
The complexity of scheduling graphs of bounded width

subject to non-zero communication delays�

Jacques Verriet

Department of Computer Science, Utrecht University,

P.O. Box 80.089, 3508 TB Utrecht, The Netherlands.

E-mail: jacques@cs.ruu.nl

Abstract

In this report, we study the complexity of scheduling problems for precedence graphs of

bounded width. For such graphs, the size of a maximum anti-chain is bounded by a constant.

It is shown that for graphs of bounded width with unit-length tasks and unit communication

delays, a minimum-length schedule on m processors can be constructed in polynomial time

using a dynamic-programming algorithm. This approach can be generalised to minimise

di�erent objective functions.

For graphs of width two with arbitrary task lengths, a polynomial-time algorithm is pre-

sented that constructs minimum-length and minimum-tardiness schedules on two processors.

If its width is at least three, then constructing a minimum-length schedule for a graph with

arbitrary task lengths on two processors is shown to be NP-hard. For the case that the width

of the graph equals the number of processors, a dynamic-programming algorithm is presented

that constructs minimum-length schedules in polynomial time.

1 Introduction

An important part of the complexity of parallel computing is due to communication. During the
execution of a parallel program on a distributed memory computer architecture, there are delays
between the execution of dependent tasks on di�erent processors. These delays are needed to
send the result of the computation of a task from one processor to the other. Classical scheduling
problems do not take these communication delays into account and hence do not capture the
complexity of parallel programming.

In this report, we consider the problem of scheduling with unit-length interprocessor com-
munication delays on a �nite set of identical processors. Most scheduling problems with unit
communication delays are NP-hard, even if all tasks have unit length: Rayward-Smith [16] proved
that constructing minimum-length schedules for arbitrary precedence graphs on m processors is
NP-hard. Lenstra, et al. [14] showed the same for the case that the precedence constraints form a
tree.

The only scheduling problems that do not neglect communication delays and are solvable in
polynomial time consider unit-length tasks and a special kind of precedence constraints: Var-
varigou, et al [18] presented an algorithm that constructs a minimum-length schedule on m pro-
cessors for an outforest in O(n2m�2) time. Finta, et al. [9] showed that for series-parallel graphs,
a minimum-length schedule on two processors can be constructed in polynomial time. Ali and
El-Rewini [1] presented a polynomial-time algorithm that constructs minimum-length schedules
for sets of interval-ordered tasks.

�This research was partially supported by ESPRIT Long Term Research Project 20244 (project ALCOM IT:
Algorithms and Complexity in Information Technology).

1

For these special classes of precedence graphs, we cannot expect to �nd polynomial-time algo-
rithms, if the task lengths are not restricted: the well-known NP-hard problem Partition [11]
can be formulated as the problem of checking the existence of a schedule on two processors of
length at most D for trees, series-parallel graphs and interval orders with arbitrary task lengths.

In this report, we will also consider special types of precedence constraints, but we will not
restrict ourselves to unit-length tasks. The precedence relations are given by a directed acyclic
graph of bounded width. In such graphs, the number of pairwise incomparable tasks (the size of
a maximum anti-chain) is bounded by a constant integer w. In Section 3, it will be shown that
graphs of width w can be considered as the disjoint union of w chains. These decompositions into
chains are used by the algorithms that will be presented in this report.

Three polynomial-time algorithms are presented that construct minimum-length schedules for
graphs of bounded width. The �rst considers unit-length tasks that have to be scheduled subject
to unit communication delays. It uses the property that at any time t at most 2w possible
combinations of tasks can be executed. The algorithm uses a dynamic-programming approach
similar to the ones presented by M�ohring [15] and Veltman [19]. Given the set of tasks executed
at or before time t, it considers all possible assignments of tasks to time t + 1 and determines a
set which yields a schedule whose length is minimum with respect to the tasks that have been
scheduled earlier.

The dynamic-programming algorithm uses O(nw) time to construct a minimum-length sched-
ule. It can be generalised to construct schedules that are optimal with respect to other objective
functions in O(nw+1) or O(nw+2) time, depending on the objective function. In addition, it can
be used to minimise the makespan for graphs in which the sum of the task lengths is bounded by
a polynomial in n and the communication delays are bounded by a constant.

Bodlaender and Fellows [3] showed that constructing a minimum-length schedule for an arbi-
trary graph on k processors without communication delays is a W [2]-hard problem (W [2] is the
second class of the W -hierarchy for parametrised problems, that was introduced by Downey and
Fellows [8]). Consequently, it is unlikely that an algorithm exists with an O(nc) running time that
constructs minimum-length schedules on k processors for some constant c independent of k. In
the W [2]-hardness proof, a graph of width k + 1 is constructed. Therefore the same proof shows
that minimising the maximum completion time for graphs of width k on m < k processors is
W [2]-hard. Using a simple reduction from this problem, one can easily prove that the same holds
for scheduling with non-zero communication delays. As a result, the existence of an algorithm
that constructs minimum-length schedules for graphs of width w in O(nc) time for all constant w
is unlikely.

The second algorithm is presented in Section 5. It considers graphs of width at most two with
arbitrary task lengths. It is a generalisation of an algorithm that constructs minimum-tardiness
schedules for interval-ordered tasks of unit length with non-uniform deadlines [20]. It will be
proved that the algorithm for interval orders also constructs minimum-tardiness schedules on two
processors for graphs of width two with unit-length tasks subject to unit communication delays.
Such a schedule is constructed in O(n2) time. The structure of the schedules for graphs with
tasks of length one constructed by this algorithm is used to present a generalisation for scheduling
graphs of width two with arbitrary task lengths. The generalised algorithm constructs minimum-
tardiness schedules in O(n3) time. If the deadlines are chosen equal for each task, it constructs
minimum-length schedules in O(n3) time for graphs with arbitrary task lengths and in O(n2) time
for graphs with unit-length tasks.

The last two sections of this report consider graphs of width w � 3 with arbitrary task lengths.
Using a polynomial reduction from Partition [11], we will prove that constructing a minimum-
length schedule for a graph consisting of three chains on two processors is an NP-hard problem.
This result implies that constructing schedules for graphs of width w on m processors with the
objective of minimising to makespan is NP-hard for all constants w and m, such that w � 3 and
m < w.

The third algorithm is presented in Section 7. It deals with the case that the number of

2

processors equals the width of the graph. It uses a dynamic-programming approach to construct
minimum-length schedules for graphs of bounded width w with arbitrary task lengths on w pro-
cessors in polynomial time. Like the dynamic-programming algorithm for graphs with unit-length
tasks, the algorithm can be generalised, such that it constructs schedules that are optimal with
respect to other objective functions.

2 Preliminary de�nitions

In this report, I will present several algorithms that construct schedules for parallel programs
represented by a directed acyclic graph onm identical processors. An instance of such a scheduling
problem is represented by a tuple (G;m; �), where G = (V;E) is a directed acyclic graph or
precedence graph, m is the number of processors and � : V ! ZZ

+ is a function assigning an
execution length to every node of G. A node of G corresponds to a task of the parallel program.
The execution of a task u on a processor takes �(u) time units.

The set of arcs E represents the data dependencies between the tasks of G: if there is an arc
from u1 to u2, then the result of the execution of u1 is needed to compute u2. If these tasks are
executed on di�erent processors, the result of the computation of u1 has to be sent to another
processor. This takes unit time. During this delay, both processors can execute another task. If
u1 and u2 are executed by the same processor, no communication delay is required.

Let G be a precedence graph. The set VG denotes the set of nodes of G and EG the set of arcs.
Throughout this report, we will assume VG contains n tasks and EG contains e arcs. Let u1; u2
be two tasks of G. u1 is a predecessor of u2, if there is a directed path in G from u1 to u2. In that
case, u2 is called a successor of u1, which is denoted by u1 � u2. Tasks without successors will be
called sinks, tasks without predecessors will be called sources. u2 is called a child of u1 if (u1; u2)
is an arc of G. If u2 is a child of u1, then u1 is called a parent of u2. The number of children of a
task u is the outdegree of u; its indegree is the number of parents of u.

Two tasks u1 and u2 of G are called incomparable if neither u1 � u2, nor u2 � u1. Otherwise,
they are called comparable. The width of G is the maximum number of pairwise incomparable
tasks of G. Consequently, if G is a graph of width w, then every subset of G with at least w + 1
elements contains at least two comparable tasks. A chain is a set of pairwise comparable tasks, a
set of pairwise incomparable tasks is called an anti-chain. Hence, the width of G equals the size
of a maximum-size anti-chain of G.

A graph of width w can be viewed as the disjoint union of w chains: such a graph consists
of w chains with precedence constraints between the tasks in the di�erent chains. In the next
section, an algorithm is presented that constructs a decomposition into w chains in polynomial
time. These decompositions are used by the dynamic-programming algorithms presented in this
report.

A schedule for an instance (G;m; �) is a pair of functions � : VG ! IN and � : VG ! f1; : : : ;mg.
�(u) denotes the starting time of u and �(u) the processor on which u is executed. An assignment
of starting times � is called feasible for (G;m; �) if, for all tasks u1 6= u2 of G and all t �
maxu (�(u) + �(u)),

1. jfu 2 G j �(u) � t < �(u) + �(u)gj � m;

2. if u1 � u2, then �(u1) + �(u1) � �(u2);

3. there is at most one predecessor v of u1 with �(v) + �(v) = �(u1); and

4. there is at most one successor v of u1 with �(v) = �(u1) + �(u1).

A schedule (�; �) for (G;m; �) is called a feasible schedule if � is a feasible assignment of starting
times for (G;m; �) and for all tasks u1 6= u2 of G, such that, for all times t, if �(u1) � t <
�(u1) + �(u1) and �(u2) � t < �(u2) + �(u2), then �(u1) 6= �(u2).

3

Consider a feasible schedule (�; �) for an instance (G;m; �). Let u be a task of G. If �(u) = t,
then u is scheduled at time t. In addition, u is said to be executed at times �(u); : : : ; �(u)+�(u)�1
on processor �(u). �(u) + �(u) is the completion time of u. The length of � (and (�; �)) is the
maximum completion time of a task of G.

For a feasible assignment of starting times � for (G;m; �), there is a processor assignment �,
such that (�; �) is a feasible schedule for (G;m; �). Such a processor assignment is constructed by
Algorithm Processor assignment computation shown in Figure 1 using a feasible assignment
of starting times �. The following notations are used. idle(j) denotes the minimum time t, such
that processor j is idle from time t onward. The algorithm repeatedly assigns a processor to all
tasks with the minimum starting time. i1 denotes the index of the �rst of these tasks, ui2 is the
�rst task with a larger starting time than ui1 . Assume un+1 is a dummy task with starting time
�(un+1) =1.

Algorithm Processor assignment computation

Input: A feasible assignment of starting times � for (G;m; �).
Output: An assignment of processors �, such that (�; �) is a feasible schedule for (G;m; �).
1. assume �(u1) � : : : � �(un) � �(un+1) =1
2. for j := 1 to m
3. do idle(j) := 0
4. i1 := 1
5. i2 := minfi > i1 j �(ui) > �(ui1)g
6. t := �(ui1)
7. while i1 � n
8. do U := ?
9. for i := i1 to i2 � 1
10. do if ui has a predecessor v with �(v) + �(v) = t
11. then �(ui) := �(v)
12. idle(�(ui)) := t+ �(ui)
13. else U := U [fuig
14. for u 2 U
15. do determine j, such that idle(j) � t
16. �(u) := j
17. idle(j) := t+ �(u)
18. i1 := i2
19. i2 := minfi > i1 j �(ui) > �(ui1)g
20. t := �(ui1)

Figure 1: The processor assignment algorithm

Since Algorithm Processor assignment computation starts with a feasible assignment of
starting times � for an instance (G;m; �), at any time t at most m tasks are executed. So at
all times t considered by Algorithm Processor assignment computation, the number of idle
processors is su�cient to schedule every task with starting time t. As a result, if processor assign-
ment � is constructed by Algorithm Processor assignment computation using assignment of
starting times �, then the schedule (�; �) is a feasible schedule for (G;m; �).

Sorting the tasks by non-decreasing starting times takes O(n logn) time. Calculating i1 and
i2 can be done by traversing the list of tasks exactly once. Hence this requires O(n) time in
total. The same holds for the computation of the set U . Determining a processor for ui takes
O(indegree(ui)) time. Hence Algorithm Processor assignment computation constructs a
correct processor assignment in O(m+ n logn+ e) time.

In a feasible schedule (�; �), comparable tasks are not executed simultaneously. Hence, for

4

graphs of width w, the number of tasks that can be executed at the same time is at most w.
Therefore jfu 2 G j �(u) � t < �(u) + �(u)gj � w for all t. So we may assume m � w. So, given
a feasible assignment of starting time � for (G;m; �), Algorithm Processor assignment com-

putation constructs an assignment of processors � in O(n logn+ e) time. If all tasks are of unit
length, then we may assume no starting time exceeds n� 1. In that case, Algorithm Processor

assignment computation requires only O(n+ e) time, because sorting n numbers whose values
are at most n requires only linear time using counting sort [6].

3 Decomposition into chains

Every graph can be viewed as a collection of disjoint chains with some dependencies between tasks
in di�erent chains: every graph with n nodes can be considered as the disjoint union of n chains
consisting of one task. Obviously, graphs that do not consist of n pairwise incomparable tasks can
be decomposed into a smaller number of chains.

In Figure 2, a decomposition of a graph G of width two into two disjoint chains C1 =
fc11; c12; c13; c14; c15; c16g and C2 = fc21; c22; c23; c24g is shown. Note that C2 does not correspond
to a connected subgraph of G: a chain is a set of pairwise comparable tasks. Consequently, a chain
is a connected subgraph of the transitive closure of G. In addition, a decomposition into disjoint
chains is not unique: the graph of Figure 2 has more than one decomposition. Another decomposi-
tion of this graph is given by the chains C 01 = fc11; c12; c13; c22; c23; c24g and C 02 = fc21; c14; c15; c16g.

C1 C2

c11

c12

c13

c14

c15

c16

c21

c22

c23

c24

Figure 2: A graph of width two and a decomposition into two disjoint chains

Clearly, a graph of width w cannot be split into less than w chains. Dilworth [7] proved that
a graph of width w can be viewed as the disjoint union of w chains.

Theorem 3.1 (Dilworth's decomposition theorem). Let G be a graph of width w. There

are w chains C1; : : : ; Cw in G, such that G is the disjoint union of C1; : : : ; Cw.

Such a collection of chains is called a decomposition of G. A decomposition of a graph of width
w into w chains will be used by the dynamic-programming algorithms presented in Sections 4

5

and 7. Unfortunately, Dilworth's proof is not constructive: using his proof, one cannot construct
a decomposition in an e�cient way.

The proof by Fulkerson [10] is constructive. In his proof of Dilworth's decomposition theorem,
Fulkerson presented Algorithm Chain decomposition shown in Figure 3 and proved that it con-
structs chain decompositions consisting of w chains for graphs of width w.

Algorithm Chain decomposition

Input: A precedence graph G of width w.
Output: A chain decomposition C1; : : : ; Cw of G.
1. assume VG = fu1; : : : ; ung
2. V := fa1; : : : ; ang [fb1; : : : ; bng
3. E := f(ai; bj) j ui � ujg
4. let M be a maximum matching of H = (V;E)
5. E0 := f(ui; uj) j (ai; bj) 2Mg
6. i := 1
7. while G contains unmarked tasks
8. do let u be an unmarked task of G
9. Ci := fv 2 VG j there is an undirected path from u to v in (VG; E

0)g
10. mark all tasks in Ci

11. i := i+ 1

Figure 3: The chain decomposition algorithm

If G is a transitive closure, then the construction of the undirected bipartite graph H takes
O(e) time. Otherwise, compute the transitive closure G+ of G. This takes O(n2:376) time [5].
Afterward, construct H using the arcs of G+. Then H is constructed in O(n2:376) time.

It is not di�cult to see that the time needed to construct the decomposition using bipartite
graph H is dominated by the time needed to compute a maximum matching M of H . Hopcroft
and Karp [13] presented an algorithm that computes a maximum matching in O(e

p
n) time for

bipartite graphs with n nodes and e edges. Alt, et al. [2] presented an algorithm whose running
time is better for dense graphs: it constructs a maximum matching in O(n

p
ne= logn) time.

Let e+ be the number of arcs in G+. The number of edges in H equals e+. As a result, a maxi-
mum matchingM inH can be constructed in O(minfe+pn; n

p
ne+= logng) time. So constructing

a decomposition of a graph of width w into w disjoint chains takes O(minfe+pn; npne+= logng)
time.

Theorem 3.2. Let G be a graph of width w. Algorithm Chain decomposition constructs a

decomposition of G into w chains in O(minfe+pn; npne+= logng) time, where e+ is the number

of arcs in the transitive closure of G.

Suppose G be graph of width w. Then G contains a chain of size at least n
w
. The transitive

closure of a chain of size ` contains 1
2`(`� 1) arcs. Therefore the transitive closure of G contains

at least n(n�1)
2w2 tasks. Hence e+ = �(n2) if w is a constant. So constructing a chain decomposition

for a graph of bounded width takes O(n
2
p
np

logn
) time.

Theorem 3.3. Let w be a constant. Let G be a graph of width w. Algorithm Chain decompo-

sition constructs a decomposition of G into w chains in O(n
2
p
np

logn
) time.

4 A dynamic-programming algorithm for UET-graphs

In this section, I will present a dynamic-programming algorithm that constructs minimum-length
schedules for graph with unit-length tasks. For graphs of �xed width w, a minimum-length schedule

6

is constructed in O(nw) time. The same approach can be used to construct schedules that are
optimal with respect to other objective functions.

The running time of the dynamic-programming algorithm is exponential in the width of the
precedence graph. It is unlikely that there is an algorithm that constructs minimum-length sched-
ules in O(nc) time, where c is a constant independent of the width of the graph: Bodlaender and
Fellows [3] proved that constructing a minimum-length schedule for an arbitrary precedence graph
(without communication delays) on k processors is W [2]-hard. This implies that it is unlikely
that, for all �xed k, a minimum-length schedule for a graph on k processors can be constructed
in O(nc) time for some constant c. In fact, Bodlaender and Fellows [3] proved this for graphs of
width k + 1 that have to be scheduled on k processors. Their result can be easily generalised to
scheduling with non-zero communication delays.

Consider a feasible schedule (�; �) for the instance (G;m; 1l), where 1l(u) = 1 for all tasks u
of G. Since we will only consider objective functions that do not increase if a task starts at an
earlier time, we may assume all tasks of G are completed at time n. Therefore � can be viewed
as an array of at most n sets of tasks, namely the sets ��1(t) containing the tasks of G that start
at time t. These sets will be called the time slots of �. It is easy to see that a time slot is an
anti-chain of G.

The dynamic-programming algorithm considers all feasible assignments of starting times for
an instance (G;m; 1l). This is done as follows. Suppose the time slots ��1(0); : : : ; ��1(t) form
a feasible schedule for (Gt;m; 1l), where Gt is the subgraph of G induced by

St

i=0 �
�1(i). The

only tasks that can be scheduled at time t + 1 without violating the feasibility of the partial
schedule are sources of G nSt

i=0 �
�1(i). For graphs of width w, there are at most w such tasks,

because the sources of a graph are incomparable. Hence there are at most 2w sets of tasks that
can be executed at time t+ 1. This is the basis of the dynamic-programming algorithm: for each
time t, it considers all sets of tasks that can be scheduled at time t+1 and determines the best one.

Consider a partial schedule ��1(0); : : : ; ��1(t) for the instance (G;m; 1l). Because of commu-
nication delays, the execution of a set of sources of GnSt

i=0 �
�1(i) might yield infeasible schedules

for (G;m; 1l). Let U be a set of sources of G nSt

i=0 �
�1(i). U is called available with respect to

the time slots ��1(0); : : : ; ��1(t) if there is a feasible assignment of starting times �1 for (G;m; 1l),
such that

��1
1 (i) = ��1(i) for all i, 0 � i � t, and ��1

1 (t+ 1) = U .

In other words, if � is a feasible assignment of starting times for (Gt;m; 1l), where Gt is the
subgraph of G induced by

St

i=0 �
�1(i), then U is available with respect to ��1(0); : : : ; ��1(t) if

1. jU j � m;

2.
��fv 2 ��1(t) j v � ug�� � 1 for all u in U ; and

3. jfu 2 U j v � ugj � 1 for all v in ��1(t).

Note that the availability of U only depends on
St

i=0 �
�1(i) and ��1(t). Therefore U will be called

available with respect to (
St

i=0 �
�1(i); ��1(t)).

Consider an instance (G;m; 1l). Let U be a set of tasks of G. U is called a pre�x of (G;m; 1l),
if for all tasks u1 and u2 of G,

if u2 2 U and u1 � u2, then u1 2 U .

A starred pre�x of (G;m; 1l) is a pair (U1; U2), where U1 is a pre�x of (G;m; 1l) and U2 is a subset of
the sinks of U1. Note that for a feasible schedule (�; �) for (G;m; 1l), the pair (

St

i=0 �
�1(i); ��1(t))

is a starred pre�x of (G;m; 1l) for all times t.

7

The length of a minimum-length schedule for (G;m; 1l) can be computed in terms of starred
pre�xes of (G;m; 1l). Let (U1; U2) and (U 0

1; U
0
2) be two starred pre�xes of (G;m; 1l). (U 0

1; U
0
2) is

called available with respect to (U1; U2), if U
0
2 is available with respect to (U1; U2) and U 0

1 =
U1 [U 0

2. Av(U1; U2) denotes the set of starred pre�xes of (G;m; 1l) that are available with respect
to (U1; U2). Note that if U2 = ?, then the starred pre�x (U1; U2) is available with respect to itself.
To avoid in�nite computations, we will introduce the set Av�(U1; U2) = Av(U1; U2) n f(U1; U2)g.

Suppose (�; �) is a feasible schedule for (G;m; 1l). Then it is clear that the starred pre�x

(
St

i=0 �
�1(i); ��1(t)) is available with respect to (

St�1
i=0 �

�1(i); ��1(t � 1)) for all times t. As a
result, we only need to consider starred pre�xes of (G;m; 1l).

Let (U1; U2) be a starred pre�x of (G;m; 1l). L(U1; U2) denotes the maximum completion time
of a task in a minimum-length schedule (�; �) for (G0;m; 1l), where G0 is the subgraph of G induced
by (G n U1) [U2, such that �(u) = �1 for all u in U2. Hence we �nd

L(U1; U2) = 1 + max
(U 0

1
;U 0

2
)2Av�(U1;U2)

L(U 0
1; U

0
2)

and L(VG; U2) = 0 for all sets of sinks U2 of G. Obviously, L(?;?) equals the length of a minimum-
length schedule for (G;m; 1l).

Let C = fc1; : : : ; c`g be a chain of G. Assume c1 � : : : � c`. The chain Cj = fc1; : : : ; cjg is a
pre�x of C for all j, 0 � j � `.

Consider an instance (G;m; 1l), where G is a graph of width w. Assume C1; : : : ; Cw is a
decomposition of G into disjoint chains and the chains Ci contain `i tasks ci1; : : : ; ci`i . It is easy
to see that a pre�x U of G equals the disjoint union of pre�xes of C1; : : : ; Cw. Hence U can be
represented by a sequence of w numbers (b1; : : : ; bw), such that 0 � bi � `i for each i. Moreover,
every sequence (b1; : : : ; bw) coincides with the pre�x

Sw

i=1fci1; : : : ; cibig of (G;m; 1l).
A starred pre�x (U1; U2) of (G;m; 1l) will be represented by a tuple (b1; : : : ; bw; a1; : : : ; aw),

where (b1; : : : ; bw) represents the pre�x U1 and ai 2 f0; 1g, such that ai = 1 if and only if
cibi 2 U2. In addition, if bi > 0 for all i with ai = 1, then the sequence (b1; : : : ; bw; a1; : : : ; aw)
corresponds to the starred pre�x (

Sw

i=1fci1; : : : ; cibig; fcibi j ai = 1g) of (G;m; 1l).

Let (G;m; 1l) be an instance, where G is a graph of width w with a chain decomposition
C1; : : : ; Cw. For the implementation of the computation of L(?;?), we create a table T of dimen-
sion 2w. For each i � w, index ji has a lower bound 0 and an upper bound `i. For i � w + 1,
index ji 2 f0; 1g. A table entry T [b1; : : : ; bw; a1; : : : ; aw] will be called feasible if, for all i, if
ai = 1, then bi > 0. The value of a feasible table entry T [b1; : : : ; bw; a1; : : : ; aw] corresponds to
L(
Sw

i=1fci1; : : : ; cibig; fcibi j ai = 1g).
In the beginning, set T [b1; : : : ; bw; a1; : : : ; aw] =1 for all sequences. The goal of the algorithm

is computing L(?;?), which corresponds to computing T [0; : : : ; 0; 0; : : : ; 0].
Algorithm UET Table construction is presented in Figure 4. It computes the values of

the table entries T [seq(U1; U2)], where seq(U1; U2) denotes the tuple (b1; : : : ; bw; a1; : : : ; aw), such
that U1 =

Sw

i=1fci1; : : : ; cibig and U2 = fcibi j ai = 1g.
Applying Algorithm UET Table construction to (?;?) corresponds to computing the

length of a minimum-length schedule for an instance (G;m; 1l). Hereafter, T [seq(U1; U2)] con-
tains L(U1; U2) for all starred pre�xes (U1; U2) of (G;m; 1l). Using these values, Algorithm UET

Schedule construction shown in Figure 5 constructs a minimum-length assignment of starting
times for (G;m; 1l).

Let (G;m; 1l) be an instance, where G is a graph of width w with chain decomposition
C1; : : : ; Cw. For every starred pre�x (U1; U2) of (G;m; 1l), Algorithm UET Table construc-

tion computes Av�(U1; U2). A starred pre�x is represented by a sequence (b1; : : : ; bw; a1; : : : ; aw).
Hence determining all potential elements of Av�(U1; U2) takes O(2

w) time: if (U 0
1; U

0
2) is available

with respect to (U1; U2) = (
Sw

i=1fci1; : : : ; cibig; fcibi j ai = 1g), then U 0
2 � fc1b1+1; : : : ; cwbw+1g.

Since pre�xes contain at most w tasks, checking the availability of (U 0
1; U

0
2) with respect to (U1; U2)

takes O(w2) time.

8

Algorithm UET Table construction(U1; U2)
Input: An instance (G;m; 1l), such that G is a graph of width w with chain decomposition

C1; : : : ; Cw and a starred pre�x (U1; U2) of (G;m; 1l).
Output: A table T with T [seq(U1; U2)] = L(U1; U2).
1. if T [seq(U1; U2)] =1
2. then if U1 = VG
3. then T [seq(U1; U2)] := 0
4. else for (U 0

1; U
0
2) in Av�(U1; U2)

5. do UET Table construction(U 0
1; U

0
2)

6. T [seq(U1; U2)] := 1 +minfT [seq(U 0
1; U

0
2)] j (U 0

1; U
0
2) 2 Av�(U1; U2)g

Figure 4: The algorithm computing L(U1; U2)

Algorithm UET Schedule construction

Input: A instance (G;m; 1l) and a table T with T [seq(U1; U2)] = L(U1; U2) for all starred pre�xes
(U1; U2) of (G;m; 1l).

Output: A minimum-length assignment of starting times � for (G;m; 1l).
1. U1 := ?
2. U2 := ?
3. t := 0
4. while U1 6= VG
5. do determine (U 0

1; U
0
2) in Av�(U1; U2), such that T [seq(U 0

1; U
0
2)] is minimum

6. for u 2 U 0
2

7. do �(u) := t
8. U1 := U 0

1

9. U2 := U 0
2

10. t := t+ 1

Figure 5: The algorithm assigning starting times using the values L(U1; U2)

Hence for each starred pre�x, O(w22w) time is used. Every starred pre�x of (G;m; 1l) cor-
responds to a tuple (b1; : : : ; bw; a1; : : : ; aw) with 0 � bi � `i and ai 2 f0; 1g. So the number of
starred pre�xes of (G;m; 1l) is at most

2w
wY
i=1

(`i + 1) � 2w
wY
i=1

2`i � 22w
wY
i=1

n

w
� 2wnw:

As a result, Algorithm UET Table construction calculates the length of a minimum-length
schedule for (G;m; 1l) in O(w222wnw) time.

Algorithm UET Schedule construction is used to build an assignment of starting times
� that corresponds to a minimum-length schedule for (G;m; 1l). For every time t and starred
pre�x (

St

i=0 �
�1(i); ��1(t)), starting with t = 0 and (?;?), it determines the set Av�(U1; U2)

and chooses the best element of this set. Since a minimum-length schedule has length at most
n, Algorithm UET Schedule construction computes O(n) sets Av�(U1; U2). Hence it uses
O(w22wn) time to construct an assignment of starting times corresponding to a minimum-length
schedule for (G;m; 1l).

Theorem 4.1. Let (G;m; 1l) be an instance, where G is a graph of width w. Algorithms Chain

decomposition, UET Table construction and UET Schedule construction construct a

minimum-length schedule for (G;m; 1l) in O(w222wnw +minfe+pn; npne+= logng) time, where

e+ is the number of arcs in the transitive closure of G.

For constant w, a minimum-length schedule can be constructed in polynomial time.

9

Theorem 4.2. Let w be a constant. Let (G;m; 1l) be an instance, where G is a graph of width

w. Algorithms Chain decomposition, UET Table construction and UET Schedule

construction construct a minimum-length schedule for (G;m; 1l) in O(nw + n2
p
np

logn
) time.

Algorithms UET Table construction and UET Schedule construction construct
minimum-length schedules for instances (G;m; 1l) in polynomial time if G is a graph of constant
width w. A similar approach can be used for minimising a di�erent objective function. However,
for some of these objective functions, extra information is needed, namely the current time slot
and, in some cases, the value of the objective function so far.

For example, if we want to minimise the weighted sum of completion times (without negative
weights) for an instance (G;m; 1l), we need the current time. For this objective function, we
consider tuples (t; U1; U2), where t is the current time slot and (U1; U2) is a starred pre�x of
(G;m; 1l). Because negative weights are not allowed, there is an optimal schedule of length at
most n. So O(nw+1) such tuples have to be taken into account. The following recursion has to be
solved.

C(t; U1; U2) = min
(U 0

1
;U 0

2
)2Av�(U1;U1)

C(t+ 1; U 0
1; U

0
2) + (t+ 1)

X
u2U 0

2

w(u);

where w(u) denotes the weight of u. Because of the extra t in the tuples, constructing a schedule
in which the weighted sum of completion times is minimised takes O(nw+1) time if G is a graph of
constant width w. Other objective functions that need the extra element t are, for example, the
number of tardy/late tasks and the total weighted lateness/tardiness (with non-negative weights).

Maximum tardiness is an example of an objective function for which not only the current time
t, but also the maximum tardiness of the tasks scheduled before time t is included in the tuple.
Every task u has a deadline D0(u). The tardiness of a task u in a schedule (�; �) is the amount
of time that its completion time exceeds its deadline: that is T (u) = maxf0; �(u) + 1 �D0(u)g.
Suppose we want to construct a minimum-tardiness schedule for an instance (G;m; 1l; D0). The
maximum tardiness of a task in a minimum-tardiness schedule for (G;m; 1l; D0) is bounded by
n and there is a minimum-tardiness schedule of length at most n, so O(nw+2) tuples have to be
taken into account by the dynamic-programming algorithm. These look like (t; Tt; U1; U2), where
t is the current time, Tt denotes the maximum tardiness among the tasks scheduled before time t
and (U1; U2) is a starred pre�x of (G;m; 1l; D0). The maximum tardiness of an optimal schedule
can be computed by solving the recursion

T (t; Tt; U1; U2) = min
(U 0

1
;U 0

2
)2Av�(U1;U2)

T (t+ 1; Tt+1; U
0
1; U

0
2);

where Tt+1 = maxfTt;maxu2U 0

2
t + 1 �D0(u)g. Obviously, T (t; Tt; VG; U2) = Tt for all t and all

sets of sinks U2 of G. Then T (0; 0;?;?) corresponds to the tardiness of a minimum-tardiness
schedule for (G;m; 1l; D0). This recursion can be solved in O(nw+2) time if G has width w for
some constant w. The lateness of a task u equals �(u) + 1 �D0(u). Constructing a schedule in
which the maximum lateness of a task is minimised can be done in the same way.

For some scheduling problems, the algorithm has to be changed a bit more. For instance,
if every task has a release date, then the length of a schedule that is optimal with respect to
some objective function, need not be bounded by a polynomial in n. In that case, the running
time of the dynamic-programming algorithm in its original form would be pseudo-polynomial.
Consider an instance (G;m; 1l; R), where R : VG ! IN is a function assigning a release date to
every task of G. It is not di�cult to prove that in a greedy schedule for (G;m; 1l; R), every task
has at most n possible starting times: task u is scheduled before time R(u) + n. Moreover, for
all objective functions, there are optimal schedules that are greedy. So the total number of times
that need to taken into account is at most n2. Assume G is a graph of bounded width. By
introducing all possible starting times into the recursion, the dynamic-programming algorithm
constructs schedules for (G;m; 1l; R) that are optimal with respect to several objective functions.

If the objective function is not bounded by a polynomial in n, the number of possible tuples
could become pseudo-polynomial in the input length of the scheduling problem. However, in many

10

cases, the objective function is not bounded by a polynomial in n, but the number of potential
values of the objective function for an optimal schedule is. For instance, suppose we want to
construct a schedule for an instance (G;m; 1l; D0) that minimises the maximum weighted tardi-
ness. Assume G is a graph of bounded width. The maximum weighted tardiness of an optimal
schedule need not be polynomial in n. However, we know that, in a greedy schedule, each task
has a tardiness at most n� 1. Hence the maximum weighted tardiness of an optimal schedule for
(G;m; 1l; D0) is an element of

Sn

i=1f0; w(ui); 2w(ui); : : : ; (n� 1)w(ui)g, where VG = fu1; : : : ; ung
and w(ui) is the weight of ui. So the number of values of the objective function is bounded by
n2. Consequently, the dynamic-programming approach can be used to construct a schedule for
(G;m; 1l; D0) in which the maximum weighted tardiness is minimised.

The applicability of the dynamic-programming approach is not restricted to the scheduling
model in which every task can be executed on every processor. It can also be used if for every task
there is a set of possible processors or if every task uses some resources which are not available at
every time. To use the dynamic-programming algorithm for these scheduling models, the de�nition
of Av(U1; U2) has to be modi�ed. Using the new de�nition, the dynamic-programming algorithm
uses only polynomial time: for instances (G;m; 1l), where G is a graph of �xed width w, Av(U1; U2)
contains at most 2w elements for every de�nition of availability.

Furthermore, the task lengths and the communication delays need not be equal. If the maxi-
mum task length is bounded by nk for some constant k and the maximum communication delay
is bounded by a constant c, then the dynamic-programming approach is successful for graphs of
bounded width. By splitting every task of length � into � tasks of unit length (note that this does
not change the width of the graph), the number of tasks remains polynomial in n. Note that the
de�nition of availability has to be updated, because the unit-length tasks from an original tasks
have to be executed without interruption.

In case of unit-length communication delays, the dynamic-programming algorithm has to con-
sider only the last time slot. If the communication delays are bounded by c, then the availability of
a task at time t depends on the tasks executed at times t�c; : : : ; t�1. So a dynamic-programming
approach would consider tuples (U;U1; : : : ; Uc), where U is a pre�x and Ui is a set of sinks of
U nSc

j=i+1 Uj . The number of such tuples is at most nw2wc. (U;U1; : : : ; Uc) can be represented
by a sequence (b1; : : : ; bw; a11; : : : ; a1w; : : : ; ac1; : : : ; acw), where (b1; : : : ; bw) corresponds to U and
aj1; : : : ; cjw 2 f0; 1g to Uj :

aji = 1 if and only if cii0 2 Uj ; where i
0 = bi � jfj0 > j j aj0i = 1gj :

Using a dynamic-programming approach, we can construct a schedule that is optimal with respect
to some objective function in polynomial time. In particular, the dynamic-programming approach
can be used for scheduling graphs of bounded width without communication delays.

The algorithm presented in this section is similar to the one by M�ohring [15] for scheduling
graphs of bounded width without communication delays, and the one presented by Veltman [19]
for scheduling with unit communication delays. Like the algorithm presented in this section, these
algorithms use pre�xes. They use the name order ideal instead of pre�x. When constructing a
minimum-length schedule for an instance (G;m; 1l) without communication delays, M�ohring [15]
constructs a directed graph on the pre�xes of (G;m; 1l): there is an arc from U1 to U2, if

U1 � U2, jU2 n U1j � m, and U2 n U1 does not contain comparable elements.

A path (U0; : : : ; U`�1) from ? to VG in this graph corresponds to a feasible schedule for (G;m; 1l)
of length `: the tasks of Ut nUt�1 start at time t. By traversing all nodes in the directed graph on
the pre�xes of (G;m; 1l), a minimum-length schedule can be constructed. If G is a graph of �xed
width w, this takes O(nw) time, since there are O(nw) pre�xes of (G;m; 1l).

To construct a minimum-length schedule for (G;m; 1l) with unit communication delays, a
directed graph H on pairs (U1; U2) is constructed, where U1 is a pre�x of (G;m; 1l) and U2 is set

11

of sources of VG n U1: there is an arc from (U1; U2) to (U 0
1; U

0
2), if

U 0
2 n U2 = U 0

2, jU 0
2j � m, and U 0

2 is available with respect to (U1 [U2; U2).

So there is an arc from (U1; U2) to (U 0
1; U

0
2), if the starred pre�x (U 0

1 [U 0
2; U

0
2) is available with

respect to (U1 [U2; U2). A path in the directed graph on the pairs (U1; U2) corresponds to a
feasible schedule for (G;m; 1l). Veltman [19] states that a minimum-length schedule is constructed
in O(n2w) if G is a graph of �xed width w. This bound can be decreased to O(nw), because there
are O(nw) pre�xes of G, and for every pre�x U1, there are at most 2w sets of sources of VG n U1.

5 Graphs of width two

For graphs of width two, I will present an algorithm that is more e�cient than the dynamic-
programming algorithm presented in the previous section. In earlier work, I presented an algorithm
that constructs minimum-tardiness schedules for interval-ordered tasks with non-uniform deadlines
on an arbitrary number of processors [20]. In Section 5.1, I will show that this algorithm constructs
minimum-tardiness schedules for graphs of width two with unit-length tasks. By choosing all
deadlines equal, it also constructs minimum-length schedules.

In Section 5.2, this algorithm will be adapted, such that it constructs minimum-tardiness
schedules for graphs of width two with tasks of arbitrary length. It constructs minimum-length
schedules if all deadlines are equal.

5.1 Unit-length tasks

For interval orders with unit-length tasks, I presented an algorithm for scheduling subject to
unit-length communication delays [20]. It constructs minimum-tardiness schedules for instances
(G;m; 1l; D0), where G is an interval order and D0 : VG ! ZZ

+ is a function assigning a deadline
to every task of G. In this section, I will adapt this algorithm, such that it constructs minimum-
tardiness schedules for instances (G; 2; 1l; D0), where G is a graph of width two.

The algorithm consists of two parts: before assigning a starting time to every task, it computes
a (smaller) deadline D(u) for each task u that is not violated in a schedule in which all tasks are
completed before their original deadline. Such deadlines will be called consistent. The consistent
deadlines are used to assign a starting time to every task.

Throughout this section, we will use the following de�nition. Let (�; �) be a feasible schedule
for (G;m; �;D0). Let u be a task of G. If u is completed at or before its deadline, it is called in

time. Otherwise, u is tardy. The tardiness of u equals maxf0; �(u)+�(u)�D0(u)g. The tardiness
of (�; �) is the maximum tardiness of a task of G. If all tasks are in time, then (�; �) is called an
in-time schedule for (G;m; �;D0). In that case, � is an in-time assignment of starting times for
(G;m; �;D0).

These de�nitions are used to de�ne consistent deadlines. Consider an in-time schedule (�; �)
for (G;m; 1l; D0). Let u be a task of G. Suppose u has k � 1 successors v with D0(v) � d. Then
k successors of u are completed at time d. Suppose u starts at time t. Then the execution of u
is completed at time t + 1. Because of communication delays, at most one successor of u starts
at time t+ 1. Hence the last of the k � 1 remaining successors of u is not completed before time
t+ 2 +

�
k�1
m

�
. Since (�; �) is in time, u is completed at time d� 1� �k�1

m

�
.

Let u1 and u2 be two tasks of G. Assume they have ` = km + 1 common successors v with
D0(v) � d. Because u1 and u2 meet their deadlines, they are completed at time d� 1� � `�1

m

�
=

d � 1 � k. If both tasks would start at time d � 2 � k, then no common successor would start
before time d � k. In that case, one of the common successors violates its deadline. So u1 or u2
is completed at time d� 2� k.

12

For this reason, we will introduce deadlines for pairs of tasks. A pair of (not necessar-
ily di�erent) tasks (u1; u2) will be assigned a deadline D(u1; u2). We will consider instances
(G;m; �;D), where D : VG � VG ! ZZ

+ is a function assigning a deadline to every pair of
tasks of G. We will use the shorthand notation D(u) = D(u; u). Let (�; �) be a feasible sched-
ule for an instance (G;m; �;D) with pairwise deadlines. The pair (u1; u2) meets its deadline if
�(u1) + �(u1) � D(u1; u2) or �(u2) + �(u2) � D(u1; u2). If no deadline D(u1; u2) is violated,
(�; �) will be called an in-time schedule for (G;m; �;D).

Given an instance (G;m; �;D0) with individual deadlines, an instance (G;m; �;D) with pair-
wise deadlines can be constructed as follows. Set D(u1; u2) = minfD0(u1); D0(u2)g for every pair
of tasks (u1; u2) of G. Then an in-time schedule for (G;m; �;D0) is in time for (G;m; �;D) as well.

In a feasible schedule for (G;m; 1l; D), a task is executed before its children. It is, however,
possible that u is a predecessor of v and D(u) � D(v). In that case, the deadlines are incon-
sistent with the precedence constraints. To de�ne consistent instances, the following de�nitions
are used. ND(u1; u2; d) equals the number of common successors v of u1 and u2 with D(v) � d.
PD(u1; u2; d) = maxf0; jU j � 1g, where U is a maximum-size subset U 0 of Succ(u1) \ Succ(u2),
such that D(v1) � d+1 and D(v1; v2) � d for all v1 6= v2 in U

0. Note that, in an in-time schedule
for (G;m; 1l; D), at most one task of such a set U starts at or after time d. Hence in every in-time
schedule for (G;m; 1l; D), at least ND(u1; u2; d)+Pd(u1; u2; d) common successors of u1 and u2 are
completed at time d. For individual tasks, we use the shorthand notations ND(u; d) = ND(u; u; d)
and PD(u; d) = PD(u; u; d).

Consider an in-time schedule for (G;m; 1l; D). Let u be a task of G with k = ND(u; d) +
PD(u; d) � 1. Since all tasks meet their deadlines, u is completed at time d� 1� k. Let u1; u2 be
two tasks of G with ND(u1; u2; d) + PD(u1; u2; d) � km+ 1. At least km+ 1 common successors
of u1 and u2 are completed at d. The �rst of these starts at or before time d � 1 � k. Because
of communication delays, u1 or u2 is completed at time d � 2 � k. These observations allow the
de�nition of instances with consistent deadlines.

De�nition 5.1. Let (G;m; 1l; D) be an instance with pairwise deadlines. (G;m; 1l; D) is called

consistent if, for all tasks u1 6= u2 of G and all d � maxuD(u),

1. D(u1; u2) � minfD(u1); D(u2)g;
2. if ND(u1; d) + PD(u1; d) � 1, then D(u1) � d� 1� � 1

m
(ND(u1; d) + PD(u1; d)� 1)

�
;

3. if ND(u1; u2; d) + PD(u1; u2; d) � km+ 1, then D(u1; u2) � d� 2� k.

Let (G;m; 1l; D0) be an instance with individual deadlines. (G;m;D) is D0-consistent if it is

consistent and D(u) � D0(u) for all tasks u of G.

If we have two D0-consistent instances, these can be combined in a new one with larger dead-
lines. Let (G;m; 1l; D1) and (G;m; 1l; D2) be two D0-consistent instances. De�ne Dmax(u1; u2) =
maxfD1(u1; u2); D2(u1; u2)g. Then it is not di�cult to prove that (G;m; 1l; Dmax) is a D0-
consistent instance. This allows the de�nition of strongly D0-consistent instances.

De�nition 5.2. Let (G;m; 1l; D) be a D0-consistent instance. (G;m; 1l; D) is called strongly D0-

consistent if for all D0-consistent instances (G;m; 1l; D
0), D(u1; u2) � D0(u1; u2) for all pairs of

tasks (u1; u2) of G.

The following observation is due to the de�nition of strongly D0-consistent instances.

Observation 5.3. Let (G;m; 1l; D0) and (G;m; 1l; D
0
0) be instances with individual deadlines, such

that D0
0(u) = D0(u) + c for all tasks u of G. If (G;m; 1l; D) is strongly D0-consistent and

(G;m; 1l; D0) is strongly D0
0-consistent, then D0(u1; u2) = D(u1; u2) + c for all pairs of tasks

(u1; u2) of G.

It is not di�cult to see that the deadlines of strongly D0-consistent instances are met in all
in-time schedules for (G;m; 1l; D0).

13

Lemma 5.4. Let (G;m; 1l; D0) be an instance with individual deadlines and (G;m; 1l; D) a strongly
D0-consistent instance. Let (�; �) be a schedule for (G;m; 1l; D0). Then (�; �) is an in-time

schedule for (G;m; 1l; D0) if and only if (�; �) is an in-time schedule for (G;m; 1l; D).

Proof. Let (G;m; 1l; D0) be an instance with individual deadlines and (G;m; 1l; D) a strongly D0-
consistent instance. Let (�; �) be a schedule for (G;m; 1l; D0). If (�; �) is an in-time schedule for
(G;m; 1l; D), then (�; �) is an in-time schedule for (G;m;D0), because D(u) � D0(u) for all tasks
u of G. Suppose (�; �) is an in-time schedule for (G;m; 1l; D0). De�ne D�(u1; u2) = minf�(u1) +
1; �(u2) + 1g. Then (G;m; 1l; D�) is D0-consistent. From De�nition 5.2, D(u1; u2) � D�(u1; u2)
for all pairs of tasks (u1; u2) of G. Since every deadline D�(u1; u2) is met, (�; �) is an in-time
schedule for (G;m; 1l; D).

The following properties follow from the de�nition of strongly D0-consistent instances.

Lemma 5.5. Let (G;m; 1l; D) be a strongly D0-consistent instance. Let u be a task of G. If

D(u) < D0(u), then there is an integer d with D(u) = d� 1� � 1
m
(ND(u; d) + PD(u; d)� 1)

�
and

ND(u; d) + PD(u; d) � 1.

Proof. Let (G;m; 1l; D) be a strongly D0-consistent instance. Let u be a task of G. Suppose
D(u) < D0(u). Then u is not a sink. So ND(u; d) + PD(u; d) � 1 for some d. Suppose D(u) <
d � 1 � � 1

m
(ND(u; d) + PD(u; d)� 1)

�
for all d with ND(u; d) + PD(u; d) � 1. De�ne D0(u1; u2)

as follows. Set D0(u1; u2) = D(u1; u2) for all tasks u1 6= u2 of G, D0(v) = D(v) for all tasks
v 6= u of G and D0(u) = min

�
d� 1� � 1

m
(ND(u; d) + PD(u; d)� 1)

� j ND(u; d) + PD(u; d) � 1
	
.

Then (G;m;D0) is D0-consistent and D0(u) > D(u). Contradiction. So D(u) = d � 1 ��
1
m
(ND(u; d) + PD(u; d)� 1)

�
for some d with ND(u; d) + PD(u; d) � 1.

Lemma 5.6. Let (G;m; 1l; D) be a strongly D0-consistent instance. Let u1 and u2 be two tasks

of G. If D(u1; u2) < minfD(u1); D(u2)g, then there are integers d and k with ND(u1; u2; d) +
PD(u1; u2; d) = km+ 1 and D(u1; u2) = d� 2� k.

Proof. Let (G;m; 1l; D) be a strongly D0-consistent instance. Let u1 and u2 be two tasks of G.
Suppose D(u1; u2) < minfD(u1); D(u2)g. From De�nition 5.1, ND(u1; u2; d) + PD(u1; u2; d) �
km + 1 and D(u1; u2) � d � 2 � k for some d and k. Since (G;m;D) is strongly D0-consistent,
we may assume D(u1; u2) = d � 2 � k. Suppose ND(u1; u2; d) + PD(u1; u2; d) � km + 2. Then
ND(u1; d)+PD(u1; d) � km+2. With De�nition 5.1,D(u1) � d�2�k = D(u1; u2). Contradiction.
Hence ND(u1; u2; d) + PD(u1; u2; d) = km+ 1 and D(u1; u2) = d� 2� k.

These properties allow us to prove the following results, which will be used to present the
deadline modi�cation algorithm.

Lemma 5.7. Let (G;m; 1l; D) be a strongly D0-consistent instance. Let u1; u2 be two tasks of G.
If D(u1; u2) < minfD(u1); D(u2)g, then D(u1) = D(u2) = D(u1; u2) + 1.

Proof. Let (G;m; 1l; D) be a strongly D0-consistent instance. Let u1; u2 be two tasks of G. Sup-
pose D(u1; u2) < minfD(u1); D(u2)g. From Lemma 5.6, there are integers d and k, such that
ND(u1; u2; d)+PD(u1; u2; d) = km+1 and D(u1; u2) = d�2�k. Obviously, Succ(u1)\Succ(u2) �
Succ(u1); Succ(u2). Therefore ND(u1; d); ND(u2; d) � ND(u1; u2; d) and PD(u1; d); PD(u2; d) �
PD(u1; u2; d). With De�nition 5.1, D(u1); D(u2) � d� 1� k. Since D(u1; u2) < D(u1); D(u2), we
�nd D(u1) = D(u2) = d� 1� k = D(u1; u2) + 1.

Lemma 5.7 shows that to compute strongly D0-consistent deadlines, we only need to compute
the deadline of pairs of tasks (u1; u2) whose deadlines are equal. If D(u1) 6= D(u2), then D(u1; u2)
can be set to minfD(u1); D(u2)g. The following result allows us to restrict this number even
further.

Lemma 5.8. Let (G;m; 1l; D) be a strongly D0-consistent instance. Let u1 and u2 be two tasks of

G. If D(u1; u2) < minfD(u1); D(u2)g, then there is an integer d with, for i 2 f1; 2g,
ND(ui; d) + PD(ui; d) = ND(u1; u2; d) + PD(u1; u2; d) = (d�D(u1)� 1)m+ 1:

14

Proof. Let (G;m; 1l; D) be a strongly D0-consistent instance. Let u1 and u2 be two tasks of
G. Suppose D(u1; u2) < minfD(u1); D(u2)g. With Lemma 5.5, D(u1; u2) = d � 2 � k and
ND(u1; u2; d)+PD(u1; u2; d) = km+1 for some d and k. From Lemma 5.7, D(u1; u2) = D(u1)�1 =
D(u2) � 1. Using D(u1; u2) = d � 2 � k, we �nd k = d � D(u1) � 1. Clearly, ND(u1; d) +
PD(u1; d); ND(u2; d)+PD(u2; d) � ND(u1; u2; d)+PD(u1; u2; d). Suppose ND(ui; d)+PD(ui; d) �
km + 2 for i 2 f1; 2g. Then D(ui) � d � 1 � �km+1

m

�
= d � 2 � k = D(u1; u2). Contradiction.

Hence ND(u1; d) + PD(u1; d) = ND(u2; d) + PD(u2; d) = km+ 1 = (d�D(u1)� 1)m+ 1.

Lemmas 5.7 and 5.8 show that, for the computation of strongly D0-consistent instances, we
only need to consider pairs of tasks (u1; u2) with D(u1) = D(u2) and ND(u1; d) + PD(u1; d) =
ND(u2; d) + PD(u2; d) = (d�D(u1)� 1)m+ 1 for some d > D(u1).

Consider an instance (G;m; 1l; D). PD(u1; u2; d) is de�ned in terms of sets of common successors
of u1 and u2. Computing PD(u1; u2; d) coincides with �nding a maximum clique in an undirected
graph. The nodes of this graph are the common successors of u1 and u2 with deadline d+1; there
is an edge between nodes v1 and v2, if D(v1; v2) = d. Since this is an NP-hard problem [11], it is
unlikely that this de�nition allows an e�cient method of determining PD(u1; u2; d) for arbitrary
precedence graphs. The following lemmas prove that PD(u1; u2; d) can be computed e�ciently if
G is a graph of bounded width.

Lemma 5.9. Let (G;m; 1l; D) be a strongly D0-consistent instance, where G is a graph of width

w. Then G contains at most w tasks u with D(u) = d.

Proof. Let (G;m; 1l; D) be a strongly D0-consistent instance, where G is a graph of width w.
Suppose G contains w + 1 tasks u with D(u) = d. Let u1; : : : ; uw+1 be such tasks. Since G has
width w, we may assume u1 � u2. From De�nition 5.1, D(u1) � D(u2)� 1. Contradiction. So G
contains at most w tasks u with D(u) = d.

Corollary 5.10. Let (G;m; 1l; D) be a strongly D0-consistent instance, where G is a graph of

width w. Let u1; u2 be two tasks of G. Then PD(u1; u2; d) � w � 1 for all d.

Proof. Let (G;m; 1l; D) be a strongly D0-consistent instance, where G is a graph of width w. Let
u1, u2 be two tasks of G. PD(u1; u2; d) = maxf0; jU j � 1g, where U is a maximum-size subset
U 0 of Succ(u1) \ Succ(u2), such that D(v) � d + 1 for all v in U 0 and D(v1; v2) � d for all
v1 6= v2 in U 0. Consider such a set U . From Lemma 5.7, D(v) = d+ 1 for all v in U . Lemma 5.9
shows that G contains at most w tasks u with D(u) = d + 1. Hence jU j � w. Consequently,
PD(u1; u2; d) � w � 1.

Given an instance (G;m; 1l; D0) with individual deadlines, Algorithm UET Deadline modi-

fication shown in Figure 6 computes a strongly D0-consistent instance (G;m; 1l; D).

Let (G;m; 1l; D0) be an instance with individual deadlines and (G;m; 1l; D) the instance con-
structed by Algorithm UET Deadline modification. Using Lemmas 5.7 and 5.8 and De�ni-
tion 5.2, it is not di�cult to prove that (G;m; 1l; D) is a strongly D0-consistent instance.

Assume G is a transitive closure and w is the width of G. For each task u of G, Algorithm UET

Deadline modification computes ND(u; d) and PD(u; d) for all d. Since there are minimum-
tardiness schedules of length at most n, we may assume that the maximum original deadline is
at most n. The values ND(u; d) can be computed as follows: for each d, count the number of
successors of u with deadline d. Compute all values ND(u; d) by a pre�x sum on these numbers.
Since G is a transitive closure and the maximum deadline is at most n, the values ND(u; d) can
be computed in linear time for all d simultaneously.

PD(u; d) can also be calculated by traversing all successors of u: traverse all successors of u and,
for each d, create a set Ud containing the successors v of u with D(v) = d+ 1. From Lemma 5.9,
every set Ud contains at most w tasks. Finding a maximum-size subset Wd of Ud, such that every
pair of di�erent tasks in Wd has deadline d takes O(w22w) time. Hence computing these sets Wd

takes O(2ww2n) time. So, for each u, all values PD(u; d) can be computed in O(2ww2n) time.

15

Algorithm UET Deadline modification

Input: An instance (G;m; 1l; D0) with individual deadlines.
Output: A strongly D0-consistent instance (G;m; 1l; D).
1. let (u1; : : : ; un) be a topologically sorted list of tasks of G
2. D := maxuD0(u)
3. for i := n downto 1
4. do D(ui) := D0(ui)
5. for d := 1 to D
6. do if ND(ui; d) + PD(ui; d) � 1
7. then D(ui) := minfD(ui); d� 1� d 1

m
(ND(ui; d) + PD(ui; d)� 1)eg

8. D(ui; ui) := D(ui)
9. for j := n downto i+ 1
10. do D(ui; uj) := min fD(ui); D(uj)g
11. D(uj ; ui) := min fD(ui); D(uj)g
12. if D(uj) = D(ui)
13. then for d := 1 to D
14. do if ND(ui; uj ; d) + PD(ui; uj ; d) = (d�D(ui)� 1)m+ 1
15. then D(ui; uj) := D(ui)� 1
16. D(uj ; ui) := D(ui)� 1

Figure 6: The deadline modi�cation algorithm for instances (G;m; 1l; D0)

First, deadlines D(u1; u2) are set to the minimum of the individual deadlines. Because of
Lemma 5.7, D(u1; u2) can only be smaller than this minimum, if D(u1) = D(u2). Lemma 5.9
shows that there are at most w � 1 other tasks with deadlines equal to D(u1). Consequently, the
values ND(u1; u2; d) and PD(u1; u2; d) have to be calculated for at most (w � 1)n pairs of tasks.
This takes O(2ww2n) time for each pair, so O(2ww3n2) time in total.

Goral�c��kova and Koubek [12] proved that the transitive closure of a directed graph G can be
computed in O(n+ e+ne�) time, where e� is the number of arcs in the transitive reduction of G.
Obviously, in the transitive reduction of a graph of width w, every task has at most w outgoing
arcs. Consequently, the transitive reduction contains at most wn arcs. So the transitive closure can
be computed in O(wn2) time and Algorithm UET Deadline modification computes strongly
D0-consistent instances in O(2ww3n2) time.

Theorem 5.11. Let (G;m; 1l; D0) be an instance with individual deadlines, where G is a graph

of width w. Then Algorithm UET Deadline modification constructs a strongly D0-consistent

instance in O(2ww3n2) time.

In case G is a graph of bounded width, the strongly D0-modi�ed instance (G;m; 1l; D) is
computed in quadratic time.

Theorem 5.12. Let w be a constant. Let (G;m; 1l; D0) be an instance with individual deadlines,

where G is a graph of width w. Then Algorithm UET Deadline modification constructs a

strongly D0-consistent instance in O(n2) time.

Consider a strongly D0-consistent instance (G;m; 1l; D). A list scheduling algorithm assigns
a starting time to every task of G. The algorithm uses a list L = (u1; : : : ; un) of all tasks of G,
such that D(u1) � : : : � D(un). Such a list will be called a priority list for (G;m; 1l; D). The
list scheduling algorithm does not consider pairs of tasks. Algorithm UET List scheduling is
shown in Figure 7. par(u) denotes the number of unscheduled parents of u. In the beginning,
par(u) equals the indegree of u. The set Ready contains the unscheduled tasks whose parents
have already been scheduled.

Algorithm UET List scheduling uses a new notion of availability. Let G be a graph. Let
U be a pre�x of (G;m; 1l; D) and let � be a feasible assignment of starting times for (G0;m; 1l; D),

16

where G0 is the subgraph of G induced by U . Let u a source of VG n U . u is called available at
time t with respect to �, if the assignment of starting times �1 with �1(v) = �(v) for all tasks v
of G0 and �1(u) = t is a feasible assignment of starting times for (G00;m; 1l; D), where G00 is the
subgraph of G induced by U [fug.

Algorithm UET List scheduling

Input: A strongly D0-consistent instance (G;m; 1l; D) and a priority list L = (u1; : : : ; un) for
(G;m; 1l; D).

Output: A feasible assignment of starting times � for (G;m; 1l; D0).
1. t := 0
2. Ready := fu j u is a source of Gg
3. while there are unscheduled tasks
4. do while Ready contains available tasks
5. do let u be the available task in Ready with the smallest index in L
6. �(u) := t
7. Ready := Ready n fug
8. for all children v of u
9. do par(v) := par(v) � 1
10. if par(v) = 0
11. then Ready := Ready [fvg
12. t := t+ 1

Figure 7: The list scheduling algorithm for strongly D0-consistent instances

It is not di�cult to see that Algorithm UET List scheduling constructs feasible assignments
of starting times for arbitrary instances (G;m; 1l; D0). Assume G is a graph of width w. Since
Ready contains at most w elements, Algorithm UET List scheduling can be implemented such
that it constructs a feasible assignment of starting times for G in O(w2n+ e) time.

Theorem 5.13. Let (G;m; 1l; D) be a strongly D0-consistent instance, where G is a graph of

width w. Let L be a priority list for (G;m; 1l; D). Using L, Algorithm UET List scheduling

constructs a feasible schedule for (G;m; 1l; D0) in O(w2n+ e) time.

If G is a graph of bounded width, Algorithm UET List scheduling uses only linear time.

Theorem 5.14. Let w be a constant. Let (G;m; 1l; D) be a strongly D0-consistent instance, where

G is a graph of width w. Let L be a priority list for (G;m; 1l; D). Using L, Algorithm UET List

scheduling constructs a feasible schedule for (G;m; 1l; D0) in O(n+ e) time.

The following theorem shows that the assignment of starting times for a strongly D0-consistent
instance (G; 2; 1l; D), where G is a graph of width two constructed by Algorithm UET List

scheduling is in time for (G; 2; 1l; D0).

Theorem 5.15. Let (G; 2; 1l; D) be a strongly D0-consistent instance, where G is a graph of width

two. Let L be a priority list for (G; 2; 1l; D). Let � be the assignment of starting times for

(G; 2; 1l; D) constructed by Algorithm UET List scheduling using L. Then if there is an in-time

schedule for (G; 2; 1l; D0), then � is an in-time assignment of starting times for (G; 2; 1l; D0).

Proof. Let (G; 2; 1l; D) be a strongly D0-consistent instance, where G is a graph of width two.
Let L be a priority list for (G; 2; 1l; D). Let � be the assignment of starting times for (G; 2; 1l; D)
constructed by Algorithm UET List scheduling using L. Suppose there is an in-time sched-
ule for (G; 2; 1l; D0). Let � be the assignment of starting times for (G; 2; 1l; D0) constructed by
Algorithm UET List scheduling using L. From Lemma 5.4, we need to prove that � is an
in-time assignment of starting times for (G; 2; 1l; D). Suppose � is not in time for (G; 2; 1l; D).
Assume at time t, a task u1 is executed that is contained in a pair of tasks (u1; u2) that violates

17

deadline D(u1; u2). Assume that t is minimum. Then �(u2) � �(u1) = t and D(u1; u2) � t.
From Lemma 5.7, there are three possibilities: D(u1) � t, D(u2) � t or D(u1; u2) = t and
D(u1) = D(u2) = t+ 1.

Case 1. D(u1) � t.
Because there is an in-time schedule for (G; 2; 1l; D), there are at most 2t tasks x with
D(x) � t. Hence there is a time before t at which at most one task x with D(x) � t starts.

Let t0�1 be the last such time. Let H1 be the subgraph of G induced by
St�1
i=t0 �

�1(i)[fu1g.
H1 contains 2(t� t0)+1 tasks x with D(x) � t. No task of H1 is available at time t0�1. Let
u be a source of H1. u is not available at time t0 � 1, because (at least) one of the following
statements is true.

1. A parent of u starts at time t0 � 1.

2. Two parents of u start at time t0 � 2.

3. A parent of u starts at time t0� 2 and a child v 6= u of this parent starts at time t0� 1.

Hence every task of H1 has a predecessor that starts at time t0 � 2 or t0 � 1.

Case 1.1. Every task of H1 has a predecessor in ��1(t0 � 1).
De�ne Q = fv 2 G j �(v) = t0 � 1 ^ D(v) � tg. At time t0 � 1, at most one task
x with D(x) � t starts. Since D(x) � t for every task of H1, every predecessor of a
task of H1 has a deadline at most t� 1. So Q contains exactly one task w. Because of
communication delays, at most one successor of w is scheduled at time t0. Hence t = t0.
As a result, w is a parent of u1. So ND(w; t) � 1 and D(w) � t� 1 = t0 � 1. Therefore
w is not completed before time D(w). Contradiction.

Case 1.2. Not every task of H1 has a predecessor in ��1(t0 � 1).
Let v be a task of H1 without a predecessor that starts at time t0 � 1. A predecessor
w1 of v starts at time t0 � 2.

Case 1.2.1. ��1(t0 � 2) contains only one predecessor of H1.
v is not available at time t0 � 1. So a child v0 6= v of w1 starts at time t0 � 1. Since
v0 is scheduled instead of v, D(v0) � D(v). Hence ND(w1; t) � 2(t� t0) + 2. As a
result, D(w1) � t0 � 2 and w1 is not completed before time D(w1). Contradiction.

Case 1.2.2. ��1(t0 � 2) contains two predecessors of H1.
Let w2 be the other predecessor of H1 executed at time t0 � 2. Because G is a
graph of width two and w1 and w2 are incomparable tasks, every task of H1 is a
successor of w1 or w2.

Case 1.2.2.1. Every task of H1 is a successor of w1 and w2.
Then ND(w1; w2; t) � 2(t � t0) + 1. Consequently, D(w1; w2) � t0 � 2. So
(w1; w2) violates its deadline D(w1; w2). Contradiction.

Case 1.2.2.2. H1 contains a successor of w1, that is no successor of w2.
Let x1 be such a task. Assume x1 is a source of H1. x1 is not available at
time t0 � 1. Hence at time t0 � 1, a child y1 of w1 is executed. Because y1
is scheduled instead of x1, D(y1) � D(x1) � t. Suppose there is a task x2 of
H1 that is a successor of w2, but no successor of w1. In that case ��1(t0 � 1)
contains a child y2 of w2, such that D(y2) � D(x2) � t. At time t0�1, at most
one task x with D(x) � t is executed. So y1 = y2. In that case, � is not a
feasible assignment of starting times. Contradiction. So every task of H1 is a
successor of w1. Hence ND(w1; t) � 2(t� t0) + 2 and D(w1) � t0 � 2. So w1 is
not completed at time D(w1). Contradiction.

Case 1.2.2.3. H1 contains a successor of w2, that is no successor of w1.
Similar to Case 1.2.2.2.

18

Case 2. D(u2) � t.
Similar to Case 1.

Case 3. D(u1) = D(u2) = t+ 1 and D(u1; u2) = t.
In an in-time schedule for (G;m; 1l; D), u1 or u2 is completed at time d. Since there is an
in-time schedule for (G;m; 1l; D), there are at most 2t� 1 tasks x with D(x) � t. Let t0 � 1
be the last time before t at which at most one task x with D(x) � t is scheduled. Let H2

be the subgraph of G induced by
St�1
i=t0 �

�1(i)[fu1; u2g[fv 2
S
i�t �

�1(i) j v � u2g. Then
H2 contains at least 2(t� t0) + 2 tasks. Let u be a source of H2. u is not available at time
t0 � 1, because (at least) one of the following three conditions is satis�ed.

1. A parent of u is scheduled at time t0 � 1.

2. Two parents of u start at time t0 � 2.

3. A parent u0 of u starts at time t0� 2 and at time t0� 1 another child of u0 is scheduled.

Thus every task of H2 has a predecessor that starts at time t0 � 2 or t0 � 1.

Case 3.1. Every task of H2 is a successor of ��1(t0 � 1).
De�ne Q = fv 2 G j �(v) = t0 � 1 ^D(v) � tg. Clearly, Q contains one task. Let w be
this task. H2 contains at least 2(t� t0) tasks x with D(x) � t, so ND(w; t) � 2(t� t0).
Furthermore, u1 and u2 are successors of w, hence PD(w; t) = 1. Consequently, D(w) �
t0 � 1. So w is not completed at time D(w). Contradiction.

Case 3.2. Not every source of H2 has a parent scheduled at time t0 � 1.
Let v be a task of H2 that has no predecessor in ��1(t0 � 1). A predecessor w1 of v is
executed at time t0 � 2.

Case 3.2.1. w1 is the only predecessor of H2 that starts at time t0 � 2.
v is not available at time t0�1. So a child v0 6= v of w1 withD(v0) � D(v) is executed
at time t0�1. SoND(w1; t) � 2(t�t0)+1. HenceND(w1; t)+PD(w1; t) � 2(t�t0)+2
and D(w1) � t0 � 2. So w1 is not completed at time D(w1). Contradiction.

Case 3.2.2. ��1(t0 � 2) contains another predecessor w2 of H2.
Because G is a graph of width at most two and w1 and w2 are two incomparable
tasks, every task of H2 is a successor of w1 or w2.

Case 3.2.2.1. Every task of H2 is a successor of w1 and w2.
Then ND(w1; w2; t)+PD(w1; w2; t) � 2(t� t0)+ 1. Consequently, D(w1; w2) �
t0 � 2. So (w1; w2) violates its deadline D(w1; w2). Contradiction.

Case 3.2.2.2. H2 contains a successor of w1, that is no successor of w2.
Let x1 be such a task. We may assume that x1 is a source of H2. x1 is not
available at time t0 � 1. Hence at time t0 � 1 a child y1 of w1 is executed. y1
is scheduled instead of x1, so D(y1) � D(x1) � t. Since y1 is executed at time
t0�1, y1 is not a child of w2. Suppose there is a task x2 of H2 that is a successor
of w2, but no successor of w1. In that case, ��1(t0�1) contains a child y2 of w2

with D(y2) � D(x2) � t. y2 is no successor of w1, so y1 6= y2. Consequently,
two tasks x with D(x) � t are executed at time t0�1. Contradiction. Therefore
every task of H2 is a successor of w1. Hence ND(w1; t)+PD(w1; t) � 2(t�t0)+2
and D(w1) � t0 � 2. So w1 is not completed at time D(w1). Contradiction.

Case 3.2.2.3. H2 contains a successor of w2, that is not a successor of w1.
Similar to Case 3.2.2.2.

Algorithms UET List scheduling and UET Deadline modification do not construct
in-time schedules for instances (G;m; 1l; D0), where G is a graph of width w � 3 and m is at
most three. In Figure 8, an instance (G1; 2; 1l; D0) is shown. There is an in-time schedule for

19

(G1; 2; 1l; D0). For the strongly D0-consistent instance (G1; 2; 1l; D), it is not di�cult to see that
D(u) = D0(u) for all tasks u of G1. Using priority list L1 = (a; b; c; d; e; f), Algorithm UET List

scheduling constructs an assignment of starting times for (G1; 2; 1l; D0) in which some tasks
violate their deadline.

a b c

d e

f

D0(a) = 1; D0(b) = 2; D0(c) = 2; D0(d) = 3; D0(e) = 3; D0(f) = 4

Figure 8: The instance (G1; 2; 1l; D0)

Figure 9 contains an instance (G2; 3; 1l; D0). G2 is a graph of width three. There is an in-time
schedule for (G2; 3; 1l; D0). Assume (G2; 3; 1l; D) is strongly D0-consistent. Then, for all tasks u
of G2, D(u) = D0(u). Hence L2 = (a; d; b; c; e; f; g; h) is a priority list for (G2; 3; 1l; D). Using L2,
Algorithm UET List scheduling constructs an assignment of starting times for (G2; 3; 1l; D0)
that is not in time.

a

b c d

e f

g

h

D0(a) = 1; D0(b) = 3; D0(c) = 3; D0(d) = 3; D0(e) = 4; D0(f) = 4; D0(g) = 5; D0(h) = 6

Figure 9: The instance (G2; 3; 1l; D0)

Let (G; 2; 1l; D0) be an instance with individual deadlines, where G is a graph of width two.
From Theorem 5.15, Algorithms UET Deadline modification and UET List scheduling

construct an in-time assignment of starting times for (G; 2; 1l; D0), if such an assignment exists. If
such an assignment does not exist, the algorithms construct a minimum-tardiness assignment of
starting times.

Theorem 5.16. Let (G;m; 1l; D0) be an instance with individual deadlines, where G is a graph of

width two. Algorithms UET Deadline modification and UET List scheduling construct a

minimum-tardiness assignment of starting times for (G;m; 1l; D0) in O(n2) time.

Proof. Let (G;m; 1l; D0) be an instance with individual deadlines, where G is a graph of width
two. Assume the tardiness of a minimum-tardiness schedule for (G;m; 1l; D0) equals `. Consider

20

the instance (G; 2; 1l; D0
0), where D

0
0(u) = D0(u) + ` for all tasks u of G. Then every minimum-

tardiness schedule for (G;m; 1l; D0) is an in-time schedule for (G; 2; 1l; D0
0). Let (G;m; 1l; D0) be

the strongly D0
0-consistent instance constructed by Algorithm UET Deadline modification

and (G; 2; 1l; D) a strongly D0-consistent instance. Using Observation 5.3, we �nd D(u) = D0(u)�
` for all tasks u of G. Consequently, every priority list for (G; 2; 1l; D0) is a priority list for
(G; 2; 1l; D) as well. Theorem 5.15 states that, using a priority list of (G; 2; 1l; D0), Algorithm List

scheduling constructs an in-time assignment of starting times � for (G; 2; 1l; D0
0). � is also

feasible for (G; 2; 1l; D0). Since every task is completed at or before time D0(u)+ `, the maximum
tardiness of � (as an assignment of starting times for (G; 2; 1l; D0)) is at most `. Therefore � is a
minimum-tardiness assignment of starting times for (G; 2; 1l; D0).

The algorithm can also be used to construct minimum-length schedules for instances (G; 2; 1l),
where G is a graph of width two.

Theorem 5.17. Let (G; 2; 1l) be an instance with G a graph of width two. Let D0(u) = n for

all tasks u of G. Then the assignment of starting times for (G; 2; 1l; D0) constructed by Algo-

rithms UET Deadline modification and UET List scheduling is a minimum-length assign-

ment of starting times for (G; 2; 1l).

Proof. Let (G; 2; 1l) be an instance with G a graph of width two. De�ne D0(u) = n for all tasks u of
G. Let (G; 2; 1l; D) be the stronglyD0-consistent instance computed by AlgorithmUET Deadline

modification. There is an in-time schedule for (G; 2; 1l; D0). Let ` be the length of a minimum-
length schedule for (G; 2; 1l). De�ne D0

0(u) = ` for all tasks u of G. Then there is an in-time
schedule for (G; 2; 1l; D0

0). Assume (G; 2; 1l; D0) is the strongly D0
0-consistent instance computed

by Algorithm UET Deadline modification. From Observation 5.3, D(u) = D0(u)+ (n� `) for
all tasks u of G. Hence any priority list for (G; 2; 1l; D) is a priority list for (G; 2; 1l; D0). Using a
priority list for (G; 2; 1l; D0), Algorithm UET List scheduling constructs an in-time assignment
of starting times for (G; 2; 1l; D0

0). Hence it constructs such an assignment using a priority list
for (G; 2; 1l; D). Let � be this assignment of starting times. Since � is an in-time assignment
of starting times for (G; 2; 1l; D0

0), �(u) � ` � 1 for all tasks u of G. Hence � corresponds to a
minimum-length schedule for (G; 2; 1l).

So minimum-length schedules for instances (G; 2; 1l), where G is a graph of width two can
be constructed in O(n2) time. This is more e�cient than the dynamic-programming algorithm

presented in the previous section, which uses O(n
2
p
np

logn
) time to construct a decomposition into

disjoint chains. As a result, for each �xed w � 2, a minimum-length schedule for instances
(G;m; 1l), where G is a graph of width w can be constructed in O(nw) time. If G is a graph of
width one (a single chain), a minimum-length schedule for an instance (G;m; 1l) can be constructed
in O(n+ e) time.

5.2 Arbitrary task lengths

In this section, we give a generalisation of the algorithm for scheduling instances (G; 2; 1l) that
was presented in Section 5.1. A straightforward way of constructing a schedule for an instance
(G; 2; �), where G is a graph of width two is splitting each task u of G in �(u) unit-length tasks.
This results in an instance (G1l; 2; 1l). However, the number of tasks of G1l equals

P
u �(u), which

is pseudo-polynomial in the input length of the original instance (G; 2; �). In addition, the length
of a minimum-length schedule for (G1l; 2; 1l) is not polynomial in the length of (G; 2; �). In order
to present a polynomial-time algorithm that constructs minimum-length schedules for instances
(G; 2; �), we have to prove some properties of minimum-tardiness schedules for instances (G1l; 2; 1l)
constructed by Algorithms UET Deadline modification and UET List scheduling and use
these to construct schedules for instances (G; 2; �). In this section, we will only consider instances
(G; 2; �), where G is a graph of width two, since Algorithms UET Deadline modification

and UET List scheduling the UET-algorithm do not construct minimum-tardiness schedules
for instances (G;m; 1l) with G a graph of width w � 3.

21

Lemma 5.18. Let (G; 2; 1l; D) be an instance with strongly D0-consistent deadlines, where G is

a graph of width two. Let u1; u2 be two tasks of G. If u2 is the only child of u1, then D(u1) =
minfD0(u1); D(u2)� 1g.
Proof. Let (G; 2; 1l; D) be an instance with strongly D0-consistent deadlines, where G is a graph of
width two. Let u1 and u2 be tasks of G, such that u2 is the only child of u1. Then ND(u1; D(u2)) �
1, so D(u1) � D(u2) � 1. We will assume that D(u1) 6= D0(u1). In that case, D(u1) = d � 1��
1
2 (ND(u1; d) + PD(u1; d)� 1)

�
for some d. If d = D(u2), then ND(u1; d) � 1 and D(u1) =

D(u2) � 1. We may assume d > D(u2). ND(u1; d) = ND(u2; d) + 1, because every successor
v 6= u2 of u1 is a successor of u2 as well. In addition, PD(u1; d) = PD(u2; d). Therefore

D(u1) = d� 1� � 12 (N(u1; d) + P (u1; d)� 1)
�

= d� 1� � 12 (N(u2; d) + P (u2; d))
�

� d� 2� � 12 (N(u2; d) + P (u2; d)� 1)
�

� D(u2)� 1:

So D(u1) = D(u2) + 1. As a result, D(u1) = minfD0(u1); D(u2)� 1g.
Consider an instance (G; 2; 1l; D) with strongly D0-consistent deadlines and G a graph of width

two. Let u1 and u2 be two tasks of G, such that there is an arc from u1 to u2. If u2 is the only
child of u1 and u1 is the only parent of u2, then the arc from u1 to u2 is called a bridge.

Lemma 5.19. Let (G; 2; 1l; D) be an instance with strongly D0-consistent deadlines, where G is

a graph of width two. Let � be the assignment of starting times for (G; 2; 1l; D) constructed by

Algorithm UET List scheduling. Let u1 and u2 be two tasks of G, such that u1 is a parent u2.
If the arc from u1 to u2 is a bridge, then �(u2) = �(u1) + 1.

Proof. Let (G; 2; 1l; D) be an instance with strongly D0-consistent deadlines, where G is a graph
of width two. Let � be the assignment of starting times for (G; 2; 1l; D) constructed by Algo-
rithm UET List scheduling. Let u1 and u2 be two tasks of G. Assume u2 is the only child of
u1 and u1 is the only parent of u2. Obviously, �(u2) � �(u1) + 1. Suppose �(u2) > �(u1) + 1.
u2 is available at time �(u1) + 1, but is not scheduled. At most two tasks of G are ready at time
�(u1) + 1. Consequently, either two parents of u2 are executed at time �(u1), or another child of
u1 is scheduled at time �(u1) + 1. Since the arc from u1 to u2 is a bridge, this is impossible. So
�(u2) = �(u1) + 1.

The idea of constructing a schedule for instances (G; 2; �;D0) coincides with that of construct-
ing schedules for instances with unit-length tasks. Let (G1l; 2; 1l; D1l

0) be the instance constructed
from (G; 2; �;D0) by splitting every task of G into a chain of unit-length tasks. Such an instance
is de�ned as follows. If u is a task of G, then (u; 1); : : : ; (u; �(u)) are tasks of G1l, such that
(u; 1) � : : : � (u; �(u)) and for every arc (u1; u2) of G, ((u1; �(u1)); (u2; 1)) is an arc of G1l.
Moreover, D1l

0(u; i) = D0(u)� �(u) + i.
Deadline modi�cation is used to compute instances (G; 2; �;D), such that the deadlines D(u)

coincide with deadlines D1l of strongly D1l
0-consistent instances (G

1l; 2; 1l; D1l). This will allow us
to construct a schedule for (G; 2; �;D0) that does not violate any deadline using the structure of
a schedule for (G1l; 2; 1l; D1l

0).

In order to compute instances (G; 2; �;D) with deadlines corresponding to those of strongly
D1l

0-consistent instances (G1l; 2; 1l; D1l), not only complete tasks have to be taken into account.
Consider an instance (G; 2; �;D), where G is a graph of width two. Let u be a task of G. �(u; d)
denotes the number of unit-length parts of u that are completed before time d, if u is executed at
time D(u)� �(u). More formally,

�(u; d) = 0; if d � D(u)� �(u)
= �(u)�D(u) + d; if D(u)� �(u) < d < D(u)
= �(u); if d � D(u).

22

This is used to de�ne ND(u1; u2; d).

ND(u1; u2; d) =
X

u1;u2�v
�(v; d):

ND(u1; u2; d) equals the total number of unit-length parts of the common successors u1 and u2
that are completed at time d in an in-time schedule for (G; 2; �;D). The de�nition of PD(u1; u2; d)
coincides with the one for instances (G1l; 2; 1l; D1l) with G1l a graph of width two.

PD(u1; u2; d) = 1; if there are two common successors v1 and v2 of u1 and u2,
such that D(v1; v2) = d and D(v1) = D(v2) = d+ 1

= 0; otherwise.

Again we use the shorthand notations ND(u; d) = ND(u; u; d) and PD(u; d) = PD(u; u; d).
The de�nitions of ND(u1; u2; d) and PD(u1; u2; d) can be used to de�ne instances with strongly

D0-consistent deadlines. This de�nition coincides with De�nition 5.2 for instances (G; 2; 1l; D).

We will present the deadline modi�cation algorithm for instances (G; 2; �;D0), such that only
tasks of G of length one have more than one parent or more than one child. Such a graph can
be constructed from a graph with arbitrary task lengths by splitting each task u of length at
least two into three tasks u1, u2 and u3, such that u1 � u2 � u3 and �(u1) = �(u3) = 1 and
�(u2) = �(u)� 2. Note that if �(u) = 2, then the second task does not exist. This construction
takes only linear time. From now on, we will only consider this kind of graphs.

The deadline modi�cation algorithm, Algorithm Deadline modification, is similar to Algo-
rithm UET Deadline modification. It is shown in Figure 10. Like for scheduling of instances
(G;m; 1l; D0), D denotes the maximum original deadline.

Algorithm Deadline modification

Input: An instance (G; 2; �;D0) with individual deadlines, where G is a graph of width two.
Output: An strongly D0-consistent instance (G; 2; �;D).
1. let (u1; : : : ; un) be a topologically sorted list of tasks of G
2. for i := n downto 1
3. do D(ui) := D0(ui)
4. if u1 has exactly one child v
5. then D(ui) := minfD(ui); D(v)� �(v)g
6. else for d := 1 to D
7. do if ND(ui; d) + PD(ui; d) � 1
8. then D(ui) := minfD(ui); d� 1�d 12 (ND(ui; d) +PD(ui; d)� 1)eg
9. D(ui; ui) := D(ui)
10. for j := n downto i+ 1
11. do D(ui; uj) := min fD(ui); D(uj)g
12. D(uj ; ui) := min fD(ui); D(uj)g
13. if D(uj) = D(ui)
14. then for d := 1 to D
15. do if ND(ui; uj ; d) + PD(ui; uj ; d) = 2(d�D(ui)� 1) + 1
16. then D(ui; uj) := D(ui)� 1
17. D(uj ; ui) := D(ui)� 1

Figure 10: The deadline modi�cation algorithm for instances (G; 2; �;D0)

For instances (G; 2; �;D0), the length of a minimum-length schedule is not polynomial in the
number of tasks. If all values d are considered by the algorithm, then its running time is pseudo-
polynomial in its input length. We will show that Algorithm Deadline modification needs to
consider only O(n) di�erent values of d.

23

Lemma 5.20. Let (G; 2; �;D) be a strongly D0-consistent instance, where G is a graph of width

two. Let u be a task of G and let d � D. Then

�(u; d� 1) � �(u; d) � �(u; d� 1) + 1:

Proof. Let (G; 2; �;D) be a strongly D0-consistent instance, where G is a graph of width two. Let
u be a task of G and let d � D.

Case 1. d � D(u)� �(u).
Clearly, �(u; d) = �(u; d� 1) = 0.

Case 2. D(u)� �(u) < d < D(u).
�(u; d) = �(u)�D(u)+ d. If D(u)��(u) < d� 1 < D(u), then �(u; d� 1) = �(u)�D(u)+
d� 1 = �(u; d)� 1. Otherwise, d� 1 = D(u)� �(u) and �(u; d) = �(u)�D(u) + d = 1. So
�(u; d� 1) = 0 = �(u; d)� 1.

Case 3. d � D(u).
�(u; d) = �(u). If d � 1 � D(u), then �(u; d � 1) = �(u) = �(u; d). Otherwise, D(u) = d
and �(u; d� 1) = �(u)�D(u) + d� 1 = �(u)� 1 = �(u; d)� 1.

Hence �(u; d) = �(u; d� 1) or �(u; d) = �(u; d� 1) + 1.

Lemma 5.21. Let (G; 2; �;D) be a strongly D0-consistent instance, where G is a graph of width

two. Let u1; u2 be two tasks of G. Let d1 < d2 � D. Then

ND(u1; u2; d2)�ND(u1; u2; d1) � 2(d2 � d1):

Proof. Let (G; 2; �;D) be a strongly D0-consistent instance, where G is a graph of width two. Let
u1; u2 be two tasks of G. Let d1 < d2 � D.

ND(u1; u2; d2)�ND(u1; u2; d1) =

d2�1X
d=d1

(ND(u1; u2; d)�ND(u1; u2; d� 1)) :

Suppose ND(u1; u2; d2) � ND(u1; u2; d1) > 2(d2 � d1). Then, for some d, d1 � d � d2 � 1,
ND(u1; u2; d)�ND(u1; u2; d� 1) � 3. From Lemma 5.20, there are at least three tasks v1; v2; v3,
such that �(vi; d) = �(vi; d�1)+1. �(vi; d) � 1, so d � D(vi)��(ui)+1. BecauseG has width two,
we may assume v1 � v2. Since (G; 2; �;D) is stronglyD0-consistent,D(v1) � D(v2)��(v2) � d�1.
Hence �(v1; d�1) = �(v1; d) = �(v1). Contradiction. Therefore ND(u1; u2; d2)�ND(u1; u2; d1) �
2(d2 � d1).

Now we can prove that the deadline modi�cation algorithm only needs to consider values d for
which a task or pair of tasks with deadline d exists.

Lemma 5.22. Algorithm Deadline modification needs to consider only O(n) values of d.

Proof. Suppose that during the execution of the deadline modi�cation algorithm a deadline D(u)
or D(u1; u2) is decreased when a pair (u; d) or a triple (u1; u2; d) is considered and there is no task
or pair of tasks with deadline d.

Case 1. D(u) is decreased, when (u; d) is considered.
In that case, ND(u; d) + PD(u; d) � 1 and D(u) > d � 1 � � 12 (ND(u; d) + PD(u; d)� 1)

�
.

There are no pairs with deadline d, hence PD(u; d) = 0. We may assume that u has more
than one child. Consequently, every child of u has unit length. Since ND(u; d) � 1, there is
a child v of u, such that �(v; d) = 1. Let d0 = minu�wD(w). In that case, d > d0 > D(u)
and ND(u; d

0) � 1. From Lemma 5.21, ND(u; d
0) � ND(u; d) � 2(d � d0). Obviously,

PD(u; d
0) � PD(u; d) and ND(u; d

0) + PD(u; d
0) � 1. Therefore

24

D(u) � d0 � 1� � 12 (ND(u; d
0) + PD(u; d

0)� 1)
�

� d0 � 1� � 12 (ND(u; d) + PD(u; d)� 2(d� d0)� 1)
�

= d0 � (d0 � d)� � 12 (ND(u; d) + PD(u; d)� 1)
�

= d� 1� � 12 (ND(u; d) + PD(u; d)� 1)
�
:

Contradiction. So D(u) is not decreased, when (u; d) is considered.

Case 2. D(u1; u2) is modi�ed, when (u1; u2; d) is taken into account.
In that case, ND(u1; u2; d) + PD(u1; u2; d) = 2k + 1 and D(u1) = D(u2) = d� 1� k, where
k = d � D(u1) � 1. Since D(u1) = D(u2), u1 and u2 are incomparable. We may assume
D(u1; u2) > d� 2� k, otherwise this modi�cation is not necessary. Since there are no pairs
of tasks with deadlines d, PD(u1; u2; d) = 0. Suppose u1 has a child v, such that the arc from
u1 to v is a bridge. Then v is no successor of u2, so ND(u1; d) � ND(u1; u2; d) + 1 = 2k+2.
Therefore D(u1) � d � 2� k. So u1 cannot have a child v, such that the arc from u1 to v
is a bridge. The same holds for u2. So all children of u1 and u2 have unit length. De�ne
d0 = minu1;u2�wD(w). Clearly, d0 > D(u1) = D(u2) and d0 < d. Using Lemma 5.21, we
�nd ND(u1; u2; d

0) � ND(u1; u2; d) � 2(d � d0). So ND(u1; u2; d
0) � 2(d0 �D(u1) � 1) + 1.

If ND(u1; u2; d
0) > 2(d0 � D(u1) � 1) + 1, then ND(u1; d

0) � 2(d0 � D(u1) � 1) + 2 and
D(u1) � d0�2�(d0�D(u1)�1) = D(u1)�1, which is impossible. ThereforeND(u1; u2; d

0) =
2(d0�D(u1)�1)+1. Consequently,D(u1; u2) � d0�2�(d0�D(u1)�1) = D(u1)�1 = d�2�k.
Contradiction. So this modi�cation is not necessary.

Hence Algorithm Deadline modification only has to consider values d for which a task or pair
of tasks with deadline d exists. Since minfD(u1); D(u2)g � 1 � D(u1; u2) � minfD(u1); D(u2)g,
at most 2n values d have to be taken into account.

This result shows that a strongly D0-consistent instance (G; 2; �;D) with G a graph of width
two can be computed in polynomial time. Like for instances (G1l; 2; 1l; D1l), O(n) tasks and pairs of
tasks are taken into account. For every pair of tasks (u1; u2) of G, the algorithm computes values
ND(u1; u2; d) and PD(u1; u2; d) for all d, such that a task or pair of tasks exists with deadline d.
Computing a value ND(u1; u2; d) takes constant time for each common successor of u1 and u2, so
O(n) time for every d. The values PD(u1; u2; d) can be computed in O(n) time by traversing all
common successors of u1 and u2 and looking for tasks v1 and v2, such that D(v1) = D(v2) = d+1
and D(v1; v2) = d for some d.

Obviously, the rest of the algorithm uses O(n2) time. Since the algorithm needs to consider
O(n) pairs of tasks, a strongly D0-consistent instance is constructed in O(n3) time.

Theorem 5.23. Let (G; 2; �;D0) be an instance with individual deadlines, where G is a graph of

width two. Then Algorithm Deadline modification computes a strongly D0-consistent instance

(G; 2; �;D) in O(n3) time.

Next, it will be shown that the deadlines D(u) for an instance (G; 2; �;D) constructed by Algo-
rithm Deadline modification correspond to the deadlines D1l(u) of the strongly D1l

0-consistent
instance (G1l; 2; 1l; D1l). We will use notations N1l

D1l((u1; i1); (u2; i2); d) and P
1l
D1l((u1; i1); (u2; i2); d)

for instances (G1l; 2; 1l; D1l).
It will be shown that D(u) equals D1l(u; �(u)). This is done by proving that ND(u1; u2; d) =

N1l
D1l((u1; �(u1)); (u2; �(u2)); d) and PD(u1; u2; d) = P 1l

D1l((u1; �(u1)); (u2; �(u2)); d) for all tasks
u1; u2 of G and all d.

Lemma 5.24. Let (G; 2; �;D) be a strongly D0-consistent instance, where G is a graph of width

two. Let (G1l; 2; 1l; D1l) be a strongly D1l
0-consistent instance. Let u1; u2 be two tasks of G. Then

D(u1; u2) = D1l((u1; �(u1)); (u2; �(u2))).

Proof. Let (G; 2; �;D) be a strongly D0-consistent instance, where G is a graph of width two.
Let (G1l; 2; 1l; D1l) be a strongly D1l

0-consistent instance. Let u1; u2 be two tasks of G. Assume
for all pairs of successors (v1; v2) of u1 and u2 in G, D(v1; v2) = D1l

D1l((v1; �(v1)); (v2; �(v2))).

25

Let d � maxuD(u). Suppose v is a common successor of u1 and u2. In G1l, v is split into
�(v) unit-length tasks (v; 1); : : : ; (v; �(v)). We need to prove that �(v; d) equals the number of
tasks of (v; 1); : : : ; (v; �(v)) with deadline at most d. Since (G; 2; �;D) is strongly D0-consistent
and (G1l; 2; 1l; D1l) strongly D1l

0-consistent, D
1l(v; i) = D(v) � �(v) + i. Hence D1l(v; i) � d, if

i � d�D(u) + �(v).

Case 1. d � D(v) � �(v).
�(v; d) = 0. From Lemma 5.18, D1l(v; i) = D(v) � �(v) + i � (d+ �(v)) � �(v) + i � d + 1
for all i. Consequently, �(v; d) equals the number of tasks (v; i) with D1l(v; i) � d.

Case 2. D(v) � �(v) < d < D(v).
�(v; d) = �(v)�D(v)+d. Using Lemma 5.18, we �nd that D1l(v; i) � d, if i � d�D(u)+�(v).
So there are exactly �(v)�D(v) + d tasks (v; i) with D1l(v; i) � d.

Case 3. d � D(v).
�(v; d) = �(d). Obviously, D1l(v; i) � D(v) � d for all i. Hence �(v; d) equals the number of
tasks (v; i) with D1l(v; i) � d.

So ND(u1; u2; d) = N1l
D1l((u1; �(u1)); (u2; �(u2)); d). Next, it will be shown that PD(u1; u2; d) = 1

if and only if P 1l
D1l((u1; �(u1)); (u2; �(u2)); d) = 1.

()) Suppose PD(u1; u2; d) = 1. Then u1 and u2 have two common successors v1 and v2
in G, such that D(v1) = D(v2) = d + 1 and D(v1; v2) = d. Using induction, we get
D1l(v1; �(v1)) = D1l(v2; �(v2)) = d + 1 and D1l((v1; �(v1)); (v2; �(v2))) = d. As a result,
P 1l
D1l((u1; �(u1)); (u2; �(u2)); d) = 1.

(() Suppose P 1l
D1l((u1; �(u1)); (u2; �(u2)); d) = 1. Then there are two common successors (v1; i1)

and (v2; i2) of (u1; �(u1)) and (u2; �(u2)), such that D1l(v1; i1) = D1l(v2; i2) = d + 1 and
D1l((v1; i1); (v2; i2)) = d. From Lemma 5.8, for some d0, D1l((v1; i1); (v2; i2)) = d0�2�k and
N1l
D1l((v1; i1); (v2; i2); d

0) + P 1l
D1l((v1; i1); (v2; i2); d

0) = 2k + 1, where k = d0 � d � 1. We may
assume d0 > d. If N1l

D1l((v1; i1); d
0) + P 1l

D1l((v1; i1); d
0) � 2k + 2, then D1l(v1; i1) � d� 2� k.

Hence N1l
D1l((v1; i1); d

0) + P 1l
D1l((v1; i2); d

0) = 2k + 1. The same holds for (v2; i2). If (v1; i1)
has more than one immediate successor, then i1 = �(v1). So assume (w; i) is the only child
of (v1; i1) in G

1l, then D1l(w; i) is minimum among the deadlines of the successors of (v1; i1).
So (w; i) is also a successor of (v2; i2). Hence the arc from (v1; i1) to (w; i) is not a bridge.
So i1 = �(v1) and i2 = �(v2). Using induction, we �nd D(v1; v2) = D1l((v1; i1); (v2; i2)) = d,
D(v1) = D1l(v1; i1) = d+ 1 and D(v2) = D1l(v2; i2) = d+ 1. As a result, PD(u1; u2; d) = 1.

So PD(u1; u2; d) = 1 if and only if P 1l
D1l((u1; �(u1); (u2; �(u2); d) = 1. Therefore PD(u1; u2; d) =

P 1l
D1l((u1; �(u1)); (u2; �(u2)); d) for all d. As a result, D(u1; u2) = D1l((u1; �(u1)); (u2; �(u2))).

We consider instances (G; 2; �;D), where G is a graph of width two in which every task u of
length at least two is divided in three parts u1, u2, u3. From Lemma 5.19, u2 and u3 may be
executed immediately after u1. Hence we will only consider the tasks u1 to determine a starting
time for every task. Algorithm List scheduling shown in Figure 11 assigns a starting to every
task.

Obviously, the only tasks that can be executed at time t are the ready tasks. Since G is a
graph of width two, a task that becomes ready at time t is executed at time t or at time t + 1.
The list scheduling algorithm only considers times t, such that a task �nishes at time t or at time
t� 1. So O(n) times are taken into account.

If we consider the transitive reduction of G, then the availability of a task u1 can be checked
in constant time: u1 is available at time t, if

1. every parent of u1 is completed at time t;

2. at most one parent of u1 �nishes at time t; and

26

Algorithm List scheduling

Input: A strongly D0-consistent instance (G; 2; �;D), where G is a graph of width two in which
only tasks of length one have more than child or more than one parent.

Output: A feasible assignment of starting times � for (G; 2; �;D).
1. assume L = (u11; : : : ; u

1
n) with D(u11) � : : : � D(u1n)

2. t := 0
3. while L contains unscheduled tasks
4. do tnext :=1
5. for i := 1 to n
6. do if u1i is ready
7. then if u1i is available at time t
8. then �(u1i) := t
9. �(u2i) := �(u1i) + �(u1i)
10. �(u3i) := �(u2i) + �(u2i)
11. tnext := minftnext; �(u3i) + �(u3i)g
12. else tnext := t+ 1
13. t := tnext

Figure 11: The list scheduling algorithm for instances (G; 2; �;D)

3. for all parents v of u1, if v �nishes at time t, then no other child of v starts at time t.

Since every task has at most two parents and at most two children, checking the availability of a
task takes O(1) time.

Hence, given the transitive reduction of G, Algorithm Deadline modification constructs
a feasible assignment of starting times in O(n2) time. Using the result of Goral�c��kova and
Koubek [12], we �nd that the transitive reduction of a graph of width two can be constructed
in O(n2) time. Consequently, assigning starting times takes O(n2) time.

Theorem 5.25. Let (G; 2; �;D) be an instance with strongly D0-consistent deadlines with G a

graph of width two. Then Algorithm List scheduling constructs a feasible assignment of starting

times for (G; 2; �;D) in O(n2) time.

To prove that Algorithms Deadline modification and List scheduling construct in-time
assignments of starting times for instances (G; 2; �;D0), it will be proved that the starting times
for (G; 2; �;D0) coincide with the starting times for (G1l; 2; 1l; D1l

0) computed by Algorithms UET
Deadline modification and UET List scheduling. Lemma 5.24 shows that the deadlines of
(G; 2; �;D) coincide with those of (G1l; 2; 1l; D1l). In particular, D(u1) = D1l(u1; 1) for all tasks u
of G. In addition, Algorithm UET List scheduling constructs an assignment of starting times
�1l in which all tasks (u; 1); : : : ; (u; �(u)) are executed without interruption. Therefore we only
need to show that �(u1) = �1l(u1; 1) for all tasks u of G, where � is the assignment of starting
times for (G; 2; �;D0).

Lemma 5.26. Let (G; 2; �;D0) be an instance with individual deadlines, where G is a graph

of width two. Let � be the assignment of starting times for (G; 2; �;D0) constructed by Algo-

rithms Deadline modification and List scheduling. There is an assignment of starting

times �1l for (G1l; 2; 1l; D1l
0) constructed by Algorithms UET Deadline modification and UET

List scheduling, such that �(u1) = �1l(u1; 1) for all tasks u of G.

Proof. Let (G; 2; �;D0) be an instance with individual deadline with G a graph of width two.
Let � be the assignment of starting times for (G; 2; �;D0) constructed by Algorithms Deadline
modification and List scheduling. Assume � is constructed using list L = (u11; : : : ; u

1
n). In

that case, D(u11) � : : : � D(u1n). Let L
1l be a priority list for the strongly D0-consistent instance

(G1l; 2; 1l; D1l). Let �1l be the assignment of starting times constructed by Algorithm UET List

scheduling using L1l. Using induction, one can prove that �(u1) = �1l(u1; 1) for all tasks u of

27

G. This is obvious for the sources of G. Let u be a task of G, such that �(v1) = �1l(v1; 1) for all
tasks v occurring before u in L. The last predecessors of u and (u1; 1) �nish at the same time,
so both tasks become available at the same time. Since ((u11; 1); : : : ; (u

1
n; 1)) is a sublist of L1l,

�(u1) = �1l(u1; 1). Using induction, we �nd �(u1) = �1l(u1; 1) for all tasks u of G.

Since the schedules constructed by Algorithms Deadline modification and List schedul-
ing coincide with those built by Algorithms UET Deadline modification and UET List

scheduling, minimum-tardiness schedules for instances (G; 2; �;D0) with G a graph of width
two can be constructed in polynomial time.

Theorem 5.27. Let (G; 2; �;D0) be an instance with individual deadlines with G a graph of width

two. Then Algorithms Deadline modification and List scheduling construct a minimum-

tardiness schedule for (G; 2; �;D0) in O(n3) time.

Consider the instance (G; 2; �), where G is a graph of width two. De�ne D0(u) =
P

v �(v) for
all tasks u of G. Using Observation 5.3, it is not di�cult to prove that the schedule for (G; 2; �;D0)
constructed by Algorithms Deadline modification and List scheduling is a minimum-length
schedule for (G; 2; �).

Theorem 5.28. Let (G; 2; �) be an instance with G a graph of width two. Let D0(u) =
P

v �(v)
for all tasks u of G. Then the assignment of starting times for (G; 2; �;D0) constructed by Al-

gorithms Deadline modification and List scheduling is a minimum-length assignment of

starting times for (G; 2; �).

6 An NP-completeness result

In the previous section, a polynomial-time algorithm for constructing minimum-length schedules
for instances (G; 2; �) with G a graph of width two was presented. In this section, it will be
shown that if G has width w � 3, then constructing a minimum-length schedule for (G; 2; �) is
NP-hard. This is done using a reduction from Partition. Partition is the following well-known
problem [11].

Problem. Partition
Instance. A set of positive integers A = fa1; : : : ; ang.
Question. Is there a subset A0 of A, such thatX

a2A0

a =
X

a2AnA0

a?

Partition is an NP-complete problem [11]. Let Width3On2 be the following problem.

Problem. Width3On2

Instance. An instance (G; 2; �), where G is a graph of width three and a positive integer B.
Question. Is there a schedule for (G; 2; �) of length at most B?

Using a reduction from Partition, it will be shown that Width3On2 is an NP-complete
problem.

Lemma 6.1. There is a polynomial reduction from Partition to Width3On2.

Proof. Let A = fa1; : : : ; ang be an instance of Partition. De�ne N =
P

a2A a and M = N + 1.
Construct an instance (G; 2; �) as follows. G is a graph consisting of three chains. The �rst two
chains, C1 and C2, consist of n+1 tasks c1i; c2i of length �(cji) =M , such that cj0 � : : : � cjn. The
third chain, C3, consists of n tasks u1; : : : ; un with lengths �(ui) = ai and precedence constraints
u1 � : : : � un. Let B = 1

2N + (n + 1)M . Now we can prove that A can be divided into two
disjoint subsets with equal sum if and only if there is a schedule for (G; 2; �) of length at most B.

28

()) Suppose there is a subset A1 of A, such that
P

a2A1
a =

P
a2AnA1

a. De�ne A2 = A n A1.
For each i, such that ai 2 Ap, set

�(ui) = p and �(ui) = iM +
X

j<i:aj2Ap
aj :

Furthermore, set �(c1i) = 1 and �(c2i) = 2 for all i and

�(c1i) = iM +
X

j�i:aj2A1

aj and �(c2i) = iM +
X

j�i:aj2A2

aj :

Clearly, �(cji+1) � �(cji) + M for all i; j, 0 � i � n, j = 1; 2. Furthermore, for all i,
0 � i � n� 1, such that ui+1 2 Ap,

�(ui+1) = (i+ 1)M +
P

j<i+1:aj2Ap aj
� iM +M
> iM + ai +

P
j<i aj

� �(ui) + �(ui):

So �(ui+1) > �(ui�1) + �(ui�1) for all i. Therefore (�; �) is a feasible schedule for (G; 2; �).
For all i, 1 � i � n, such that ui 2 Ap,

�(ui) = iM +
P

j<i:aj2Ap aj
= (i� 1)M +

P
j<i:aj2Ap aj +M

= �(cpi�1) + �(cpi�1);

and

�(ui) + �(ui) = iM +
P

j<i:aj2Ap aj + ai
= iM +

P
j<i+1:aj2Ap aj

= �(cpi):

So if ui is executed on processor p, it is executed immediately after cpi�1 and immediately
before cpi. So there is no idle time in the schedule. Hence the last task of G is completed at
time

1

2

2(n+ 1)M +

X
a2A

a

!
= (n+ 1)M +

1

2
N = B:

(() Suppose (�; �) is a schedule for (G; 2; �) of length at most B. Processor p can execute at most
n+1 tasks cji, otherwise the schedule length is at least (n+2)M > (n+1)M+

P
a2A a > B.

So both processors execute exactly n+1 tasks of lengthM . The sum of the execution lengths
of all tasks of G is 2B so there is no idle time in (�; �). De�ne

A1 = fai j �(ui) = 1g and A2 = fai j �(ui) = 2g:

Since (�; �) has no idle times,

X
a2A1

a = B � (n+ 1)M =
1

2

X
a2A

a:

The sum of the lengths of the tasks of G is O(
P

a2A a), so this reduction requires time and space
polynomial in the length of the instance of Partition. So there is a polynomial reduction from
Partition to Width3On2.

29

Corollary 6.2. Width3On2 in NP-complete.

Proof. Clearly, Width3On2 is an element of NP. From Lemma 6.1, Width3On2 is an NP-
complete problem.

It is easy to see that the same proof can be used to prove that constructing minimum-length
schedules for instances (G; 2; �) without communication delays, where G is a graph of width three
is NP-hard as well. Moreover, this proof can be generalised for instances (G;m; �), where G is a
graph of �xed width w � 3 and m < w.

Theorem 6.3. Let w � 3 and 2 � m < w. Constructing a minimum-length schedule for an

instance (G;m; �), where G is a graph of width w is NP-hard.

In the previous section, I proved that a minimum-length schedule for an instance (G; 2; �) with
G a graph of width two can be constructed in polynomial time. The complexity of constructing
such schedules for instances (G;w; �), where G is a graph of width w � 3 remains open. We will
deal with this problem in the next section.

7 Dynamic programming for arbitrary-length tasks

In this last section, it will be shown that a minimum-length schedule for instances (G;w; �) with
G a graph of constant width w can be constructed in polynomial time. Like in Section 4, we will
use a dynamic-programming approach.

Consider an instance (G;w; �), where G is a graph of width w. In a schedule (�; �) for (G;w; �),
at most w tasks can be executed simultaneously. As a result, any feasible assignment of starting
times for (G;1; �) is also feasible for (G;w; �). Chr�etienne and Picouleau [4] proved that there
exists a minimum-length schedule for (G;1; �) in which incomparable tasks are executed on
di�erent processors.

An assignment of starting times � for (G;1; �) is called greedy, if for all times t, no task u
with �(u) > t can start at time t without violating the feasibility of �. For every assignment of
starting times � for (G;1; �), there is a greedy assignment �0, whose length is at most that of �.
Hence there is a minimum-length schedule (�; �) for (G;1; �), such that � is a greedy assignment
of starting times and incomparable tasks are executed on di�erent processors. For such a schedule,
the number of potential starting times of a task is bounded.

Let est(u) denote the earliest starting time of a task u in a schedule for (G;1; �) without
communication delays. In other words,

est(u) = 0; if u is a source of G,
= max

v�u
(est(v) + �(v)); otherwise.

In schedules (�; �), such that � is a greedy assignment of starting times and �(u1) 6= �(u2) for
all incomparable tasks u1; u2, a task u is executed within the �rst n time slots after est(u).

Lemma 7.1. Let (�; �) be a schedule for (G;1; �), such that � is a greedy assignment of starting

times and �(u1) 6= �(u2) for all incomparable tasks u1; u2 of G. Then, for all tasks u of G,

est(u) � �(u) � est(u) + n� 1:

Proof. Let (�; �) be a schedule for (G;1; �), such that � is a greedy assignment of starting times
and �(u1) 6= �(u2) for all incomparable tasks u1; u2 of G. Obviously, �(u) � est(u). Denote by
lpp(u) the maximum number of predecessors of u on a path to u. Hence

lpp(u) = 0; if u is a source of G,
= max

v�u
(lpp(v) + 1); otherwise.

We can prove that �(u) � est(u) + lpp(u) for all tasks u of G. This is obvious for the sources of
G. Suppose �(v) � est(v) + lpp(v) for all predecessors v of u. Obviously, a task is executed at
most one time slot after the completion of the last of its predecessors. Consequently,

30

�(u) � max
v�u

(�(v) + �(v) + 1)

� max
v�u

(est(v) + lpp(v) + �(v) + 1)

� max
v�u

(est(v) + �(v)) + max
v�u

(lpp(v) + 1)

= est(u) + lpp(u):

Clearly, lpp(u) � n� 1. So est(u) � �(u) � est(u) + n� 1.

So there is a minimum-length schedule for (G;1; �), in which every task has at most n possible
starting times. Consequently, in a minimum-length schedule for (G;w; �), where G is a graph of
width w, each task has at most n potential starting times. It is easy to see that Lemma 7.1 is not
true for instances (G;m; �), such that m is smaller than the width of G.

The limited number of potential starting times will be used to present a dynamic-programming
algorithm. Let U be a pre�x of (G;1; �) and �U a feasible assignment of starting times for
(G0;1; �), where G0 is the subgraph of G induced by U and �U (u) < t for all u in U . Let U 0 be
a set of sources of G n U . The set of tasks U 0 is called available at time t with respect to U and
�U , if

1. �(v) + �(v) � t for all v � u, u 2 U 0;

2. for every u in U 0, at most one predecessor of u �nishes at time t; and

3. every task in U with completion time t has at most one successor in U 0.

Note that the availability of U 0 depends only on the starting times of the sinks of U : since �U (u) < t
for all u in U , a task of U that �nishes at time t is a sink of U .

Consider an instance (G;1; �). A timed pre�x of (G;1; �) is a pair (U; �U), where U is a
pre�x of (G;1; �) and �U is a feasible assignment of starting times for (G0;1; �), where G0 is the
subgraph of G induced by U and est(u) � �U (u) � est(u) + n� 1 for all u in U .

Let (U1; �U1
) and (U2; �U2

) be two timed pre�xes of (G;1; �) with U1 (U2. (U2; �U2
) is called

available with respect to (U1; �U1
), if there is a time t, such that

1. �U1
(u) < t for all u in U1;

2. U2 n U1 is available at time t with respect to U1 and �U1
;

3. �U2
(u) = �U1

(u) for all u in U1;

4. �U2
(u) = t for all u in U2 n U1; and

5. est(u) � t � est(u) + n� 1 for all u in U2 n U1.

Let Av(U; �U) denote the collection of timed pre�xes of (G;1; �) that are available with respect
to (U; �U).

Let � be a feasible greedy assignment of starting times for (G;1; �). Let t � maxu �(u).
De�ne U1 = fu 2 G j �(u) < tg and U2 = fu 2 G j �(u) � tg. Let �U1

and �U2
be the restrictions

of � to U1 and U2. Obviously, (U2; �U2
) is available at time t with respect to (U1; �U1

). Hence we
only need to consider timed pre�xes of (G;1; �).

Let (U; �U) be a timed pre�x of (G;1; �). L(U; �U) represents the length of a minimum-length
schedule (�; �) for (G;1; �), such that �(u) = �U (u) for all u in U . Then

L(VG; �VG) = max
u2G

�VG(u) + �(u)

and
L(U; �U) = min

(U 0;�U0)2Av(U;�U)
L(U 0; �U 0):

31

L(?; �?) corresponds to the length of a minimum-length schedule for (G;1; �).

Consider an instance (G;1; �), where G is a graph of width w with chain decomposition
C1; : : : ; Cw. Assume Ci = fci1; : : : ; ci`ig with ci1 � : : : � ci`i . Like in Section 4, a pre�x of
(G;1; �) can be represented by a sequence (b1; : : : ; bw) with 0 � bi � `i. A timed pre�x (U; �U)
of (G;1; �) can be represented by a tuple (b1; t1; : : : ; bw; tw), where (b1; : : : ; bw) corresponds to U
and ti = �U (cibi), if bi 6= 0. Otherwise, ti = �1.

Moreover, suppose 0 � bi � `i and est(cibi) � ti � est(cibi) + n � 1 for all i with bi > 0 and
ti = �1 for i, such that bi = 0, then the sequence (b1; t1; : : : ; bw; tw) coincides with the timed
pre�x (

Sw

i=1fci1; : : : ; cibig; �), where � is a (feasible) assignment of starting times for the instance
(G0;1; �), where G0 is the subgraph of G induced by

Sw

i=1fci1; : : : ; cibig and �(cibi) = ti for all i
with bi 6= 0.

To implement the computation of L(?; �?), a table T of dimension 2w is built. T contains
entries T [b1; t1; : : : ; bw; tw], where 0 � bi � `i and est(cibi) � ti � est(cibi) + n � 1 or ti = �1.
We start by setting T [b1; t1; : : : ; bw; tw] =1 for all sequences. Algorithm Table construction

shown in Figure 12 computes L(U; �U). Like in Section 4, seq(U; �U) represents the tuple that
corresponds to the timed pre�x (U; �U).

Algorithm Table construction(U; �U)
Input: An instance (G;1; �), where G is a graph of width w with chain decomposition C1; : : : ; Cw

and a timed pre�x (U; �U) of (G;1; �).
Output: A table T with T [seq(U; �U)] = L(U; �U).
1. if T [seq(U; �U)] =1
2. then if U = VG
3. then T [seq(U; �U)] := maxu �U (u) + �(u)
4. else for (U 0; �U 0) in Av(U; �U)
5. do Table construction(U 0; �U 0)
6. T [seq(U; �U)] := minfT [seq(U 0; �U 0)] j (U 0; �U 0) 2 Av(U; �U)g

Figure 12: The algorithm computing L(U; �U)

By applying Algorithm Table construction to the timed pre�x (?; �?), we construct a ta-
ble T with T [0;�1; : : : ; 0;�1] = L(?; �?). In addition, T [seq(U; �U)] = L(U; �U) for all timed
pre�xes (U; �U) of (G;1; �) for which a greedy schedule (�; �) exists with �(u) = �U (u) for all
u in U . Using these values, Algorithm Schedule construction constructs a minimum-length
assignment of starting times for (G;1; �).

Consider an instance (G;w; �), where G is a graph of width w with a chain decomposition
C1; : : : ; Cw. For a timed pre�x (U; �U) of (G;w; �), Algorithm Table construction determines
Av(U; �U). Since timed pre�xes are represented by sequences, the potential elements of this set
can be computed in O(2wn) time as follows. If (U 0; �U 0) is available with respect to (U; �U),
then U 0 n U is a set of sources of G n U , and for some t, �U 0(u) = t for all u 2 U 0 n U and
�U 0 (u) = �U (u) for all u in U . In addition, est(u) � t � est(u)+n� 1 for all u in U 0 nU . Assume
U is represented by (b1; : : : ; bw), then U 0 corresponds to a sequence (b1 + x1; : : : ; bw + xw) with
xi 2 f0; 1g. So computing all potential sets takes O(2w) time. For every set, there are at most
n possible starting times t. Checking the availability of a potential element takes O(w2) time.
Consequently, Algorithm Table construction uses O(w22wn) time for a timed pre�x (U; �U)
of (G;w; �).

A timed pre�x coincides with a tuple (b1; t1; : : : ; bw; tw) with 0 � bi � `i and est(cibi) � ti �
est(cibi) + n � 1, if bi > 0 and ti = �1, otherwise. Therefore the number of timed pre�xes

32

Algorithm Schedule construction

Input: An instance (G;1; �) and a table T , such that T [seq(U; �U)] = L(U; �U) for all timed
pre�xes (U; �U) of (G;1; �) that might occur in a greedy schedule for (G;1; �).

Output: A minimum-length assignment of starting times � for (G;1; �).
1. t := 0
2. U := ?
3. � := ?
4. while U 6= VG
5. do determine (U 0; �U 0) in Av(U; �U) with minimum T [seq(U 0; �U 0)]
6. for u 2 U 0 n U
7. do �(u) := t
8. t := t0

9. U := U 0

Figure 13: The algorithm constructing a minimum-length schedule

considered by Algorithm Table construction is at most

wY
i=1

(n`i + 1) � 2wnw
wY
i=1

`i � 2wnw
wY
i=1

n

w
� n2w:

As a result, Algorithm Table construction determines the length of an optimal schedule for
(G;w; �) in O(w22wn2w+1) time.

Algorithm Schedule construction starts with timed pre�x (?; �?). For the timed pre�x
(U; �U), it determines the best timed pre�x (U 0; �U 0) in Av(U; �U) and continues with (U 0; �U 0).
Then U (U 0, so at most n sets Av(U; �U) have to be computed by Algorithm Schedule con-

struction. So it uses O(w22wn2) time to build an optimal schedule for G.

Theorem 7.2. Let (G;w; �) be an instance, such that G is a graph of width w. Then Algo-

rithms Chain decomposition, Table construction and Schedule construction construct

a minimum-length assignment of starting times for (G;w; �) in O(w22wn2w+1) time.

For every �xed w, Algorithms Table construction and Schedule construction con-
struct optimal schedules in polynomial time.

Theorem 7.3. Let w be a constant. Let (G;w; �) be an instance, where G is a graph of width w.
Then Algorithms Chain decomposition, Table construction and Schedule construction

construct a minimum-length assignment of starting times for (G;w; �) in O(n2w+1) time.

It is not di�cult to see that the dynamic-programming approach can be used to construct sched-
ules that are optimal with respect to other objective functions. Unlike the dynamic-programming
algorithm presented in Section 4, it cannot be used for other scheduling models.

For example, if the maximum communication delay exceeds the smallest task length, then there
need not be a minimum-length schedule in which incomparable tasks are executed on di�erent
processors. Hence the number of potential starting times of a task is not polynomial in the
number of tasks. In that case, the running time of the dynamic-programming algorithm is no
longer polynomial in the number of tasks.

In addition, the dynamic-programming algorithm cannot be used if the processor assignment
is known in advance. Consider an instance (G;1; �; �) in which, for every task u, the processor
assignment �(u) is known in advance. In that case, the number of possible starting times in a
greedy schedule for (G;1; �; �) is not polynomial in the number of tasks of G. As a result, the
dynamic-programming approach is a pseudo-polynomial algorithm. It is unlikely that there is a
polynomial-time algorithm that constructs minimum-length schedules for instances (G;1; �; �):
Sotskov and Shakhlevich [17] proved that constructing a minimum-length schedule on three pro-
cessors for a job shop with three jobs is an NP-hard problem. This problem is a special case of

33

the problem of constructing minimum-length a schedule for an instance (G; 3; �; �), where G is a
graph of width three.

Concluding remarks

In this report, we studied the problem of scheduling graphs of bounded width with the objective
of minimising the makespan. An overview of the results is given in the following table. Consider
an instance (G;m; �). The following notations are used. w denotes the width of G, �(G) =P

u2VG �(u) and c is a positive integer.

unit-length tasks �(G) = O(nc) arbitrary task lengths

w = 1 O(n+ e) O(n+ e) O(n+ e)

w = 2 O(n2) O(nminf2c;3g) O(n3)

3 � w � m O(nw) O(nminfcw;2w+1g) O(n2w+1)

w > m O(nw) O(ncw) NP-hard

Note that, in order to achieve the running times for instances (G;m; �), such that the sum
of the execution times is bounded by a polynomial p(n), one of the algorithms presented in this
report is used. Which algorithm to use depends on the degree of the polynomial p.

The algorithms for scheduling instances (G;m; 1l) (Algorithms UET Deadline modification

and UET List scheduling or Algorithms UET Table construction and UET Schedule

construction) have to be applied on the graph in which every task is split into a chain of unit-
length tasks. The dynamic-programming algorithm, Algorithms UET Table construction

and UET Schedule construction, have to use a di�erent de�nition of availability, since the
tasks of a chain corresponding to one task in the original graph have to be executed on one
processor without interruption. This alternative de�nition does not increase the complexity of the
algorithms.

References

[1] H.H. Ali and H. El-Rewini. An optimal algorithm for scheduling interval ordered tasks with
communication on N processors. Journal of Computer and System Sciences, 51(2):301{307,
October 1995.

[2] H. Alt, N. Blum, K. Mehlhorn and M. Paul. Computing a maximum cardinality matching in
a bipartite graph in time O(n1:5

p
m= logn). Information Processing Letters, 37(4):237{240,

February 1991.

[3] H.L. Bodlaender and M.R. Fellows. W[2]-hardness of precedence constrained k-processor
scheduling. Technical Report UU-CS-1994-14, Department of Computer Science, Utrecht
University, 1994.

[4] P. Chr�etienne and C. Picouleau. Scheduling with communication delays: a survey. In
P. Chr�etienne, E.G. Co�man, Jr., J.K. Lenstra and Z. Liu, editors, Scheduling Theory and

its Applications, pages 65{90. John Wiley & Sons, 1995.

[5] D. Coppersmith and S. Winograd. Matrix multiplication via algorithmic progressions. Journal
of Symbolic Computation, 9:251{280, 1990.

[6] T.H. Cormen, C.E. Leiserson and R.L. Rivest. Introduction to algorithms. MIT Press, Cam-
bridge, Massachusetts, 1990.

[7] R.P. Dilworth. A decomposition theorem for partially ordered sets. Annals of Mathematics,
51(1):161{166, January 1950.

34

[8] R.G. Downey and M.R. Fellows. Fixed-parameter intractability and completeness I: basic
results. SIAM Journal on Computing, 24(2):873{921, August 1995.

[9] L. Finta, Z. Liu, I. Milis and E. Bampis. Scheduling UET-UCT series-parallel graphs on two
processors. Technical Report RR 2566, INRIA, Sophia-Antipolis, France, May 1995.

[10] D.R. Fulkerson. Note on Dilworth's decomposition theorem for partially ordered sets. Pro-

ceedings of the AMS, 7:701{702, 1956.

[11] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-Completeness. Freeman, New York, 1979.

[12] A. Goral�c��kova and V. Koubek. A reduct-and-closure algorithm for graphs. In J. Be�cv�a�r,
editor, Mathematical Foundations of Computer Science 1979, number 74 in Lecture Notes in
Computer Science, pages 301{307, Berlin, 1979. Springer-Verlag.

[13] J.E. Hopcroft and R.M. Karp. A n
5

2 algorithm for maximum matchings in bipartite graphs.
SIAM Journal on Computing, 2(4):225{231, December 1973.

[14] J.K. Lenstra, M. Veldhorst and B. Veltman. The complexity of scheduling trees with com-
munication delays. Journal of Algorithms, 20(1):157{173, January 1996.

[15] R.H. M�ohring. Computationally tractable classes of ordered sets. In I. Rival, editor, Al-
gorithms and Order, pages 105{194, Dordrecht, the Netherlands, 1989. Kluwer Academic
Publishers.

[16] V.J. Rayward-Smith. UET scheduling with unit interprocessor communication delays. Dis-
crete Applied Mathematics, 18:55{71, 1987.

[17] Y.N. Sotskov and N.V. Shakhlevich. NP-hardness of shop-scheduling problems with three
jobs. Discrete Applied Mathematics, 59(3):237{266, 1995.

[18] T.A. Varvarigou, V.P. Roychowdhury, T. Kailath and E. Lawler. Scheduling in and out forests
in the presence of communication delays. IEEE Transactions on Parallel and Distributed

Systems, 7(10):1065{1074, October 1996.

[19] B. Veltman. Multiprocessor scheduling with communication delays. PhD thesis, Eindhoven
University of Technology, Eindhoven, the Netherlands, 1993.

[20] J. Verriet. Scheduling interval orders with release dates and deadlines. Technical Report UU-
CS-1996-12, Department of Computer Science, Utrecht University, March 1996. This report
has been revised and submitted for publication in Parallel Computing.

35

