve the instances.
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duality # B&B
problem gap (%) nodes time

250841 7.4 87 122.9
250842 8.1 85 93.4
250843 10.8 63 156.7
251661 6.3 353 459.7
251662 6.4 549 883.3
251663 17.2 203 916.5
501661 3.5 301 1,088.8
501662 7.1 75 1,295.6
501663 11.0 27 712.2

Table 4: Results from solving two-level instances by branch-and-bound only.

In Table 5 we present the results after letting MPSARX generate cover, 
ow cover and �xed-
charge path inequalities in the root node of the branch-and-bound tree. These inequalities closed
a large part of the duality gap, 70.0{99.3 %. The number of branch-and-bound nodes, and the
computing time thereby decreased signi�cantly.

# cover # 
ow cover # path % gap # B& B % time ave. % time
problem ineq. ineq. ineq. closed nodes time reduction reduction

250841 6 17 0 93.1 11 60.0 51.2
250842 6 21 1 87.5 5 59.5 36.3 42.0
250843 4 12 1 99.3 7 96.2 38.6
251661 5 14 1 96.6 35 118.9 74.1
251662 4 14 2 92.6 35 242.1 72.6 53.3
251663 3 15 27 83.9 143 796.8 13.1
501661 4 11 0 70.0 207 867.1 20.4
501662 3 17 18 94.7 11 516.2 60.2 35.5
501663 2 16 5 80.2 13 528.5 25.8

Table 5: Results after adding cover, 
ow cover and �xed-charge path inequalities.

We also compared the multicommodity and 
ow formulations in terms of quality of the linear
relaxations and computing times. Here we used instances having 20 clients, 10 minor facilities, and
5 major facilities. We again used MPSARX implemented on a Data General MV 15000 machine.
In Table 6, the �rst four instances, F-1{F-4, are formulated according to the 
ow formulation,
i.e., formulation (13)-(15), (17)-(19), (5)-(7), (21), (23), (24). The second group of instances, MC-
1{MC-4, have been formulated using variables vijk denoting the 
ow on the path (i; j; k), and
variables xi; yj ; wi; vj as in the 
ow formulation. \LP-time" gives the time in seconds of solving
the initial linear programming relaxation. The MPSARX cuts that have been generated are the
same as in Table 5, i.e., cover, 
ow cover, and �xed-charge path inequalities. The cuts are generated
in the root node only, and \time cuts" gives the time in seconds spent on constraint generation.
The results indicate that the initial linear relaxation of the 
ow formulation is weaker than the
multicommodity relaxation, which indeed can be mathematically proved, whereas the quality of
the lower bound after adding the cuts to the 
ow formulation is of the same quality as the bound
obtained from the multicommodity formulation after adding cuts. The 
ow formulation bound
zcut is also obtained in shorter time. It is clear that if one would like to use the multicommodity
formulation, then one should avoid to work with all variables present in the formulation. A column
generation approach, possibly in combination with row generation, could then be an interesting
alternative.
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The computational study indicates that the inequalities that have been developed for the
rather drastic knapsack, single-node 
ow, and path relaxations of the facility location problems are
surprisingly e�ective, and can be generated fast. These inequalities are therefore computationally
useful when solving the location problems. When solving large-scale instances we need to close
the duality gap even more to limit the size of the branch-and-bound tree, and for this purpose
we need inequalities that are designed speci�cally for these problems. Such inequalities have been
developed by e.g. Aardal, Pochet and Wolsey (1995) for the single-level problem, and to some
extent by Aardal (1992) for the two-level problem.
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