Intervalizing Sandwich Graphs

Babette de Fluiter Hans L. Bodlaender
Department of Computer Science, Utrecht University
P.O. Box 80.089, 3508 TB Utrecht, the Netherlands

e-mail: { babette, hanst@cs.ruu.nl

Abstract

In this report, we consider the following problem: given two gra@as= (V,E;) and
G, = (G,E) such thate; C Ey, is there an interval grap8’ = (V,E’) with maximum
clique size at most three such th&at C E’ C E»?. We give arO(n?) algorithm for this
problem.

1 Introduction

In this report we consider a graph problem which models a problem arising in molecular biol-
ogy, namely NTERVALIZING SANDWICH GRAPHSor ISG. This problem is defined as follows.
Given are a positive integérand two graph§&; = (V,E;) andG, = (V, E,) with the same ver-

tex set, such thaE; C E,. The question is whether there is an interval gréph (V,E) such
thatE; C E C E,, and the maximum clique size & is at mosk. It has been shown that ISG

is NP-complete [Golumbic, Kaplan, and Shamir, 1994; Fellows, Hallett, and Wareham, 1993].
From the biological application it appears that the case in wkighsome fixed constant is
also of interest. For these cases, we denote the problei®§. Bodlaender and de Fluiter
[1996] have shown that-ISG is also NP-complete K > 4. However, for 2-ISG there is a
simple linear time algorithm. In this report, we consider 3-ISG: we give a quadratic algorithm
for this problem.

In Bodlaender and de Fluiter [1996, 1995], a restricted version of 3-1SG is discussed,
namely 3-ICG, or HREE-INTERVALIZING COLORED GRAPHS In 3-ICG, we are given a
graphG; = (V,E;) and a three-coloring : V — {1,2,3} of G, and the question is whether
there is an interval grap® = (V,E) with E; C E, such thatG is properly colored by. It
can be seen that 3-ICG is a restricted version of 3-ISG: if you have a @aph(V,E;) and a
three-coloringc of G, then this three-coloring can also be represented by the @aphV, E;)
with

E2 = {{uV} | UV eV ACU) # c(v)}

*This research was partially supported by the Foundation for Computer Science (S.l.0.N) of the Netherlands Or-
ganisation for Scientific Research (N.W.0O.) and by ESPRIT Long Term Research Project 20244 (project ALCOM
IT: Algorithms and Complexity in Information Technolpgy

2 Preliminaries

It is then easy to see th@; andG, form a yes-instance for 3-1SG if and only@®; andc form

a yes-instance for 3-ICG (note that a graph which is three-colorable has no cliques with more
that three vertices). The algorithm for 3-ICG that is presented in Bodlaender and de Fluiter
[1995] uses quadratic time. In this report, we generalize this algorithm for 3-ISG (although
this report can be read independently of Bodlaender and de Fluiter [1995]).

The report acts as a completion of Chapter 4 of de Fluiter [1997]: that chapter discusses the
algorithm for 3-1SG for the case that the input gr&phis biconnected. In this report, we give
the complete algorithm. Therefore, this report does not contain much background information,
references or preliminary results: these can all be found in de Fluiter [1997], especially in
Section 2.3.1 and Chapters 3 and 4. In this report we frequently refer to results presented in
de Fluiter [1997].

If an instanceG;, G, of 3-1SG has a solution, then the gra@dh must have pathwidth at
most two. This result is used in the algorithm for 3-ISG: the algorithm first checks whether
G; has pathwidth at most two. If not, théalse is returned. Otherwise, the structure &f
is used to solve 3-ISG. For this, we use the characterization of graphs of pathwidth at most
two as it is presented in Chapter 3 of de Fluiter [1997]. This characterization is split into three
parts: the characterization of biconnected graphs of pathwidth at most two, the characterization
of trees of pathwidth at most two, and the characterization of general graphs of pathwidth at
most two. This latter characterization shows how a graph of pathwidth at most two is built up
from biconnected graphs of pathwidth at most two and trees of pathwidth at most two. In the
algorithm, we follow this division.

This report is organized as follows. In Section 2, we give some preliminary results, and
we recall some results from Chapter 2 of de Fluiter [1997] about the structure of graphs of
pathwidth at most two. In Sections 3 — 6, we give an algorithm that solves 3-S5
time. We first give the algorithm for biconnected graphs in Section 3. In Section 4 we extend
this algorithm to graphs which consist of a block with isolated vertices connected to it. After
that, this algorithm is used as a building block for the algorithm for 3-1ISG on input graphs
which are trees that is presented in Section 5. Finally, in Section 6 we shortly discuss how
this algorithm can be extended for general graphs. We do not give the complete algorithm for
general graphs: this algorithm is a straightforward extension of the algorithm for trees, but it
takes a lot of space.

2 Preliminaries

The graphs we consider are simple and contain no self-loops.

Definition 2.1. A sandwich graplSis a triple (V,E;,Ez) in which (V,E;) and (V,E;) are
simple graphs, and; C E;.

Definition 2.2 (Interval Graph). A grapi&é = (V,E) is aninterval graphif there is a function
¢ which maps each vertex df to an interval of the real line, such that for eagly € V with

V# U,
HU)N (V) # < {u,v} €E.

The functiong is called arinterval realizationfor G.

Definition 2.3 (Intervalization). LeS= (V,E;, E>) be a sandwich graph. Antervalizationof
Sis an interval grapl with V(G) =V andE; C E(G) C E,. Letk > 1. An intervalizationG
of Sis called &k-intervalization if the maximum clique size &fis k.

In this report, the following problem is discussed [Golumbic, Kaplan, and Shamir, 1994].

INTERVALIZING SANDWICH GRAPHS (ISG)
Instance: A sandwich grapts= (V,Ej, Ey), an integek > 1
Question: Is there &-intervalization ofS?

It has been shown that ISG is NP-complete [Golumbic et al., 1994; Fellows et al., 1993].
However, from the application it appears that the cases whersome small given constant
are of interest. For fixeH, we denote the problem ByISG.

Bodlaender and de Fluiter [1996] have shown thd$G is NP-complete fok > 4 (see
also de Fluiter [1997]). In this report, we resolve the complexitk-68G fork < 3. We
observe that the case= 2 is easy to resolve i®(n) time. Then, we give a®(n?) algorithm
that solves 3-ISG. We also show how the algorithm can be made constructive.

Definition 2.4. Let G = (V,E) be a graph. Apath decompositionf G is a sequenc®D =
(V1,Va,... . M) (t > 1) such thay; CV for eachi (1 <i <t), and furthermore, the following
holds:

1. U_,vi=V,
2. for eache € E, there is a nodewith e C V;, and
3. foreach < j <I,VinV QV;.

The width of a path decomposition is max<; |Vi| 1. Thepathwidthof a graphG is the
minimum width of any path decomposition Gf

LetS= (V,E;, Ey) be a sandwich graph. Foe 1,2, the graphV, E;) is denoted byG;(S).
We call G1(S) theunderlying graphof S. The set of vertices dbis also denoted by (S), the
first edge set by; (S) and the second edge setBy(S). LetW C V. By SW] we denote the
sub-sandwich graph @induced byV, defined as follows:

V(SW]) =W
E1(SW]) = Esn{{vw} |v,w e W}
Eo(SW]) = E2n {{v,w} | v,w € W}.

Definition 2.5. Let S= (V,E;,E>) be a sandwich graph. path decompositiorf Sis a
path decompositioD = (Vi,...,\Vt) of G1(S), such for eachv,V €V, if there is a nod&/,
1<i<t, withvV €V, then{v,V} € E,. The pathwidth ofSis the minimum width of any
path decomposition db.

2 Preliminaries

A sandwich graph is called biconnected if its underlying graph is biconnected. A bicon-
nected sandwich graph is also calledandwich block The blocks of a sandwich graph are
the blocks of its underlying graph. A sandwich graph of which the underlying graph is a tree
is called asandwich tree

The problem ok-intervalizing sandwich graphs is closely related to the pathwidth prob-
lem.

The following lemma corresponds to Lemma 2.3.3 in de Fluiter [1997].

Lemma 2.1[M0hring, 1990].Let G= (V,E) be a graph and let ¢iG) denote the least maxi-
mum clique size of any interval graph which is a supergraph of G. Phé) = ci(G) <1.

The following lemma corresponds to Lemma 4.2.1 in de Fluiter [1997] and is a generaliza-
tion of Lemma 2.1.

Lemma 2.2. Let S= (V,E;,E) be a sandwich graph and letk 1. Sandwich graph S has
pathwidth at most k1 if and only if S has a k-intervalization.

Thus, the following problem is equivalent to ISG.

SANDWICH PATHWIDTH
Instance: A sandwich grapts= (V,Ej, Ey), an integek > 1
Question: DoesS have pathwidth at most<1?

The proof of Lemma 2.2 [de Fluiter, 1997] also gives an easy way to transform a solution
for one problem into a solution for the other problem. Furthermore, it implies the following
result.

Corollary 2.1. Let k> 1 and let S be a sandwich graph. If there is a k-intervalization of S then
the underlying graph of S has pathwidth at mostk

For the cas& = 2, the question whether there is a path decomposition of a sandwich graph
Sis equal to the question whether the underlying grapls & a partial one-path (see also
Fellows et al. [1993]). This is because each path decomposition of width d&g 8f can be
transformed into a path decomposition of width oneSdfy simply deleting all nodes which
contain no edge, and then adding a node at the right side of the path decomposition for each
isolated vertex containing this vertex only. Checking whether a graph has pathwidth one can
be done in linear time (Chapter 3 of de Fluiter [1997]).

Theorem 2.1. 2-ISG can be solved in linear time.

Let G be a graph, an®D = (V4,...,\t) a path decomposition @. Let G’ be a subgraph
of G. The occurrenceof G’ in PD is the subsequena®,...,Vj) of PD in which V; and
Vj contain an edge of', and no nodé&/, with i < j ori > j' contains an edge d¥/, i.e.
(Vj,...,Vj) is the shortest subsequenceRid that contains all nodes ¢?D which contain
an edge ofG'. We say thatG’' occursin (Vj,...,Vj). The vertices ofd’ are said to occur in
(M, ..., V) if this sequence is the shortest subsequend@otontaining all vertices o'

Let G be a graph an®D = (V,...,\t) a path decomposition @. Let 1< j <t. We say
that a nodé/; is on theleft sideof V; if i <], and on theight sideof Vj if i > j. LetG' be a

4

2.1 The Structure of Biconnected Partial Two-Paths

connected subgraph &, supposes’ occurs in(V,... V). We say thaGG’ occurs on the left
side ofV; if I’ < j, and on the right side &f; if | > j. In the same way, we speak about the left
and right sides of a sequen@é,...,Vj), i.e. a node is on the left side 0¥,...,Vj) ifitis

on the left side o¥;, and a node is on the right side &f;,... ,Vj) if it is on the right side of
Vj/.

The following definition only makes sense if the graphas pathwidth at most two. An
edgee (or vertexv) is anend edgdor end vertexof G’ if in each path decomposition of width
two of G, e (or v) occurs in the leftmost or rightmost end node of the occurren®.o4n edge
e (or vertexv) is adouble end edgéor double end verteof G’ if in each path decomposition
of width two of G, e (or v) occurs in both end nodes of the occurrenc&of

Let G be a graph, 1ePD = (Vy,...,\t) be a path decomposition @&, and letV’' C V.
Supposé&sV'] occurs in(Vj, ... ,Vy), 1< j < j <t. The path decomposition &[V'] induced
by PDis denoted byPD[V'] and is obtained from the sequerisgnV’,... ,\V; NV’) by deleting
all empty nodes and all nod®snV’, j <i < j’, for whichVi "V =V, 1 NV’.

Let G be a graph, and l&b; andG; be subgraphs db such that the union db; andG,
equalsG. LetPD; = (V4,...,\t) andPD, = (W, ... W) be path decompositions &; and
G,. Theconcatenatiorof PD; andPD; is denoted by D; + PD, and is defined as follows.

PD;+PD, = (Vl,.. . ,Vt,Wl,.. . ,\M/)

Note thatPD; ++ PD; is a path decomposition & if and only if the vertices o (G1) NV (Gy)
occur inV; and inW,.
The following lemma corresponds to Lemma 3.1.1 in de Fluiter [1997]

Lemma 2.3. Let G= (V,E) be a connected partial two-path and let ¥ V. Let PD=
(V1,...,\) be a path decomposition of width two of G such that the vertices ot®ur in
(Vj,...,Vj). On each side ofVj,...,Vy), edges of at most two components ¢¥ G:V']
occur.

2.1 The Structure of Biconnected Partial Two-Paths

We only consider non-trivial biconnected graphs in this section.

Definition 2.6 [Bodlaender and Kloks, 1993]. Given a biconnected gr@ph (V,E), thecell
completionG of G is the graph which is obtained fro@ by adding an edgéu, v} for all pairs
u,v of vertices inV, u# v, for which {u,v} ¢ E(G) andG[|V(G) <{u,Vv}| has at least three
connected components.

The following lemma corresponds to Lemma 3.2.2 of de Fluiter [1997].

Lemma 2.4[Bodlaender and Kloks, 1993].Let G be a biconnected partial two-path. Each
path decomposition of width two of G is a path decomposition (of width two) of the cell com-
pletionG of G.

Bodlaender and Kloks [1993] have shown that the cell completion of a biconnected partial
two-tree is a ‘tree of cycles’. We show that the cell completion of a biconnected partial two-
path is a ‘path of cycles’.

2 Preliminaries

Definition 2.7 [Bodlaender and Kloks, 1993]. The classaes of cycless the class of graphs
recursively defined as follows.

e Each cycle is a tree of cycles.

e For each tree of cycleS and each cycl€, the graph obtained froi® andC by taking
the disjoint union and then identifying an edge and its end vertic€smth an edge and
its end vertices i, is a tree of cycles.

Note that two different chordless cycles in a tree of cycles have at most one edge in common.

Definition 2.8. A path of cycless a tree of cycles for which the following holds.

1. Each chordless cycle & has at most two edges which are contained in other chordless
cycles ofG.

2. If an edgee € E(G) is contained irm > 3 chordless cycles db, then at leasin <2 of
these cycles have no other edges in common with other chordless cycles, and consist of
three vertices.

With each path of cycle&, we can associate a sequeri€g,...,C,) of all chordless cycles
of G and a sequenadg, ... ,ep_1) of edges ofG, such that for each 1 <i < p, cyclesC; and
Ci.1 have edges in common, and furthermore, if< p<1 andg = g4, thenCi; has three
vertices.

Definition 2.9 (Cycle Path). LetG be path of cycles, le€ = (Cy,...,C,) be a sequence
of chordless cycles as defined above, andElet (ey,...,ep_1) be the corresponding set of
common edges. The pdiC,E) is called acycle pathfor G.

The following theorem corresponds to Theorem 3.2.1 in de Fluiter [1997].

Theorem 2.2.Let G be a biconnected graph. G is a partial two-path if and on(§ it a path
of cycles.

Theorem 2.3. There is an @n) time algorithm which, given a biconnected graph G, checks if
the cell completiors of G is a path of cycles and constructs a cycle pathGor

The algorithm is given in Section 3.5.1 of de Fluiter [1997].

2.2 The Structure of Trees of Pathwidth Two

The following result, describing the structure of trees of pathwigtis similar to a result of
Ellis, Sudborough, and Turner [1994]. It corresponds to Lemma 3.3.1 in de Fluiter [1997].

Lemma 2.5. Let H be a tree and let k 1. H is a tree of pathwidth at most k if and only if
there is a path P= (v1,...,Vs) in H such that HV <V (P)] has pathwidth at most41, i.e. if
and only if H consists of a path with trees of pathwidth at mastliconnected to it.

2.2 The Structure of Trees of Pathwidth Two

A graph has pathwidth zero if and only if it consists of a set of isolated vertices. Because
graphs of pathwidth one do not contain cycles, each component of a graph of pathwidth one is
a tree which consists of a path with ‘sticks’, which are vertices of degree one adjacent only to
a vertex on the path (‘caterpillars with hair length one’).

The next lemmas correspond to Lemmas 3.3.2, 3.3.3 and 3.3.4 in de Fluiter [1997], respec-
tively.

Lemma 2.6. Let H be a tree of pathwidth k, k 1, and suppose there is no vertex W (H)
such that HV <{v}] has pathwidth k=1 or less. Then there is a unique shortest path P in H
such that HV <V (P)| has pathwidth k=1 or less. Furthermore, P is a subpath of each path
P’ in H for which HV <V (P')] has pathwidth at most1.

Lemma 2.7.Let H be a tree of pathwidth one, let WV (H) consist of all vertices & V(H)
for which HV <{v}] has pathwidth zero, and suppose tifiat| > 1. Then|W| < 2, and if
V(H)| > 2, then|W| = 1.

Lemma 2.8.Let H be a tree of pathwidth two and let®V (H) consist of all vertices &V (H)
for which HV <{v}] has pathwidth at most one. Suppd@d4 > 1. The following holds.

1. H|W] is a connected graph.

2. If there is a ve W such that HV <{v}| has four or more components of pathwidth one,

then|W| = 1.

3. There is a vertex W such that HV <{v}| has two or more components of pathwidth
one.

4. W|<7.

Definition 2.10. Let H be a tree and ldt > 1. Py(H) denotes the set of all pattsin H for
which H[V <V (P)] is a partial(k <1)-path, and there is no strict subpa@hof P for which
HV <V (P')] is a partial(k <1)-path. If|Px(H)| = 1, thenP(H) denotes the unique element
of Pk(H).

Let H be a tree and ldt > 1. Note that ifH has pathwidth more thak thenPy(H) = ¢.
If H has pathwidth less thdq then|Px(H)| = 1 andP«(H) = (). If H has pathwidth exactly
k then|Py(H)| > 1 and all paths iP(H) contain at least one vertex. Pi(H) contains more
than one element, then its elements are all paths consisting of one vertex.
For a tree of pathwidth one, all path decompositions of width one are essentially the same.
The following lemma corresponds to Corollary 3.3.1 in de Fluiter [1997].

Lemma 2.9. Let k> 1, let H be a tree of pathwidth k, and let PB (V4,...,\;) be a path
decomposition of width k of H. LetevV; and V € ;. Then the path P from v td ¢ontains
one of the paths iRx(H) as a subpath.

Theorem 2.4. There is an @Qn) time algorithm which, given a tree G, checks if G has
pathwidth zero, one or two, and computegH) if the pathwidth is one, oP,(H) if the
pathwidth is two.

The algorithm is given in Section 3.5.2 of de Fluiter [1997].

3 Three-Intervalizing Sandwich Blocks

3 Three-Intervalizing Sandwich Blocks

By Corollary 2.1, a sandwich graph has a three-intervalization only if the underlying graph of
Shas pathwidth at most two. Therefore, our algorithm for finding a three-intervalization of a
sandwich graph makes use of the structure of partial two-paths as described in Chapter 3 of
de Fluiter [1997] (and briefly in Section 2.1 of this report). The algorithm first checks if the
underlying graplG;(S) is a partial two-path and if so, finds its structure. Then this structure is
used to find a three-intervalization 8f

In this section we give the algorithm for the case that the input sandwich graph is a block.
The main algorithm has the following form: first, the cell completi®n(S) of the underlying
graph ofSis computed. Then, a cycle path 185 (S) is constructed if it exists. After that, this
cycle path is used to check whether there is a path decomposit®ofafidth at most two.

Lemma 2.4 states that each path decomposition of width two of a partial twdspathlso
a path decomposition of width two of its cell completi@ With respect to intervalizations,
the lemma states that each three-intervalization of a sandwich §&ph supergraph of the
cell completionG (S) of the underlying graps:(S) of S.

The following lemma follows directly from the results in Section 3.2 of de Fluiter [1997].

Lemma 3.1. Let S be a sandwich block. Suppose thatSpis a partial two-path,G1(S)
is sandwiched in S, an(C.E) is a cycle path forG,(S) with C = (Cy,...,Cp) and E =
(€1,...,€p-1). There is a path decomposition of S if and only if the following conditions hold:

1. there is a path decomposition of width two ¢¥ &;)] with edge ¢ in the rightmost
node (if p> 1),

2. there is a path decomposition of width two &¥ &,)] with edge g_; in the leftmost
node (if p> 1), and

3. foralli, 1<i < p, there is a path decomposition of width two ¢f &;)] with edge e 1
in the leftmost node and edggie the rightmost node.

Hence to check whether there is a path decomposition of width tw&vath cycle path
(C,E), the algorithm checks for each cyelg 1 <i < p, whether there is a path decomposi-
tion of SV (Ci)] with the appropriate edges in the leftmost and the rightmost node. The path
decompositions of the sub-sandwich graphs induced by the cycles are then concatenated in the
order in which they occur i€, and this gives a path decomposition of width twdof

3.1 Cycles

We concentrate now on checking whether there exists a path decomposition of width two of
a sandwich graph whose underlying graph is a cycle.Sls such a sandwich graph and let

C = G1(S).We denote the vertices and edgesCdby V(C) = {vo,V1,...,Vn-1}, andE(C) =
{{vi,Vit1} | 0<i < n} (for eachi, letv; denotevimodn). For eachj andl, 1 <1 < n, letl(j,I)
denote the set of vertices ¥{C) betweenv; andv;,;, when going fronv; to vj, in positive
direction, i.e.,

G ={wli<i<j+l).

3.1 Cycles

Furthermore, le€(j,|) denote the cycle with

V(C(j,1)) =1(j,1)
E(C(J.1) = {{vj,Vi+1}} U {{Vi,Visa} [vi € 1(],1) &{vjn}}

Note thatC(j,n<1) =C for all j. For an example, consider Figure 1.

Vo Vi Vo Vo Vi Vo
V11 V3 Vi1
V10 Vg V1o
Vg Vs Vg
V8 v; Ve Vg
C=C(j,11) C(8,6)

Figure 1: A cycleC with 12 vertices, and the cyc®(8,6) derived fromC.

The following lemma is used to obtain a dynamic programming algorithm for our problem.

Lemma 3.2. Let S= (V,E, E») be a sandwich graph whose underlying graph is a cycle C
with n vertices. Leti, j and | be integer <1 < n, and suppose €i < j+1. There is

a path decomposition PB (Vi,...,\t) of width two of Gj,I) such that{vi,vi;1} C V4 and
{vj,vj } SV ifand only if{v;,vj4 } € E> and either one of the following conditions holds:

1. V©)| =3,

2. there is a path decomposition PB (Vj,...,V/) of width two of §(j,I <1)] such that
{Vi,vig1} C V] and{vj,vju -1} CV/, or

3. there is a path decomposition PB- (V/',... ,VY') of width two of §(j + 1,1 <1)] such
that {vi,viy1} C V:{/ and {Vj+1,Vj+| OV

Proof. For the ‘if’ part, supposgv;,vj.i} € Ex. If [V(C)| =3, thenC(j,l) =C, and hence
(V(C)) is a path decomposition of width two & Suppose there is a path decomposition
PD = (V{,...,V) of width two of §I(j,I <1)] with {vi,vi;1} C V] and{vj,vj;i_1} CV/.
ThenPD = PD' -+ ({Vj,Vj1i-1,Vj4 }) is a path decomposition of width two 8fl (j,1)] which
satisfies the appropriate conditions. The other case is similar.

For the ‘only if’ part, suppose there is a path decomposit@h= (Vi,...,V;) of width
two of SI(j,1)] such that{vi,vi;1} C Vi and{vj,vj;1} C\W. Clearly, {v;,vju} € Ep, since
Vj,Vj4+l € V. SupposdV (C)| > 3. If {vi,Vip1} = {vj,Vj4}, thenl =n&1, henceC(j,1) =C
and|l(j,1)] > 3. Lemma 3.2.4 of de Fluiter [1997] shows that the leftmost and the rightmost
node of PD can not contain the same edge, contradiction.{%osi 1} # {Vj,Vj41}. LetVn
andVyy, 1 <mnt <t, be the rightmost nodes containing edog,1,V;} and{vj,i_1,Vj4i},
respectively.

First supposen’ < m. ThenVi = {Vj;1,V;j,Vj4 }, and for eactkk, m< k <t, vj,vj;i € Vi
We claim that the path decomposition obtained frovy,... ,Vin) by deletingv; from each

9

3 Three-Intervalizing Sandwich Blocks

node is a path decomposition of width two §if(j + 1,1 <1)] with edge{vj;1,vj4 } in the
rightmost node and eddei,Vvi.1} in the leftmost node.

Suppose there is a vertexc V (C) <{v;,v;+1} which occurs on the right side ®f,. Vertex
v has an edge to some vertexMiC) <{v;,vj;1}, hencev € Vi, But thenv = vj_1, which
gives a contradiction. Hence all edgessiif(j + 1,1 <1)] occur in(Va, ... ,Vim). Furthermore,
{Vj+1,Vj+1-1} occurs inVy,. We only have to showy #i andj # i+ 1. NodeVyy containsvj,
Vj+i—1, and a vertex of the path from).1 to vi;1 which avoidsv;. Hencev; ¢ V,y and thus
Vj ¢ V1. This proves the claim.

For the case thah < n7, a path decomposition of width two &1 (j,1 <1)] with {v;,vi11}
in the leftmost node anflv;,v;_1} in the rightmost node can be constructed in the same way.

If m=n, thenvj1 = vj;i_1, hencel(j,1)| = 3. Since{Vi,Vi11} # {Vvj,Vj+ }, this means
that{vi,Viz1} = {Vj,Vj+1} or {vi,Vis1} = {Vj41-1,Vj1 }. In the first case({Vvi,vi+1}) is a path
decomposition of width two ofI (j,| <1)] with edge{vi,vi;1} in the leftmost node and edge
{Vj,vj11-1} in the rightmost node. In the latter caggyi,vi;1}) is a path decomposition of
width two of Sl (j + 1,1 1)] with edge{v;,vi;1} in the leftmost node and edd®;.1,Vj+}
in the rightmost node. O

Let Sbe a sandwich graph whose underlying graph is a ¢@cl starting pointor ending
point of Sis an element oE(C) U {nil}. LetPD = (V4,...,\4) be a path decomposition &
We say that a starting poisp of Sis in the leftmost node if eithespe E(C) andspC V;, or
sp=nil. We also denote this gp € V;. Similarly, an ending poingép of Sis in the rightmost
node ofPD, orepe V;, if eitherepe E(C) andepC 4, orep= nil.

We definePW?2 as follows.

Definition 3.1. Let Sbe a sandwich graph of which the underlying graph is a cgokéth n
vertices. Lespbe a starting point o8, and letj andl be integers, K| <nand 0< j <n.

true if there is a path decompositid®D = (Vy, ... ,\t)
PW2(Ssp, j,l) = of width two of S (j,1)] with vj,vj4 €\t andspe V
false otherwise

Let spandepbe starting and ending points of a sandwich gr&i which the underlying
graph is a cycle. There is a path decomposition of width tw8 with spin the leftmost node
andepin the rightmost node if and only if there isjavith 0 < j < nsuch thaPW2(S sp, j,n<
1) holds and eitheep= nil or ep= {vj_1,V;}.

If n= 3, then for any starting poirgpand ending poinep, (V(S)) is a path decomposition
of width two of Swith spin the leftmost node anepin the rightmost node.

Suppose > 3. It can be seen from the definition BW2 that for all starting pointsp of
S andallj,0< j <n, PW2(Ssp j,1) holds if and only ifsp= nil or sp= {vj,vj1}. We use
this fact and Lemma 3.2 to descriB®V2 recursively. Lespbe a starting point of, and let;]
andl be integers with K| <nand 0< j < n.

sp=nilVsp= {vj,vjy} ifl =1
PW2(Ssp, j,I) = ¢ {vj,vj1} € E2(9 A
(PW2(Ssp,j+1,1<1) v PW2(Ssp,j,l<1)) ifl>1

10

3.1 Cycles

(Notice thatj + 1 denoteg j + 1) modn.)
We can now use dynamic programming to compute whether there is a path decomposition
of width two of Swith the appropriate starting and ending points as follows.

Algorithm 3-ISG.Cycle(S sp,ep
Input: Sandwich graplswith G1(S) a cycleC with n verticesvy, ... ,Vq_1,
and edgeg {vi,Vi+1} |0<i<n}
Starting pointspof S
Ending pointepof S
Output: (Jo<j<n (ep=nil V ep={vj_1,Vj}) APW2(Ssp,j,n<1))

if n= 3then return true
if sp=nil
thenfor j < Oton<l
do P(j,1) + true
else forj«+ Oton<l
doP(j,1) + false
Letj be such thasp= {vj,vj;1} € E(C)
P(j,1) « true
9. (xVo<j<n P(j,1) = PW2(Ssp, j,1) %)
10. for | < 2ton<l
11. dofor j« Otonel
12. do P(j,1) < ({vj,vjt1 } € E2(9) A (P((j+1) modn,l 1) VP(j,1 1))
13. (Vo<jon P(j,n<1) = PW2(Ssp, j,nl))
14. if ep=nil then return true
15. Letj be such thaep= {vj_1,v;}
16. return P(j,n<1)

N~ WDNE

The algorithm use®(n?) time if we first build an adjacency matrix of the graBh(S): this is
needed in order to do the test in line 12 in constant time.

The algorithm can be made constructive in the sense that if there exists an intervalization,
then the algorithm outputs one, as follows. Construct an dRpf pointers, such that for
eachj andl, 0< j <nand 1< | < n, PP(j,l) contains the nil pointer if =1 or if P(j,l) is
false. If P(j,l) is true andl > 1, thenPP(j,l) contains a pointer t€P(j,| 1) if P(j,| 1)
is true, and toPP((j 4+ 1) modn,| <1) otherwise. The computation &P can be done during
the computation oP in 3-ISG.Cycle. Afterwards, if there is a three-intervalization, then one
can be constructed as follows. First@be the underlying graph of the input sandwich graph.
If ep= nil, then start with anyj, 0 < j < nfor which P(j,n<1) is true, otherwise. start with
j for whichep= {vj_1,v;}. Then follow the pointers frorPP(j,n<1) until the nil pointer is
reached, and add eddg;, Vi } to G for eachi and| for which PP(i,l) is visited. Note that
the nil pointer is reached if the previous pointer pointe®Rji, 1) for somei such that either
sp={Vvi,Vi;+1} or sp=nil. HenceG is a three-intervalization of the input sandwich graph.

Lemma 3.3. Algorithm 3-ISGCycle solves 3SG in O(r?) time and space for sandwich
graphs of which the underlying graph is a cycle.

11

4 Three-Intervalizing Sandwich Blocks with Sticks

3.2 Blocks

Let Sbe a sandwich block, suppo&(S) is a partial two-path anc;(S) is sandwiched in
S Let(C,E) be a cycle path fo61(S) with C = (Cy,... ,Cp). There is a path decomposition
of width two of Sif and only if for eachi, 1 <i < p, there is a path decomposition of width
two of §V(C;)] with starting pointg_1 if i > 1, nil otherwise, and ending poiet if i < p, nil
otherwise (Lemma 3.1).

For a given sandwich blocks, the following algorithm returnsrue if there is a three-
intervalization ofG, andfalse otherwise.

Algorithm 3-ISG.SB(S

Input: Sandwich blocks

Output: true if there is a three-intervalization & false otherwise

1. Check ifGy1(S) is sandwiched ir§ and if there is a cycle path f@;(S). If so, construct
such a pattiC,E) with C = (Cy,...,Cp) andE = (ey,... ,e5-1). If not, return false.

2. fori+1top

3 dom« |V(GC)|

4, if i > 1thensp+ g 1 elsesp« nil

5 if i < pthenep« g elseep+ nil

6 if =3-ISG_.Cycle@§V (Ci)],spep then return false

7. return true

For Step 1, we can use the algorithm from Section 3.5.1 of de Fluiter [1997], which takes
O(n) time. The loop in lines 2— 6 runs @(n?) time (h = |V (G)|) if we first make an adjacency
matrix for G,(S), and then use procedure 3-ISGycle.

Algorithm 3-ISG.SB can again be made constructive. To this end, the constructive version
of algorithm 3-ISGCycle is used in line 6. After the loop has ended, the union of the graphs
that are constructed by the calls to 3-1%8ycle form a three-intervalization of the input sand-
wich graph. Hence, we have proved the main result of this section.

Theorem 3.1. There exists an %) time algorithm that solves the constructive versselsG
for sandwich blocks.

4 Three-Intervalizing Sandwich Blocks with Sticks

The algorithm to decide 3-ISG for sandwich blocks with sticks is derived from the algorithm
to decide 3-ISG for sandwich blocks. Therefore, we first consider sandwich graphs of which
the underlying graph is a cycle with sticks.

4.1 Cycles with Sticks

Let S= (V,E1,E>) be a sandwich graph such thai(S) is a cycleC with sticksW. As is
shown in Chapter 3 of de Fluiter [1997G;(S) has pathwidth two. The following lemmas
show necessary and sufficient conditions3$¢o have pathwidth two.

12

4.1 Cycles with Sticks

Lemma4.1. Let S= (V,E;, E>) be a sandwich graph such that () is a cycle C with sticks.
Lete={x,y} € E(C) and é = {X,y'} € E(C). Suppose there is path from x towhich does
not contain y or {, and let R denote this path. Let;Rlenote the path from y td which does
not contain x or X

There is a path decomposition PB(Vy,...,\) of width two of S such that € V; and
€ CV; if and only if there is a path decomposition PB (V/,...,V/) of width two of C such
that

1. eCV/andéCV/,
2. foreachi, each,¥ €V/, ifv#V, then{v,V} € Ey, and

3. for each je {1,2}, each ve V(Pj), each stick w of v, there is a verteke/V (Ps_j) and
anode Y such that w € V.

Proof. For the ‘if’ part, suppos®D’ = (Vj,...,V/) is a path decomposition of width two of
C satisfying conditions 1 — 3. We transfor@D’ into a path decomposition of width two &
with ein the leftmost node, and in the rightmost node. Because of conditiorPE is a path
decomposition of width two a§[V (C)].

First, we compute a sdét of edges between vertices G6fas follows. Fori = 1,2, for
each vertew € V(R), and each stickv of v, letV € V(Ps_;) such that{V,w} € E, and there
is a nodeV|' containing bothv andw. Add edge{v,v'} to F. Note thatF C E,. LetG =
(V(C),E1(C)UF). Clearly,PD’ is a path decomposition @&. HenceG is a path of cycles. Let
(C,E) be a cycle path o6, with C = (Cy,...,Cp), E = (ey,... 1), such thae C E(Cy)
ande C E(Cp). Note thatF = {g | 1 <i < p}. Asis shown in Section 3.2 of de Fluiter [1997],
for eachi, 1 <i < p, there is a path decompositié¢tD; of width two of G, such thatg_1 is
in the leftmost node oPD; (if i > 1) andg is in the rightmost node dPD; (if i < p), and
furthermorePD’' = PD; + PDy +-- - ++ PDp,.

Leteg = eandep, = €. Now for each vertex, each stickw of v, do the following. Let,
0<i < p, be such that € g and there is & €V such thag = {v,v'} and{V,w} € E,. Add
a node{v,V,w} betweerPD;_; andPD; (if i = 0, then add this node befoRD;, and ifi = p,
then add it aftePDp). The resulting path decomposition is a path decomposition of width two
of Swith ein the leftmost node and in the rightmost node.

For the ‘only if’ part, suppos®D = (V4,...,V;) is a path decomposition of width two of
Swith e C Vy, € CVi. We show thaPD' = PD|V(C)] = (V{,...,V/) is a path decomposition
of width two of C which satisfies conditions 1 — 3. Clearly, conditions 1 and 2 holdPf.
Consider condition 3. Each no¥gecontains at least one vertexBf and at least one vertex of
P,. Letve V(Py), letwbe a stick ofv. Then there is & € V(P,) and a nod&/, 1 <i <t, such
thatVi = {v,V,w}. Hence there is a nod¢ in PD' such that I< i’ <r andV; containsv and
V. This completes the proof of the ‘only if’ part. O

Lemma 4.2.Let S= (V,E1, E>) be a sandwich graph such tha (®) is a cycle C with sticks.
There is a path decomposition of width two of S if and only if there are vertiees ¥ (C)
and there is a path decomposition PB(V4,...,\t) of S = §V W], where W is the set of
sticks of v andMin G1(S), and ve V4, V €\ and \, and V contain an edge of C.

13

4 Three-Intervalizing Sandwich Blocks with Sticks

Proof. For the ‘if’ part, suppose there ave/ € V(C) such that there is a path decomposition
PD of width two of S|V ©W], whereW is the set of sticks adjacent toandV, such thatv
is in the leftmost node and is in the rightmost node, and the leftmost and rightmost node
contain an edge d€. Then we can transfor®D into a path decomposition of width two of
Sas follows. For each stick adjacent tos, add a nodgv,w} before of the leftmost node. If
V # v, do the same fov after the rightmost node.

For the ‘only if’ part, suppose there is a path decomposif@h= (Vi,...,V;) of width
two of S SupposeC occurs in(Vj,...,Vy), 1< j < j' <t. We transformPD in such a way
that there is at most onec V(C) which has a stickv such that{v,w} occurs on the left side
of Vj, and similar for the right side ofj.. First consider the left side &D. If no vertex ofC
occurs on the left side df;, thenj = 1: letv e V(C)NV;, letW, be the sticks of/, remove
all sticks inW from PD. The newPD is a path decomposition of width two &8V <W,| with
vertexv in the leftmost node.

If only one vertexv occurs on the left side &f;, then remove nodg¥;, ... ,V,_1) fromPD
and remove all stick8V of v from PD. Again, the newPD is a path decomposition of width
two of §V <W,| with vertexv in the leftmost node.

If there are two vertices,v € V (C) which occur on the left side &f;, then{u,v} ¢ E(C),
but there is a vertew € V(C) such that{u,w} € E(C), {v,w} € E(C), andV; = {u,v,w}
(Lemma 3.4.5 of de Fluiter [1997]). Furthermomg,has no sticks (follows from the proof
of Lemma 3.4.6 of de Fluiter [1997]). Lét1 <1 < |, be the smallest integer for whigh
containsu andv. Supposeu does not occur on the left side @f. Now removevs,... ,V|_1
from PD, remove all stick&\{, of v from PD, remove all occurrences of from PD, and add a
new node{u,v,w} in front of PD. Again, the newPD is a path decomposition of width two of
SV <W,| with vertexv in the leftmost node.

Repeating the symmetrical version of this procedure on the right hand $ii@aafmpletes
the proof of the ‘only if’ part. |

Let S= (V,E1,E>) be a sandwich graph, such th@4(S) is a cycleC with sticksW. Let
V(C) = {vo,V1,...,Vn—1} such thateE(C) = {{wi,vi;1} | 0 <i < n} (for eachi, letv; denote
Vimodn). For eachi, 0 <i < n, letW denote the set of sticks of vertex Let j,| be integers,
1 <1 <n. Recall from Section 3 thdtj,|) = {vj,Vj41,...,Vj4 }, andC(j,|) is the cycle with

V(C(Jvl)):I(JvI)
E(C(J,1) = {{vi:Visa} |] i< j+1FU{{Vv}, Vi })

LetS(j,1) = (V(j,l),E1(],l),E2(],l)) be the sandwich graph defined as follows.

j+H -1

v(i,h=1(,hu [J W

i=j+1
El(jvl) = {{Vv\/} €k | Va\/ GV(j,l)}
Ea(j.1) = {{wV} e B2 |wV €V(j,])}

Additionally, letGi(j,I) = Gi(S(j,1)), for i = 1,2. Note that the sticks of; andvj, are not
included inS(j,1). Figure 2 gives an example 8f10,8) for the case that the underlying cycle

14

4.1 Cycles with Sticks

; Vo
| Vis

Vig

Vi

V2

Vi2 g

Figure 2: A sandwich grap8 for which G1(S) is a cycleC with sticks (V(C)| = 16), and the
graphS(10,8).

of Shas 16 vertices (the solid lines depict the edgek;01.0,8), and the dashed lines depict
the edges oE;(10,8) which are not inE;(10,8)).

A starting pointor ending pointof Sis an element o¥/(C) UE(C) U {nil}. Let PD =
(V1,...,\t) be a path decomposition 8f We say that a starting poispof Sis in the leftmost
node, orspe Vy, if eitherspe E(C) andspC V1, spe V(C) andspe€ Vi, or sp= nil. Similarly,
an ending poinep of Sis in the rightmost node dPD, or ep € V4, if eitherepe E(C) and
epC W, epe V(C) andepe 4, orep=nil.

We use a dynamic programming method for solving 3-ISG on sandwich graphs of which
the underlying graph is a cycle with sticks which is similar to the method that is given in
Section 3 for the case that the underlying graph is a cycle. Therefore, we modify the definition
of PW2 given in Definition 3.1 as follows.

Definition 4.1. Let S= (V, E;1, E) be a sandwich graph such tt@(S) is a cycleC with sticks
W, let spbe a starting point d& Then for each,l, 1 <| < n, PW2(Ssp, j,l) is a record with
fieldsft andlt. Bothft andlt have two fields:ok, which is a boolean, anst, which is a set of
vertices (sticks). They are defined as follows.

PW2(Ssp, j,l).ft.ok=
true if Ipp—(v,...) PDis a path decomposition of width two
of SV (j,1) UW,] AVj,Vj11 €L ASPEV,
false otherwise

PW2(Ssp, j,1).ft.st=W,, |, whereW | = ¢ if PW2(Ssp, j,1).ft.ok is false, otherwise W, ,,
is a maximal subset AtV for which there is a path decompositi®D = (V1,...,V) of
SV (i.1) UW/, UWj], such thatj,vj,) €\t andspe Vi.

PW2(S,sp, j,1).It.ok=

true if 3pp_(v,..) PDis a path decomposition of width two

of §(j,1) UWj] AV, Vi1 € VEASPE V]
false otherwise

15

4 Three-Intervalizing Sandwich Blocks with Sticks

PW2(S sp, j,1).It.st=W,/, whereW = ¢ if PW2(Ssp,j,1).It.ok is false, otherwise W] is a
maximal subset dV; for which there is a path decompositi® = (V1,... ,\4) of §V(j,l)U
W/ UW, 4], such thavj, v € \t andspe Vi.

We say that, for giver) andl, the sticks ofv; areprocessedf PW2(G,sp, j,|).ft.okis true,
and the sticks ofj are processed PW2(G,sp, j,I).It.ok s true.

Given a starting poinspand an ending poirgp, there is a path decomposition of width
two of Swith spin the leftmost node andpin the rightmost node if and only if one of the
following three conditions holds.

1. ep=niland thereis 4, 0< j < n, such thaPW2(G,sp, j,n<1).It.okor PW2(G,sp, j +
1,n<1).ft.ok holds.

2. thereis g, 0 < j <n, such thaep=v; andPW2(G,sp, j,n<1).It.okor PW2(G,sp, j +
1,n<1).ft.ok holds.

3. There is aj, 0 < j < n, such thaiep= {vj,vj11}, PW2(Ssp j + 1,n<1).ft.ok holds,
andPW2(Ssp j+1,nel) ft.st=W,.

The definitions oPW2(S sp, j,1).ft.standPW2(S sp, j,1).lt.stmay seem strange, because
their values do not have to be unique. However, in the following lemma, we show that they are
in fact unique, and hence they are not only maximal but even maximum.

Lemma 4.3.Let S= (V,E1, E,) be a sandwich graph, such that () is a cycle C with sticks
W. Let sp be a starting point. Let j and | be integelrs; | < n, IetV\{ C W, and V\{+I CWy.
The following holds.

1. If there is a path decomposition PB (V1,... ,\t) of SV(j,I) UW; UW/

(1], such that
spe Vi and{vj,vj.1} € 4, then W, C PW2(Ssp j,I).ft.st.

2. If there is a path decomposition PB (Vy,... k) of §V(j,1) UW] UW;], such that
spe Vi and{vj,vj4i} €\, then W C PW2(Ssp, j,I).It.st.

Proof. We only show 1. Le\‘/\/j’+I CW,4i. Suppos#D = (V4,...,\t) is a path decomposition
of SV (j,I)uw, UV\/J-’+|], such thaspe Vi andvj,vj;1 € ;. Leti be such that edggvi,vi;1}
is an edge occurring in the leftmost node of the occurrenc€ f PD and eithera = nil,
sp= {vi,Vis1}, or spC {vi,vi;1} (note that such analways exists: ifspis a vertex, then
then the leftmost node of the occurrence@in PD contains an edge containirgp). By
definition, PW2(S sp, j,1).ft.ok holds. SupposPD’ = (V;,...,V/) is a path decomposition of
SV (j,I)UW; UPW2(S sp, j,I).ft.st], such thaepe V], andvj,vj €V,. Leti’ be such that
edge{vi,vi 41} is an edge occurring in the leftmost node of the occurrende iof PD’ and
eitherep=nil, ep=C {vir, Vi 1}, Orep={Vvy,,Virs1}.

LetP = (Vj,Vjt1,...,V), and letP’ = (vj,Vj;1,...,Vy). For each stickv eV\/j’+l, thereis a
node{w,Vj,Vm} in PD, wherej < m<i (according to Lemma 4.1). Similarly for each stick
w € PW2(Ssp, j,l).ft.st, there is a nodgw’, v, vy } in PD' for somej <m <i.

Letm, j <m<i, be the largest integer for which there is nodd’Id which containsvj
andvp, and letm!, j < m <i’, be the largest integer for which there is a nod®D which

16

4.1 Cycles with Sticks

containsvj,| andvyy. Then inPD, for eachi, j <i < m, there is node containing andvj,
and inPD/, for all verticesvy, j <i’ <m, there is a node containing andvj,. Let

W ={we W |Jj<s<m{Vs,W} € E2 }, and
W' = {w e Wi | Jj<scm {Vs,W} € Bz}

CIearIy,V\/I’+j CW, and, becausBW2(S,sp, j,|).ft.stis maximalPW2(S sp, j,l.ft.st) =W'. If
m < m, thenW' CW, but asPW2(S sp j,l).ft.stis maximal, this means th&¢’ =W. Hence

V\/j’+I C PW2(Ssp, j,l).ft. If m<m, thenW C W', and hencésv/\/j’+I CPW2(Ssp, j,l).ft.st O

We now give a recursive definition W2, calledRPW2. We first give the definition, and
after that, we show equivalence BW2 andRPW2.

Definition 4.2. Let S= (V,E;,Ez) be a sandwich graph such thai(S) is a cycleC with
sticksW. SupposédV (C)| > 3. Letspbe a starting point o€. Then for eachj,l, j #1,
RPW2(S,sp, j,1) is a record with field$t andlt. Bothft andlt have two fieldsok, which is a
boolean, andt, which is a set of vertices (sticks). They are defined as follows.

(RPW2(Ssp, j,1).ft.ok RPW2(S sp, j,1).ft.st) =
((true Wi 1)
if (sp=nilVsp=vVjy1) AVwew, {W,Vj;1} € B2
(true, {w € Wiy | {wvj} € Eo})
if ((sp=Vj)V (sp={Vj,Vj+1} AVwew, {W,Vj11} € E2)) A
—((sp=nil VSp=Vj 1) AVwew, {W,Vj11} € Ep)

(false, @)

otherwise

(RPW2(Ssp, j,1).It.ok RPW2(S sp, j,1).It.st) =
(true,W,)
if (sp= nilV Sp=Vj) AVwew,,, {W,Vj} € Ez
(true, {w €W, | {w.vj.1} € Eo})
if ((sp=Vj+1) V(SP={Vj,Vjs1} AVwew,., (W Vj} € E2)) A
—((sp=nilVsp=Vj) AVwew,, {WVj} € Ep)

(false, 9)

otherwise

\

17

4 Three-Intervalizing Sandwich Blocks with Sticks

Furthermore, fot > 1,

(RPW2(Ssp, j,| 4+ 1).ft.ok, RPW2(S sp, j, | 4+ 1).ft.st) =
((true,{we W4 |{wV;} € E2} URPW2(S sp, j+ 1,1).ft.st)
if {vj,Vjri41} € E2ARPW2(Ssp, j+ 1,1).ft.OKA Vyew; {Vj4i11,W} € E2
(true {w € Wi | {wv;} € E2})
if {vj,Vjr141} € E2ARPW2(Ssp, j,1).It.okA
(vwewj {Vjs1+1, W} € E2Vwe RPW2(S sp, j,1).It.st) A
~(RPW2(S sp, j + 1,1).ft.0KA Vwew; {Vjt1+1,W} € Ep)
(false, @)

otherwise

and

(RPW2(S;sp, j,l +1).It.ok, RPW2(S sp, j,| 4+ 1).It.st) =
((true,{weW, | {w,Vj1} € E2} URPW2(Ssp, j,l).It.st)
if {Vj,Vjsir1} € E2ARPW2(S sp j,l).It.OKA Yiew;,, {Vj,W} € E2
(true {w e W | {Wvj.111} € E2})
if {vj,Vjri41} € E2ARPW2(Ssp, j+ 1,1).ft.okA
(Ywew,,, {Vj,W} € Eovwe RPW2(Ssp j +1,1).ft.st A
~(RPW2(Ssp, j,1).It.0KA Vwew,, {Vj, W} € E2)
(false, p)

L otherwise

We now prove the equivalence BW2 andRPW2.

Theorem 4.1.Let S= (V, Ep, E>) be a sandwich graph such that &) is a cycle C with sticks
W, and|V(C)| > 3. Let sp be a starting point. For each jandll<| < n, PW2(S sp, j,l) =
RPW2(Ssp, j,1).

Proof. The proof is similar to the proof of Lemma 3.2, but it contains some additional
difficulties. We use induction oh Clearly,PW2(S sp, j,1) = RPW2(S;sp, j,1).

Supposd > 1, and for alll’ <1, PW2(Ssp j,I") = RPW2(S sp, j,l"). We only show
that PW2(S sp, j,| +1).ft = RPW2(S;sp, j,| + 1).ft. For PW2(Ssp, j,l +1).It, the proof is
analogous.

We first show that (I) ifRPW2(S sp, j,| 4+ 1).ft.ok holds, thenPW2(S sp, j,| + 1).ft.ok
holds andRPW2(S sp, j,I 4+ 1).ft.st C PW2(S sp | + 1).ft.st. After that, we show that (ll)
if PW2(Ssp, j,l 4+ 1).ft.ok holds, thenrRPW2(S sp, j,| + 1).ft.ok holds andPW2(S,sp, j,| +
1).ft.stC RPW2(Ssp,| + 1).ft.st.

|. SupposeRPW2(S sp, j,| +1).ft.ok holds. Then{vj,vj;i;+1} € E> and either

18

4.1 Cycles with Sticks

1. RPW2(Ssp, j +1,1).ft.ok holds and¥wew; {Vj+i+1,W} € Ep, Or

2. 1 does not hold, blRPW2(S sp, j,I).It.ok and for allw € Wj, {vj;i11,Ww} € E; orw e
RPW2(S;sp, j,I).It.st).

First suppose 1 holds. By the induction hypotheB¥/2(S sp, j + 1,1).ft.ok holds, and
RPW2(S,sp, j + 1,1).ft.st=PW2(S;sp,j + 1,1).ft.st LetPD = (V4,...,\t) be a path decom-
position of width two ofSV (j + 1,1) UW; 1 UPW2(S sp, j + 1,1).ft.st], such that therspe V;
andvji1,Vji+1 € . Letwy, ... ,wny, denote all vertices dVj, and letus, ... ,u, denote the set

{ueW 1] {vj,u} e E2Au¢ RPW2(Ssp, j+1,1).ft.st}.
Let

PD' = PD++ ({Vj+1,Vj, Vi1+1}) H ({Vj, Vist+1,Wa by oo {V), Vi1 41, Wm})
+ ({Vjs Vitrpa, Uk, oo {V), Vi1, Up).
ThenPD' is a path decomposition of width two 8V (j,1 +1) UW; URPW2(S sp, j, | +1).ft.st]
with v; andvj41 in the rightmost node, ansp in the leftmost node. SBW2(Ssp, j,| +

1) ft..okholds, andRPW2(S sp, j, | +1).ft.stC PW2(S sp, j,| +1).ft.st, because of Lemma 4.3.
Now suppose 2 holds. By the induction hypotheBW/2(S sp, j,I).It.ok holds, and

RPW2(S sp, j,I).It.st=PW2(Ssp j,I).It.st
LetPD= (V4,...,\) be a path decomposition of width two of

S[\/(jjl)UVVj+| UPWZ(SSpv.lvl)ItSt]v
such thaspe V; andvj,vj € \. Let

{Wy,... ,Wn} ={weW,; |w¢ RPW2(S sp, j,I).It,st}, and
{ug,... . Up} = {UEWj 41 | {vj,u} € B2}

Let

PD' = PD -+ ({Vj, Vi1, Virir1}) H (Vi Vipie1, Wik, oo {V),Vigig1, Win})
H (Vs Vi1, Uty o V), Vi1, Up).

Then PD' is a path decomposition of width two &V (j,| +1) UW; URPW2(Ssp, j,I +
1).ft.sf with v; andvj 41 in the rightmost node, ansp in the leftmost nodea € sp. So
PW2(S sp, j,| + 1).ft.ok holds, andRPW2(S sp, j,| + 1).ft.st C PW2(S sp, j,| +1).ft.st, be-
cause of Lemma 4.3. This completes the proof of part I.

Il. SupposePW2(S sp, j,| + 1).ft.ok holds. We show thaRPW2(S sp, j,| + 1).ft.ok holds
andPW2(Ssp, j,l +1).ft.stC RPW2(S sp, j,| +1).ft.st LetPD = (V4,...,\t) be a path de-
composition of width two o8V (j,1+1) UW, UPW2(S sp, j,1 +1).ft.st such thaspe Vy, and
{Vj,Vjti+1} CM. Leti be such tha{v;,vi;1} occurs in the leftmost node of the occurrence of
C and eitheisp= nil, sp={Vi,Vi11}, orsp= {Vvi,Viy1}.

19

4 Three-Intervalizing Sandwich Blocks with Sticks

Clearly, {Vj,Vj+|+1} € Ep, sincevj,ijH eVr. If {vi,viyz1} = {Vj,Vj+|+1}, then|l(j,l +
1)| = |V(C)| > 3, and the leftmost and the rightmost node of the occurren€e&ah not contain
the same edge, contradiction. $&,Vi;1} # {Vj,Vj4i+1}. LetVimandVyy, 1<mm <t, be
the rightmost nodes containing edpg..1,v;} and{vj.,vj;i11}, respectively.

If m=n7, thenvj 1 =vj, hencel (], +1)| = 3. Since{vi,Vi;1} # {Vj,Vj4 }, this means
that {vi,Vit1} = {Vj41,Vjpi41} or {vi,Viy1} = {vj,vj+1}. We prove the first case in the same
way as the case that < m, and the latter case in the same way as the casethai.

Supposen’ < morm =mand{Vi,Viz1} = {Vj41,Vjri4+1}. ThenVip = {Vji1,Vj,Vj+i+1}.
Furthermore, for eack, m < k <t, Vi containsvj, vj;41, and possibly a stick ofj or vj 1,
since if there is &, m < k <t, such that € \ for some other vertex & j,| 4+ 1), thenv € Vi,
which gives a contradiction (see also the proof of Lemma 3.2).

Note that, ifm’ < m, thenv; ¢ Vi, sinceVyy containsvj, vj;1—1, and a vertex of the path
from vj11 to viz1 which avoidsvj. Hence ifm < m, thenv; does not occur in the leftmost
node of the occurrence @, sovj ¢ {vi,vi;1}. If m=m, thenv; = vi;», which also means
thatv; ¢ {vi,vi11}. Furthermore, for alk, if vj € Vi, thenvj 41 € V, so for all sticksw € W,
{Vj41+1,w} € Ex. Also, for eachk, m < k <t, Vj contains only sticksv € W1 for which
{vj,w} € Ea.

Let V\/j’+I be the set of vertices containing all sticks\gf,; which occur in(Vy,... V).
Let PD’' be the path decomposition obtained fré\f, ... ,Vin) by deletingv; and its sticks
from all nodes containing it.PD’ is a path decomposition of width two &V (j + 1,1)U
Wit1UW/,, 4, andais contained in the leftmost nodgy;.1,Vji+1} in the rightmost node.
HencePW2(S sp, j + 1,1).ft.ok. By the induction hypothesis, this means tR&W2(S sp, j +
1,1).ft.ok holds, andRPW2(S;sp, j + 1,1).ft.st=PW2(Ssp, j + 1,1).ft.st. Since{vj 41, W} €
E for all w € Wj, this means thaRPW2(S sp, j,| +1).ft.ok holds. W/, |, ; C PW2(Ssp, j +
1,1).ft.st=RPW2(Ssp, j + 1,1).ft.st, hencePW2(Ssp, j,I +1).ft CW/,| ,; U{wW € Wji41 |
{vj,w} € Eo} CRPW2(Ssp, j,| +1).ft.st

Now supposen < nv, orm= ' and{vi,Viy1} = {vj,Vvj+1}. Then, analogously to the other
caseVm = {Vj,Vj11,Vjti+1}. Furthermore, for eack m' < k <t, Vi containsvj, vj4i4+1, and
possibly a stick of/; or vj, 11, but no other vertices. Als®,i11 ¢ {Vi,Vi{1}.

Furthermore, for alk, if vj. 11 € Vi, thenvj € V, so for all sticksw € PW2(S sp, j,| +
1).ft.st, {vj,w} € Eo. Also, for eachk, m’ < k <t, Vi contains only sticksv € W; for which
{Vj4i+1,W} € Bz

Let VVJ-’ be the set of vertices containing all sticksvgfwhich occur in(Vy,... ,Viy). Let
PD' be the path decomposition obtained fro¥,... ,Viy) by deletingv;;1 and its sticks
from all nodes containing it. TheRD' is a path decomposition of width two &V (j,I)U
Wi+ UW/], anda is contained in the leftmost nodévj, vj.} is in the rightmost node. Hence
PW2(S sp, j,l).lt.ok. By the induction hypothesis, this means tR&W2(S sp, j,1).It.okholds,
andRPW2(S sp, j,1).It.st=PW2(Ssp, j,1).It.st. Furthermore{v;+1,w} € Ex for allwe W,
for whichw ¢ PW2(S,sp, j,1).lt.st. There are two cases.

1. RPW2(S sp, j + 1,1).ft.ok holds and for aliv € W, {vj1+1,W} € E»,

2. RPW2(S;sp, j+1,1).ft.okdoes not hold or there isme W; for which {vj 1, w} ¢ E.

In case 1,RPW2(Ssp, j,| + 1).ft.ok holds, andRPW2(S;sp, j,| +1).ft.st={w € W11 |
{w,v;} € Eo } URPW2(S sp, j + 1,1).ft.st by definition, and sinc®W2(Ssp, j,| +1).ft.stC

20

4.1 Cycles with Sticks

{we Wiiq1 | {vj,w} € Ex}, this means thaPW2(S;sp, j,| + 1).ft.st C RPW2(Ssp, j,| +
1).ft.st.

In case 2RPW2(S;sp, j, 1).It.ok holds and for allv € Wj, eitherw € RPW2(S sp, j,1).It.st
or {vj,w} € Ez, henceRPW2(S sp, j,| + 1).ft.ok holds and sincéW2(Ssp, j,| + 1).ft.st C
{weW, 41| {vj,w} € E> }, this again means thRW2(S sp, j,1 +1).ft.stC RPW2(Ssp, j, | +
1).ft.st.

This completes the proof of part Il. O

For a given sandwich grapBfor which G41(S) is a cycle with sticks we can modify algo-
rithm 3-1ISG.Cycle that is given in Section 3 in order to comp&#é/2. We call the resulting
algorithm 3-ISGCWS. This algorithm has the following specification.

Algorithm 3-ISG.CWS(S sp ep)

Input: Sandwich grapls of which G1(S) is a cycleC with sticks
Starting pointspof S
Ending pointepof S

Output: true if there is a path decomposition of width two 8fwith spin the leftmost node
andepin the rightmost node.

The madifications in the computation of 3-ISGNS with respect to 3-IS&ycle follow
straightforwardly from the definition dRPW2, and hence we do not give them here. If we
compute an adjacency matrix of the gra@h(S) before running 3-ISGCWS, then we can
make 3-ISGCWS to run inO(n?) time with O(n?) space. It is again easy to make 3-1SI3VS
also output a three-intervalization if one exists. Hence we have proved the following lemma.

Lemma 4.4. There exists an @) time algorithm that solve8-ISG for sandwich graphs of
which the underlying graph is a cycle with sticks.

For the algorithm for sandwich blocks with sticks, we also need a slightly different result.
Therefore, we construct an algorithm 3-IS®WVS with the following specification.

Algorithm 3-ISG.CWS(S sp,u,V)

Input: Sandwich grapls of which G1(S) is a cycleC with sticks
Starting pointspof S
Verticesu,v € E(C) such that{u,v} € E(C)

Output: A pair (ok, st), where
ok is a boolean which igue if and only if there is a path decomposition of width two of
SV (S) W], whereW is the set of sticks of, with spin the leftmost nodey andv in
the rightmost node, and
st C W, such thast= ¢ if ok = false, andstis the largest subset ¥§, for which there is
a path decomposition of width two &V (S) ©W, U st] with spin the leftmost node and
u andv in the rightmost node.

Note that the output is well-defined, i.e. it is unique for a given input. From the previous
results, it is easy to see that we can construct 3-63&S in such a way that it runs iﬁ)(nz),
(n=V(9))).

21

4 Three-Intervalizing Sandwich Blocks with Sticks

We additionally obtain the following result, which will prove useful for deciding 3-ISG on
sandwich trees.

Lemma 4.5.Let S be a sandwich graph of which the underlying graph is a path P with sticks.
Let u and w be the end points of P and Ié¢,w} € E(P), such that the path froryuo v does
not contain w. Let Pdenote the path from;uo v and B the path from u to w. For each
x € V(P,), let P* denote the path from w to x. Leg ¥ V(P1) UV (P) and let W denote the
set of all sticks connected tg\except the sticks connected to x. See part | of Figure 3 for an
example of &(S) and G (SV,UW]) (the fat lines denote the pathg &d R).

In O(n?) time, we can compute the vertex W (P,) for which |V (R,)| is minimal and for
which there is a path decomposition of width two §f,& W] with e in the leftmost node and
u; and y in the rightmost node.

Ui =Vo

dum=v, 1

U2 = Vn-2

Figure 3: An example oB1(S) andG; (SVixUW]) for Corollary 4.5 (part 1), and oB1(S)) for
the proof of Corollary 4.5 (part I1).

Proof. Let dum denote a dummy vertex and I8t be the sandwich graph obtained frcn
defined as follows.

V(S) =V(S) U {dum}
= E1(S) U{{uy,dum}, {tp,dum}}
(

E1(S)
Ex(S) = Ex(S) U {{v.dum} |veV(S)}

Part 1l of Figure 3 shows an example Gi(S) for sandwich grapt® of part | of the figure.
Note that the underlying graph & is a cycleC with sticks. Number the vertices & by
Vo, ... ,Vn-1 such thate(C) = {{wvi,vi;1} | 0 <i < n} and furthermoreu; = vp, dum = vp_1
andup = vh_o. Let j, 0 < j < n, be such thatv = v;.

It can be seen that findingis boils down to finding the smallektj <1 < n<2, for which
PW2(S, {e},0,1).ft.ok holds. This value can easily be derived from the table that is built in
algorithm 3-ISGCWS. O

22

4.2 Sandwich Blocks with Sticks

4.2 Sandwich Blocks with Sticks

We now consider sandwich graphs of which the underlying graph is a block with sticks. The
algorithm for this case has the same structure as the algorithm given in Section 3 for sandwich
blocks: first it checks if the input sandwich graBlas the right structure, i.e. if its block is a

path of cycles. Then for each sub sandwich graph which is induced by a chordless cycle with
sticks it computes whether there is a path decomposition with the correct edges in the leftmost
and rightmost nodes, and it combines these results to get an answer for the complete sandwich
graph.

For sandwich blocks, it is possible to first compute the results for each chordless cycle
separately, and after that, combine these results. However, for sandwich blocks with sticks,
this is not possible: we first compute results for the first chordless cycle in the path of cycles,
then, with these results, we compute results for the first and the second cycle. With these
results, we compute results for the first, second and third cycle, etc.

In Section 5 and 6, we use the algorithm for sandwich blocks with sticks as a building
block. As input, we usually give a sandwich block with sti&s vertex or edge of the block
of Swhich must occur in the leftmost node of the path decomposition, and a vertex of edge
of the block which must occur in the rightmost node of the path decomposition. Therefore,
we extend the notion of starting and ending points for sandwich blocks with sticks heeta
sandwich block with sticks, |eB denote the block o6;1(S). A starting point or ending point
of Sis an element 0¥ (B) UE(B) U {nil}. The algorithm is now as follows

Algorithm 3-ISG_.SBWSE sp,ep)

Input: Sandwich block with stick§
Starting pointspof S
Ending pointepof S

Output: true if there is a three-intervalization & false otherwise

1. if Gy(S) is a cycle with stickgshen return 3-ISG.CWS(Sspep

2. Compute the cell completid®; (S) of G1(S), the blockB of G1(S) and the se#V of sticks
of B.

3. Check ifél(S) is sandwiched irg, and if B is a path of cycles. If noteturn false.

4. Find a cycle pattiC,E) of B with C = (Cy,...,Cp) andE = (ey,...,ep_1), such that
spe V(Cy) U(E(C1) &{er}) U{nil}, andepe V(Cp) U (E(Cp) ©ep_1) U {nil}. If this is
not possiblereturn false

5. fori+1topel

6. doLetv;, Vi, Wl andW’ be such thag = {v;,v/}, W is the set of sticks of;, andW/’
is the set of sticks of!.
7. S + V(Gi) U{ sticks ofV(Ci) ©W_1 W' ;1.

8. Letft, ft,, ft,, It, Ity andlty be variables, each with a fielnk which is a boolean, and a
field stwhich is a set of vertices.

9. ft+ 3-ISG.CWS(S;,spv1,vy)

10. It + 3-ISG.CWS(S;,spVy, 1)

11. if =(ft.okV It.ok) then return false

12, i+1

13. whilei < p&l

23

4 Three-Intervalizing Sandwich Blocks with Sticks

14. do ﬁll, fto,Itg,Ito (false,¢)

15. if ft.ok

16. then ft; < 3-ISG.CWS(SV(S)U (W', &ft.st)],e_1,vi,V))
17. Ity < 3-ISG.CWS(SV(S)U (W, &ft.st)],e_1,v/,vi)
18. if It.ok

19. then ft, «+ 3-ISG.CWS(SV(S) U (W_1 <lt.st)],e_1,vi,V)
20. Ity < 3-ISG.CWS(SV(S)U (W_1 <lt.st)].a_1,V,vi)
21. (eitherft,.st C fto.storft,.stC fty.St*)

22. (x eitherlty.stC Itp.storlt,.stC Ity st *)

23. ft.ok < ft;.okVv fto.ok

24. ft.st< fty.stU fto.st

25. [t.ok < It1.0kV Ito.0k

26. [t.st« It;.stUlt,.st

27. if =(ft.okV It.ok) then return false

28. i<—i+1

29. if ft.okand 3-ISGCWSEV (S) U (W4 &ft.st)],ep-1,6p
30. thenreturn true

31. if lt.okand 3-ISGCWS@EV (S,) U (Wp_1 lt.st)],ep_1,ep
32. thenreturn true

33. return false

Foreach, 1<i<p,letV,=V(S)U---UV(S). After theith iteration (1< i < p) of the
main loop in Lines 13 — 28t andlt have the following values.

o ft.ok=true if and only if there is a path decomposition of width twoS¥/ (S;) U---U
V(S)<W'] with spin the leftmost node an€ in the rightmost node, anit.st C W' is
the largest set for which there is a path decomposition of width twg\&fS;) U - - - U
V(S)<W' U ft.st] with spin the leftmost node ane in the rightmost node.

e It.ok = true if and only if there is a path decomposition of width twoS¥/ (S;) U---U
V(S)<W] with spin the leftmost node and in the rightmost node, anitl.st C W is
the largest set for which there is a path decomposition of width twg\ofS;) U --- U
V(S)<W Ult.st with spin the leftmost node ang in the rightmost node.

This implies that 3-IS@BWS correctly computes whether there is a path decomposition of
width two of the input sandwich graph with the desired vertices or edges in the leftmost or
rightmost node.

Suppose at the beginning of the algorithm, we are given an adjacency matrix of the graph
G2(S). Then the total running time of the algorithm@n?). Hence we have the following
result, which will be frequently used in Sections 5 and 6.

Lemma 4.6. Let S be a sandwich block with sticks. Let sp be a starting point of S and ep an
ending point of S. It takes (@) time to check whether there is a path decomposition of width
two of S with sp in the leftmost node and ep in the rightmost node.

As a corollary, we also have the following result.

24

4.2 Sandwich Blocks with Sticks

Corollary 4.1. There exists an @) time algorithm that solve8-ISG for sandwich blocks
with sticks.

For Sections 5 and 6, we also need a slightly different result. S-et(V,E;,Ez) be a
sandwich graph. We caBa sandwich block with sticks and loose endsand b if ui,u, €V,
{ug,up} ¢ Eq, andS = (V,Ey U {{uy,uz} },Eo U {{us,u>}}) is a sandwich block with sticks.

For an example of the underlying graph of a sandwich block with sticks and looseends
anduy, see part | of Figure 4.

ug

U

P1 u

Figure 4: An example oB1(S) (part 1) and of the subs&t* of V (S) (part I1) for Corollary 4.2.

From Theorem 3.5.1 of de Fluiter [1997] and Lemma 4.5, we can now derive the following
result.

Corollary 4.2. Let S= (V,E1,E>) be a sandwich block with sticks and loose engsuy, let
spe V(S UE(S) U {nil}. Let = (V,E1 U {{ug,u2}},ExU{{u,u2}}). We can check in @)
time whether the following conditions hold (see part | of Figure 4 for an example).

1. Gi(S) has pathwidth two,
2. the cell completior8 of S is sandwiched by’S

3. there is a cycle patkC,E) for S, C = (Cy, ... ,Cp) andE = (ey,...,ep_1), in which
ug, Uz € Cp, {ug,up} € E(Cp) {ep-_1}, and spe V(C1) U (E(Cy) <{e1}) U {nil}.

Suppose conditions 1 — 3 hold, and (€t E) be as defined above. Lef g = {v,w} such
that the path in S fromuto v does not contain w. Let Rlenote the path from;uto v and B
the path from gto win S. For each x V(P,), let V* denote the set of vertices of S which are
unfilled in part Il of Figure 4. Let S= SV*|.

In O(n?) time, we can compute the vertex ¥ (P,) for which |V (PY)| is minimum and for
which there is a path decomposition of width two bfth u; and y in the rightmost node, and
sp in the leftmost node.

25

5 Three-Intervalizing Sandwich Trees

5 Three-Intervalizing Sandwich Trees

In this section, we consider sandwich trees, i.e. sandwich graphs of which the underlying graph
is a tree. The algorithm for solving 3-1ISG on sandwich tr8disst checks ifG;(S) has path-
width at most two, and if so, it finds the structure as described in Section 3.3 of de Fluiter
[1997]. If not, thenS does not have pathwidth at most two. Then it uses this structure to
check whethefs has pathwidth at most two. We mostly concentrate on this last step. So in
the remainder of this section, we assume that, with a sandwich tree of pathwidth two, we are
given the seP,(G1(S)), and, for eactP € P,(G1(9)), the set of partial one-paths which are
connected t® in G1(S).

We first show that there is a path decomposition of width two of a sandwicl$tifesnd
only if there is a path decomposition of width two $hich has some ‘nice’ structure. After
that, we show how to compute for a given sandwich 8&d pathwidth two whether there is
such a nice path decomposition of width twofFirst we distinguish different types of partial
one-paths connected to a path, corresponding to the way they are connected to the path.

Definition 5.1 (Types of Partial One-Paths). LEtbe a tree of pathwidth twd? a path inH
such thatH [V &V (P)] has pathwidth one. Late V(P), andH’ a component oH[V <V (P)]
such thatH’ has pathwidth one and has a vertex which is adjacentite. H’ is connectedo
v. Letw € V(H’) be the vertex for whicjv,w} € E(H). LetP’ € P;(H’). We say that

e H' is of type | if wis an end point of?, or if w is adjacent to an end point & and
w ¢V (P),

e H'is of type Il if wis an inner vertex oP’, and

e H'is of type lll if w¢ V(P') andw is adjacent to an inner vertex Bf.

Figure 5 gives an example for each type of partial one-path. The tree depicted in this figure
consists of a patP with uy, up,u3 € V(P), and a partial one-patH; of type | connected toy,
a partial one-pathi, of type Il connected toi,, and a partial one-patHs of type 11l connected
to uz. Note that the type of a partial one-patt connected to a vertexof the pathP does not

M\

Figure 5: Example of a tree of pathwidth two which consists of a path with three partial one-
paths connected to it.

26

depend on the choice of the p&he P1(H’), since if|P1(H’)| > 1, then for eact?’ € P1(H’),
IV (P')| = 1, soP’ does not have any inner vertices, and herdteas type |I.

From now on, by partial one-paths connected to a pative only mean the partial one-
paths of type I, Il and Il connected @, and not the sticks connectedRo

We now give a definition of the kind of path decomposition that we want to use for the
algorithm.

Definition 5.2 (Nice Path Decomposition). L&= (V. Ej, E,) be a sandwich tree of pathwidth
two, letH = G4(S), and letPD = (V4, ... ,\4) be a path decomposition of width two 8f Then
PD is anice path decompositioof width two of Sif

¢ there are no two consecutive nodes which are equal, and

e nodeV; contains an edgéw,w'} € E; andV; contains an edgéx, X'} € Ej, such that
there is a pat® = (v1,...,Vs) € P2(H) for which there is a partial one-pattt’ that is
connected te; and a partial one-patH” that is connected ta;, H' #H", ww €V (H’),
w is an end point of some pati € P1(H’), x,x € V(H"), andx is an end point of some
pathP” € P1(H").

The path fromw to x is called thenice pathof Sfor PD.

Figure 6 shows an example of the underlying treef a sandwich tre& of pathwidth two
and a (symbolic) nice path decomposition of width twdSofNote thatP(H) = (v1,V2,V3),
and the pathiu;, U, us, Us, Us, Ug, U7, Ug) isS the nice path oS for PD. Vertexu; is an end point
of the pathP;(H;), andug is an end point of the path; (Hy).

up || ug Hi Ug || Uz || Us Ho Us Ha Uz || Uz || wa || W3

Wy || U2 up U || Ug || Ug ’ Us ‘U6’ Ug ‘UG Ug || Ug || Us

Figure 6: Example of the underlying graphof a sandwich tre&with a nice path decompo-
sition of S

Next, we show that for a given sandwich tr8dor which G4 (S) is a tree of pathwidth
two, there is a path decomposition of width twoif and only if there is a nice path decom-
position of width two ofS. First we prove another lemma, which is needed for the case that
|P2(G1(9))| > 1 (remember that in this case, each patf#0G:(S)) consists of exactly one
vertex).

27

5 Three-Intervalizing Sandwich Trees

Lemma 5.1.Let S be a sandwich tree of pathwidth two, letH5;(S). SupposeP,(H)| > 1.
There is a path decomposition PB(Vi, ... ,\t) of width two of S such that

e V; contains an edge e E(H), contains an edge’ & E(H), e# €, and

e the shortest path P in H which contains e arida®ntains a vertex & V(S) for which
(v) € P2(H) and there are two or three components ifM={Vv}] which have pathwidth
one.

Proof. LetPD' = (V/,...,V,) be a path decomposition of width two 8f We transform
PD into a path decompositioRD for which the condition holds. First delete the leftmost
node ofPD until it contains an edge, and do the same for the rightmost no@®oNow let
e={u,u} € E(H) such that CV; and€ = {w,w'} € E(H) such tha’ C \4. Let P be the
shortest path containingand€, suppose w.l.o.g. th® = (u,u,... ,w,w). Note thate # €,
since ife = €, then each vertex df is either adjacent tw or toV/, andH has pathwidth one,
and so doeS§. However, it is possible that = w'.

If there is av € V(P) such thaH [V <{v}] has pathwidth one and has two or three compo-
nents of pathwidth ond?D' is the path decomposition that we need.

Suppose there is noc V(P) for which this holds. We show th&tV <V (P)] has exactly
one component of pathwidth one. HffV <V (P)] has no components of pathwidth one, then
H has pathwidth at most one. Hf[V <V (P)] has more than one component of pathwidth one,
then there is a vertexe V (P) such that [V <{v}] has more than one component of pathwidth
one, which gives a contradiction.

Let H' be the component dfi [V <V (P)] which has pathwidth one, lete V(P) andV €
V(H') such that{v,V'} € E(H). The treeH [V <{v}] has exactly one component of pathwidth
one, namelH’. This means that = U = w and thatu andw both have degree one. Now
transformPD’ as follows. Delete all neighbors efwhich have degree one from all nodes of
PD/, and for each such neighbaradd a noddv,x} on the left side of the leftmost node BD'.
Furthermore, delete the rightmost node fr&Md until it contains an edge. The resulting path
decomposition is still a path decomposition of width twoSyfand it satisfies the appropriate
conditions, since the leftmost node contains an €dgel, wherex has degree one, while the
rightmost node can not contain such an edge, and hence contains another edge. Hence the
shortest path containing these two edges must contain a westech thaH [V <{y}| has two
or more components of pathwidth one. O

Theorem 5.1.Let S= (V,E1, E>) be a sandwich tree. Then S has pathwidth two if and only if
there is a nice path decomposition of width two of S.

Proof. LetH = G4(S). The ‘if’ part is clearlytrue.

For the ‘only if’ part, suppose there is a path decomposition of width tw#® &f|P,(H)| >
1,letPD= (V4,...,\) be a path decomposition of width two®6uch tha¥; andV; contain an
edge, and the shortest path containing these edges contains awdaewhichH[V <{v;}]
has pathwidth one, and has two or three components of pathwidth one. FurthermBre, let
(v1) (s=1). If |P2(H)| =1, letPD = (V4,...,\t) be an arbitrary path decomposition of width
two of S and letP = P,(H) = (vi,...,Vs). Note that, by Corollary 3.3.1 of de Fluiter [1997],
HV <V (P)] has at least two components of pathwidth one.

28

We show howPD can be ‘unfolded’ until it is a nice path decomposition of width two of
S. Supposé’D is not a nice path decompoaosition.

First supposes > 1. LetH; be the component dfl [V (H) <{v»}] containingvy, and let
Hs be the component dfi[V (H) <{vs_1}] containingvs. For eachv € V; andV € 4, the path
from v to V' containsP, by Corollary 3.3.1 of de Fluiter [1997]. This means thatC V (H;)
and\t C V(Hy) or vice versa. If the second case holds, transfBininto re PD), which is
the reversed path decompositionRID that is obtained fronfPD by reversing the order of the
nodes. Furthermor&,(Hy,) NV (Hz) = 0.

Supposes = 1. If |P2(H)| = 1, then for eaclv € V; and eaclV € 4, the path fromv to V/
containsP, and henc#; andV; can not contain vertices of the same partial one-path connected
tovy. If |P2(H)| > 1, thenP is chosen in such a way thét andV; do not contain vertices of the
same partial one-path connectedsto Let H; denote the induced subgraphtbfconsisting of
vertexv; and all components dfl [V <{v; }| of whichV; contains a vertex, and lét, denote
the induced subgraph ¢f consisting ofv; and all components dfl [V <{v;}] of which
contains a vertex. Note that agAinC V(H1), i CV(Hz), andV (H1) NV (H2) = {w1}.

The following cases may occur ff.

1. V; = {v,V} for some edg€v,V'} € E(H1) such thatv andV both have at most one
neighbor which does not have degree one.

2. Vj contains no edge.
3. V1| =3 andV; contains an edge.

4. Vp ={v,V} for some edgdv,V'} € E(H1), butv orV has more than one neighbor which
does not have degree one.

For\, the possible cases are similar.

If case 1 holds fo¥, then eithenv or V' has degree one. Suppogéas degree one. Note
thatv andVv can not both have degree one, since thkhas pathwidth one. Furthermore,
V # vy, since thenv has at least two neighbors which do not have degree one, hamely one
neighbor in a partial one-path connectediipandv, if s> 1, or a neighbor in another partial
one-path connected tq if s= 1. Furthermorey can not be an inner vertex Bf(H’) for some
partial one-patlid’ which is connected t@y, since then the two neighborswin P;(H’) do not
have degree one. Henweés an end point of some pathe P;(H’) for some partial one-path
H’ that is connected te;, which is exactly what we need.

Now, we repeatedly apply the transformations a, b and ¢ described bel& amdH;
andHo, such that, after each transformation, the following holds.

e PDis a path decomposition of width two &f
e Hi andH, are subgraphs of the grapHs andH, before the transformation, respectively.

e The leftmost node dPD only contains vertices dfl1, the rightmost node contains only
vertices ofH,.

29

5 Three-Intervalizing Sandwich Trees

This means that, after each transformation, one of the cases 1 — 4 holds. We do this until case 1
holds for bothv; andV;, which means tha®D is a nice path decomposition of width two &f

First, transformations a, b and c are doneMpiandH; until case 1 applies fovy, next they

are done fol; andH,, until case 1 applies fo;.

Transformation a. If case 2 applies, deleid.

Transformation b. If case 3 applies, leé € E(H;) such thate C V4, and add a node
containinge only on the left side of/.

Transformation c. If case 4 applies, do the following. Suppose w.l.0.g. that the path from
v to v; containsv. Consider the components BifV <{v}| which consist of more than one
vertex. Note that one of these components is a subgraph which does not contaiw or Vv,
and henc#&; does not contain any vertex of this component. Hebe such a component. Now
transformPD into re PD)V (H') U {v}]) ++ PD]V <V (H')], and letH; = HV(H")U{v}]. The
new path decomposition is indeed a path decomposition of width tv& sihicev is the only
vertex thatH[V(H') U {v}] andH[V <V (H’)] have in common, and occurs in the rightmost
node of re¢PD[V(H’) U {v}]) and in the leftmost node &*D[V <V (H')]. Furthermore, the
new H; contains at least one vertex less than thel#{d the leftmost node of the neRD
contains only vertices of the netd; and the rightmost node of the néRD contains only
vertices ofH,.

Note that the number of transformations that can be done is finite: if the transformation of
case 4 is done, thdf; or H, gets smaller, and after each time the transformation of case 4 is
done, the transformations of case 2 and 3 can only be done a finite number of times before case
4 holds again. O

Let Sbe a sandwich tree such théit= G1(S) has pathwidth two. A patR = (ug, U, ... ,Ug)
in H is called gpossiblenice path ofSif

e P contains a patlivy, ... ,Vs) € P2(H), for which

e there is a partial one-path’ connected ta; and a partial one-patH” connected tas,
H’ # H", such thaty is an end point of a path iA;(H’) andug is an end point of a path
in Py(H").

Note that, for each nice path decomposition of width tw&ufith nice pathP, P is a possible
nice path ofS.

The total number of possible nice paths in a sandwich$meievhich G1(S) has pathwidth
two may beQ(n?), wheren = |V(H)|. We construct an algorithm PW2, which checks for a
given sandwich tre& of which G1(S) has pathwidth two whethes has pathwidth two. This
algorithm has the following structure, in which algorithm Nieathf) returnstrue if there is
a nice path decomposition of width two 8fwith nice pathP, andfalse otherwise.

Algorithm PW2@©)
Input: Sandwich tre&Sfor which G1(S) has pathwidth two

30

Output: true if Shas pathwidth twofalse otherwise
1. for certain possible nice patifsof S

2. do if Nice_PathP) then return true

3. return false

The algorithm will run inO(n?) time, because the number of nice paths that is tried is bounded
by a constant, and function Nideath runs irO(n?) time. In the remainder of this section, we

first show which possible nice paths have to be tried, and which possible nice paths do not have
to be tried. After that, we show how function Ni¢&ath works. First, we prove some lemmas.

Lemma 5.2. Let S be a sandwich tree of pathwidth two, let BOV,...,\;) be a nice path
decomposition of width two of S with nice path P. Let V(P) and suppose Ha partial
one-path connected to v, let&V (H') such that{v,w} € E(G1(S)).

1. If H' is of typell, then there is an il <i <t, such that
PD/ = (Vla ce a\/ia {Vaw}a\/i+lv v a\/t)
is a nice path decomposition of width two of S with nice path P.

2. If His of typelll, then let W be the inner vertex ofPH’) that is adjacent to w. There
isani,1<i <t, such that V= {v,w,w'}.

Proof. LetH = Gy(S). SupposeH’ occurs in(Vj,...,Vj). Each nodd/, j <i < j’, contains
at most two vertices dfl’. There is a node containingandw, since{v,w} € E(H). First we
prove the case that' has type |II.

1. If there is a nod&; = {v,w}, then we are done. Suppose there is no such node. Suppose
{v,w} occurs in(M,...,V). Note that edges of one componentfV (H’) <{w}] occur on
the left side ofv; and edges of another componentfV (H’) <{w}] occur on the right side
of Vi (Lemma 3.3.5 of de Fluiter [1997]). Furthermore, note that not an end point of the
pathP, since, by definition, there are no partial one-paths connected to the end points of a nice
path. Hence edges of one componentd¥ <V (H') <{v}] occur on the left side df; and
edges of another componenttdfV <V (H') <{v}] occur on the right side d&f,. No edges of
H[V <{v,w}] occur within(M,... V), since each node already contairandw. If v ¢ Vi_1,
then there is a neighbar of v in one of the four components with edgestlV <{v,w}]
with u € V. If w¢ Vi_1, then there is a neighbarof w in one of the components of the four
components with edges 6f[V <{v,w}].

Let u be the neighbor of or w which occurs inv;. Similarly, letu’ be the neighbor of
v or w which occurs inV.. Note thatu' # u, sinceu andu’ are in different components of
HV <{v,w, }]. Hencev| = {v,w,u} andV}: = {v,w,u’}. This implies that there must be a node
Vi, | <i< I, such thaV, NViy1 = {v,w}, and hencéVy,... Vi, {v,w},Vi;1,...,\t) is also a
path decomposition of width two &

2. Now suppose that’ has type lll. Because of the structure of path decompositions of width
two, there is no node containingbut notw/, sincew is an inner vertex oP;(H), andw is a
stick connected te/. Hence there must be a node containmgv andv, since{w,v} € E. O

31

5 Three-Intervalizing Sandwich Trees

Lemma 5.3.Let S be a sandwich tree of pathwidth two, POV, ... ,\;) a nice path decom-
position of width two of S with nice path-P (vy,...,vq). Letw, € V(P) and let H,... ,H, be
the partial one-paths connected tg.vThere are at most two partial one-paths in,H. ,H,
which have a vertex w for whicfv,w} ¢ Ex(S).

Proof. LetH =G4(S). Suppose; € V; andvg € 4, and suppose, occurs in(Vj, ..., V). Let
H"andH"” be the components &fV <{vm}] which contain vertices d?, such that;, € V(H')

andvg € V(H") (note thatH’ is the empty graph if and only ih= 1, andH" is the empty
graph if and only ifm= q). If m> 1, then there is an edge Bf which occurs on the left side

of (Vj,...,Vj), and ifm < q, then there is an edge &f" which occurs on the right side of
(Vj,-..,Vj). Lemma 3.1.1 of de Fluiter [1997] shows that there is at most one partial one-path
connected ta/y, of which an edge occurs on the left side\gf and at most one of which an
edge occurs on the right side \8f. Hence of all other partial one-paths connectegytpall
verticesw occur within(Vj, ... ,Vj), which means thagv,w} € Ex(S). O

Lemma 5.4.Let S be a sandwich tree of pathwidth two. Let PD be a nice path decomposition
of width two of S with nice path P. There is a nice path decomposition of width two of S with
nice path P in which for each & V(P) such that there are two or more partial one-paths
connected to v, PD contains a nogie} .

Proof. LetH = Gy(S) andV =V(S). LetPD = (V4,...,\). For eachv € V(P) for which
there are two or more partial one-paths connected t@nsformPD as follows. Ifvis the left
or right end point of, then add a nodév} on the left or right side oPD, respectively.

Supposer is an inner vertex oP. Supposes occurs in(Vj,...,Vj). LetH; be the induced
connected subgraph &f containingv and all components dfl [V <{v}] of which there is an
edge occurring on the left side ¥f, and letH, be the induced subgraph containnand all
components oH [V <{v}] of which there is an edge occurring on the right sid&/pf Note
thatV (H1) NV (H2) = {v}, since no component &f[V <{v}| can have edges occurring on the
left side ofV; and edges occurring on the right sidevpt

Furthermore, leHs be the induced subgraph &f containingv and all components of
H[V <{v}] which are not inH; or H,. ThenH = H; UH,UHs. If there are vertices adfi;
which occur on the right side dfj/, then they can be deleted from these nodes, since there
are no edges containing these vertices occurring on the right sie. dimilarly for H, on
the left side ofv;, and forHs on the right side o¥; and on the left side o¥j. Let PD' be
the path decompositioRD after deleting these vertices. TheD” = PD'[V (H1)] ++ ({v}) +H
PD/|V(H3)] + ({v}) + PD'[V(H)] is a nice path decomposition of width two $fwith nice
path P, since the rightmost node &fD[V (H1)] containsy, the leftmost node oPD[V (H,)]
containsv, and all nodes oPD|V (Hs)] containv. 0

The following lemmas are important to bound the number of possible nice paths that have
to be tried during the algorithm.

Lemma 5.5.Let S be a sandwich tree of pathwidth two=H5;(S). Suppose there is no vertex
v e V(H) for which HV <{v}] has pathwidth one. LettFH) = (v1,...,Vs) and let PD be a
nice path decomposition of width two of S with nice path R, ... ,uy). The following holds.

32

1. IfHV &{v1}] has three or less components, then there is a partial one-patthith is
connected toy and y is an end point of some’Re P1(H').

2. If H[V <{v1}] has four or more components, and there is a partial one-path connected
to v; which has a vertex w for whickv;,w} ¢ Ex(S), then there is a partial one-path
H’ which is connected to;vand which contains a vertex w for whidhy,w} ¢ E»(S),
such that there is a nice path decomposition’ BDwidth two of S with nice path’P-
(Wi,..., W), such that w= uq and w; is end point of some’Re P1(H’).

3. IfH[V <{v;}] has four or more components, and for each partial one-pdtbdranected
to vy, each vertex e V(H'), {v1,w} € Ex(S), then for all partial one-paths Hconnected
to v, there is a nice path decomposition of width two of S with nice path... ,w;),
such that w= uq and w is end point of some path iy (H’).

The analog for yalso holds.

Proof. LetPD= (Vi,...).
1. If H)V {v1}] has three of less components, then clearly condition 1 holds.

2. If H)V <{v1}] has four or more components, and at least one of these components has a
vertexw for which {vi,w} ¢ E»(S), thenPD is transformed as follows. Léi’ be the partial
one-path connected tq for whichu; € V(H’). If H' contains a vertew for which {v1,w} ¢

E»(S), then no transformation is performed. Otherwise, first the transformation of the proof
in Lemma 5.4 is done. The resulting path decomposiBén= (Vi,...,\Vt) has a nodgv; },

and is still a nice path decomposition with nice pRthSupposes; occurs in(Vj,...,Vj), let

[, j <1< J, besuchthat) = {v;}. For each partial one-path” connected tw; that has an
edge occurring on the left side 9f and for which for each vertew, {vi,w} € Ex(S), do the
following. Make a path decomposition of width one®¥ (H")] and adds; to each node. The
result is a path decompositid?D’ of width two of SV (H") U {v1}]. Delete all vertices of”

from all nodes ofPD, and addPD’ betweenV; andV, 1 in PD. Let PD denote the obtained
path decomposition dfl, and suppose again thatoccurs in(Vj, ... ,Vj). If there is no partial
one-path connected tg of which an edge occurs on the left sidevgf letH” denote a partial
one-path connected tq which does contain a vertex for which {v;,w} € Ex(S). ThenH”
occurs within(Vj,... ,\t). Note thatv; € V;. Let PD' =rev(PD[V(H")U {v1}]) + PD|V &
V(H")]. Now use unfolding as in the proof of Lemma 5.1 to make sureRlIis a nice path
decomposition and that the end point of the nice path is an end point of &pati,(H").
Condition 2 now holds.

3. If HV &{v1}] has four or more components, but for each vertesaf each partial one-
path connected to;, {vi,w} € Ex(S), thenPD can be transformed as follows. First apply
the transformations as in the proof of Lemma 5.4. Yjetlenote a node oPD for which

M = {v1}. Next, for each partial one-patt’ that is connected t@;, delete all vertices o’
from PD, make a path decomposition of width one$)¥ (H')], addv; to each node of this
path decomposition, and put the obtained path decomposition of width t&y gfi’) U {v; }]
betweenv; andV,,;. Delete all empty nodes frolD. Note thatV; containsv;. For each
partial one-pathd’ connected te; and for each end point of a pathP’ € P;(H'), we can now

33

5 Three-Intervalizing Sandwich Trees

make a nice path decomposition of width twoSith nice pathP = (uy, ... ,Uq), such that
u; = w as follows. Make a path decompositi®®’ = (W,... ,\W) of width one ofSV (H')],
such thaive W;. Letw € V(H') such thafv;,w'} € E(H). Letm, 1< m<r, be such thai\y,
is the rightmost node which contains. If m= 1, then letPD’ be rePD'), and letm=r. Add
v1 to eachW, i > m. Let PD denote this path decomposition. THeD ++ PD)V <V (H')] is
a nice path decomposition of width two 8that satisfies condition 3. O

The next lemma is the analog of Lemma 5.5 for the case that the underlying tras a
vertexv for whichH[V (H) <{v}] has pathwidth one.

Lemma 5.6. Let S be a sandwich tree of pathwidth two~HG;(S), and suppose there is a

v € V(H) for which HV <{v}] has pathwidth one. Let R (v1) € P2(H) such that HV (H) <

{v1}] has at least two components which have pathwidth one. Suppose there is a nice path
decomposition PD of width two of S with nice path=Ru,...,uq) such that P contains;v

Then the following holds.

1. IfH]V &{v1}] has three or less components, then there are two partial one-pdtahadi
H”, H' £ H", connected toy such that g is an end point of some path Ry (H’), and
Uq is an end point of some path iy (H”).

2. If H[V <{v1}] has four or more components and there are two or more partial one-
paths connected to;wwhich have a vertex w for whicfvy,w} ¢ Ex(S), then there are
two partial one-paths Hand H’, H’ ## H”, connected to such that Hand H’ both
contain a vertex w for whickvy, w} ¢ Ex(S), and there is a nice path decomposition of
width two of S with nice pattws,... ,w;) such that w is an end point of some path in
P1(H’), and w is an end point of some path iy (H").

3. If H]V <{v1}] has four or more components and exactly one partial one-pétboi-
nected to y has a vertex w for whickivi,w} ¢ Ex(S), then for each partial one-path'H
connected toy H' # H”, there is a nice path decomposition of width two of S with nice
path (wy, ... ,w;) such that w is an end point of some path i (H’), and w is an end
point of some path iR1(H").

4. If HV <{v1}] has four or more components and for each vertex w of each partial one-
path connected toiy {v1,w} € Ex(S), then for each two partial one-paths’tdnd H’
connected toy H' = H”, there is a nice path decomposition P& width two of S with
nice path(wy, ... ,w;) such that wis an end point of some path fh (H'), and w is an
end point of some path iy (H").

Proof. Similar to the proof of Lemma 5.5. O

Let S be a sandwich tree, such thdt= G;(S) has pathwidth two. It now follows that
the number of possible nice paths that have to be tried to find out whether there is a nice path
decomposition of width two oBis bounded by a constant. L&tbe a set of possible nice paths
of S We callA a set ofpotentially nice pathsf there are sett);,U, C V(S), for which the
following conditions hold. First suppos®(H) = (v1,...,Vs) for somes> 1. LetH denote
the set of all partial one-paths connectedtoand letH ' denote the set of all partial one-paths
connected ta; which have a vertew for which {vi,w} ¢ Ex(S).

34

1. A={P=(uy,...,ug) | ug €U Aug € U APis path fromuy to ug}
2. If |[H| < 3, thenUs is the set of all end points of all pathsfi(H'), forallH' e H .

3. If [H| >4 and|H’| > 1, thenU; is the set of all end points of all pathsfi(H’) for all
H' eH.

4. If |[H| >4 and|H’| = 0, then there is a partial one-pdtti € H such thatJ; is the set
of end points of all paths iR1(H).

5. The analogs of conditions 2 — 4 also hold b with respect to the partial one-paths
connected tos.

If for eachP € P,(H), P = (v) for somev € V(S), then we can give a similar set of condi-
tions, derived from Lemma 5.6.
Lemmas 5.5 and 5.6 imply the following result.

Theorem 5.2. Let S be a sandwich tree for which-HG;(S) has pathwidth two. LeA be a
set of potentially nice paths of S. The following holds.

e The size oA\ is bounded by a constant.

e There is a (nice) path decomposition of width two of S if and only if there is a nice path
decomposition of width two of S with nice path P such that.

Algorithm PW2 described on page 31 now looks as follows.

Algorithm PW2(S

Input: Sandwich tre&for which G1(S) has pathwidth two
Output: true if Shas pathwidth twofalse otherwise

1. A < set of potentially nice paths &

2. forallPecA
3. do if Nice_PathP) then return true
4. return false

We now concentrate on algorithm Nid&ath, which checks for a given potentially nice path
whether there is a nice path decomposition of width twdaefith this nice path. The basic
structure of this algorithm is as follows. The algorithm walks along the given niceRpath
(V1,...,Vq), from vertexv; to vertexvy. During this walk, it ‘processes’ the partial one-paths
that are connected to the vert@xhat it currently passes. To be able to describe the processing
step more precisely, we first further analyze the structure of a nice path decomposition of width
two of a sandwich tree.

In the following discussion, leS= (V,E;,E,) be a sandwich tree of pathwidth two, let
H = G1(S), and letPD = (V4,...,Vt) be a nice path decomposition 8fwith nice pathP =
(V1,Vo,...,Vq).

We first show that the number of partial one-paths that is connected to one vertex of the
nice path for which the algorithm has to perform substantial computations is bounded.

35

5 Three-Intervalizing Sandwich Trees

Lemma 5.7. There is a nice path decomposition P@&f width two of S with nice path P in
which for each v V(P) for which there are at least two partial one-paths connected to v,
the following holds. For each partial one-path’ that is connected to v, if Hcontains only
vertices w for whicHv,w} € E,, then H occurs within the occurrence of v in PD

Proof. Follows directly from Lemmas 5.3 and 5.4. O

Lemma 5.7 and Lemma 5.3 show that if a verteof the nice path has two or more patrtial
one-paths connected to it, then the algorithm has to do significant computations for at most two
partial one-paths connectedwpsince there are at most two of these partial one-paths which
have a vertexv for which {v,w} ¢ E;.

Lemma 5.8. There is a nice path decomposition P&f width two of S with the same nice
path P in which no two partial one-paths of¥i<V (P)| overlap, i.e. for each pair of distinct
partial one-paths Hand H’ connected to P, there is no nodeddntaining a vertex of Hand
avertex of H.

Proof. Suppose there are two partial one-patisandH” connected tos € V(P) andV €
V (P), respectively, for which there is a nollg containing vertices ofi’ and ofH"”. Suppose
the vertices oH’ occur in(Vj,...,Vj) and the vertices dfl” occur in(V,... V). Itis not
possible thaj <| <I’ < j/, since each,, j <i < j’, contains a vertex d? and a vertex oH’,
but H” has pathwidth one. Similarly, it is not possible that j < j’ <I’. Suppose w.l.0.g.
thatj <1 < j’ <I'. Leti be such that <i < j'. V; does not contain an edge ldf or an edge
of H”, sinceH’ andH" have no vertices in common. This means Wat .. ,\j all contain the
same vertex ofl’, sayw, the same vertex 1", sayw’, and the same vertex & sayv. Hence
j'=1. Butwandw are not adjacent, hendgcan be splitintd/ andV,”, with V' = {v,w}, and
V" ={vw}. ThenPD' = (V1,... ,\Vi_1,V/,\}" M11,... . \) is also a nice path decomposition
of width two of width two of Swith nice pathP.

In this way, all overlaps can be removed frétD, which results in a nice path decomposi-
tion with nice pathP, without overlapping partial one-paths. a

From now on, we assume that in any nice path decomposition, the partial one-paths con-
nected to the nice path do not overlap, and hence this also holB®for

Lemma 5.9. Let v, € V(P), let H' be a partial one-path connected tg,vand suppose H
occurs in(Vj,...,Vj). Let vy € V(P) be the leftmost vertex on P which occurg\f, ... ,Vj)
(i.e. there is no k | for which v occurs in(Vj,...,V;)), and v € V(P) the rightmost.

ThenyeVj, w €Vj,and foralli, | <i < I’, v and sticks adjacent tq wccur only within
(Vj,...,Vy), and there is no partial one-path connected toexcept Hif m = .

Proof. NodeV; contains a vertex on the path fromto vi. ButV; does not contain any vertex

vi with 1 <i <I. Hencev; €V}, andvy € Vj.. FurthermoreV; andV; both contain an edge of
H’. This means that; andV; can not contain another vertex\6fH) <V (H’). Hence for each

i, <i<I',itis not possible tha; or any vertex of a stick or a partial one-path connected to
v; is an element of/, for somep, 1< p< jV j' < p<t. So all vertices and edges on the path

36

fromv; to vi occur within(Vj,...,V;). Suppose there is a partial one-p&tfi# H’ which is
connected te; for somei, | <i <I'. ThenH"” must occur within(V;j,... ,Vj). But each node
in (Vj,...,Vj) contains a vertex dP and a vertex oH'. This gives a contradiction. O

Definition 5.3. Let 1< m< g, and letH’ partial one-path connected tg, H' occurs in
(Vj,...,Vj). Letv be the leftmost vertex oR which occurs inVj,..., V), andy; the right-
most. We say thatl’ uses(the interval)[l,1'].

Figure 7 shows an example of Definition 5.3: partial one-ptlis connected to a vertex,

of the pathP. In the figure, only a part of the underlying graphis drawn. The patt,(H')

is the path fromu to w. In the occurrencéVj, ... ,V;) of H' in the path decompositioRD of

width two, vi, u and a sticks of u occur inVj, andvy,, w and a stickv' of w occur inV;. Hence

H’ uses|l, 1], which is shown by the dashed lines in the graph (note that the dashed lines are
edges of the interval completion &D). All verticesv;, | < i < I’, and sticks adjacent tq

occur only within(Vj,... V).

Gi(S)

Figure 7: Example of a partial one-path that usegl, |’].

As a corollary of Lemma 5.9, we also have the following result.

Corollary 5.1. Let H and H' be two partial one-paths connected to P, supposedes|j, j’|
and H" uses],I']. If j" > 1, then H occurs on the right side of Hand if I' > j, then H’ occurs
on the right side of H

In the following corollaries, we summarize some earlier lemmas in terms of intervals.

Corollary 5.2. Let H' be a partial one-path which is connected tpfor some ml1 < m<q.
Let H” be another partial one-path which is connected to P. Suppdseses|j, j'] and H’
uses]l,1’]. The following holds.

1. Either j>1"orl > j'.

2. Either! <morl>m.

37

5 Three-Intervalizing Sandwich Trees

Proof. Part 1 follows from Lemma 5.8 and Lemma 5.9. Part 2 follows from Lemma 509.

The following corollary is depicted in Figure 8.

Corollary 5.3. Let i € V(P), Hy, ... ,Hp the partial one-paths connected tg.\fFor each i,
1 <i < nr, suppose Husesj, ji].

1. Thereis at most one1,<i < nr, for which | > mand there is at mostone 1 <i’ <nr,
for which j < m, and all others have & ji =m.

2. Ifthere is an i such that kK mand | > m, then nr= 1.

3. If nr > 2, then PD can be transformed into nice path decomposition of width two of S
with the same nice path, such that for eachH< i < nr, if each vertex ve V(H;) has
{Vm,W} € Ep, then j=ji =m.

Hi I

Il |1 vl
1 Vi

¢ ¢

P Viy Vm Vi,

Figure 8: Example for Corollary 5.3. In Parti; = 3. In Part [, H; usegjy, j;] with j; <m<
j1. Hencenr = 1.

Proof. Part 1 follows from Lemma 5.3, part 2 from Lemma 5.4, and part 3 from Lemma 5.7.
O

In the next lemmas, we further bound the number of possible values for the intgrjdls
that a partial one-path connected”@an use.

Lemma 5.10. Let v, vy € V(P), M > m, and let H be a partial one-path connected tg,v
H" a partial one-path connected te,v Suppose Huses[j, j'], nf < j < j’ < g and H' uses
[I,I',1<1<1"<q. Then

1. either <morl>j’, and

2. if | > j’ then H' occurs on the right side of tHand | = j = n1.

Proof. There are three possibilities ffigl’], namely

38

a. 1<I<l"<m,
b. j<I<I'<q,or
c. m< | <1’ < j and neither case a nor case b holds.

We first show that case c is not possible. Suppnsel <I’ < j and cases a and b do not hold.
SupposeH’ occurs in(V;, ... ,Vy), H” occurs in(Vs,... ,Vy). See also Figure 9. Vertexis the
only vertex ofH [V <V (H")] occurring inVs andm < I, which means that, does not occur

in Vi or on the right side ofy. Furthermoreyy is the only vertex oH [V <V (H")] occurring

in Vg andl < j’, which means that vertices éf’ occur on the right side ofy. ButVy does
contain a vertex oH" or vertexvy, as can be seen from Figure 9, which gives a contradiction.
Hence only cases a and b are possible, which means that condition 1 holds.

H’ _.

Figure 9: Example of partial one-pattt and H” as used in the proof of condition 1 of
Lemma 5.10.

We now have to prove condition 2. Suppose thatj’ andH” occurs on the left side of
H’, see part | of Figure 10. Suppose again tHatoccurs in(V;,...,Vy) andH” occurs in
(Vs,...,Vg). Thens< s <r <r’. m<m <I, sovy occurs only on the left side &f;. But
no node of(Vs,...,Vg) contains a vertex dfl’ or v, which gives a contradiction. Hen¢¢’
occurs on the right side dfl’, i.e.s > r’, see part Il of Figure 10. Suppoge> m'. Then
vy only occurs on the left side &f/. ButV, does not contain a vertex &f”, which gives a
contradiction. Hencg = j' =m. O

Lemma 5.11. Let v, Viy € V(P), M > m, and let H be a partial one-path connected tg,v
H" a partial one-path connected tg,v Suppose Huses[j, '], M < j < j’ <qgand H' uses
[1,I',1<1<I"<m. Then h=m+ 1or m = m+2and v,;1 has degree two; there is a node
in PD containing ¥, Vmy1 and \y, and H and H” have typd.

Proof. SupposeH’ occurs in(V;,...,Vy) andH” occurs in(Vs,...,Vy). Thens < r, since
I" < j. LetVy = {vj,u,u'}, u,u’ € V(H') andVs = {vj,w,w'}, ww € V(H"). Supposeu is

39

5 Three-Intervalizing Sandwich Trees

Figure 10: Example of partial one-pathkE andH” as used in the proof of condition 2 of
Lemma 5.10.

an end point of a patP’ € P;(H’) andw is an end point of a patR” € P;(H"). See also
part | of Figure 11. Vertexy, does not occur ifiV;,...,Vy), henceu andu’ are not adjacent
to V. Similarly, w andw’ are not adjacent t@,y. Let S be the sandwich graph obtained from
S by adding the edge$u’,v;} and{w,v}} to E;. Note thatS is a sandwich graph, since
{u,vj},{W, v }} € E>. The path decompositioRD is also a path decomposition 8f. We
first prove thatm = m+ 1 orm = m+ 2 andvy,, 1 has degree two and that there is a node
containingvm, Vmi1 andvyy.

Supposen’ > m+ 1. ThenG;(S) contains three disjoint paths betwegpnandv,y, as can
be seen in Figure 11, part I. According to Lemma 3.2.2 of de Fluiter [19902]js a path
decomposition of the sandwich grahwhich is obtained fron8 by adding edg€ vin, Viyy }-
See part Il of Figure 11 for grapB;(S’). GraphG;(S’) contains three chordless cycles which
have edgg vm, vy } iIn common. At least one of these chordless cyclesGawust have three
vertices, and the vertexe V(C) with v # v, vy has degree two, i.e. it is only adjacent to
vm andvyy. CycleC can not be the cycle containing verticesttfor H”, sinceu andu’ are
not adjacent toy, in S, andw andw’ are not adjacent t@,; in S. Hence it must be the cycle
consisting ofvm, V1, - .. ,Viy. SO eithem’ = m+ 1, orm’ = m+ 2 andvy,1 has degree two.
Furthermore, the two or three verticgg, Vi1 andvyy occur in one node.

We now prove thaH’ andH"” both have type |. Le€’ be the chordless cycle &;(S’)
which contains/ and letC” be the chordless cycle 6 (S") which contains/j. C' andC” have
edge{vm, iy } in common. All edges between verticgs. .. ,vj, edges between vertices from
Vi+1,...,Vy—1and their adjacent vertices, and all edgebloAndH" occur within(Vs, ... Vi),
see part lll of Figure 11. Suppos$¢ has type Il or IlI, then letv € V(P;(H')) be such that
v is adjacent to/y, if H' has type Il, orv has distance two ta, if H' has type Il (part Il of
Figure 11). Thewv € V(C'), and there is a vertex connectedvtthat does not have degree one.
This means that should occur in the leftmost node containing an edg€ ofr his is nodeV;/,
butVys = {vj,u,u'}, andu’,u # v. Contradiction. O

40

Figure 11: Example of the use of partial one-pdtHisaandH” for Lemma 5.11.

41

5 Three-Intervalizing Sandwich Trees

Letiq,ip,... it beintegers such thatdi; <i, < --- <i; < g, and
{i1,...,it} = {i | there is a partial one-path connecteditp

Furthermore, let_; = ip = 1 andi; 1 = it; 2 = . Algorithm Nice Path processes the sandwich
tree from left to right, i.e. it starts with vertex,, it processes the partial one-paths connected to
vi, and computes a ‘partial’ nice path decomposition of this. Then it gogs &md processes

the partial one-paths connectedvpwith use of the partial nice path decomposition ¥t

and computes a new patrtial nice path decomposition from this, etc. We now define this partial
nice path decomposition more precisely.

Definition 5.4 (Partial Nice Path Decomposition). Lét CV, letve V', Let
E,=EUu{{uw}|uweVAugV'}.

A partial nice path decompositioof (SV'],v) is a path decompositioRD of SV'] with vertex
v in the rightmost node, such that there B for which PD -+ PD' is a nice path decompo-
sition of the sandwich graptV, E1, E}) with nice pathP.

More informally, a partial nice path decomposition(8}V'],v) is a path decomposition &V']
with vertexv in the rightmost node and which can be extended to a nice path decomposition of
Swith nice pathP if we forget about the limitations d&; in the rest of the graph.

We do not need all possible sa&t$ for partial nice path decompositions, so in the next
definition, we give short cuts for the kind of sets we need.

Definition 5.5. For eachm,i with 1 < m< i < g, letV}, C V be the vertex set defined as follows.

Vi={vj|1<j<ilu{weV(S)|3;1< j<iAwis astick connected tg} U
{weV(S) | I jl1<j <maH'is a partial one-path connectedworw e V(H')}

L_etS'ﬂ =gV Furthermore, for each partial one-pathconnected to the path, ... , vy, let
S, <H' denote§V,, <V (H')].

The following definition gives the exact information that is computed by Na#h.

Definition 5.6. The information that Nicd?ath computes consists of two variabbdk and
allbo?, both arrays from 0 to, such that for eack, 0 < k <t, all[k] has two field®k, which is
a boolean, andhin, which is an integer, andllbo[k] has two fieldok, which is a boolean, and
tr, which is a set of partial one-paths. After verigxis processed for some 1 < k <t, all[K]
andallbolk] have the following values (leh= iy).

e all[k].ok = true if and only if there is a partial nice path decomposition(&h,vj) for
somej, ik < j < iks1.

If all[k].ok = true, thenall [Kimin denotes the smalle$tix < j <iks1, for which there is
a partial nice path decomposition &, vj). If all[k].ok = false, thenall [Kjmin= co.

Lall stands for ‘all partial one-paths of, are processed’, arallbo stands for ‘all but one partial one-paths of
Vi, are processed’

42

e allbo[k].ok = true if and only if

— there are two or more partial one-paths connecteght@and
— there is a partial one-pati’ connected tey, for which
a. there is a partial nice path decompositiot $ff <H’,vi), and
b. H' has a vertexv for which {vmy,, w} ¢ E;.
Furthermoreall[0].ok = true, all[0jmin= 1, allbo[0].ok = false andallbo[0].tr = @.

If allbo[k].ok = true, thenallbo[k].tr is the set of partial one-patit$’ connected to/m
for which condition a and b hold, otherwisa|bok].tr = @.

Clearly, there is a nice path decomposition of width twdSafith nice pathP if and only if
all[t].ok holds.
Algorithm Nice_Path looks as follows.

Algorithm Nice_PathP)
Input: PathP = (v1,...,Vq) which is a possible nice path &f
Output: true if there is a nice path decomposition ®With nice pathP, false otherwise
1. Letiy,...,i; be the set of integerg € {1,...,q} for which there is at least one partial
one-path connected tg, and such that for all, ij <ij,1.
all[0].ok; all[0]min « true, 1
allbo[0].ok, allbo]0].tr <+ false, p
for k< 1tot
do computeall[k] andallbo[k] from all[i] andallbo[i], i < k
return all[t].ok

ook wd

In the remainder of this section, we describe the computation in line 5 in more detail. Let
k>1. Letm=ix, N=likr1, NN=ix 2, pP=ik_1 andpp=ix_». LetHs,... Hy denote the
partial one-paths connectedvgq.

For the computation oéll[k], we distinguish between two cases, namely the case that
nr > 1 and the case thar = 1. For the computation adllbo[k], allbo[k].ok = false if nr =1,
so forallbo[k], we only consider the case that> 2.

The Computation of all[k] for the Case thatnr > 1

We first analyze the possible cases if there is a partial nice path decompositiS§), f)
(m< a<n). Supposaiis an integerm< a < nandPD' is a partial nice path decomposition
of ($,Va). Suppose that for eaéhH; uses/j;, ji]. By Corollaries 5.1 — 5.3 and Lemma 5.11,
there are two possibilities (see also Figure 12):

1. all partial one-paths connected to somel < | < m, occur on the left side of all partial
one-paths connected ¥, or

2. p < m, there is one partial one-patd; connected to/,, and one partial one-path
connected twp, such thafF occurs on the right side ¢, all partial one-path#i; # H
which are connected g, occur on the right side d¥, and all partial one-paths’ # F
connected to some, | < m, occur on the left side df;.

43

5 Three-Intervalizing Sandwich Trees

In the first case, for eadheitherp < j; < ji <morm< j; < ji < a, and for eachr’ connected
tovi,| <m, F" usegb,b’], whereb’ < min{j; | 1 <i < nr} (part | of Figure 12). In the second
casepp< jc<je<p foralli#c, m<ji < jl <a F usegm m|, and for allF’ # F connected
tovi,| <m, F’ useslb,b’], whereb' < j; (part Il of Figure 12).

Figure 12: The two possible cases of the use offgllLl <i < 3.

For each of these two cases, we have to check whether itis possible. Therefore, we compute
two values and combine these.

Definition 5.7. Let cl andfr be variables, each having a boolean fiekdand an integer field
min, denoting the following.

e cl.ok=true if and only if there is a partial nice path decompositior(&, va) for some
a, m< a<n, in which each partial one-path connected tw;, | < m, occurs on the left
side of each partial one-path connected {0

If cl.ok = true, then clmin denotes the smallest for which this holds. Otherwise,
clmin= oo,

o fr.ok=true if and only if there is a partial nice path decomposition &, va) for some
a, m<a<ninwhich

— there is an, 1 <i < nr, H; uses|j, j'] for somej’ < p, andH; has a vertexv for
which {vm,w} ¢ Ep, and

— there is a partial one-path connected tw, which use§m, m|, and eitherF is the
only partial one-path connectedug, or F has a vertexv for which {v,,w'} ¢ E.

If fr.ok = true, thenfrmin denotes the smalleatfor which this holds. Otherwisé&min=
00,

44

From the discussion above and Lemma 5.7, it follows that

all[k].ok = cl.okV fr.ok
all[kmin = min{clmin, frmin}.

We now show howel andfr can be computed. First considsr

Computation of cl
We first analyze the case thatok = true.

Lemma 5.12. Suppose obk and let PD= (Vi,...,\t) be a partial nice path decomposition
of (Sﬁ'\mi”,vdmin) in which no partial one-path connected tg wccurs on the right side of a
partial one-path connected tq,v Then allk <1].0k = true, and there is a partial nice path
decomposition PDof (™", vigimin) in which

1. no partial one-path connected tg wccurs on the right side of a partial one-path con-
nected to ¥,
min

2. PDVE"* U™ is a partial nice path decomposition (&' < Vall[k—1jmin)

3. for each |, if for each ve V(H;), {w,vim} € E, then H usesm, m|,
4. for each i, if Husegj, j'], then j> all[k<1]min, and

5. there is an i, such thatHises[j,clmin, m< j < clmin.

Proof. According to Lemma 5.7, we may assume that condition 3 hold®rotherwise,
we first transfornPD such that 3 holds.

We next show that condition 5 holds already RD. Leta, 1 < a < nr, be such that no
partial one-patht;, 1 <i < nr, occurs on the right side &f,. Supposé, usesj, j’]. Thenm<
j < J’ <clmin. SupposéH, occurs in(Vs,... ,Ve). Thenvj € Vg, and(Vs11,..., V) contains
only edges between verticgs;, ... ,Vemin} U { sticks ofvj,... ,Vemin}. Hence(V,...,Vy)
restricted td\/rh, is a partial nice path decomposition @ﬂ#,vj/) with the same properties as
PD. This means thatlmin= j’, and hence condition 5 holds.

Let V; be the rightmost node dPD containing an edge ofSh,vp). If vp € V;, then
(V1,...,V,) restricted td$7vp) is a partial nice path decomposition(ﬁ,vp). Henceall[k <
1].0k = true andall[k<<1jmin= p. Let| = p.

If vp ¢ V4, then there is exactly orle p < | <m, such thaty € V;. It can be seen that in
this case(Vy,...,V;) restricted td\/"J is a partial nice path decomposition (cﬂp,w). Hence
all[k <1].0k = true andall [k <1jmin < .

We now construct a partial nice path decomposifRid of (S2™", vgmin) Which satisfies
conditions 1 — 5. LePD, = (V;41,...,Vt), and remove all occurrences of vertices\/éfand

sticks ofv; from PD,. LetPD; be a partial nice path-decomposition(i"[k_l]mi”,va”[k,l]mm).
Let PD3 be a path decomposition of width one $f

S = S{Vauk_gmin»- - » Vi } U{ sticks ofVage_gjmins - -- sV }],

45

5 Three-Intervalizing Sandwich Trees

with vertexvyyk—ymin in the leftmost node and vertexin the rightmost node. Note that this is
possible, sinc& consists of path fromity - 1jmin to Vi with sticks. LetPD' = PD; + PD, -+
PDs. It is easy to see th&®D' is a partial nice path decomposition @™, v¢imin) Which
satisfies conditions 1 — 5. O

The lemma implies that, #ll[k <1].0k = false, thencl.ok = false and we do not have to
compute anything. Suppose tlaitfk <1].0k = true, and letmin = all [k<1]min.

In order to computel, we compute the smallest valueafm < a < n, for which there is
a partial nice path decompositi®tD of (S, va) in which

Condition 1. PDV{"" is a partial nice path decomposition @™, vinin),

Condition 2. for eachi, 1 <i < nr, if each vertexw of H; has{w,vyn} € E;, thenH; uses
[m,m], otherwiseH/ useg[j, j’] for somemin< j<j <morm< j<j =a

If this value fora exists, thercl.ok = true andclmin= a, otherwisecl.ok = false.
Let Hy,... ,H/., denote the partial one-paths connectediovhich have a vertexv for

which {vm,w} ¢ E,. Note that ifnr’ > 2, thencl.ok = false. Supposenr’ < 2. We distinguish
between the cases that = 0, nr’ = 1 andnr’ = 2.

The case thainr’ =0. If nr' =0, then we can easily make a partial nice path decomposition of
(S, vm) from a partial nice path decomposition (&', Vmin) (s€€ the proof of Lemma 5.12).
Hencecl.ok = true andclmin=m.

The case thatnr’ = 1. Supposenr’ = 1. Supposel.ok = true, and letPD be a partial nice
path decomposition ofS™", veimin) for which conditions 1 and 2 hold. Suppobk uses
[J,]']. There are two possibilities: eitherin< j < j’ <mandclmin=morm< j<j <n
andclmin= j'.

For finding the value ofl as described above, we do the following. First we check whether
H; can us€[j, j’] for somemin< j’ < j <m, i.e. if we can extend a partial nice path de-
composition of(S;“”,vmin) into a partial nice path decomposition @0, vi). If so, we make
cl.ok= true andclmin=m. If not, then we find the smallegt, m < j’ < n, for whichH;j can
uselj, j'] forsomem < j < j', i.e. for which we can extend a partial nice path decomposition
of (Sg“”,vmin) into a partial nice path decomposition (&é,vj/) in whichH] uses[j, j’]. If we
can find such @', then we makel.ok = true andclmin= j’. Otherwise, we makel.ok = false.

We now first show how to check whethidf can us€j, j'] for somemin< j < j’<m.

LetP’ € P1(H;), letu andw be the two end points d?'. Letv € V(H;) such that{v,vn} €
E;, and letV’ be the subset &f containing all vertices ofi;, all verticesvmin, . .. , Vm, and all
sticks connected t@miny1,...,Vm_1. Letdum denote a dummy vertex, and I8t denote the
sandwich graph with

V(S) =V'U{dum}
E1(S) = E2(SV']) U {{dum, u}, {dum, Vmin} }
E2(S) = E2(SV') U {{dum,v} [ve V'}.

46

If v#w andv is not a stick ofw, then additionally add edggw, v} to E1(S;). Note that it
may be the case thatv, v} ¢ Ex(S,). Therefore, we calf, an almost-sandwich graph. See
also Figure 13: part | shows; (S,) for the case that ## w andv is not a stick ofw, and part Il
showsG;(S,) for the other case. Now the almost-sandwich gr&pls an almost-sandwich
block with sticks.

| Gi()'
p Vmin Vm
Z \ I I Vmin Vm
dum u N = W
Gi(S)
Vmin Vm

Figure 13: Example of the almost-sandwich gr&gh

DefineS, in the same way, but with the roles ofindw exchanged.

Lemma 5.13.There are jand'j min< j < j’ <m, such that Kl can us€j, j'] if and only if
one of the following holds.

a. § is a sandwich graph and there is a path decomposition of width twg wofith edge
{dum, vnin} in the leftmost node and vertey in the rightmost node.

b. Sy is a sandwich graph and there is a path decomposition of width twg, @fith edge
{dum, vnin} in the leftmost node and vertey in the rightmost node.

Proof. For the ‘if’ part, suppose condition a holds. LD be a partial nice path decompo-
sition of($‘”7vmin). Let PD' be a path decomposition of width two §f with {dum, Vmin} in
the leftmost node and, in the rightmost node. Remove all occurrencesgwh from PD’, and
on the left side, add a nodemin, X} for each stickx of viyin. Let PD” be a path decomposition
of width one of all partial one-paths excef} that are connected tg,, and add vertexy, to
each node oPD". Now PD-+ PD' -+ PD" is a partial nice path decomposition$f in which
Hj useq[j, j’] for somemin< j < j' <m.

For the ‘only if’ part, letPD = (V, ... ,\) be a partial nice path decomposition(&), vim)
in which PD[\/S“”] is a partial nice path decomposition (dﬁg“”vvmm) andHj uses[j, '] for
somemin< j < j' <m. SupposeH; occurs in(Vs,...,Vy). Suppose w.l.o.g. that there is a
nodeV;, with Vi, = {vn} anda > j’ (Lemma 5.4). Note that < m, sinceH; has a vertex for
which {vm, X} ¢ E,. Note also that eithers or V¢ containsu and a stick olu, and eitheiy or
Vs containsw and a stick ofv. Suppose w.l.0.g. thate Vs andw € V. Letu,w € V(H’) such
thatu' € V5, W € Vg, andu is a stick adjacent ta, W' is a stick adjacent ta. For an example,
see Figure 14. Part | shows again the casewutkatv andv not a stick ofw, and part Il the other
case.

47

5 Three-Intervalizing Sandwich Trees

Figure 14: Examples for the proof of Lemma 5.13.

Consider the sequend®D’ = (Vs,...,Va). Note thatvy € V; andVs = {u,U,vj}. Let
W be the subset of containing all vertices oH}, verticesvj,... ,vm and sticks of vertices
Vjt+1,...,Vm—1. Remove all vertices iv <W from PD'. Note that all vertices ofV occur
within PD/, and all edges iie; between vertices oV occur withinPD'. HencePD' is a path
decomposition of width two oBW|.

Remember that is the vertex oH; for which {v,v} € E(S). If v # wandv is not a stick
of w, thenj’ = m, sincev occurs only on the left side &f, and there is &, s<i < g, with
v eV; andvy € Vi (Lemma 3.3.5 of de Fluiter [1997]). Hend®/, vy} C Vi, which means that
{w,vn} € Ez andS, is a sandwich graph.

Let V" be the set of verticeSmin,...,vj and all sticks ofVmint1,...,Vvj. Make a path
decompositionPD” of width one ofSV"] with vertexvmiy in the leftmost node and vertex
v in the rightmost node. Add vertedum to each node oPD". Now PD" + PD' is a path
decomposition of width two of, with edge{Vvmin,dum} in the leftmost node and vertey, in
the rightmost node. This completes the proof. O

Lemma 5.14. It takes GN?) time to check whether Hcan use[j, j’] for some j and
min< j < j’ <m, where N is the number of vertices Qfd8 S,.

Proof. S, andS, are almost-sandwich blocks with sticks, and hence the lemma follows from
Lemma 4.6. O

We now show how to find the smallegt m < j’ < n, for whichHj can us€j, j'| for some
m< j < j'. This is very similar to the previous computation.

Again, letP’ € P1(Hj), letu andw be the two end points d?. Letv € V(H;) such that
{v,vm} € E1. But now, letv’ CV(S) contain all vertices oHj, all verticesvp, ... ,v,, and all
sticks connected tom,1,...,Vh-1. Let§, = SV']. If v#wandv is not a stick ofw, then
additionally add edgéw, v} to E1(S,). See also Figure 15. (Note that again, it may be the
case thafw,vin} ¢ E2(S,).) Now the almost-sandwich graf is an almost-sandwich block
with sticks and loose endsandvy,.

48

w
[Gu(S)
p Vm Vn Vm Vin
NoL
| w u w u
Gi(Su)
Vim Vm Vn

i N1

Figure 15: Example o§,.

DefineSy in the same way, but with the roles wandw exchanged. The following lemma
resembles Lemma 5.13

Lemma 5.15.Let | be an integer, < j' <n. Thereis a j, i< j < j’, such that H can use
[J,]'] if and only if one of the following holds.

a. §, =SV ©{Vji1,... ,Wn} &{ sticks of y, ... ,vn}] is a sandwich graph and there is a
path decomposition of width two of @ith v, in the leftmost node and.yu and a stick
U of u in the rightmost node.

b. Sy =Sw[V' <{Vjt1.... . Vn} <{ sticks of y,... ,vn}] is a sandwich graph and there is a
path decomposition of width two of, @ith v, in the leftmost node andyw and a stick
w of w in the rightmost node.

Proof. For the ‘if’ part, suppose condition a holds. LD be a partial nice path decom-
position of (S, vm). Such a partial nice path decomposition exists sitié <1].0k = true
andmin < m. For eachH;, H; # H;, make a path decomposition of width one$V (H;)],
and add vertexy, to each node. Add all these path decompositions on the right sig®of
Furthermore, add a nodem, X} for each stickx of vy, on the right side oPD.

Let PD’ be a path decomposition of width two §f with vy, in the leftmost node andand
vjr in the rightmost node. NowD -+ PD' is a partial nice path decomposition ((ﬁJT/th/), in
which Hj usesq[j, j'] for somem < j < j'.

The ‘only if’ part can be proved in almost the same way as the ‘only if’ part of Lemma 5.13.

O

Lemma 5.16.It takes GN2) time to check whether }an usdj, j'] for some m< j < j’ <n
and to find the smallest for which this holds. (N is the number of vertices gb8S,.)

Proof. §, andS, are almost-sandwich blocks with sticks and loose ends. By Corollary 4.2,
we can find the smallegt m < j < n, for which there is a path decompositi®D of width

two of §, as defined in condition a of Lemma 5.15 with in the leftmost node and; andu

in the rightmost node. Sincgis minimal, the rightmost node &D also contains a stick of

u. This means that we can find the smallggbr which condition a holds i©(N?) time. The
same holds for condition b. O

49

5 Three-Intervalizing Sandwich Trees

This completes the description of the computatiorldbr the case thatr’ = 1.

The case thatnr’ = 2. Supposenr’ = 2, i.e. there are two partial one-pati$ andH, con-
nected tovy, which have a vertexv for which {vm,w} ¢ E;. Remember thatimin is the
smallest value of, m < a < n, for which there is a partial nice path decompositPD of
(S, Va), Which satisfies conditions 1 and 2 as described on page 46. If there is sacthan
cl.ok = true andclmin= a, otherwisecl.ok = false.

Supposecl.ok = true, andPD is a partial nice path decomposition (B5™" Vimin) for
which conditions 1 and 2 on page 46 hold. Suppblgeuses|ji, j;] andHj uses]jz, j5].
There are two possibilities: eithenin < j; < jj <m, m< j, < j5 <nandclmin= j;, or
min< j2 < j5<m m< j; < j; <nandclmin= jj.

For findingcl as described above, we do the following. First we check

e whetherH; can us€j, j’l]_for somemin< j; < j; < m,i.e. we can extend a partial nice
path decomposition ¢fS)", vimin) into a partial nice path decomposition(&; <H,, Vim)
in which H] uses|ji, j3] for somemin< j; < j; <m, and

e whetherH, can us€j», j5] for somem < j, < j5, < n, i.e. we can extend a partial nice

path decomposition dfSy<HJ,vm) into a partial nice path decomposition ((ﬂ}%,vj/z),
and we find the smallegf, for which this holds [, = « if it does not hold).

Then we check whethét can usély, 15] for somemin <, <15, < mandH; can usdl4,l}] for
somem< |, <1} < nand we find the smallest for which this holdsl = « if it does not hold).
If one of them is possible, then we magleok = true andclmin= min{j5,1;}. Otherwise, we
makecl.ok = false.

The algorithm to checking whethét’ (i = 1,2) can usdj, j'] for somemin< j < j’<m
is described above, for the case that= 1 (pages 46 — 48). The algorithm for computing
the smallest’, m < |’ < n, for which there is ah, m<| <1, such thatH/ (i = 1,2) can use
[I,I'] is also described above for the case thidt= 1 (pages 48 — 49). Both algorithms take
O(N?) time, whereN denotes the number of verticeskt, Hj, Vimin, - ..,y and all sticks of
Vmint1s -+ - 5 Vn—1.

This completes the description of the computatiortidbr the case that there are two or
more partial one-paths connected/p We conclude with the following corollary.

Corollary 5.4. If there are two or more partial one-paths connected #p then it takes
O(N?) time to compute cl, where N denotes the number of vertiges. vvy, all sticks of
Vp+1,---,Vn-1, @nd vertices of all partial one-paths connected p v

Computation of fr

We assume thdt > 1, otherwise,ft.ok = false.

LetH;,... ,H ., denote the partial one-paths connected,favhich contain a vertew with
{w,vm} ¢ Ea. LetFy,... ,F. denote the partial one-paths connectedytd_etF/,... ,F. denote
the partial one-paths connectedvipwhich contain a vertew for which {w,vp} ¢ E.

Note that ifnr’ > 2, thenfr.ok = false. If nr’ = 0, then, by definition ofr, fr.ok = false.
Similarly, if ¢ > 2, orif c > 2 andc’ = 0, we maker.ok = false.

50

Suppose K nr' <2,1<c <2, and eithec’ > 0 orc = 1. We distinguish between two
cases, hamely the case tibat 1 and the case that> 1.

The case thatc = 1. We first analyze the case tHatok = true.

Lemma 5.17.Suppose fok and let PD be a partial nice path decompositior(éﬁmi”,vfrmin)

in which there is a partial one-path ;11 < a < 2, which occurs on the left side of partial
one-path k. Then allk <2].0k = true, and there is a partial nice path decomposition of
(™ Vrmin) in which

min

1. POV 2™ is a partial nice path decomposition (&n< 2 Valllk_2/min)

2. Hj useq[j, '], where allk=2min< j < j' < p,
3. FLusesm,m|,
4. for each partial one-path H1 <i <nr, H; ¢ {H1,... ,H/}, Hi usesm,m], and

5. ifnr' = 2, then H__ useg]l, frmin], for some nx | < frmin.

Proof. By Lemma 5.7, we may assume that condition 4 holdPr Furthermore, we may
assume that condition 5 holds:nif’ = 2 andHj_, uses]l,l’] for somem <1 <’ < frmin, then
we can prove tharmin is not minimal (see also proof of Lemma 5.12).

Let Vi be the rightmost node d?D’ containing an edge ofShp, Vpp). If Vpp € i, then
(V1,...,V,) restricted tov§} is a partial nice path decomposition @hh, vpp). Henceall [k <
2].0k = true andall k<2min < pp. Letl = pp.

If vpp ¢ Vi, then there is ah, pp < | < p, such that € V,. It can be seen that in this
case,(V1,...,V,) restricted toVF',p is a partial nice path decomposition (fﬂpp,w). Hence
alllk <2].0k = true andall [k <2min < I.

We now construct a partial nice path decompositionﬁf‘"'”,vﬁmm) for which conditions
1 -5 hold. LetPD3 = (V;+1,...,V), and remove all occurrences of vertices fr@ﬂgp,w)

from PDs. Let PD; be a partial nice path decomposition(@'I')[k_z]m'”,va”[k,z]mm). Let PD;,
be a path decomposition of width oneS¥{ Vajjx—2min, - - - , Vi } U{ Sticks ofVay—2jmin, - - - sV }]
With Vajik—2)min in the leftmost node and in the rightmost node.

letPD' = PD; + PD,+PDs. Itis easy to see th&D' is a partial nice path decomposition
of (SA™" Vimin) Which satisfies conditions 1 — 5. 0

The lemma implies that, #ill[k <2].0k = false, thenfr.ok = false and we do not have to
compute anything. Suppose tldifk <2].0k = true, and letmin’ = all[k <2]min.

We computdr as follows. We lefrmin be smallest valuan < frmin < n, for which there
is a partial nice path decompositid?D of (ﬂmi”,vdmin) which satisfies conditions 1 — 5 of
Lemma 5.17. If this value can be found, tHferok = true, otherwisefr.ok = false.

Supposdr.ok = true, and letPD be a partial nice path decomposition(éﬁ“’”,vfrmin) for
which conditions 1 — 5 of Lemma 5.17 hold. For each<i < nr’, supposeH/ useq]ji, ji]. If
nr' =1, thenmin' < j; < jj < pandclmin=m. If nr' = 2, there are two possibilities: either

51

5 Three-Intervalizing Sandwich Trees

min <jp<ji<p,m<jp<js<nandfrmin= jp,orminf < j < j5<p,m<jp<ji<n
andfrmin= jj.

For finding the value ofr as described above, we do the following.nf = 1, then we
check whetheH; can use[j, j'] for somemin’ < j < j’ < p and at the same timE; can
use[m,m|, i.e. whether we can extend a partial nice path decompositic@%ﬁf,vmid) into a
partial nice path decomposition &, vim) in which H; uses]j, j’] for somemin’ < j<j <p
andF; usegm,m|. If so, we makdr.ok = true andfrmin = m, otherwisefr.ok = false.

If nr’" =2, then fori = 1,2, we do the following.

a. We check whethdr, can us€j, j'] for somemin’ < j < j’ < p and at the same time
F1 can uselm,m|, i.e. whether we can extend a partial nice path decomposition of
(F‘)”,vmw) into a partial nice path decompositi®D of (S} <Hj; ;,vm) in which H/
uses|j, j'] for somemin < j < j’ < pandF; usesjm, m|.

b. We find the smalledt, m < |; < n, for which H;_; can usél,l;] for somem <| <,
i.e. for which we can extend a partial nice path decompositioi§ht=H; ;,,vm) into a
partial nice path decomposition (i, v,) (I; = o if this is not possible).

If both a and b are not possible, thiga= co. Now, if bothl; andl, equale, thenfr.ok = false.
Otherwise fr.ok = true andfrmin = min{ly,1,}.

In the case thatr’ = 2, finding the smallest value ¢f, m< j’ < nfor which a partial one-
pathH’ connected tayy, can us€j, j'| for somem < j < j’ can be done in the way described
for the computation ofl on pages 48 — 49. Therefore, we only describe how to check whether
F1 can usgm,m] andH; can us€j, j’| for somemin’ < j < j’ < p at the same time. Note that
this is only possible if botlr, andHj are of type I, and if eithem= p+1 orm= p+ 2 and
V1 has no sticks (Lemma 5.11). So suppose this holds.

Let P' € P1(Hj), letu be the end point oP’ for which the path fromvy, to u containsP’.
Furthermore, leP” € P1(F;) and letw be the end point of” for which the path fronv, tow
containsP” (see also part | of Figure 16). L&t C V(S) be the set containing all vertices of
H; and ofFy, all verticesvy,y, ... ,Vm, and all sticks connected 1, --. ,Vm-1. Letdum
be a dummy vertex, and I& denote the sandwich graph defined as follows.

V(S)=V'U{dum}
E1(S) = Eo(SV']) U {{dum, u}, {dum, vimirr} }
E2(S) = Eo(SV')) U {{dum,v} |[veV'}}.

See also Figure 16. The sandwich gr&ls a sandwich block with sticks and loose ends
andvyy, (although loose end is actually not ‘loose’).

Lemma 5.18.H; can us€j, j'] for some mih< j < j’ < p and K can usegm,m] at the same
time if and only if there is a path decomposition of width two ‘oivith edge{dum, v,y } in
the leftmost node andyand w in the rightmost node.

Proof. Forthe ‘if’ part, we can easily combine a partial nice path decompositi()ﬁggf,vmid)
and a path decomposition of width two $fwith edge{{dum, v,,iy} in the leftmost node and

52

Figure 16: Example o8.

with w andvy, in the rightmost node into a nice partial path decompositiot8§fv) if nr' =1
and of(§f) <HJ, v) if nr' = 2.

For the ‘only if’ part, [etPD = (V4,... ,\t) be a partial nice path decomposition(&), vim)
if nr' =1 and of(S}<Hj, vim) if Nr' =2, in whichPD[\/rg';)‘”] is a partial nice path decomposition
of (%‘S{,me) andH; uses|j, j'] for somemin’ < j < j’ < p andF; usesm,m|, and allH;,
H; ¢ {Hi,H5}, use[m,m.

SupposeH; occurs in(\;,...,Vy) andF; occurs in(Vs,...,Vy). By Lemma 5.10;" <
s. Furthermore, by (the proof of) Lemma 5.1dc V, andw € Vg, andv; € V; andvpy €
Vs. Consider the subsequenB®’ = (V;,...,Vy). Note that all vertices oH; andF; and
all verticesv;,... ,vim and all sticks adjacent t@,1,...,vm_1 occur inPD'. Also, all edges
between these vertices occur’. Remove all occurrences of other vertices frBf .

We transformPD’ into a path decomposition of width two & with {dum, v,y } in the
leftmost node withvy,, and w in the rightmost node. On the left side BD', add a node
{dum,u,v;}. Furthermore, make a path decomposit®B’ of the sub-sandwich graph &
induced by the verticeg.;y, ... ,vj and the sticks adjacent tQy,1,...,Vj with vertexvyy
in the leftmost node and vertex in the rightmost node. Add vertelum to each node dPD".
Now PD” ++ PD' is a path decomposition of width two & with the desired vertices in the
leftmost and rightmost nodes. O

Lemma 5.19. It takes GN?) time to check whether Hcan use[j, j'] for some j and j
min < j < j’ < pand F can usgm,n7] at the same time (where N is the number of vertices
of S).

Proof. S is a sandwich block with sticks and loose ends, and hence Corollary 4.2 implies the
lemma. |

The casethatc > 1. Suppose& > 1, i.e.there are > 1 partial one-pathBy, ... ,F. connected
to vp. Remember that we assume that &' < 2, otherwisdr .ok = false.

53

5 Three-Intervalizing Sandwich Trees

We first analyze the case thatok = true.

Lemma 5.20.Suppose fok and let PD be a partial nice path decompositior(ﬁﬁmi”,vfrmin)
in which there are partial one-paths/Hl <a<nr’and i, 1 < b < ¢/, such that H occurs on
the left side of f. Then allbdk <1].0k = true, and there is a partial nice path decomposition

Of (S5 Virmin) in which
1. there is an F ¢ allbolk <-1].tr such that

(a) PD\VY <F'] is a partial nice path decomposition (8 <F’,v;), and
(b) F usesim,m|,

2. Hj useslp, p],
3. foreach H, 1<i<nrandH ¢ {Hj,... ,H.}, H usesm m|, and

4. ifnr' =2, then H__ useg|l, frmin] for some nx | < frmin.

Proof. We may assume that condition 4 holds RID (see also proof of Lemma 5.17). By
Corollaries 5.2 and 5.3 and Lemma 5.1HD already is a partial nice path decomposition
satisfying conditions 1 — 4. O

The lemma implies that, #llbo[k <1].0k = false, thenfr.ok = false and we do not have to
compute anything. Suppose tlaibo[k <1].0k = true.

Lemma 5.20 shows that we can compfitas follows. We lefrmin be the smallest value,
m < frmin < n, for which there is a partial nice path decompositRi of (Si™, Virmin) Which
satisfies conditions 1 —4 of Lemma 5.20. If this value can be found fthao= true, otherwise
fr.ok = false. _

Supposdr.ok = true, and letPD be a partial nice path decomposition (d%m'”,vfrmm)
for which conditions 1 — 4 hold. For eachl <i < nr’, supposéH; uses[ji, ji], and for each
Fa € allbolk<1].tr, supposd=; usedla, I}]. If nr' =1, thenj; = j; = p. If nr’ =2, there are two
possibilities forH; andH: eitherj; = j; = p, m< jo < j5 < frmin, or vice versa. Similarly,
if there is oner, € allbolk<2].tr, thenl, =1, = m, but if there are twdr,, F, € allbolk<2].tr,
then eithed, =1, =m, orlp =1, =m.

For finding the value ofr as described above, we do the following.

If nr’ = 1 then we check whethét] can us€p, p] and at the same time there is Bhe
allbolk<1].tr which can usém, m|, i.e. whether there is & € allbo[k<1].tr for which we can
extend a partial nice path decompositior(ﬁﬁ <F’,vp) into a partial nice path decomposition
of (Sq, vim) in which H; uses|p, p] andF' usesjm,m|. If so, thenfr.ok = true andfrmin = m.

If nr' = 2 then fori = 1,2, we check whether! can us€p, p] and, at the same time, there
is anF' € allbolk <1].tr which can usém,m|, and if so, we find the smallegt, m< j; <n,
for which H ; can use[j, ji| for somem < j < j;, i.e. for which we can extend a partial
nice path decomposition ¢80 <H} ;,vn) into a partial nice path decomposition @&, v;,)
(ji = e if this is not possible). If both possibilities do not work, therok = false. Otherwise,
fr.ok= true andfrmin = min{j4, j2}.

54

In the case thatr’ = 2, finding the smallest value ¢f, m< j’ < nfor which a partial one-
pathH’ connected tay, can us€j, j’] for somem < j < j’ can be done in the way described
for the computation ofl on pages 48 — 49.

Checking whetheF; can usgm,m] andH; can usep, p| can be done in the same way as
checking whetheF; can usgm,m'| andHj can usgj, j’] for somealllk<2min< j<j <p
(pages 52 — 53): usp instead ofall[k <2]min. The underlying graph of sandwich gragh
then looks as in Figure 17.

Figure 17: Example o8.

All computations described above can be don®iN?), whereN is the number of vertices
involved in the computation.

This completes the description of the case tat 1. We conclude with the following
corollary.

Corollary 5.5. It takes GN?) time to compute fr, where N denotes the number of vertices
Vpps - - -, Vn, all sticks of yp11,... ,Vh_1, @and vertices of all partial one-paths of and .

This completes the description of the computatiomltk] for the case that the number
of partial one-paths connectedvg is at least two.

Corollary 5.6. It takes GN?) time to compute k] if nr > 2, where N denotes the number of
vertices p, . .. ,Vn, all sticks of yp,1,... ,Va_1, and vertices of all partial one-paths connected
to vp and .

The Computation of all[k] for the Case thatnr =1

We first analyze the possible cases if there is a partial nice path decompositi&), f)
(m<a<n). Supposa is an integerm < a< nandPD' is a partial nice path decomposition
of (S,va). Suppose that; uses]j, j']. By Corollaries 5.1 — 5.3 and Lemma 5.11 there are
two possibilities (see also Figure 18):

1. all partial one-paths connected to somel < i < m, occur on the left side dfi;, or

55

5 Three-Intervalizing Sandwich Trees

2. p < m, there is one partial one-path connected to/, such thatF occurs on the right
side ofH;, and all partial one-pathg’ # F connected to some, i < m, occur on the
left side ofHj.

In the first casep < j < j’ < n, and for all partial one-pathB’ connected tw;, i < m, if F’
useslb,b], thenb’ < j (part | of Figure 18). In the second cagp < j < j' < p, F useq]l,l’]
for somem < | <1’ < n, and all partial one-paths’ connected to some, i < mandF’ # F,
use[b,b'] for someb’ < j (part Il of Figure 18).

Figure 18: The two possible cases for the usklpf

Similarly to the case thatr > 1, for each of these two cases, we have to check whether it
is possible. Therefore, we again compute two values and combine these.

Definition 5.8. Let cl andfr be variables, each having a boolean fieldand an integer field
min, denoting the following.

e cl.ok=true if and only if there is a partial nice path decomposition(&, v,) for some
a, m< a< n, in which each partial one-path connected to, | < m, occurs on the left
side ofHj.

If cl.ok = true, then clmin denotes the smallest for which this holds. Otherwise,
clmin= oo.

¢ fr.ok=true if and only if there is a partial nice path decomposition &, v,) for some
a, m< a<ninwhich
— Hj useq]j, j’] for somej’ < p, and
— there is a partial one-path connected tw, which use§m, m|, and eitherF is the
only partial one-path connectedug, or F has a vertexv for which {v,,w'} ¢ E>.

If fr.ok = true, thenfrmin denotes the smalleatfor which this holds. Otherwisé&min=
00,

56

From the discussion above and Lemma 5.7, it follows that

all[k].ok = cl.okV fr.ok, and
all[kjmin= min{clmin, frmin}.

We now show howel andfr can be computed. First considsr

Computation of cl
We first analyze the case thatok = true.

Lemma 5.21. Suppose obk and PD is a partial nice path decomposition (&™", Veimin)
in which no partial one-path connected tg v < m, occurs on the right side of,H Then
allk <1].0k = true, and there is a partial nice path decomposition 'Rib (ﬂm'”,vdmin) in
which

1. no partial one-path connected tg @ccurs on the right side of Hi

N

. POV I s a partial nice path decomposition Cﬁ"[k_l]mi”,va"[k_l]min),

w

. Hy useqj, j’] for some allk<1jmin< j < j’ < clmin, and

N

. the rightmost node of PD contains an edgeBf S

Proof. We first show that condition 3 holds already foD. LetPD = (V4,... ,\}), and letV;,
1 <r <t, be the rightmost node containing an edg&hf Letv;, m< j < clmin, be such that
either j = mor v ¢ V; andv; € ;. Note thatv; is uniquely defined. Now it can be seen that
all edges between vertices Py, . .. ,Vj} U{ sticks ofvm, ... ,vj_1} occur within(Vy,... ;).
Hence(Vi,...,V;) restricted tovi is a partial nice path decomposition (&h,v;) with the
same properties @&D. This means that = clminandr =t.

The remainder of the proof is similar to the proof of Lemma 5.12 O

The lemma implies that, ill[k <1].0k = false, thencl.ok = false and we do not have to
compute anything. Suppose tlaitk <1).0k = true, and letmin = all [k <1]min.

In order to computecl, we let cimin be the smallest valuan < clmin < n, for which
there is a nice partial path decompositiBD of (S, v,) which satisfies conditions 1 — 4 of
Lemma 5.21. If we can find this value, thelok = true, otherwisecl.ok = false.

We distinguish between two cases, hamely the casdthhas type | and the case that
has type Il or lll. We start with the latter one.

The case thatH; has typell or Ill. Lemma 5.2 shows that in each nice path decomposition
of width two of Swith nice pathP, if Hy uses[j, '] for somep < j < <n,thenj <m<
j’, and hence this means that,cifok = true and PD is a partial nice path decomposition
of (SChLm‘”,vc|min) satisfying conditions 1 — 4 or Lemma 5.21, then the rightmost nodeDbf
contains an edge &1, and hencé; uses|j,clmin], for somem < j < clmin.

For findingclminas described above, we find the smallest valug,ah < j’ < n, for which
Hy can us€j, j'] for somemin < j < |, i.e. we for which we can extend a partial nice path

57

5 Three-Intervalizing Sandwich Trees

decomposition o(SQ“”,vmm) into a nice partial nice path decomposition(@i,;,vj/) in which
Hy used]j, j']. If there is such ar)’, we makecl.ok = true andclmin= j’, otherwise, we make
cl.ok = false. We now first show how to find this minimum value fgr

LetP’ € P1(Hy), letu andw be the two end points d?'. Letv € V(H;) such that{v,v,} €
E;. LetV' CV(S) contain all vertices oHj, all verticesvyn, ... ,Vn, and all sticks connected
tO Vminy1,--- ,Va_1. Let S, denote the sandwich graph with

V(S) =V'U{dum}
E1(S) = E2(SV']) U {{dum, u}, {dum, Vmin} }
Ea(S)) = Ea(SV']) U { {dum,v} [ve V'),

See Figure 19 for an example of the underlying grap&,dr the case thatl; has type Ill.
The sandwich grapB, is a sandwich block with sticks and loose emdandyv,.

N —— g

Figure 19: Example 061(S,).
DefineS, in the same way, but with the roles oindw exchanged.

Lemma 5.22.Let | be an integer, < j’ < n. Then H can us€j, j'| for some mir< j < mif
and only if one of the following holds.

a. There is a path decomposition of width two of
SV(&) &{Vji1,... ,Vm} & sticks of y,... ,Vm}]

with edge{dum, vimin} in the leftmost node, and-yw and a stick Wof w in the rightmost
node.

b. There is a path decomposition of width two of
SwV (Sw) ©{Vj41,... . Vm} &{ sticks of y,... ,vin}]

with edge{dum, vmin} in the leftmost node, andryu and a stick Uof u in the rightmost
node.

Proof. The proof is similar to the proofs of Lemma 5.13 and Lemma 5.15. O
Lemma 5.23. If Hy has typdl or Il then it takes ON?) time to compute cl, where N is the
number of vertices of Sr S,.

Proof. §, andS, are sandwich blocks with sticks and loose ends, and hence the lemma follows
from Corollary 4.2 and the proof of Lemma 5.16. O

58

The case thatH; has typel. This case is a little more complicated, sincelibk = true, then

in a partial nice path decomposition @™, vemin) satisfying conditions 1 —4 of Lemma5.21,
the rightmost node does not necessarily contain an edde, @nd hence it is possible thidg
uses]j, j'], for somej’ < clmin.

We compute the value af as follows. We compute the smallestm < a < n, for which we
can extend a partial nice path decompositiom@"”,vmm) into a partial nice path decomposi-
tion of (§,Va) in which the rightmost node contains an edgeS@f(and henceH; uses]j, j']
for somemin< j < j’ < a). If there is no sucha, thencl.ok = false, otherwise,cl.ok = true
andclmin=a.

LetP’ € P1(H31), letuandw be the end points d¥, such that the path fromnto v, contains
w. Furthermore, letwv be the neighbor ofy, in H;. Note that eithew = w' or w is a stick of
w. LetV' CV(S) contain all vertices oH3, all verticesvpn, ... ,Vn, and all sticks connected
tO Vmint1,---,Vn_1. Letb be an integer defined as follows. riin < m<2, thenb = 4. If
min= m<«-1 thenb = 3, and ifmin=m, thenb = 2. Fori=1,... ,b, letx; be vertices defined
as follows: x; = w, xo = W, if b > 3 thenxz = vn_1, and ifb = 4 thenxs = vyn_2 (note that
X1 = X if w=Ww). Let§, denote the sandwich graphs with

V(S) =V'U{dum}
E1(Su) = E1(SV']) U {{dum, u}, {dum, Viin} }
Ea(S)) = Ea(SV']) U { {dum,v} [ve V'),

See also Figure 20 for and example of the underlying graphs,.ofNote that for each,
1 <i < b, the sandwich grap8§, is a sandwich block with sticks and loose emdandv;,.

dum

Figure 20: Example 061(S,) for b =4.

Let ¢ be an integer defined as follows:=4 if n>m+2,c=3if n=m+1andc=2
if n=m. Fori=1,....c, lety; be vertices defined as followg; = w, y, = w, if ¢ > 3 then
Y3 = Vmy1, and ifc = 4 theny, = v, 2 (note thaty; = y» if w=w). For each, 1<i <, let
S, denote the sandwich graph with

V(S,) =V'U{dum}
Ex(S,) = Eo(SV') U{{{dum, y;}, {dum, Vimin} }
£2(S,) = E(SV') U {{dum,v} [ve V'),

See also Figure 21 for examples of the underlying graptg,dor i =1 andi = 3 (c = 4).
Now fori =1,...,c, the sandwich grapB, is a sandwich block with sticks and loose ends
andvy,.

59

5 Three-Intervalizing Sandwich Trees

H’ W=y P "
W=y
Vminjk-1] Y3 Y4 Vn
® v
Gi(S)
Vimink-1] Y2 \ 1 .fu
Vm

Figure 21: Example of, andS}, for c= 3.
Lemma 5.24.Let j be an integer, m< j < n. We can extend a partial nice path decomposition
of (Sg“”,vmin) into a partial nice path decomposition PD (&, v;) for which
1. H useqj, j’] for some mir< j < j’ < clmin, and
2. the rightmost node of PD contains an edgeBf S
if and only if one of the following holds.

a. Thereisanil <i < b, for which there is a path decomposition of width two of

&= SIV(S) ©{Vjs, ... v} sticks of ..., va}]

with edge{dum, vmin} in the leftmost node, and vx and a neighbor of xin S, in the
rightmost node.

b. Thereisanil <i < c for which there is a path decomposition of width two of

§N = SNN(SN) &{Vjt1,...,Vn} <{ sticks of y,... ,Vp}]

with edge{dum, vmin} in the leftmost node, and wu and a stick Lof u in the rightmost
node.

Proof. For the ‘if’ part, we can easily combine a partial nice path decompositi@ﬁgﬂﬂ, Vimin)
and a path decomposition as described in a or b into a partial nice path decomposition of
(S’n,vj) satisfying conditions 1 and 2.

For the ‘only if’ part, suppos®D = (Vi,...,\) is a partial nice path decomposition of
(Sh,vj) satisfying conditions 1 and 2. Suppddguses|l,|’] for somemin <1 <1’ < j. There
are three cases:

1. min<l<m<lI' <],

2. min<| <l"<m, and

60

3. m<I<I<.
1. In the same way as in the proof of Lemma 5.22, we can show that either

e there is a path decomposition of width two ®f with edge{dum, Vpyin} in the leftmost
node and with verticeg;, w and a stick ofw in the rightmost node, and hence a holds,
or

¢ there is a path decomposition éx with edgevmin in the leftmost node and;, uand a
stick ofuin the rightmost node, and hence b holds.

2. We show that there is anl <i < b, for which there is a path decomposition of width
two of §, with edge{dum,Vmin} in the leftmost node and;, x; and a neighbor of%; in S}, in
the rightmost node.

SupposeH; occurs in(\,...,Vy). ThenV, = {u,u,v;} for some sticku’ of u. LetW
denote the set of vertices, ... ,Vn, the sticks ofviy1,...,vm_1, and the vertices dfl;. Let
G = G31(§W)), and letG’ be the graph obtained frof@ by adding an edge betweerandy;.
See also Figure 22. Note that is a cycleC with sticks.

ul

G w

Vm

Vi Vi

Figure 22: Example of5'.

NodeV; contains an edge &) and thus ofG. Hence all edges d& occur in(V,,... ,).
Let PD’ denote the sequenc¥,, ... ,\t). Since{u,v;} CV, this means tha®’ also occurs in
PD'. Suppos€ occurs in the subsequen@é, ... ,Vs) of PD'. Sincevy, occursin(V, ... ,Vy),

Vj €V, and there is a path from, to vj, this means thaty, € Vy (Lemma 3.4.3 of de Fluiter
[1997]), and henc®y NV (C) C {Vm,X1,X2,... , X} (Lemma 3.4.5 of de Fluiter [1997]). But
that means that; contains one of the vertices, ... ,X, and a neighbor of this vertex @: if

t = ¢, then eithe{x;,vim} C V4 or {x3,vim} C M4, and ift > <, thenV,; contains a stick o€ in
G, and a vertex of to which this stick is connected. Singg has no sticks ir5’, this means
thatx; € 4 for somei, 1 <i <b. Leti*, 1<i* <b, be such that- € \4, and lety € V(G) such
that{x,y} € E(G) andy € \}.

We can now transforrPD’ into a path decomposition of width two & with {dum, Viin}
in the leftmost node and;, x;- andy in the rightmost node. Le8 denote the sandwich graph
of pathwidth one induced by the verticesin, ... ,v and the sticks ofiin1,--.,vi. Make a
path decompositioRD; of width one ofS with vertexvp, in the leftmost node and vertax
in the rightmost node, and add vertéxm to each node of this path decomposition. P&’
bePD; ++ {{Vv,u,dum} -+ PD'. ThenPD is the desired path decomposition&f

3. In the same way as for 2, we can show that there is &rC i < ¢, for which there is a
path decomposition of width two &N with Vmin @anddum in the leftmost node, ang, uand a
stick of u in the rightmost node. O

61

5 Three-Intervalizing Sandwich Trees

The lemma implies thatlminis the smallesj, m< j < n, for which either a or b from the
lemma holds. If such aexists, thercl.ok = true, and otherwisegl.ok = false. Hence we have
the following result.

Lemma 5.25. If Hy has typd, then it takes ON?) time to compute cl, where N is the number
of vertices of &

Proof. For eachi, §, is a sandwich block with sticks and loose englsand vy, andSiN
is a sandwich block with sticks and loose endandv,. Hence the lemma follows from
Corollary 4.2 and the proof of Lemma 5.16. O

This completes the description of the computatiokldbr the case thatr = 1.

Computation of fr

An arguments similar to the argument for the computatiofr &r the case thatr > 1 shows
that Corollary 5.5 also holds for the case that= 1. We do not give a precise description
of this argument here: all computations can be derived directly from the computations for the
case thatr > 1.
This completes the description of the computatiomltik] for the case that the number
of partial one-paths connectedvg is one. We conclude with the following theorem.

Theorem 5.3. Let k> 1. Given the values of dl| and allbdl] for | <k, it takes QN?)
time to compute glk|, where N denotes the number of verticgs, V... ,V;,,,, all sticks of
Vi 415+ »Vig,, -1, @and vertices of all partial one-paths connected ito,\and v, .

The Computation of allbo[K]

If nr =1, thenallbolk].ok = false. Supposenr > 1. LetHy,... ,H/, denote the partial one-
paths connected t@, for which each vertexv has{w,vy} € E,.

If nr’" = 0, then by definition, we makallbo[k].ok = false. If 1 < nr’ <2, then fori = 1,2,
we check whether there is a partial nice path decompositidigpEH/, vin). If there is noi
for which this holds, themllbo[k].ok = false, otherwise,

allbo[k].ok = true, and
allbolk].tr = {H/ | 1 <i < 2A there is a partial nice path decomposition §f <H/, vm).

To check whether there is a partial nice path decompositiof§pt=H/, vi) for somei,
1 <i < nr', we use the same computations as are used for the determinatibfkof nr > 1.
We do not describe these computations again, but immediately conclude with the following
theorem.

Theorem 5.4. Let k> 1. Given the values of dl] and allbdl] for | <k, it takes QN?)
time to compute allbi@], where N denotes the number of verticgsx... .V, ,, all sticks of
Vie o+1,-- - Viy.1—1, and vertices of all partial one-paths connected fovand v, .

62

This completes the description of the computationslbfand allbo. From Theorem 5.4
it can be seen that algorithm Nidath as described on page 43 tak¥s?) time, wheren
denotes the number of vertices of the sandwich tree.

To complete this section, we give algorithm 3-19@ee, which, given a sandwich tr&
returnstrue if there is a three-intervalization & andfalse otherwise.

Algorithm 3-ISG.Tree®

Input: Sandwich tres= (V,E;, E)

Output: true if there is a three-intervalization & false otherwise

1. Check ifG1(S) has pathwidth two, if notieturn false.

2. Find the seP»(G1(9)), and a seA of potentially nice paths df, and for eachP € A, the
partial one-path$i’ connected td and there set8;(H’).

3. forall PeA
4, do if Nice_PathP) then return true
5. return false

This algorithm can again be made constructive.

Theorem 5.5. There exists an @) algorithm that solve$-1SG for sandwich trees.

6 Three-Intervalizing Sandwich Graphs

The algorithm for 3-ISG on sandwich graphs is very similar to the algorithm for 3-ISG on
sandwich trees. Therefore, we only give a brief description of this algorithm.

Suppose we are given an input sandwich gr8phet G = G(S). If G is not connected,
then we apply the algorithm for all connected componens.dbupposes is connected. IS
is a sandwich block with sticks, or 8is a sandwich tree, then we can use one of the algorithms
given in Sections 4 and 5. Otherwise, the following is done. First, it is checked wlt&tiees
pathwidth at most two, and if so, the structureGfs computed as in Chapter 3 of de Fluiter
[1997]: the set of pathBg is computed, and for each pathe Pg, the set of partial one-paths
connected td is computed, and the interconnections between vertic® pértial one-paths
connected td and blocks ofG are determined.

From this sefPg of paths, it is then computed whether there is a path decomposition of
width two of S. We again only consider nice path decompositions, which are defined slightly
different from the nice path decompositions of sandwich trees.

Definition 6.1 (Nice Path Decomposition). L&= (V,E;,E,) be a sandwich graph of path-
width two, letG = G1(S), supposeG is connected, but is not a tree. LRt = (v1,...,Vs),
let PD = (V4,...,\t) be a path decomposition of width two 8f ThenPD is anice path de-
compositionof Sif there are no two consecutive nodes which are eqéiatontains an edge
e={v,V} € E; andV, contains an edg€ = {x,X'} € Ej, in such a way that # v and the path
from v to x containsPg. Furthermore, one of the following condition holds ¥rande, and
analogously fok; and€'.

63

6 Three-Intervalizing Sandwich Graphs

1. s=0, Bis the only block ofG, e € E(H’) for some componeril’ of G containing a
vertexw € V(B) of stateE1 or 11, such thatv is an end point of the patR’ containing
P1(H’) andw, andv # w.

2. s=0, Bis the only block ofG, e € E(G), v € V(B) and eithe is a stick adjacent tg,
orv eV(B).

3. s> 1,ee E(H’) for some partial one-patH’ connected te; such thav is an end point
of some path?’ € P1(H’),

4. s>1,ec E(H’) for some componeri’ of Gy containing a vertexv of stateE1 or I1
of a block containingr, such thaw is an end point of the pat® containingP;(H’) and
w, andv # w.

5. s> 1, there is a blocB containingv; such thaw € V(B) <{v1 }, and eithe{v,v'} € E(B)
orV is a stick adjacent ta.

Thenice path P corresponding to nice path decomposit®b is defined as follows. 1§ = 0,
thenP’ is the empty path if condition 2 holds for both and\. If condition 1 holds folV,,

and 2 for\t, thenP’ is the path fromv to the vertexw € V(B) for which v andw are in the
same component @ . Analogously, if condition 1 holds fo¥; and 2 holds fok,, thenP’ is

the path from the vertew € V(B) to x, such thatv andx are in the same component Gf;.

If condition 1 holds for both/; and\;, thenP' is the largest common subsequence of all paths
fromvtox. If s> 1, thenP’ is the largest common subsequence of all paths frdmw’ in G,
wherew = vy if condition 5 holds fol;, w = v otherwise, anav' = vs if condition 5 holds for

\t, w = X otherwise.

Figure 23 shows an example of all conditions in Definition 6.1Gins= 0, and inG,, s > 1.
If vandv are equal t@; anda], b; andb] or ¢; andc, then case 1 holds. fe V(B;), andV
is either a stick adjacent tg or {v,V'} € E(By), then case 2 holds (e.g.uf=d; andV' = dj).

If v= by, andV is equal ta, or b}, then case 3 holds. \f=a, andV = &,, then case 4 holds,
and ifv e V(By), andV is either a stick adjacent tgq or {v,V'} € E(By) (e.g. ifv=c, and
V = ¢,)then case 5 holds.

The analog of Theorem 5.1 also holds for general sandwich gr&has pathwidth two
if and only if there is a nice path decomposition of width twdsgfvhich can again be proved
by ‘unfolding”).

In the algorithm, we only check for a bounded number of nice paths (a set of ‘potentially’
nice paths) whether there is a nice path decomposition with this nice path. We can show with
a lemma analogous to Lemma 5.5 and Lemma 5.6 that this is possible.

Checking whether there is a nice path decomposition with a given potentially nice path
P = (v1,...,Vq) is done in the same way as for sandwich trees: we start mith 1, and
‘process’ all partial one-paths connected/tpand, in addition, all blocks containing. Then,
we repeatedly incremem, and after each increment operation, we ‘process’ the partial one-
paths connected ta,, and the blocks containing;,, by using the information froma;, i < m.
Finally, whenm = g, we have processed all partial one-paths and blocks, and we know whether
there is a nice path decomposition®ivith nice pathP.

64

REFERENCES

Figure 23: Examples of possible valuesvandV as defined in Definition 6.1.

The processing of all partial one-paths connected to a vegteand all blocks containing
Vi Strongly resembles the processing of partial one-paths as described in Section 5 for sandwich
trees. There are a lot more cases to consider, but each case can be solved in a similar way, with
the use of Lemma 4.6 and Corollary 4.2.

References

BODLAENDER, H. L. AND B. DE FLUITER [1995]. Intervalizingk-colored graphs. Tech-
nical Report UU-CS-1995-15, Department of Computer Science, Utrecht University,
Utrecht.

BODLAENDER, H. L. AND B. DE FLUITER [1996]. On intervalizingk-colored graphs for
DNA physical mappingDisc. Appl. Math. 7155-77.

BODLAENDER, H. L. AND T. KLOKS [1993]. A simple linear time algorithm for triangu-
lating three-colored graphd. Algorithms 15160-172.

DE FLUITER, B. [1997]. Algorithms for Graphs of Small TreewidtRh.D. thesis, Utrecht
University.

ELLis, J. A., |I. H. SUIDBOROUGH, AND J. TURNER [1994]. The vertex separation and
search number of a graplmformation and Computation 1130-79.

FELLOWS, M. R., M. T. HALLETT, AND H. T. WAREHAM [1993]. DNA physical map-
ping: Three ways difficult (extended abstract). In T. Lengauer (Bdgceedings of the
1st Annual European Symposium on Algorithms ESABGume 726 of Lecture Notes
in Computer Science, pp. 157-168. Springer-Verlag, Berlin.

GoLumsic, M. C., H. KAPLAN, AND R. SHAMIR [1994]. On the complexity of DNA
physical mappingAdvances in Applied Mathematics, Z51-261.

65

REFERENCES

MOHRING, R. H. [1990]. Graph problems related to gate matrix layout and PLA folding. In
E. Mayr, H. Noltemeier, and M. Systo (EdsQpmputational Graph Theory, Computing
Suppl. 7pp. 17-51. Springer-Verlag, Berlin.

66

