
Intervalizing Sandwich Graphs�

Babette de Fluiter Hans L. Bodlaender
Department of Computer Science, Utrecht University
P.O. Box 80.089, 3508 TB Utrecht, the Netherlands

e-mail:fbabette,hansbg@cs.ruu.nl

Abstract

In this report, we consider the following problem: given two graphsG1 = (V;E1) and
G2 = (G;E2) such thatE1 � E2, is there an interval graphG0 = (V;E0) with maximum
clique size at most three such thatE1 � E0 � E2?. We give anO(n2) algorithm for this
problem.

1 Introduction

In this report we consider a graph problem which models a problem arising in molecular biol-
ogy, namely INTERVALIZING SANDWICH GRAPHSor ISG. This problem is defined as follows.
Given are a positive integerk and two graphsG1 = (V;E1) andG2 = (V;E2) with the same ver-
tex set, such thatE1� E2. The question is whether there is an interval graphG= (V;E) such
thatE1� E � E2, and the maximum clique size ofG is at mostk. It has been shown that ISG
is NP-complete [Golumbic, Kaplan, and Shamir, 1994; Fellows, Hallett, and Wareham, 1993].
From the biological application it appears that the case in whichk is some fixed constant is
also of interest. For these cases, we denote the problem byk-ISG. Bodlaender and de Fluiter
[1996] have shown thatk-ISG is also NP-complete ifk � 4. However, for 2-ISG there is a
simple linear time algorithm. In this report, we consider 3-ISG: we give a quadratic algorithm
for this problem.

In Bodlaender and de Fluiter [1996, 1995], a restricted version of 3-ISG is discussed,
namely 3-ICG, or THREE-INTERVALIZING COLORED GRAPHS. In 3-ICG, we are given a
graphG1 = (V;E1) and a three-coloringc : V ! f1;2;3g of G1, and the question is whether
there is an interval graphG = (V;E) with E1 � E, such thatG is properly colored byc. It
can be seen that 3-ICG is a restricted version of 3-ISG: if you have a graphG1 = (V;E1) and a
three-coloringc of G, then this three-coloring can also be represented by the graphG2 =(V;E2)
with

E2 = ffu;vg j u;v2V ^c(u) 6= c(v)g

�This research was partially supported by the Foundation for Computer Science (S.I.O.N) of the Netherlands Or-
ganisation for Scientific Research (N.W.O.) and by ESPRIT Long Term Research Project 20244 (project ALCOM
IT: Algorithms and Complexity in Information Technology).

1

2 Preliminaries

It is then easy to see thatG1 andG2 form a yes-instance for 3-ISG if and only ifG1 andc form
a yes-instance for 3-ICG (note that a graph which is three-colorable has no cliques with more
that three vertices). The algorithm for 3-ICG that is presented in Bodlaender and de Fluiter
[1995] uses quadratic time. In this report, we generalize this algorithm for 3-ISG (although
this report can be read independently of Bodlaender and de Fluiter [1995]).

The report acts as a completion of Chapter 4 of de Fluiter [1997]: that chapter discusses the
algorithm for 3-ISG for the case that the input graphG1 is biconnected. In this report, we give
the complete algorithm. Therefore, this report does not contain much background information,
references or preliminary results: these can all be found in de Fluiter [1997], especially in
Section 2.3.1 and Chapters 3 and 4. In this report we frequently refer to results presented in
de Fluiter [1997].

If an instanceG1;G2 of 3-ISG has a solution, then the graphG1 must have pathwidth at
most two. This result is used in the algorithm for 3-ISG: the algorithm first checks whether
G1 has pathwidth at most two. If not, thenfalse is returned. Otherwise, the structure ofG1

is used to solve 3-ISG. For this, we use the characterization of graphs of pathwidth at most
two as it is presented in Chapter 3 of de Fluiter [1997]. This characterization is split into three
parts: the characterization of biconnected graphs of pathwidth at most two, the characterization
of trees of pathwidth at most two, and the characterization of general graphs of pathwidth at
most two. This latter characterization shows how a graph of pathwidth at most two is built up
from biconnected graphs of pathwidth at most two and trees of pathwidth at most two. In the
algorithm, we follow this division.

This report is organized as follows. In Section 2, we give some preliminary results, and
we recall some results from Chapter 2 of de Fluiter [1997] about the structure of graphs of
pathwidth at most two. In Sections 3 – 6, we give an algorithm that solves 3-ISG inO(n2)
time. We first give the algorithm for biconnected graphs in Section 3. In Section 4 we extend
this algorithm to graphs which consist of a block with isolated vertices connected to it. After
that, this algorithm is used as a building block for the algorithm for 3-ISG on input graphs
which are trees that is presented in Section 5. Finally, in Section 6 we shortly discuss how
this algorithm can be extended for general graphs. We do not give the complete algorithm for
general graphs: this algorithm is a straightforward extension of the algorithm for trees, but it
takes a lot of space.

2 Preliminaries

The graphs we consider are simple and contain no self-loops.

Definition 2.1. A sandwich graphS is a triple (V;E1;E2) in which (V;E1) and (V;E2) are
simple graphs, andE1� E2.

Definition 2.2 (Interval Graph). A graphG= (V;E) is aninterval graphif there is a function
� which maps each vertex ofV to an interval of the real line, such that for eachu;v2V with
v 6= u,

�(u)\�(v) 6= o=,fu;vg 2 E:

2

The function� is called aninterval realizationfor G.

Definition 2.3 (Intervalization). LetS= (V;E1;E2) be a sandwich graph. Anintervalizationof
S is an interval graphG with V(G) =V andE1� E(G)� E2. Let k� 1. An intervalizationG
of S is called ak-intervalization if the maximum clique size ofG is k.

In this report, the following problem is discussed [Golumbic, Kaplan, and Shamir, 1994].

INTERVALIZING SANDWICH GRAPHS(ISG)
Instance: A sandwich graphS= (V;E1;E2), an integerk� 1
Question: Is there ak-intervalization ofS?

It has been shown that ISG is NP-complete [Golumbic et al., 1994; Fellows et al., 1993].
However, from the application it appears that the cases wherek is some small given constant
are of interest. For fixedk, we denote the problem byk-ISG.

Bodlaender and de Fluiter [1996] have shown thatk-ISG is NP-complete fork� 4 (see
also de Fluiter [1997]). In this report, we resolve the complexity ofk-ISG for k � 3. We
observe that the casek = 2 is easy to resolve inO(n) time. Then, we give anO(n2) algorithm
that solves 3-ISG. We also show how the algorithm can be made constructive.

Definition 2.4. Let G = (V;E) be a graph. Apath decompositionof G is a sequencePD =
(V1;V2; : : : ;Vt) (t � 1) such thatVi �V for eachi (1� i � t), and furthermore, the following
holds:

1.
St

i=1Vi =V,

2. for eache2 E, there is a nodei with e�Vi , and

3. for eachi � j � l , Vi \Vl �Vj .

The width of a path decomposition is max1�i�t jVi j �1. Thepathwidthof a graphG is the
minimum width of any path decomposition ofG.

Let S= (V;E1;E2) be a sandwich graph. Fori = 1;2, the graph(V;Ei) is denoted byGi(S).
We callG1(S) theunderlying graphof S. The set of vertices ofS is also denoted byV(S), the
first edge set byE1(S) and the second edge set byE2(S). LetW �V. By S[W] we denote the
sub-sandwich graph ofS induced byW, defined as follows:

V(S[W]) =W

E1(S[W]) = E1\ffv;wg j v;w2Wg

E2(S[W]) = E2\ffv;wg j v;w2Wg:

Definition 2.5. Let S= (V;E1;E2) be a sandwich graph. Apath decompositionof S is a
path decompositionPD= (V1; : : : ;Vt) of G1(S), such for eachv;v0 2V, if there is a nodeVi ,
1� i � t, with v;v0 2Vi , thenfv;v0g 2 E2. The pathwidth ofS is the minimum width of any
path decomposition ofS.

3

2 Preliminaries

A sandwich graph is called biconnected if its underlying graph is biconnected. A bicon-
nected sandwich graph is also called asandwich block. The blocks of a sandwich graph are
the blocks of its underlying graph. A sandwich graph of which the underlying graph is a tree
is called asandwich tree.

The problem ofk-intervalizing sandwich graphs is closely related to the pathwidth prob-
lem.

The following lemma corresponds to Lemma 2.3.3 in de Fluiter [1997].

Lemma 2.1[Möhring, 1990].Let G= (V;E) be a graph and let ci(G) denote the least maxi-
mum clique size of any interval graph which is a supergraph of G. Thenpw(G) = ci(G)�1.

The following lemma corresponds to Lemma 4.2.1 in de Fluiter [1997] and is a generaliza-
tion of Lemma 2.1.

Lemma 2.2. Let S= (V;E1;E2) be a sandwich graph and let k� 1. Sandwich graph S has
pathwidth at most k�1 if and only if S has a k-intervalization.

Thus, the following problem is equivalent to ISG.

SANDWICH PATHWIDTH

Instance: A sandwich graphS= (V;E1;E2), an integerk� 1
Question: DoesShave pathwidth at mostk�1?

The proof of Lemma 2.2 [de Fluiter, 1997] also gives an easy way to transform a solution
for one problem into a solution for the other problem. Furthermore, it implies the following
result.

Corollary 2.1. Let k� 1 and let S be a sandwich graph. If there is a k-intervalization of S then
the underlying graph of S has pathwidth at most k�1.

For the casek= 2, the question whether there is a path decomposition of a sandwich graph
S is equal to the question whether the underlying graph ofS is a partial one-path (see also
Fellows et al. [1993]). This is because each path decomposition of width one ofG1(S) can be
transformed into a path decomposition of width one ofS by simply deleting all nodes which
contain no edge, and then adding a node at the right side of the path decomposition for each
isolated vertex containing this vertex only. Checking whether a graph has pathwidth one can
be done in linear time (Chapter 3 of de Fluiter [1997]).

Theorem 2.1. 2-ISG can be solved in linear time.

Let G be a graph, andPD= (V1; : : : ;Vt) a path decomposition ofG. Let G0 be a subgraph
of G. The occurrenceof G0 in PD is the subsequence(Vj ; : : : ;Vj 0) of PD in which Vj and
Vj 0 contain an edge ofG0, and no nodeVi , with i < j or i > j 0 contains an edge ofG0, i.e.
(Vj ; : : : ;Vj 0) is the shortest subsequence ofPD that contains all nodes ofPD which contain
an edge ofG0. We say thatG0 occursin (Vj ; : : : ;Vj 0). The vertices ofG0 are said to occur in
(Vl ; : : : ;Vl 0) if this sequence is the shortest subsequence ofPD containing all vertices ofG0.

Let G be a graph andPD= (V1; : : : ;Vt) a path decomposition ofG. Let 1� j � t. We say
that a nodeVi is on theleft sideof Vj if i < j, and on theright sideof Vj if i > j. Let G0 be a

4

2.1 The Structure of Biconnected Partial Two-Paths

connected subgraph ofG, supposeG0 occurs in(Vl ; : : : ;Vl 0). We say thatG0 occurs on the left
side ofVj if l 0 < j, and on the right side ofVj if l > j. In the same way, we speak about the left
and right sides of a sequence(Vj ; : : : ;Vj 0), i.e. a node is on the left side of(Vj ; : : : ;Vj 0) if it is
on the left side ofVj , and a node is on the right side of(Vj ; : : : ;Vj 0) if it is on the right side of
Vj 0 .

The following definition only makes sense if the graphG has pathwidth at most two. An
edgee (or vertexv) is anend edge(or end vertex) of G0 if in each path decomposition of width
two of G, e (or v) occurs in the leftmost or rightmost end node of the occurrence ofG0. An edge
e (or vertexv) is adouble end edge(or double end vertex) of G0 if in each path decomposition
of width two of G, e (or v) occurs in both end nodes of the occurrence ofG0.

Let G be a graph, letPD = (V1; : : : ;Vt) be a path decomposition ofG, and letV 0 � V.
SupposeG[V 0] occurs in(Vj ; : : : ;Vj 0), 1� j � j 0 � t. The path decomposition ofG[V 0] induced
byPD is denoted byPD[V 0] and is obtained from the sequence(Vj\V 0; : : : ;Vj 0\V 0) by deleting
all empty nodes and all nodesVi \V0, j � i < j 0, for whichVi \V 0 =Vi+1\V0.

Let G be a graph, and letG1 andG2 be subgraphs ofG such that the union ofG1 andG2

equalsG. Let PD1 = (V1; : : : ;Vt) andPD2 = (W1; : : : ;Wt 0) be path decompositions ofG1 and
G2. Theconcatenationof PD1 andPD2 is denoted byPD1++PD2 and is defined as follows.

PD1++PD2 = (V1; : : : ;Vt ;W1; : : : ;Wt 0)

Note thatPD1++PD2 is a path decomposition ofG if and only if the vertices ofV(G1)\V(G2)
occur inVt and inW1.

The following lemma corresponds to Lemma 3.1.1 in de Fluiter [1997]

Lemma 2.3. Let G= (V;E) be a connected partial two-path and let V0 � V. Let PD=
(V1; : : : ;Vt) be a path decomposition of width two of G such that the vertices of V0 occur in
(Vj ; : : : ;Vj 0). On each side of(Vj ; : : : ;Vj 0), edges of at most two components of G[V �V 0]
occur.

2.1 The Structure of Biconnected Partial Two-Paths

We only consider non-trivial biconnected graphs in this section.

Definition 2.6 [Bodlaender and Kloks, 1993]. Given a biconnected graphG= (V;E), thecell
completionḠ of G is the graph which is obtained fromG by adding an edgefu;vg for all pairs
u;v of vertices inV, u 6= v, for which fu;vg =2 E(G) andG[V(G)�fu;vg] has at least three
connected components.

The following lemma corresponds to Lemma 3.2.2 of de Fluiter [1997].

Lemma 2.4 [Bodlaender and Kloks, 1993].Let G be a biconnected partial two-path. Each
path decomposition of width two of G is a path decomposition (of width two) of the cell com-
pletionḠ of G.

Bodlaender and Kloks [1993] have shown that the cell completion of a biconnected partial
two-tree is a ‘tree of cycles’. We show that the cell completion of a biconnected partial two-
path is a ‘path of cycles’.

5

2 Preliminaries

Definition 2.7 [Bodlaender and Kloks, 1993]. The class oftrees of cyclesis the class of graphs
recursively defined as follows.

� Each cycle is a tree of cycles.

� For each tree of cyclesG and each cycleC, the graph obtained fromG andC by taking
the disjoint union and then identifying an edge and its end vertices inG with an edge and
its end vertices inC, is a tree of cycles.

Note that two different chordless cycles in a tree of cycles have at most one edge in common.

Definition 2.8. A path of cyclesis a tree of cyclesG for which the following holds.

1. Each chordless cycle ofG has at most two edges which are contained in other chordless
cycles ofG.

2. If an edgee2 E(G) is contained inm� 3 chordless cycles ofG, then at leastm�2 of
these cycles have no other edges in common with other chordless cycles, and consist of
three vertices.

With each path of cyclesG, we can associate a sequence(C1; : : : ;Cp) of all chordless cycles
of G and a sequence(e1; : : : ;ep�1) of edges ofG, such that for eachi, 1� i < p, cyclesCi and
Ci+1 have edgeei in common, and furthermore, ifi < p�1 andei = ei+1, thenCi+1 has three
vertices.

Definition 2.9 (Cycle Path). LetG be path of cycles, letC = (C1; : : : ;Cp) be a sequence
of chordless cycles as defined above, and letE = (e1; : : : ;ep�1) be the corresponding set of
common edges. The pair(C ;E) is called acycle pathfor G.

The following theorem corresponds to Theorem 3.2.1 in de Fluiter [1997].

Theorem 2.2.Let G be a biconnected graph. G is a partial two-path if and only ifḠ is a path
of cycles.

Theorem 2.3. There is an O(n) time algorithm which, given a biconnected graph G, checks if
the cell completionḠ of G is a path of cycles and constructs a cycle path forḠ.

The algorithm is given in Section 3.5.1 of de Fluiter [1997].

2.2 The Structure of Trees of Pathwidth Two

The following result, describing the structure of trees of pathwidthk, is similar to a result of
Ellis, Sudborough, and Turner [1994]. It corresponds to Lemma 3.3.1 in de Fluiter [1997].

Lemma 2.5. Let H be a tree and let k� 1. H is a tree of pathwidth at most k if and only if
there is a path P= (v1; : : : ;vs) in H such that H[V�V(P)] has pathwidth at most k�1, i.e. if
and only if H consists of a path with trees of pathwidth at most k�1 connected to it.

6

2.2 The Structure of Trees of Pathwidth Two

A graph has pathwidth zero if and only if it consists of a set of isolated vertices. Because
graphs of pathwidth one do not contain cycles, each component of a graph of pathwidth one is
a tree which consists of a path with ‘sticks’, which are vertices of degree one adjacent only to
a vertex on the path (‘caterpillars with hair length one’).

The next lemmas correspond to Lemmas 3.3.2, 3.3.3 and 3.3.4 in de Fluiter [1997], respec-
tively.

Lemma 2.6. Let H be a tree of pathwidth k, k� 1, and suppose there is no vertex v2V(H)
such that H[V�fvg] has pathwidth k�1 or less. Then there is a unique shortest path P in H
such that H[V�V(P)] has pathwidth k�1 or less. Furthermore, P is a subpath of each path
P0 in H for which H[V�V(P0)] has pathwidth at most k�1.

Lemma 2.7. Let H be a tree of pathwidth one, let W�V(H) consist of all vertices v2V(H)
for which H[V �fvg] has pathwidth zero, and suppose thatjWj � 1. ThenjWj � 2, and if
jV(H)j> 2, thenjWj= 1.

Lemma 2.8.Let H be a tree of pathwidth two and letW�V(H) consist of all vertices v2V(H)
for which H[V�fvg] has pathwidth at most one. SupposejWj � 1. The following holds.

1. H[W] is a connected graph.

2. If there is a v2W such that H[V�fvg] has four or more components of pathwidth one,
thenjWj= 1.

3. There is a vertex v2W such that H[V�fvg] has two or more components of pathwidth
one.

4. jWj � 7.

Definition 2.10. Let H be a tree and letk� 1. Pk(H) denotes the set of all pathsP in H for
which H[V�V(P)] is a partial(k�1)-path, and there is no strict subpathP0 of P for which
H[V�V(P0)] is a partial(k�1)-path. If jPk(H)j= 1, thenPk(H) denotes the unique element
of Pk(H).

Let H be a tree and letk� 1. Note that ifH has pathwidth more thank, thenPk(H) = o=.
If H has pathwidth less thank, thenjPk(H)j = 1 andPk(H) = (). If H has pathwidth exactly
k thenjPk(H)j � 1 and all paths inPk(H) contain at least one vertex. IfPk(H) contains more
than one element, then its elements are all paths consisting of one vertex.

For a tree of pathwidth one, all path decompositions of width one are essentially the same.
The following lemma corresponds to Corollary 3.3.1 in de Fluiter [1997].

Lemma 2.9. Let k� 1, let H be a tree of pathwidth k, and let PD= (V1; : : : ;Vt) be a path
decomposition of width k of H. Let v2V1 and v0 2Vt. Then the path P from v to v0 contains
one of the paths inPk(H) as a subpath.

Theorem 2.4. There is an O(n) time algorithm which, given a tree G, checks if G has
pathwidth zero, one or two, and computesP1(H) if the pathwidth is one, orP2(H) if the
pathwidth is two.

The algorithm is given in Section 3.5.2 of de Fluiter [1997].

7

3 Three-Intervalizing Sandwich Blocks

3 Three-Intervalizing Sandwich Blocks

By Corollary 2.1, a sandwich graph has a three-intervalization only if the underlying graph of
Shas pathwidth at most two. Therefore, our algorithm for finding a three-intervalization of a
sandwich graph makes use of the structure of partial two-paths as described in Chapter 3 of
de Fluiter [1997] (and briefly in Section 2.1 of this report). The algorithm first checks if the
underlying graphG1(S) is a partial two-path and if so, finds its structure. Then this structure is
used to find a three-intervalization ofS.

In this section we give the algorithm for the case that the input sandwich graph is a block.
The main algorithm has the following form: first, the cell completionḠ1(S) of the underlying
graph ofS is computed. Then, a cycle path for̄G1(S) is constructed if it exists. After that, this
cycle path is used to check whether there is a path decomposition ofSof width at most two.

Lemma 2.4 states that each path decomposition of width two of a partial two-pathG is also
a path decomposition of width two of its cell completion̄G. With respect to intervalizations,
the lemma states that each three-intervalization of a sandwich graphS is a supergraph of the
cell completionḠ1(S) of the underlying graphG1(S) of S.

The following lemma follows directly from the results in Section 3.2 of de Fluiter [1997].

Lemma 3.1. Let S be a sandwich block. Suppose that G1(S) is a partial two-path,Ḡ1(S)
is sandwiched in S, and(C ;E) is a cycle path forḠ1(S) with C = (C1; : : : ;Cp) and E =
(e1; : : : ;ep�1). There is a path decomposition of S if and only if the following conditions hold:

1. there is a path decomposition of width two of S[V(C1)] with edge e1 in the rightmost
node (if p> 1),

2. there is a path decomposition of width two of S[V(Cp)] with edge ep�1 in the leftmost
node (if p> 1), and

3. for all i, 1< i < p, there is a path decomposition of width two of S[V(Ci)] with edge ei�1

in the leftmost node and edge ei in the rightmost node.

Hence to check whether there is a path decomposition of width two ofS with cycle path
(C ;E), the algorithm checks for each cycleCi, 1� i � p, whether there is a path decomposi-
tion of S[V(Ci)] with the appropriate edges in the leftmost and the rightmost node. The path
decompositions of the sub-sandwich graphs induced by the cycles are then concatenated in the
order in which they occur inC , and this gives a path decomposition of width two ofS.

3.1 Cycles

We concentrate now on checking whether there exists a path decomposition of width two of
a sandwich graph whose underlying graph is a cycle. LetSbe such a sandwich graph and let
C = G1(S).We denote the vertices and edges ofC by V(C) = fv0;v1; : : : ;vn�1g, andE(C) =
ffvi;vi+1g j 0� i < ng (for eachi, let vi denotevi modn). For eachj andl , 1� l < n, let I(j; l)
denote the set of vertices ofV(C) betweenvj andvj+l , when going fromvj to vj+l in positive
direction, i.e.,

I(j; l) = fvi j j � i � j + l g:

8

3.1 Cycles

Furthermore, letC(j; l) denote the cycle with

V(C(j; l)) = I(j; l)

E(C(j; l)) = ffvj ;vj+lgg [ffvi;vi+1g j vi 2 I(j; l)�fvj+lgg

Note thatC(j;n�1) =C for all j. For an example, consider Figure 1.

v1 v2

v3

v4

v5
v6v7v8

v9

v10

v11

v0

C =C(j ;11)

v1 v2

v9

v10

v11

v0

C(8;6)

v8

Figure 1: A cycleC with 12 vertices, and the cycleC(8;6) derived fromC.

The following lemma is used to obtain a dynamic programming algorithm for our problem.

Lemma 3.2. Let S= (V;E1;E2) be a sandwich graph whose underlying graph is a cycle C
with n vertices. Let i, j and l be integers,2� l < n, and suppose j� i < j + l. There is
a path decomposition PD= (V1; : : : ;Vt) of width two of C(j; l) such thatfvi ;vi+1g �V1 and
fvj ;vj+lg �Vt if and only iffvj ;vj+lg 2 E2 and either one of the following conditions holds:

1. jV(C)j= 3,

2. there is a path decomposition PD0 = (V 0
1; : : : ;V

0
r) of width two of S[I(j; l �1)] such that

fvi ;vi+1g �V 0
1 andfvj ;vj+l�1g �V 0

r , or

3. there is a path decomposition PD00 = (V 00
1 ; : : : ;V

00
s) of width two of S[I(j +1; l �1)] such

thatfvi ;vi+1g �V 00
1 andfvj+1;vj+lg �V 00

s .

Proof. For the ‘if’ part, supposefvj ;vj+lg 2 E2. If jV(C)j = 3, thenC(j; l) =C, and hence
(V(C)) is a path decomposition of width two ofS. Suppose there is a path decomposition
PD0 = (V 0

1; : : : ;V
0
r) of width two of S[I(j; l � 1)] with fvi;vi+1g � V 0

1 andfvj ;vj+l�1g � V 0
r .

ThenPD= PD0++(fvj ;vj+l�1;vj+lg) is a path decomposition of width two ofS[I(j; l)] which
satisfies the appropriate conditions. The other case is similar.

For the ‘only if’ part, suppose there is a path decompositionPD = (V1; : : : ;Vt) of width
two of S[I(j; l)] such thatfvi;vi+1g � V1 andfvj ;vj+lg � Vt . Clearly,fvj ;vj+lg 2 E2, since
vj ;vj+l 2Vt . SupposejV(C)j > 3. If fvi ;vi+1g= fvj ;vj+lg, thenl = n�1, henceC(j; l) =C
andjI(j; l)j > 3. Lemma 3.2.4 of de Fluiter [1997] shows that the leftmost and the rightmost
node ofPD can not contain the same edge, contradiction. Sofvi;vi+1g 6= fvj ;vj+lg. Let Vm

andVm0 , 1�m;m0 � t, be the rightmost nodes containing edgefvj+1;vjg andfvj+l�1;vj+lg,
respectively.

First supposem0 < m. ThenVm = fvj+1;vj ;vj+lg, and for eachk, m< k� t, vj ;vj+l 2Vk.
We claim that the path decomposition obtained from(V1; : : : ;Vm) by deletingvj from each

9

3 Three-Intervalizing Sandwich Blocks

node is a path decomposition of width two ofS[I(j +1; l �1)] with edgefvj+1;vj+lg in the
rightmost node and edgefvi ;vi+1g in the leftmost node.

Suppose there is a vertexv2V(C)�fvj ;vj+1gwhich occurs on the right side ofVm. Vertex
v has an edge to some vertex inV(C)�fvj ;vj+1g, hencev2Vm. But thenv= vj+l�1, which
gives a contradiction. Hence all edges ofS[I(j +1; l �1)] occur in(V1; : : : ;Vm). Furthermore,
fvj+1;vj+l�1g occurs inVm. We only have to showj 6= i and j 6= i+1. NodeVm0 containsvj+l ,
vj+l�1, and a vertex of the path fromvj+1 to vi+1 which avoidsvj . Hencevj =2Vm0 and thus
vj =2V1. This proves the claim.

For the case thatm<m0, a path decomposition of width two ofS[I(j; l �1)] with fvi;vi+1g
in the leftmost node andfvj ;vj+l�1g in the rightmost node can be constructed in the same way.

If m= m0, thenvj+1 = vj+l�1, hencejI(j; l)j = 3. Sincefvi ;vi+1g 6= fvj ;vj+lg, this means
thatfvi;vi+1g= fvj ;vj+1g or fvi ;vi+1g= fvj+l�1;vj+lg. In the first case,(fvi ;vi+1g) is a path
decomposition of width two ofS[I(j; l �1)] with edgefvi;vi+1g in the leftmost node and edge
fvj ;vj+l�1g in the rightmost node. In the latter case,(fvi ;vi+1g) is a path decomposition of
width two of S[I(j +1; l �1)] with edgefvi;vi+1g in the leftmost node and edgefvj+1;vj+lg
in the rightmost node. 2

Let Sbe a sandwich graph whose underlying graph is a cycleC. A starting pointor ending
point of S is an element ofE(C)[fnilg. Let PD= (V1; : : : ;Vt) be a path decomposition ofS.
We say that a starting pointspof S is in the leftmost node if eithersp2 E(C) andsp�V1, or
sp= nil. We also denote this bysp2V1. Similarly, an ending pointepof S is in the rightmost
node ofPD, or ep2Vt , if eitherep2 E(C) andep�Vt , or ep= nil.

We definePW2 as follows.

Definition 3.1. Let Sbe a sandwich graph of which the underlying graph is a cycleC with n
vertices. Letspbe a starting point ofS, and let j andl be integers, 1� l < n and 0� j < n.

PW2(S;sp; j; l) =

8><
>:

true if there is a path decompositionPD= (V1; : : : ;Vt)

of width two of S[I(j; l)] with vj ;vj+l 2Vt andsp2V1

false otherwise

Let spandepbe starting and ending points of a sandwich graphSof which the underlying
graph is a cycle. There is a path decomposition of width two ofSwith sp in the leftmost node
andepin the rightmost node if and only if there is aj with 0� j < n such thatPW2(S;sp; j;n�
1) holds and eitherep= nil or ep= fvj�1;vjg.

If n= 3, then for any starting pointspand ending pointep, (V(S)) is a path decomposition
of width two of Swith sp in the leftmost node andep in the rightmost node.

Supposen> 3. It can be seen from the definition ofPW2 that for all starting pointsspof
S, and all j, 0� j < n, PW2(S;sp; j;1) holds if and only ifsp= nil or sp= fvj ;vj+1g. We use
this fact and Lemma 3.2 to describePW2 recursively. Letspbe a starting point ofS, and let j
andl be integers with 1� l < n and 0� j < n.

PW2(S;sp; j; l) =

8><
>:

sp= nil_sp= fvj ;vj+lg if l = 1

fvj ;vj+lg 2 E2(S) ^

(PW2(S;sp; j +1; l �1) _ PW2(S;sp; j; l �1)) if l > 1

10

3.1 Cycles

(Notice that j +1 denotes(j +1) modn.)
We can now use dynamic programming to compute whether there is a path decomposition

of width two of Swith the appropriate starting and ending points as follows.

Algorithm 3-ISG Cycle(S;sp;ep)
Input: Sandwich graphSwith G1(S) a cycleC with n verticesv0; : : : ;vn�1,

and edgesffvi;vi+1g j 0� i < ng
Starting pointspof S
Ending pointepof S

Output: (90� j<n (ep= nil _ ep= fvj�1;vjg) ^PW2(S;sp; j;n�1))

1. if n= 3 then return true
2. if sp= nil
3. then for j 0 to n�1
4. do P(j;1) true
5. else for j 0 to n�1
6. do P(j;1) false
7. Let j be such thatsp= fvj ;vj+1g 2 E(C)
8. P(j;1) true
9. (� 80� j<n P(j;1)� PW2(S;sp; j;1) �)
10. for l 2 to n�1
11. do for j 0 to n�1
12. do P(j; l) (fvj ;vj+lg 2 E2(S))^ (P((j +1) modn; l �1)_P(j; l �1))
13. (� 80� j<n P(j;n�1)� PW2(S;sp; j;n�1) �)
14. if ep= nil then return true
15. Let j be such thatep= fvj�1;vjg
16. return P(j;n�1)

The algorithm usesO(n2) time if we first build an adjacency matrix of the graphG2(S): this is
needed in order to do the test in line 12 in constant time.

The algorithm can be made constructive in the sense that if there exists an intervalization,
then the algorithm outputs one, as follows. Construct an arrayPP of pointers, such that for
each j andl , 0� j < n and 1� l < n, PP(j; l) contains the nil pointer ifl = 1 or if P(j; l) is
false. If P(j; l) is true andl > 1, thenPP(j; l) contains a pointer toPP(j; l �1) if P(j; l �1)
is true, and toPP((j +1) modn; l �1) otherwise. The computation ofPPcan be done during
the computation ofP in 3-ISG Cycle. Afterwards, if there is a three-intervalization, then one
can be constructed as follows. First letG be the underlying graph of the input sandwich graph.
If ep= nil, then start with anyj, 0� j < n for which P(j;n�1) is true, otherwise. start with
j for which ep= fvj�1;vjg. Then follow the pointers fromPP(j;n�1) until the nil pointer is
reached, and add edgefvi;vi+lg to G for eachi and l for which PP(i; l) is visited. Note that
the nil pointer is reached if the previous pointer pointed toPP(i;1) for somei such that either
sp= fvi;vi+1g or sp= nil. HenceG is a three-intervalization of the input sandwich graph.

Lemma 3.3. Algorithm 3-ISGCycle solves 3-ISG in O(n2) time and space for sandwich
graphs of which the underlying graph is a cycle.

11

4 Three-Intervalizing Sandwich Blocks with Sticks

3.2 Blocks

Let S be a sandwich block, supposeG1(S) is a partial two-path and̄G1(S) is sandwiched in
S. Let (C ;E) be a cycle path forG1(S) with C = (C1; : : : ;Cp). There is a path decomposition
of width two of S if and only if for eachi, 1� i � p, there is a path decomposition of width
two of S[V(Ci)] with starting pointei�1 if i > 1, nil otherwise, and ending pointei if i < p, nil
otherwise (Lemma 3.1).

For a given sandwich blockS, the following algorithm returnstrue if there is a three-
intervalization ofG, andfalse otherwise.

Algorithm 3-ISG SB(S)
Input: Sandwich blockS
Output: true if there is a three-intervalization ofS, false otherwise
1. Check ifḠ1(S) is sandwiched inS, and if there is a cycle path for̄G1(S). If so, construct

such a path(C ;E) with C = (C1; : : : ;Cp) andE = (e1; : : : ;ep�1). If not, return false.
2. for i 1 to p
3. do m jV(Ci)j
4. if i > 1 then sp ei�1 elsesp nil
5. if i < p then ep ei elseep nil
6. if :3-ISG Cycle(S[V(Ci)],sp,ep) then return false
7. return true

For Step 1, we can use the algorithm from Section 3.5.1 of de Fluiter [1997], which takes
O(n) time. The loop in lines 2 – 6 runs inO(n2) time (n= jV(G)j) if we first make an adjacency
matrix for G2(S), and then use procedure 3-ISGCycle.

Algorithm 3-ISGSB can again be made constructive. To this end, the constructive version
of algorithm 3-ISGCycle is used in line 6. After the loop has ended, the union of the graphs
that are constructed by the calls to 3-ISGCycle form a three-intervalization of the input sand-
wich graph. Hence, we have proved the main result of this section.

Theorem 3.1. There exists an O(n2) time algorithm that solves the constructive version3-ISG
for sandwich blocks.

4 Three-Intervalizing Sandwich Blocks with Sticks

The algorithm to decide 3-ISG for sandwich blocks with sticks is derived from the algorithm
to decide 3-ISG for sandwich blocks. Therefore, we first consider sandwich graphs of which
the underlying graph is a cycle with sticks.

4.1 Cycles with Sticks

Let S= (V;E1;E2) be a sandwich graph such thatG1(S) is a cycleC with sticksW. As is
shown in Chapter 3 of de Fluiter [1997],G1(S) has pathwidth two. The following lemmas
show necessary and sufficient conditions forSto have pathwidth two.

12

4.1 Cycles with Sticks

Lemma 4.1. Let S= (V;E1;E2) be a sandwich graph such that G1(S) is a cycle C with sticks.
Let e= fx;yg 2 E(C) and e0 = fx0;y0g 2 E(C). Suppose there is path from x to x0 which does
not contain y or y0, and let P1 denote this path. Let P2 denote the path from y to y0 which does
not contain x or x0.

There is a path decomposition PD= (V1; : : : ;Vt) of width two of S such that e�V1 and
e0 �Vt if and only if there is a path decomposition PD0 = (V 0

1; : : : ;V
0
r) of width two of C such

that

1. e�V 0
1 and e0 �V 0

r ,

2. for each i, each v;v0 2V 0
i , if v 6= v0, thenfv;v0g 2 E2, and

3. for each j2 f1;2g, each v2V(Pj), each stick w of v, there is a vertex v0 2V(P3� j) and
a node V0l such that v;v0 2V 0

l .

Proof. For the ‘if’ part, supposePD0 = (V 0
1; : : : ;V

0
r) is a path decomposition of width two of

C satisfying conditions 1 – 3. We transformPD0 into a path decomposition of width two ofS
with e in the leftmost node, ande0 in the rightmost node. Because of condition 2,PD0 is a path
decomposition of width two ofS[V(C)].

First, we compute a setF of edges between vertices ofC as follows. Fori = 1;2, for
each vertexv2V(Pi), and each stickw of v, let v0 2V(P3�i) such thatfv0;wg 2 E2 and there
is a nodeV 0

l containing bothv0 andw. Add edgefv;v0g to F. Note thatF � E2. Let G =
(V(C);E1(C)[F). Clearly,PD0 is a path decomposition ofG. HenceG is a path of cycles. Let
(C ;E) be a cycle path ofG, with C = (C1; : : : ;Cp), E = (e1; : : : ;ep�1), such thate� E(C1)
ande0 �E(Cp). Note thatF = fei j 1� i < pg. As is shown in Section 3.2 of de Fluiter [1997],
for eachi, 1� i � p, there is a path decompositionPDi of width two ofCi , such thatei�1 is
in the leftmost node ofPDi (if i > 1) andei is in the rightmost node ofPDi (if i < p), and
furthermorePD0 = PD1++PD2++ � � �++PDp.

Let e0 = e andep = e0. Now for each vertexv, each stickw of v, do the following. Leti,
0� i � p, be such thatv2 ei and there is av0 2V such thatei = fv;v0g andfv0;wg 2 E2. Add
a nodefv;v0;wg betweenPDi�1 andPDi (if i = 0, then add this node beforePD1, and if i = p,
then add it afterPDp). The resulting path decomposition is a path decomposition of width two
of Swith e in the leftmost node ande0 in the rightmost node.

For the ‘only if’ part, supposePD= (V1; : : : ;Vt) is a path decomposition of width two of
Swith e�V1, e0 �Vt . We show thatPD0 = PD[V(C)] = (V 0

1; : : : ;V
0
r) is a path decomposition

of width two ofC which satisfies conditions 1 – 3. Clearly, conditions 1 and 2 hold forPD0.
Consider condition 3. Each nodeVi contains at least one vertex ofP1 and at least one vertex of
P2. Let v2V(P1), let w be a stick ofv. Then there is av0 2V(P2) and a nodeVi , 1� i � t, such
thatVi = fv;v0;wg. Hence there is a nodeV 0

i0 in PD0 such that 1� i0 � r andV 0
i0 containsv and

v0. This completes the proof of the ‘only if’ part. 2

Lemma 4.2.Let S= (V;E1;E2) be a sandwich graph such that G1(S) is a cycle C with sticks.
There is a path decomposition of width two of S if and only if there are vertices v;v0 2V(C)
and there is a path decomposition PD= (V1; : : : ;Vt) of S0 = S[V�W], where W is the set of
sticks of v and v0 in G1(S), and v2V1, v0 2Vt and V1 and Vt contain an edge of C.

13

4 Three-Intervalizing Sandwich Blocks with Sticks

Proof. For the ‘if’ part, suppose there arev;v0 2V(C) such that there is a path decomposition
PD of width two of S0[V �W], whereW is the set of sticks adjacent tov andv0, such thatv
is in the leftmost node andv0 is in the rightmost node, and the leftmost and rightmost node
contain an edge ofC. Then we can transformPD into a path decomposition of width two of
Sas follows. For each stickw adjacent tov, add a nodefv;wg before of the leftmost node. If
v0 6= v, do the same forv0 after the rightmost node.

For the ‘only if’ part, suppose there is a path decompositionPD = (V1; : : : ;Vt) of width
two of S. SupposeC occurs in(Vj ; : : : ;Vj 0), 1� j � j 0 � t. We transformPD in such a way
that there is at most onev2V(C) which has a stickw such thatfv;wg occurs on the left side
of Vj , and similar for the right side ofVj 0 . First consider the left side ofPD. If no vertex ofC
occurs on the left side ofVj , then j = 1: let v 2V(C)\Vj , let Wv be the sticks ofv, remove
all sticks inW from PD. The newPD is a path decomposition of width two ofS[V�Wv] with
vertexv in the leftmost node.

If only one vertexv occurs on the left side ofVj , then remove nodes(V1; : : : ;Vj�1) from PD
and remove all sticksW of v from PD. Again, the newPD is a path decomposition of width
two of S[V�Wv] with vertexv in the leftmost node.

If there are two verticesu;v2V(C) which occur on the left side ofVj , thenfu;vg =2 E(C),
but there is a vertexw 2 V(C) such thatfu;wg 2 E(C), fv;wg 2 E(C), andVj = fu;v;wg
(Lemma 3.4.5 of de Fluiter [1997]). Furthermore,w has no sticks (follows from the proof
of Lemma 3.4.6 of de Fluiter [1997]). Letl , 1� l < j, be the smallest integer for whichVl

containsu andv. Supposeu does not occur on the left side ofVl . Now removeV1; : : : ;Vl�1

from PD, remove all sticksWv of v from PD, remove all occurrences ofw from PD, and add a
new nodefu;v;wg in front of PD. Again, the newPD is a path decomposition of width two of
S[V�Wv] with vertexv in the leftmost node.

Repeating the symmetrical version of this procedure on the right hand side ofPDcompletes
the proof of the ‘only if’ part. 2

Let S= (V;E1;E2) be a sandwich graph, such thatG1(S) is a cycleC with sticksW. Let
V(C) = fv0;v1; : : : ;vn�1g such thatE(C) = ffvi;vi+1g j 0� i < ng (for eachi, let vi denote
vi modn). For eachi, 0� i < n, let Wi denote the set of sticks of vertexvi . Let j; l be integers,
1� l < n. Recall from Section 3 thatI(j; l) = fvj ;vj+1; : : : ;vj+lg, andC(j; l) is the cycle with

V(C(j; l)) = I(j; l)

E(C(j; l)) = ffvi;vi+1g j j � i < j + lg[ffvj;vj+lgg:

Let S(j; l) = (V(j; l);E1(j; l);E2(j; l)) be the sandwich graph defined as follows.

V(j; l) = I(j; l)[
j+l�1[

i= j+1

Wi

E1(j; l) = ffv;v0g 2 E1 j v;v
0 2V(j; l)g

E2(j; l) = ffv;v0g 2 E2 j v;v
0 2V(j; l)g

Additionally, let Gi(j; l) = Gi(S(j; l)), for i = 1;2. Note that the sticks ofvj andvj+l are not
included inS(j; l). Figure 2 gives an example ofS(10;8) for the case that the underlying cycle

14

4.1 Cycles with Sticks

v1 v2 v3

v4

v5

v6
v7v8v9v10

v11

v12

v13

v14

v15
v0

S S(10;8)

v1 v2

v10
v11

v12

v13

v14

v15
v0

Figure 2: A sandwich graphS for which G1(S) is a cycleC with sticks (jV(C)j = 16), and the
graphS(10;8).

of Shas 16 vertices (the solid lines depict the edges ofE1(10;8), and the dashed lines depict
the edges ofE2(10;8) which are not inE1(10;8)).

A starting pointor ending pointof S is an element ofV(C)[E(C)[fnilg. Let PD =
(V1; : : : ;Vt) be a path decomposition ofS. We say that a starting pointspof S is in the leftmost
node, orsp2V1, if eithersp2 E(C) andsp�V1, sp2V(C) andsp2V1, or sp= nil. Similarly,
an ending pointep of S is in the rightmost node ofPD, or ep2 Vt , if either ep2 E(C) and
ep�Vt , ep2V(C) andep2Vt , or ep= nil.

We use a dynamic programming method for solving 3-ISG on sandwich graphs of which
the underlying graph is a cycle with sticks which is similar to the method that is given in
Section 3 for the case that the underlying graph is a cycle. Therefore, we modify the definition
of PW2 given in Definition 3.1 as follows.

Definition 4.1. Let S= (V;E1;E2) be a sandwich graph such thatG1(S) is a cycleC with sticks
W, let spbe a starting point ofS. Then for eachj; l , 1� l < n, PW2(S;sp; j; l) is a record with
fields ft andlt. Both ft andlt have two fields:ok, which is a boolean, andst, which is a set of
vertices (sticks). They are defined as follows.

PW2(S;sp; j; l):ft:ok= 8><
>:

true if 9PD=(V1;::: ;Vt) PD is a path decomposition of width two

of S[V(j; l)[Wj] ^vj ;vj+l 2Vt ^sp2V1

false otherwise

PW2(S;sp; j; l):ft:st= W0
j+l , whereW0

j+l = o= if PW2(S;sp; j; l):ft:ok is false, otherwise,W0
j+l

is a maximal subset ofWj+l for which there is a path decompositionPD = (V1; : : : ;Vt) of
S[V(j; l)[W0

j+l [Wj], such thatvj ;vj+l 2Vt andsp2V1.

PW2(S;sp; j; l):lt :ok= 8><
>:

true if 9PD=(V1;::: ;Vt) PD is a path decomposition of width two

of S[(j; l)[Wj+l]^vj ;vj+l 2Vt ^sp2V1

false otherwise

15

4 Three-Intervalizing Sandwich Blocks with Sticks

PW2(S;sp; j; l):lt :st = W0
j , whereW0

j = o= if PW2(S;sp; j; l):lt :ok is false, otherwise,W0
j is a

maximal subset ofWj for which there is a path decompositionPD= (V1; : : : ;Vt) of S[V(j; l)[
W0

j [Wj+l], such thatvj ;vj+l 2Vt andsp2V1.

We say that, for givenj andl , the sticks ofvj areprocessedif PW2(G;sp; j; l):ft:ok is true,
and the sticks ofvl are processed ifPW2(G;sp; j; l):lt :ok is true.

Given a starting pointsp and an ending pointep, there is a path decomposition of width
two of S with sp in the leftmost node andep in the rightmost node if and only if one of the
following three conditions holds.

1. ep= nil and there is aj, 0� j < n, such thatPW2(G;sp; j;n�1):lt :okor PW2(G;sp; j+
1;n�1):ft:ok holds.

2. there is aj, 0� j < n, such thatep= vj andPW2(G;sp; j;n�1):lt :okor PW2(G;sp; j +
1;n�1):ft:ok holds.

3. There is aj, 0� j < n, such thatep= fvj ;vj+1g, PW2(S;sp; j +1;n�1):ft:ok holds,
andPW2(S;sp; j +1;n�1):ft:st=Wj .

The definitions ofPW2(S;sp; j; l):ft:standPW2(S;sp; j; l):lt :stmay seem strange, because
their values do not have to be unique. However, in the following lemma, we show that they are
in fact unique, and hence they are not only maximal but even maximum.

Lemma 4.3.Let S= (V;E1;E2) be a sandwich graph, such that G1(S) is a cycle C with sticks
W. Let sp be a starting point. Let j and l be integers,1� l < n, let W0

j �Wj and W0
j+l �Wj+l .

The following holds.

1. If there is a path decomposition PD= (V1; : : : ;Vt) of S[V(j; l)[Wj [W0
j+l], such that

sp2V1 andfvj ;vj+lg 2Vt, then W0
j+l � PW2(S;sp; j; l):ft:st.

2. If there is a path decomposition PD= (V1; : : : ;Vt) of S[V(j; l)[W0
j [Wj+l], such that

sp2V1 andfvj ;vj+lg 2Vt, then W0
j � PW2(S;sp; j; l):lt :st.

Proof. We only show 1. LetW0
j+l �Wj+l . SupposePD= (V1; : : : ;Vt) is a path decomposition

of S[V(j; l)[Wj [W0
j+l], such thatsp2V1 andvj ;vj+1 2Vt . Let i be such that edgefvi;vi+1g

is an edge occurring in the leftmost node of the occurrence ofC in PD and eithera = nil,
sp= fvi ;vi+1g, or sp� fvi;vi+1g (note that such ani always exists: ifsp is a vertex, then
then the leftmost node of the occurrence ofC in PD contains an edge containingsp). By
definition,PW2(S;sp; j; l):ft:ok holds. SupposePD0 = (V 0

1; : : : ;V
0
r) is a path decomposition of

S[V(j; l)[Wj [PW2(S;sp; j; l):ft:st], such thatep2V 0
1, andvj ;vj+l 2V 0

r . Let i0 be such that
edgefvi0 ;vi0+1g is an edge occurring in the leftmost node of the occurrence ofC in PD0 and
eitherep= nil, ep=� fvi0 ;vi0+1g, or ep= fvi0 ;vi0+1g.

Let P= (vj ;vj+1; : : : ;vi), and letP0 = (vj ;vj+1; : : : ;vi0). For each stickw2W0
j+l , there is a

nodefw;vj+l ;vmg in PD, where j �m� i (according to Lemma 4.1). Similarly for each stick
w0 2 PW2(S;sp; j; l):ft:st, there is a nodefw0;vj+l ;vm0g in PD0 for somej �m0 � i0.

Let m, j �m� i, be the largest integer for which there is node inPD which containsvj+l

andvm, and letm0, j � m0 � i0, be the largest integer for which there is a node inPD0 which

16

4.1 Cycles with Sticks

containsvj+l andvm0 . Then inPD, for eachi, j � i �m, there is node containingvi andvj+l ,
and inPD0, for all verticesvi0 , j � i0 �m0, there is a node containingvi0 andvj+l . Let

W = fw2Wj+l j 9 j�s�m fvs;wg 2 E2g; and

W0 = fw2Wj+l j 9 j�s�m0 fvs;wg 2 E2g:

Clearly,W0
l+ j �W, and, becausePW2(S;sp; j; l):ft:st is maximal,PW2(S;sp; j; l :ft:st) =W0. If

m0 �m, thenW0 �W, but asPW2(S;sp; j; l):ft:st is maximal, this means thatW0 =W. Hence
W0

j+l � PW2(S;sp; j; l):ft. If m�m0, thenW �W0, and henceW0
j+l � PW2(S;sp; j; l):ft:st. 2

We now give a recursive definition ofPW2, calledRPW2. We first give the definition, and
after that, we show equivalence ofPW2 andRPW2.

Definition 4.2. Let S= (V;E1;E2) be a sandwich graph such thatG1(S) is a cycleC with
sticksW. SupposejV(C)j > 3. Let sp be a starting point ofC. Then for eachj; l , j 6= l ,
RPW2(S;sp; j; l) is a record with fieldsft and lt. Both ft and lt have two fieldsok, which is a
boolean, andst, which is a set of vertices (sticks). They are defined as follows.

(RPW2(S;sp; j;1):ft:ok;RPW2(S;sp; j;1):ft:st) =8>>>>>>>>>>>><
>>>>>>>>>>>>:

(true;Wj+1)

if (sp= nil_sp= vj+1)^8w2Wj fw;vj+1g 2 E2

(true;fw2Wj+1 j fw;vjg 2 E2g)

if ((sp= vj)_ (sp= fvj ;vj+1g^8w2Wj fw;vj+1g 2 E2))^

:((sp= nil_sp= vj+1)^8w2Wj fw;vj+1g 2 E2)

(false;o=)

otherwise

(RPW2(S;sp; j;1):lt :ok;RPW2(S;sp; j;1):lt :st) =8>>>>>>>>>>>><
>>>>>>>>>>>>:

(true;Wj)

if (sp= nil_sp= vj)^8w2Wj+l fw;vjg 2 E2

(true;fw2Wj j fw;vj+1g 2 E2g)

if ((sp= vj+1)_ (sp= fvj ;vj+1g^8w2Wj+1 fw;vjg 2 E2))^

:((sp= nil_sp= vj)^8w2Wj+1 fw;vjg 2 E2)

(false;o=)

otherwise

17

4 Three-Intervalizing Sandwich Blocks with Sticks

Furthermore, forl � 1,

(RPW2(S;sp; j; l +1):ft:ok;RPW2(S;sp; j; l +1):ft:st) =
8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(true;fw2Wj+l j fw;vjg 2 E2g[RPW2(S;sp; j +1; l):ft:st)

if fvj ;vj+l+1g 2 E2^RPW2(S;sp; j +1; l):ft:ok^8w2Wj fvj+l+1;wg 2 E2

(true;fw2Wj+l j fw;vjg 2 E2g)

if fvj ;vj+l+1g 2 E2^RPW2(S;sp; j; l):lt :ok^

(8w2Wj fvj+l+1;wg 2 E2_w2 RPW2(S;sp; j; l):lt :st)^

:(RPW2(S;sp; j +1; l):ft:ok^8w2Wj fvj+l+1;wg 2 E2)

(false;o=)

otherwise

and

(RPW2(S;sp; j; l +1):lt:ok;RPW2(S;sp; j; l +1):lt:st) =
8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(true;fw2Wj j fw;vj+l+1g 2 E2g[RPW2(S;sp; j; l):lt :st)

if fvj ;vj+l+1g 2 E2^RPW2(S;sp; j; l):lt :ok^8w2Wj+l fvj ;wg 2 E2

(true;fw2Wj j fw;vj+l+1g 2 E2g)

if fvj ;vj+l+1g 2 E2^RPW2(S;sp; j +1; l):ft:ok^

(8w2Wj+l fvj ;wg 2 E2_w2 RPW2(S;sp; j +1; l):ft:st)^

:(RPW2(S;sp; j; l):lt :ok^8w2Wj+l fvj ;wg 2 E2)

(false;o=)

otherwise

We now prove the equivalence ofPW2 andRPW2.

Theorem 4.1.Let S= (V;E1;E2) be a sandwich graph such that G1(S) is a cycle C with sticks
W, andjV(C)j > 3. Let sp be a starting point. For each j and l,1� l < n, PW2(S;sp; j; l) =
RPW2(S;sp; j; l).

Proof. The proof is similar to the proof of Lemma 3.2, but it contains some additional
difficulties. We use induction onl . Clearly,PW2(S;sp; j;1) = RPW2(S;sp; j;1).

Supposel � 1, and for all l 0 � l , PW2(S;sp; j; l 0) = RPW2(S;sp; j; l 0). We only show
that PW2(S;sp; j; l + 1):ft = RPW2(S;sp; j; l + 1):ft. For PW2(S;sp; j; l +1):lt , the proof is
analogous.

We first show that (I) ifRPW2(S;sp; j; l + 1):ft:ok holds, thenPW2(S;sp; j; l + 1):ft:ok
holds andRPW2(S;sp; j; l + 1):ft:st� PW2(S;sp; l + 1):ft:st. After that, we show that (II)
if PW2(S;sp; j; l +1):ft:ok holds, thenRPW2(S;sp; j; l +1):ft:ok holds andPW2(S;sp; j; l +
1):ft:st� RPW2(S;sp; l +1):ft:st.

I. SupposeRPW2(S;sp; j; l +1):ft:ok holds. Thenfvj ;vj+l+1g 2 E2 and either

18

4.1 Cycles with Sticks

1. RPW2(S;sp; j +1; l):ft:ok holds and8w2Wj fvj+l+1;wg 2 E2, or

2. 1 does not hold, butRPW2(S;sp; j; l):lt :ok and for allw2Wj , fvj+l+1;wg 2 E2 or w2
RPW2(S;sp; j; l):lt :st).

First suppose 1 holds. By the induction hypothesis,PW2(S;sp; j +1; l):ft:ok holds, and
RPW2(S;sp; j +1; l):ft:st= PW2(S;sp; j +1; l):ft:st. Let PD= (V1; : : : ;Vt) be a path decom-
position of width two ofS[V(j +1; l)[Wj+1[PW2(S;sp; j +1; l):ft:st], such that theresp2V1

andvj+1;vj+l+1 2Vt . Let w1; : : : ;wm denote all vertices ofWj , and letu1; : : : ;up denote the set

fu2Wj+l+1 j fvj ;ug 2 E2^u =2RPW2(S;sp; j +1; l):ft:stg:

Let

PD0 = PD++(fvj+1;vj ;vj+l+1g)++(fvj ;vj+l+1;w1g; : : : ;fvj ;vj+l+1;wmg)

++(fvj ;vj+l+1;u1g; : : : ;fvj ;vj+l+1;upg):

ThenPD0 is a path decomposition of width two ofS[V(j; l+1)[Wj[RPW2(S;sp; j; l+1):ft:st]
with vj andvj+l+1 in the rightmost node, andsp in the leftmost node. SoPW2(S;sp; j; l +
1) f t::okholds, andRPW2(S;sp; j; l+1):ft:st�PW2(S;sp; j; l+1):ft:st, because of Lemma 4.3.

Now suppose 2 holds. By the induction hypothesis,PW2(S;sp; j; l):lt :ok holds, and

RPW2(S;sp; j; l):lt :st= PW2(S;sp; j; l):lt :st:

Let PD= (V1; : : : ;Vt) be a path decomposition of width two of

S[V(j; l)[Wj+l [PW2(S;sp; j; l):lt :st];

such thatsp2V1 andvj ;vj+l 2Vt . Let

fw1; : : : ;wmg= fw2Wj j w =2 RPW2(S;sp; j; l):lt ;stg; and

fu1; : : : ;upg= fu2Wj+l+1 j fvj ;ug 2 E2g:

Let

PD0 = PD++(fvj ;vj+l ;vj+l+1g)++(fvj ;vj+l+1;w1g; : : : ;fvj ;vj+l+1;wmg)

++(fvj ;vj+l+1;u1g; : : : ;fvj ;vj+l+1;upg):

Then PD0 is a path decomposition of width two ofS[V(j; l + 1) [Wj [RPW2(S;sp; j; l +
1):ft:st] with vj and vj+l+1 in the rightmost node, andsp in the leftmost node,a 2 sp. So
PW2(S;sp; j; l +1):ft:ok holds, andRPW2(S;sp; j; l +1):ft:st� PW2(S;sp; j; l +1):ft:st, be-
cause of Lemma 4.3. This completes the proof of part I.

II. SupposePW2(S;sp; j; l +1):ft:ok holds. We show thatRPW2(S;sp; j; l +1):ft:ok holds
andPW2(S;sp; j; l +1):ft:st� RPW2(S;sp; j; l +1):ft:st. Let PD= (V1; : : : ;Vt) be a path de-
composition of width two ofS[V(j; l +1)[Wj [PW2(S;sp; j; l +1):ft:st] such thatsp2V1, and
fvj ;vj+l+1g �Vt . Let i be such thatfvi;vi+1g occurs in the leftmost node of the occurrence of
C and eithersp= nil, sp= fvi;vi+1g, or sp= fvi ;vi+1g.

19

4 Three-Intervalizing Sandwich Blocks with Sticks

Clearly,fvj ;vj+l+1g 2 E2, sincevj ;vj+l+1 2Vt . If fvi ;vi+1g= fvj ;vj+l+1g, thenjI(j; l +
1)j= jV(C)j>3, and the leftmost and the rightmost node of the occurrence ofC can not contain
the same edge, contradiction. Sofvi;vi+1g 6= fvj ;vj+l+1g. Let Vm andVm0 , 1�m;m0 � t, be
the rightmost nodes containing edgefvj+1;vjg andfvj+l ;vj+l+1g, respectively.

If m=m0, thenvj+1 = vj+l , hencejI(j; l +1)j= 3. Sincefvi;vi+1g 6= fvj ;vj+lg, this means
thatfvi ;vi+1g = fvj+l ;vj+l+1g or fvi ;vi+1g = fvj ;vj+1g. We prove the first case in the same
way as the case thatm0 < m, and the latter case in the same way as the case thatm< m0.

Supposem0 < m or m0 = m andfvi ;vi+1g= fvj+l ;vj+l+1g. ThenVm = fvj+1;vj ;vj+l+1g.
Furthermore, for eachk, m< k� t, Vk containsvj , vj+l+1, and possibly a stick ofvj or vj+l+1,
since if there is aVk, m< k� t, such thatv2Vk for some other vertex ofS(j; l +1), thenv2Vm,
which gives a contradiction (see also the proof of Lemma 3.2).

Note that, ifm0 < m, thenvj =2Vm0 , sinceVm0 containsvj+l , vj+l�1, and a vertex of the path
from vj+1 to vi+1 which avoidsvj . Hence ifm0 < m, thenvj does not occur in the leftmost
node of the occurrence ofC, sovj =2 fvi;vi+1g. If m= m0, thenvj = vi+2, which also means
thatvj =2 fvi;vi+1g. Furthermore, for allk, if vj 2Vk, thenvj+l+1 2Vk, so for all sticksw2Wj ,
fvj+l+1;wg 2 E2. Also, for eachk, m< k� t, Vk contains only sticksw2Wj+l+1 for which
fvj ;wg 2 E2.

Let W0
j+l be the set of vertices containing all sticks ofvj+l which occur in(V1; : : : ;Vm).

Let PD0 be the path decomposition obtained from(V1; : : : ;Vm) by deletingvj and its sticks
from all nodes containing it.PD0 is a path decomposition of width two ofS[V(j + 1; l)[
Wj+1[W0

j+l+1, anda is contained in the leftmost node,fvj+1;vj+l+1g in the rightmost node.
HencePW2(S;sp; j +1; l):ft:ok. By the induction hypothesis, this means thatRPW2(S;sp; j +
1; l):ft:ok holds, andRPW2(S;sp; j +1; l):ft:st= PW2(S;sp; j +1; l):ft:st. Sincefvj+l+1;wg 2
E2 for all w2Wj , this means thatRPW2(S;sp; j; l +1):ft:ok holds. W0

j+l+1 � PW2(S;sp; j +
1; l):ft:st= RPW2(S;sp; j +1; l):ft:st, hencePW2(S;sp; j; l +1):ft �W0

j+l+1[fw2Wj+l+1 j
fvj ;wg 2 E2g � RPW2(S;sp; j; l +1):ft:st.

Now supposem<m0, orm=m0 andfvi ;vi+1g= fvj ;vj+1g. Then, analogously to the other
case,Vm0 = fvj ;vj+l ;vj+l+1g. Furthermore, for eachk, m0 < k� t, Vk containsvj , vj+l+1, and
possibly a stick ofvj or vj+l+1, but no other vertices. Also,vj+l+1 =2 fvi ;vi+1g.

Furthermore, for allk, if vj+l+1 2Vk, thenvj 2Vk, so for all sticksw2 PW2(S;sp; j; l +
1):ft:st, fvj ;wg 2 E2. Also, for eachk, m0 < k� t, Vk contains only sticksw2Wj for which
fvj+l+1;wg 2 E2.

Let W0
j be the set of vertices containing all sticks ofvj which occur in(V1; : : : ;Vm0). Let

PD0 be the path decomposition obtained from(V1; : : : ;Vm0) by deletingvj+l+1 and its sticks
from all nodes containing it. ThenPD0 is a path decomposition of width two ofS[V(j; l)[
Wj+l [W0

j], anda is contained in the leftmost node,fvj ;vj+lg is in the rightmost node. Hence
PW2(S;sp; j; l):lt :ok. By the induction hypothesis, this means thatRPW2(S;sp; j; l):lt :okholds,
andRPW2(S;sp; j; l):lt :st=PW2(S;sp; j; l):lt :st. Furthermore,fvj+l+1;wg2E2 for all w2Wj

for which w =2 PW2(S;sp; j; l):lt :st. There are two cases.

1. RPW2(S;sp; j +1; l):ft:ok holds and for allw2Wj , fvj+l+1;wg 2 E2,

2. RPW2(S;sp; j +1; l):ft:okdoes not hold or there is aw2Wj for whichfvj+l+1;wg =2E2.

In case 1,RPW2(S;sp; j; l + 1):ft:ok holds, andRPW2(S;sp; j; l + 1):ft:st = fw 2Wj+l+1 j
fw;vjg 2 E2g[RPW2(S;sp; j +1; l):ft:st by definition, and sincePW2(S;sp; j; l +1):ft:st�

20

4.1 Cycles with Sticks

fw 2Wj+l+1 j fvj ;wg 2 E2g, this means thatPW2(S;sp; j; l + 1):ft:st� RPW2(S;sp; j; l +
1):ft:st.

In case 2,RPW2(S;sp; j; l):lt :ok holds and for allw2Wj , eitherw2RPW2(S;sp; j; l):lt :st
or fvj ;wg 2 E2, henceRPW2(S;sp; j; l +1):ft:ok holds and sincePW2(S;sp; j; l +1):ft:st�
fw2Wj+l+1 j fvj ;wg2E2g, this again means thatPW2(S;sp; j; l+1):ft:st�RPW2(S;sp; j; l+
1):ft:st.

This completes the proof of part II. 2

For a given sandwich graphS for which G1(S) is a cycle with sticks we can modify algo-
rithm 3-ISGCycle that is given in Section 3 in order to computePW2. We call the resulting
algorithm 3-ISGCWS. This algorithm has the following specification.

Algorithm 3-ISG CWS(S;sp;ep)
Input: Sandwich graphSof which G1(S) is a cycleC with sticks

Starting pointspof S
Ending pointepof S

Output: true if there is a path decomposition of width two ofS with sp in the leftmost node
andep in the rightmost node.

The modifications in the computation of 3-ISGCWS with respect to 3-ISGCycle follow
straightforwardly from the definition ofRPW2, and hence we do not give them here. If we
compute an adjacency matrix of the graphG2(S) before running 3-ISGCWS, then we can
make 3-ISGCWS to run inO(n2) time withO(n2) space. It is again easy to make 3-ISGCWS
also output a three-intervalization if one exists. Hence we have proved the following lemma.

Lemma 4.4. There exists an O(n2) time algorithm that solves3-ISG for sandwich graphs of
which the underlying graph is a cycle with sticks.

For the algorithm for sandwich blocks with sticks, we also need a slightly different result.
Therefore, we construct an algorithm 3-ISGCWS0 with the following specification.

Algorithm 3-ISG CWS0(S;sp;u;v)
Input: Sandwich graphSof which G1(S) is a cycleC with sticks

Starting pointspof S
Verticesu;v2 E(C) such thatfu;vg 2 E(C)

Output: A pair (ok;st), where
ok is a boolean which istrue if and only if there is a path decomposition of width two of
S[V(S)�Wv], whereWv is the set of sticks ofv, with sp in the leftmost node,u andv in
the rightmost node, and
st�Wv, such thatst= o= if ok= false, andst is the largest subset ofWv for which there is
a path decomposition of width two ofS[V(S)�Wv[st] with sp in the leftmost node and
u andv in the rightmost node.

Note that the output is well-defined, i.e. it is unique for a given input. From the previous
results, it is easy to see that we can construct 3-ISGCWS0 in such a way that it runs inO(n2),
(n= jV(S)j).

21

4 Three-Intervalizing Sandwich Blocks with Sticks

We additionally obtain the following result, which will prove useful for deciding 3-ISG on
sandwich trees.

Lemma 4.5.Let S be a sandwich graph of which the underlying graph is a path P with sticks.
Let u1 and u2 be the end points of P and letfv;wg 2 E(P), such that the path from u1 to v does
not contain w. Let P1 denote the path from u1 to v and P2 the path from u2 to w. For each
x 2V(P2), let Px denote the path from w to x. Let Vx = V(P1)[V(Px) and let Wx denote the
set of all sticks connected to Vx, except the sticks connected to x. See part I of Figure 3 for an
example of G1(S) and G1(S[Vx[Wx]) (the fat lines denote the paths P1 and Px).

In O(n2) time, we can compute the vertex y2V(P2) for which jV(Py)j is minimal and for
which there is a path decomposition of width two of S[Vy[Wy] with e in the leftmost node and
u1 and y in the rightmost node.

G1(S)

v

w

u1

x

P1

Px

G1(S[Vx[Wx])

v

w

u1

x

u2

G1(S0)

v= vj�1

w= vj

u1 = v0

u2 = vn�2

dum= vn�1

I

II

Figure 3: An example ofG1(S) andG1(S[Vx[Wx]) for Corollary 4.5 (part I), and ofG1(S0) for
the proof of Corollary 4.5 (part II).

Proof. Let dum denote a dummy vertex and letS0 be the sandwich graph obtained fromS
defined as follows.

V(S0) =V(S)[fdumg

E1(S
0) = E1(S)[ffu1;dumg;fu2;dumgg

E2(S
0) = E2(S)[ffv;dumg j v2V(S)g

Part II of Figure 3 shows an example ofG1(S0) for sandwich graphS of part I of the figure.
Note that the underlying graph ofS0 is a cycleC with sticks. Number the vertices ofC by
v0; : : : ;vn�1 such thatE(C) = ffvi;vi+1g j 0� i < ng and furthermore,u1 = v0, dum = vn�1

andu2 = vn�2. Let j, 0� j < n, be such thatw= vj .
It can be seen that findingy is boils down to finding the smallestl , j � l � n�2, for which

PW2(S0;feg;0; l):ft:ok holds. This value can easily be derived from the table that is built in
algorithm 3-ISGCWS. 2

22

4.2 Sandwich Blocks with Sticks

4.2 Sandwich Blocks with Sticks

We now consider sandwich graphs of which the underlying graph is a block with sticks. The
algorithm for this case has the same structure as the algorithm given in Section 3 for sandwich
blocks: first it checks if the input sandwich graphShas the right structure, i.e. if its block is a
path of cycles. Then for each sub sandwich graph which is induced by a chordless cycle with
sticks it computes whether there is a path decomposition with the correct edges in the leftmost
and rightmost nodes, and it combines these results to get an answer for the complete sandwich
graph.

For sandwich blocks, it is possible to first compute the results for each chordless cycle
separately, and after that, combine these results. However, for sandwich blocks with sticks,
this is not possible: we first compute results for the first chordless cycle in the path of cycles,
then, with these results, we compute results for the first and the second cycle. With these
results, we compute results for the first, second and third cycle, etc.

In Section 5 and 6, we use the algorithm for sandwich blocks with sticks as a building
block. As input, we usually give a sandwich block with sticksS, a vertex or edge of the block
of S which must occur in the leftmost node of the path decomposition, and a vertex of edge
of the block which must occur in the rightmost node of the path decomposition. Therefore,
we extend the notion of starting and ending points for sandwich blocks with sticks. LetSbe a
sandwich block with sticks, letB denote the block ofG1(S). A starting point or ending point
of S is an element ofV(B)[E(B)[fnilg. The algorithm is now as follows

Algorithm 3-ISG SBWS(S;sp;ep)
Input: Sandwich block with sticksS

Starting pointspof S
Ending pointepof S

Output: true if there is a three-intervalization ofS, false otherwise
1. if G1(S) is a cycle with sticksthen return 3-ISG CWS(S,sp,ep)
2. Compute the cell completion̄G1(S) of G1(S), the blockB of Ḡ1(S) and the setW of sticks

of B.
3. Check ifḠ1(S) is sandwiched inS, and ifB is a path of cycles. If not,return false.
4. Find a cycle path(C ;E) of B with C = (C1; : : : ;Cp) andE = (e1; : : : ;ep�1), such that

sp2V(C1)[(E(C1)�fe1g)[fnilg, andep2V(Cp)[(E(Cp)�ep�1)[fnilg. If this is
not possible,return false

5. for i 1 to p�1
6. do Let vi, v0i , Wi andW0

i be such thatei = fvi ;v0ig, Wi is the set of sticks ofvi , andW0
i

is the set of sticks ofv0i .
7. Si S[V(Ci)[f sticks ofV(Ci) �Wi�1�W0

i�1g].
8. Let ft, ft1, ft2, lt, lt1 and lt2 be variables, each with a fieldok which is a boolean, and a

field st which is a set of vertices.
9. ft 3-ISG CWS0(S1,sp,v1,v01)
10. lt 3-ISG CWS0(S1,sp,v01,v1)
11. if :(f t:ok_ lt :ok) then return false
12. i 1
13. while i � p�1

23

4 Three-Intervalizing Sandwich Blocks with Sticks

14. do ft1; f t2; lt1; lt2 (false;o=)
15. if ft:ok
16. then ft1 3-ISG CWS0(S[V(Si)[(W0

i�1� f t:st)],ei�1,vi ,v0i)
17. lt1 3-ISG CWS0(S[V(Si)[(W0

i�1� f t:st)],ei�1,v0i ,vi)
18. if lt:ok
19. then ft2 3-ISG CWS0(S[V(Si)[(Wi�1� lt :st)],ei�1,vi ,v0i)
20. lt2 3-ISG CWS0(S[V(Si)[(Wi�1� lt :st)],ei�1,v0i ,vi)
21. (� eitherft1:st� f t2:st or ft2:st� f t1:st �)
22. (� eitherlt1:st� lt2:st or lt2:st� lt1:st �)
23. ft:ok f t1:ok_ f t2:ok
24. ft:st f t1:st[f t2:st
25. lt:ok lt1:ok_ lt2:ok
26. lt:st lt1:st[lt2:st
27. if :(f t:ok_ lt :ok) then return false
28. i i +1
29. if ft:ok and 3-ISGCWS(S[V(Sp)[(W0

p�1� f t:st)],ep�1,ep)
30. then return true
31. if lt:ok and 3-ISGCWS(S[V(Sp)[(Wp�1� lt :st)],ep�1,ep)
32. then return true
33. return false

For eachi, 1� i � p, letVi =V(S1)[�� � [V(Si). After the ith iteration (1� i < p) of the
main loop in Lines 13 – 28,ft andlt have the following values.

� ft:ok= true if and only if there is a path decomposition of width two ofS[V(S1)[�� �[
V(Si)�W0

i] with sp in the leftmost node andei in the rightmost node, andft:st�W0
i is

the largest set for which there is a path decomposition of width two ofS[V(S1)[�� � [
V(Si)�W0

i [f t:st] with sp in the leftmost node andei in the rightmost node.

� lt:ok= true if and only if there is a path decomposition of width two ofS[V(S1)[�� �[
V(Si)�W0

i] with sp in the leftmost node andei in the rightmost node, andlt:st�Wi is
the largest set for which there is a path decomposition of width two ofS[V(S1)[�� � [
V(Si)�Wi [lt :st] with sp in the leftmost node andei in the rightmost node.

This implies that 3-ISGBWS correctly computes whether there is a path decomposition of
width two of the input sandwich graph with the desired vertices or edges in the leftmost or
rightmost node.

Suppose at the beginning of the algorithm, we are given an adjacency matrix of the graph
G2(S). Then the total running time of the algorithm isO(n2). Hence we have the following
result, which will be frequently used in Sections 5 and 6.

Lemma 4.6. Let S be a sandwich block with sticks. Let sp be a starting point of S and ep an
ending point of S. It takes O(n2) time to check whether there is a path decomposition of width
two of S with sp in the leftmost node and ep in the rightmost node.

As a corollary, we also have the following result.

24

4.2 Sandwich Blocks with Sticks

Corollary 4.1. There exists an O(n2) time algorithm that solves3-ISG for sandwich blocks
with sticks.

For Sections 5 and 6, we also need a slightly different result. LetS= (V;E1;E2) be a
sandwich graph. We callSasandwich block with sticks and loose ends u1 and u2 if u1;u2 2V,
fu1;u2g =2 E1, andS0 = (V;E1[ffu1;u2gg;E2[ffu1;u2gg) is a sandwich block with sticks.

For an example of the underlying graph of a sandwich block with sticks and loose endsu1

andu2, see part I of Figure 4.

G1(S)

u1

u2

G1(S)

u1

x

I

II

u2

P1

P2

v

w

Figure 4: An example ofG1(S) (part I) and of the subsetVx of V(S) (part II) for Corollary 4.2.

From Theorem 3.5.1 of de Fluiter [1997] and Lemma 4.5, we can now derive the following
result.

Corollary 4.2. Let S= (V;E1;E2) be a sandwich block with sticks and loose ends u1, u2, let
sp2V(S)[E(S)[fnilg. Let S0 = (V;E1[ffu1;u2gg;E2[ffu1;u2gg). We can check in O(n)
time whether the following conditions hold (see part I of Figure 4 for an example).

1. G1(S0) has pathwidth two,

2. the cell completion̄S0 of S0 is sandwiched by S0,

3. there is a cycle path(C ;E) for S̄0, C = (C1; : : : ;Cp) and E = (e1; : : : ;ep�1), in which
u1;u2 2Cp, fu1;u2g 2 E(Cp)�fep�1g, and sp2V(C1)[(E(C1)�fe1g)[fnilg.

Suppose conditions 1 – 3 hold, and let(C ;E) be as defined above. Let ep�1 = fv;wg such
that the path in S from u1 to v does not contain w. Let P1 denote the path from u1 to v and P2
the path from u2 to w in S. For each x2V(P2), let Vx denote the set of vertices of S which are
unfilled in part II of Figure 4. Let Sx = S[Vx].

In O(n2) time, we can compute the vertex y2V(P2) for whichjV(Py)j is minimum and for
which there is a path decomposition of width two of Sy with u1 and y in the rightmost node, and
sp in the leftmost node.

25

5 Three-Intervalizing Sandwich Trees

5 Three-Intervalizing Sandwich Trees

In this section, we consider sandwich trees, i.e. sandwich graphs of which the underlying graph
is a tree. The algorithm for solving 3-ISG on sandwich treesSfirst checks ifG1(S) has path-
width at most two, and if so, it finds the structure as described in Section 3.3 of de Fluiter
[1997]. If not, thenS does not have pathwidth at most two. Then it uses this structure to
check whetherS has pathwidth at most two. We mostly concentrate on this last step. So in
the remainder of this section, we assume that, with a sandwich tree of pathwidth two, we are
given the setP2(G1(S)), and, for eachP2 P2(G1(S)), the set of partial one-paths which are
connected toP in G1(S).

We first show that there is a path decomposition of width two of a sandwich treeS if and
only if there is a path decomposition of width two ofSwhich has some ‘nice’ structure. After
that, we show how to compute for a given sandwich treeSof pathwidth two whether there is
such a nice path decomposition of width two ofS. First we distinguish different types of partial
one-paths connected to a path, corresponding to the way they are connected to the path.

Definition 5.1 (Types of Partial One-Paths). LetH be a tree of pathwidth two,P a path inH
such thatH[V�V(P)] has pathwidth one. Letv2V(P), andH 0 a component ofH[V�V(P)]
such thatH 0 has pathwidth one and has a vertex which is adjacent tov, i.e.H 0 is connectedto
v. Let w2V(H 0) be the vertex for whichfv;wg 2 E(H). Let P0 2 P1(H 0). We say that

� H 0 is of type I if w is an end point ofP0, or if w is adjacent to an end point ofP0 and
w =2V(P0),

� H 0 is of type II if w is an inner vertex ofP0, and

� H 0 is of type III if w =2V(P0) andw is adjacent to an inner vertex ofP0.

Figure 5 gives an example for each type of partial one-path. The tree depicted in this figure
consists of a pathP with u1;u2;u3 2V(P), and a partial one-pathH1 of type I connected tou1,
a partial one-pathH2 of type II connected tou2, and a partial one-pathH3 of type III connected
to u3. Note that the type of a partial one-pathH 0 connected to a vertexv of the pathP does not

P

H1

H2

H3

I

II

III

u1

u2

u3

Figure 5: Example of a tree of pathwidth two which consists of a path with three partial one-
paths connected to it.

26

depend on the choice of the pathP0 2 P1(H 0), since ifjP1(H 0)j> 1, then for eachP0 2 P1(H 0),
jV(P0)j= 1, soP0 does not have any inner vertices, and henceH 0 has type I.

From now on, by partial one-paths connected to a pathP, we only mean the partial one-
paths of type I, II and III connected toP, and not the sticks connected toP.

We now give a definition of the kind of path decomposition that we want to use for the
algorithm.

Definition 5.2 (Nice Path Decomposition). LetS= (V;E1;E2) be a sandwich tree of pathwidth
two, letH = G1(S), and letPD= (V1; : : : ;Vt) be a path decomposition of width two ofS. Then
PD is anice path decompositionof width two of S if

� there are no two consecutive nodes which are equal, and

� nodeV1 contains an edgefw;w0g 2 E1 andVt contains an edgefx;x0g 2 E1, such that
there is a pathP= (v1; : : : ;vs) 2 P2(H) for which there is a partial one-pathH 0 that is
connected tov1 and a partial one-pathH 00 that is connected tovs, H 0 6=H 00, w;w0 2V(H 0),
w is an end point of some pathP0 2 P1(H 0), x;x0 2V(H 00), andx is an end point of some
pathP00 2 P1(H 00).

The path fromw to x is called thenice pathof S for PD.

Figure 6 shows an example of the underlying treeH of a sandwich treeSof pathwidth two
and a (symbolic) nice path decomposition of width two ofS. Note thatP2(H) = (v1;v2;v3),
and the path(u1;u2;u3;u4;u5;u6;u7;u8) is the nice path ofS for PD. Vertexu1 is an end point
of the pathP1(H1), andu8 is an end point of the pathP1(H4).

u2 u2

u3H 0

1 H2

u4

u3

u4

u5

u5w1

u1

u2

u1

u6

u5 H3

u6 u6

u7

u8

u7

u8

w2

u8

w3

H1

H2

H4
H 0

1

u1 u2 u3 u7 u8

H3

w1

w3

w2
v1 = u4

v2 = u5

v3 = u6

Figure 6: Example of the underlying graphH of a sandwich treeSwith a nice path decompo-
sition ofS.

Next, we show that for a given sandwich treeS for which G1(S) is a tree of pathwidth
two, there is a path decomposition of width two ofS if and only if there is a nice path decom-
position of width two ofS. First we prove another lemma, which is needed for the case that
jP2(G1(S))j > 1 (remember that in this case, each path inP2(G1(S)) consists of exactly one
vertex).

27

5 Three-Intervalizing Sandwich Trees

Lemma 5.1.Let S be a sandwich tree of pathwidth two, let H= G1(S). SupposejP2(H)j> 1.
There is a path decomposition PD= (V1; : : : ;Vt) of width two of S such that

� V1 contains an edge e2 E(H), Vt contains an edge e0 2 E(H), e 6= e0, and

� the shortest path P in H which contains e and e0, contains a vertex v2V(S) for which
(v) 2 P2(H) and there are two or three components in H[V�fvg] which have pathwidth
one.

Proof. Let PD0 = (V 0
1; : : : ;V

0
q) be a path decomposition of width two ofS. We transform

PD into a path decompositionPD for which the condition holds. First delete the leftmost
node ofPD until it contains an edge, and do the same for the rightmost node ofPD. Now let
e= fu;u0g 2 E(H) such thate�V1 ande0 = fw;w0g 2 E(H) such thate0 �Vt . Let P be the
shortest path containinge ande0, suppose w.l.o.g. thatP= (u;u0; : : : ;w0;w). Note thate 6= e0,
since ife= e0, then each vertex ofH is either adjacent tov or to v0, andH has pathwidth one,
and so doesS. However, it is possible thatu0 = w0.

If there is av2V(P) such thatH[V�fvg] has pathwidth one and has two or three compo-
nents of pathwidth one,PD0 is the path decomposition that we need.

Suppose there is nov2V(P) for which this holds. We show thatH[V�V(P)] has exactly
one component of pathwidth one. IfH[V�V(P)] has no components of pathwidth one, then
H has pathwidth at most one. IfH[V�V(P)] has more than one component of pathwidth one,
then there is a vertexv2V(P) such thatH[V�fvg] has more than one component of pathwidth
one, which gives a contradiction.

Let H 0 be the component ofH[V�V(P)] which has pathwidth one, letv2V(P) andv0 2
V(H 0) such thatfv;v0g 2 E(H). The treeH[V�fvg] has exactly one component of pathwidth
one, namelyH 0. This means thatv = u0 = w0 and thatu andw both have degree one. Now
transformPD0 as follows. Delete all neighbors ofv which have degree one from all nodes of
PD0, and for each such neighborx, add a nodefv;xg on the left side of the leftmost node ofPD0.
Furthermore, delete the rightmost node fromPD until it contains an edge. The resulting path
decomposition is still a path decomposition of width two ofS, and it satisfies the appropriate
conditions, since the leftmost node contains an edgefv;xg, wherex has degree one, while the
rightmost node can not contain such an edge, and hence contains another edge. Hence the
shortest path containing these two edges must contain a vertexy such thatH[V�fyg] has two
or more components of pathwidth one. 2

Theorem 5.1.Let S= (V;E1;E2) be a sandwich tree. Then S has pathwidth two if and only if
there is a nice path decomposition of width two of S.

Proof. Let H = G1(S). The ‘if’ part is clearlytrue.
For the ‘only if’ part, suppose there is a path decomposition of width two ofS. If jP2(H)j>

1, letPD=(V1; : : : ;Vt) be a path decomposition of width two ofSsuch thatV1 andVt contain an
edge, and the shortest path containing these edges contains a vertexv1 for which H[V�fv1g]
has pathwidth one, and has two or three components of pathwidth one. Furthermore, letP=
(v1) (s= 1). If jP2(H)j= 1, letPD= (V1; : : : ;Vt) be an arbitrary path decomposition of width
two of S, and letP= P2(H) = (v1; : : : ;vs). Note that, by Corollary 3.3.1 of de Fluiter [1997],
H[V�V(P)] has at least two components of pathwidth one.

28

We show howPD can be ‘unfolded’ until it is a nice path decomposition of width two of
S. SupposePD is not a nice path decomposition.

First supposes> 1. Let H1 be the component ofH[V(H)�fv2g] containingv1, and let
Hs be the component ofH[V(H)�fvs�1g] containingvs. For eachv2V1 andv0 2Vt , the path
from v to v0 containsP, by Corollary 3.3.1 of de Fluiter [1997]. This means thatV1 �V(H1)
andVt �V(H2) or vice versa. If the second case holds, transformPD into rev(PD), which is
the reversed path decomposition ofPD that is obtained fromPD by reversing the order of the
nodes. Furthermore,V(H1)\V(H2) = o=.

Supposes= 1. If jP2(H)j= 1, then for eachv2V1 and eachv0 2Vt , the path fromv to v0

containsP, and henceV1 andVt can not contain vertices of the same partial one-path connected
to v1. If jP2(H)j> 1, thenP is chosen in such a way thatV1 andVt do not contain vertices of the
same partial one-path connected tov1. Let H1 denote the induced subgraph ofH consisting of
vertexv1 and all components ofH[V�fv1g] of whichV1 contains a vertex, and letH2 denote
the induced subgraph ofH consisting ofv1 and all components ofH[V�fv1g] of which Vt

contains a vertex. Note that againV1�V(H1), Vt �V(H2), andV(H1)\V(H2) = fv1g.
The following cases may occur forV1.

1. V1 = fv;v0g for some edgefv;v0g 2 E(H1) such thatv and v0 both have at most one
neighbor which does not have degree one.

2. V1 contains no edge.

3. jV1j= 3 andV1 contains an edge.

4. V1 = fv;v0g for some edgefv;v0g 2E(H1), butv or v0 has more than one neighbor which
does not have degree one.

ForVt , the possible cases are similar.
If case 1 holds forV1, then eitherv or v0 has degree one. Supposev0 has degree one. Note

that v and v0 can not both have degree one, since thenH has pathwidth one. Furthermore,
v 6= v1, since thenv has at least two neighbors which do not have degree one, namely one
neighbor in a partial one-path connected tov1, andv2 if s> 1, or a neighbor in another partial
one-path connected tov1 if s= 1. Furthermore,v can not be an inner vertex ofP1(H 0) for some
partial one-pathH 0 which is connected tov1, since then the two neighbors ofv in P1(H 0) do not
have degree one. Hencev is an end point of some pathP2 P1(H 0) for some partial one-path
H 0 that is connected tov1, which is exactly what we need.

Now, we repeatedly apply the transformations a, b and c described below onPD andH1

andH2, such that, after each transformation, the following holds.

� PD is a path decomposition of width two ofS.

� H1 andH2 are subgraphs of the graphsH1 andH2 before the transformation, respectively.

� The leftmost node ofPD only contains vertices ofH1, the rightmost node contains only
vertices ofH2.

29

5 Three-Intervalizing Sandwich Trees

This means that, after each transformation, one of the cases 1 – 4 holds. We do this until case 1
holds for bothV1 andVt , which means thatPD is a nice path decomposition of width two ofS.
First, transformations a, b and c are done forV1 andH1 until case 1 applies forV1, next they
are done forVt andH2, until case 1 applies forVt .

Transformation a. If case 2 applies, deleteV1.

Transformation b. If case 3 applies, lete2 E(H1) such thate� V1, and add a node
containingeonly on the left side ofV1.

Transformation c. If case 4 applies, do the following. Suppose w.l.o.g. that the path from
v to v1 containsv0. Consider the components ofH[V�fvg] which consist of more than one
vertex. Note that one of these components is a subgraph ofH1 which does not containv1 or v0,
and henceVt does not contain any vertex of this component. LetH 0 be such a component. Now
transformPD into rev(PD[V(H 0)[fvg])++PD[V�V(H 0)], and letH1 =H[V(H 0)[fvg]. The
new path decomposition is indeed a path decomposition of width two ofS, sincev is the only
vertex thatH[V(H 0)[fvg] andH[V�V(H 0)] have in common, andv occurs in the rightmost
node of rev(PD[V(H 0)[fvg]) and in the leftmost node ofPD[V�V(H 0)]. Furthermore, the
new H1 contains at least one vertex less than the oldH1, the leftmost node of the newPD
contains only vertices of the newH1 and the rightmost node of the newPD contains only
vertices ofH2.

Note that the number of transformations that can be done is finite: if the transformation of
case 4 is done, thenH1 or H2 gets smaller, and after each time the transformation of case 4 is
done, the transformations of case 2 and 3 can only be done a finite number of times before case
4 holds again. 2

LetSbe a sandwich tree such thatH =G1(S) has pathwidth two. A pathP=(u1;u2; : : : ;uq)
in H is called apossiblenice path ofS if

� P contains a path(v1; : : : ;vs) 2 P2(H), for which

� there is a partial one-pathH 0 connected tov1 and a partial one-pathH 00 connected tovs,
H 0 6= H 00, such thatu1 is an end point of a path inP1(H 0) anduq is an end point of a path
in P1(H 00).

Note that, for each nice path decomposition of width two ofSwith nice pathP, P is a possible
nice path ofS.

The total number of possible nice paths in a sandwich treeSof whichG1(S) has pathwidth
two may beΩ(n2), wheren = jV(H)j. We construct an algorithm PW2, which checks for a
given sandwich treeSof which G1(S) has pathwidth two whetherShas pathwidth two. This
algorithm has the following structure, in which algorithm NicePath(P) returnstrue if there is
a nice path decomposition of width two ofSwith nice pathP, andfalse otherwise.

Algorithm PW2(S)
Input: Sandwich treeSfor which G1(S) has pathwidth two

30

Output: true if Shas pathwidth two,false otherwise
1. for certain possible nice pathsP of S
2. do if Nice Path(P) then return true
3. return false

The algorithm will run inO(n2) time, because the number of nice paths that is tried is bounded
by a constant, and function NicePath runs inO(n2) time. In the remainder of this section, we
first show which possible nice paths have to be tried, and which possible nice paths do not have
to be tried. After that, we show how function NicePath works. First, we prove some lemmas.

Lemma 5.2. Let S be a sandwich tree of pathwidth two, let PD= (V1; : : : ;Vt) be a nice path
decomposition of width two of S with nice path P. Let v2 V(P) and suppose H0 a partial
one-path connected to v, let w2V(H 0) such thatfv;wg 2 E(G1(S)).

1. If H0 is of typeII , then there is an i,1� i � t, such that

PD0 = (V1; : : : ;Vi ;fv;wg;Vi+1; : : : ;Vt)

is a nice path decomposition of width two of S with nice path P.

2. If H0 is of typeIII , then let w0 be the inner vertex of P1(H 0) that is adjacent to w. There
is an i,1� i � t, such that Vi = fv;w;w0g.

Proof. Let H = G1(S). SupposeH 0 occurs in(Vj ; : : : ;Vj 0). Each nodeVi , j � i � j 0, contains
at most two vertices ofH 0. There is a node containingv andw, sincefv;wg 2 E(H). First we
prove the case thatH 0 has type II.

1. If there is a nodeVi = fv;wg, then we are done. Suppose there is no such node. Suppose
fv;wg occurs in(Vl ; : : : ;Vl 0). Note that edges of one component ofH 0[V(H 0)�fwg] occur on
the left side ofVl and edges of another component ofH 0[V(H 0)�fwg] occur on the right side
of Vl 0 (Lemma 3.3.5 of de Fluiter [1997]). Furthermore, note thatv is not an end point of the
pathP, since, by definition, there are no partial one-paths connected to the end points of a nice
path. Hence edges of one component ofH[V�V(H 0)�fvg] occur on the left side ofVl and
edges of another component ofH[V�V(H 0)�fvg] occur on the right side ofVl 0 . No edges of
H[V�fv;wg] occur within(Vl ; : : : ;Vl 0), since each node already containsv andw. If v =2Vl�1,
then there is a neighboru of v in one of the four components with edges ofH[V �fv;wg]
with u2Vl . If w =2Vl�1, then there is a neighboru of w in one of the components of the four
components with edges ofH[V�fv;wg].

Let u be the neighbor ofv or w which occurs inVl . Similarly, let u0 be the neighbor of
v or w which occurs inVl 0 . Note thatu0 6= u, sinceu andu0 are in different components of
H[V�fv;w;g]. HenceVl = fv;w;ug andVl 0 = fv;w;u0g. This implies that there must be a node
Vi , l � i < l 0, such thatVi \Vi+1 = fv;wg, and hence(V1; : : : ;Vi ;fv;wg;Vi+1; : : : ;Vt) is also a
path decomposition of width two ofS.

2. Now suppose thatH 0 has type III. Because of the structure of path decompositions of width
two, there is no node containingw but notw0, sincew0 is an inner vertex ofP1(H), andw is a
stick connected tow0. Hence there must be a node containingw, w0 andv, sincefw;vg 2E. 2

31

5 Three-Intervalizing Sandwich Trees

Lemma 5.3.Let S be a sandwich tree of pathwidth two, PD= (V1; : : : ;Vt) a nice path decom-
position of width two of S with nice path P= (v1; : : : ;vq). Let vm2V(P) and let H1; : : : ;Hl be
the partial one-paths connected to vm. There are at most two partial one-paths in H1; : : : ;Hl

which have a vertex w for whichfv;wg =2 E2(S).

Proof. LetH =G1(S). Supposev12V1 andvq2Vt , and supposevm occurs in(Vj ; : : : ;Vj 0). Let
H 0 andH 00 be the components ofH[V�fvmg] which contain vertices ofP, such thatv12V(H 0)
andvq 2V(H 00) (note thatH 0 is the empty graph if and only ifm= 1, andH 00 is the empty
graph if and only ifm= q). If m> 1, then there is an edge ofH 0 which occurs on the left side
of (Vj ; : : : ;Vj 0), and if m< q, then there is an edge ofH 00 which occurs on the right side of
(Vj ; : : : ;Vj 0). Lemma 3.1.1 of de Fluiter [1997] shows that there is at most one partial one-path
connected tovm of which an edge occurs on the left side ofVj , and at most one of which an
edge occurs on the right side ofVj 0 . Hence of all other partial one-paths connected tovm, all
verticesw occur within(Vj ; : : : ;Vj 0), which means thatfv;wg 2 E2(S). 2

Lemma 5.4.Let S be a sandwich tree of pathwidth two. Let PD be a nice path decomposition
of width two of S with nice path P. There is a nice path decomposition of width two of S with
nice path P in which for each v2 V(P) such that there are two or more partial one-paths
connected to v, PD contains a nodefvg.

Proof. Let H = G1(S) andV = V(S). Let PD= (V1; : : : ;Vt). For eachv 2V(P) for which
there are two or more partial one-paths connected tov, transformPD as follows. Ifv is the left
or right end point ofP, then add a nodefvg on the left or right side ofPD, respectively.

Supposev is an inner vertex ofP. Supposev occurs in(Vj ; : : : ;Vj 0). Let H1 be the induced
connected subgraph ofH containingv and all components ofH[V�fvg] of which there is an
edge occurring on the left side ofVj , and letH2 be the induced subgraph containingv and all
components ofH[V�fvg] of which there is an edge occurring on the right side ofVj 0 . Note
thatV(H1)\V(H2) = fvg, since no component ofH[V�fvg] can have edges occurring on the
left side ofVj and edges occurring on the right side ofVj 0 .

Furthermore, letH3 be the induced subgraph ofH containingv and all components of
H[V�fvg] which are not inH1 or H2. ThenH = H1[H2[H3. If there are vertices ofH1

which occur on the right side ofVj 0 , then they can be deleted from these nodes, since there
are no edges containing these vertices occurring on the right side ofVj 0 . Similarly for H2 on
the left side ofVj , and forH3 on the right side ofVj 0 and on the left side ofVj . Let PD0 be
the path decompositionPD after deleting these vertices. ThenPD00 = PD0[V(H1)]++(fvg)++
PD0[V(H3)]++(fvg)++PD0[V(H2)] is a nice path decomposition of width two ofSwith nice
pathP, since the rightmost node ofPD[V(H1)] containsv, the leftmost node ofPD[V(H2)]
containsv, and all nodes ofPD[V(H3)] containv. 2

The following lemmas are important to bound the number of possible nice paths that have
to be tried during the algorithm.

Lemma 5.5.Let S be a sandwich tree of pathwidth two, H=G1(S). Suppose there is no vertex
v2V(H) for which H[V�fvg] has pathwidth one. Let P2(H) = (v1; : : : ;vs) and let PD be a
nice path decomposition of width two of S with nice path P= (u1; : : : ;uq). The following holds.

32

1. If H[V�fv1g] has three or less components, then there is a partial one-path H0 which is
connected to v1, and u1 is an end point of some P00 2 P1(H 0).

2. If H[V�fv1g] has four or more components, and there is a partial one-path connected
to v1 which has a vertex w for whichfv1;wg =2 E2(S), then there is a partial one-path
H 0 which is connected to v1 and which contains a vertex w for whichfv1;wg =2 E2(S),
such that there is a nice path decomposition PD0 of width two of S with nice path P0 =
(w1; : : : ;wr), such that wr = uq and w1 is end point of some P00 2 P1(H 0).

3. If H[V�fv1g] has four or more components, and for each partial one-path H0 connected
to v1, each vertex w2V(H 0), fv1;wg2E2(S), then for all partial one-paths H0 connected
to v1, there is a nice path decomposition of width two of S with nice path(w1; : : : ;wr),
such that wr = uq and w1 is end point of some path inP1(H 0).

The analog for vs also holds.

Proof. Let PD= (V1; : : : ;Vt).

1. If H[V�fv1g] has three of less components, then clearly condition 1 holds.

2. If H[V�fv1g] has four or more components, and at least one of these components has a
vertexw for which fv1;wg =2 E2(S), thenPD is transformed as follows. LetH 0 be the partial
one-path connected tov1 for which u1 2V(H 0). If H 0 contains a vertexw for which fv1;wg =2
E2(S), then no transformation is performed. Otherwise, first the transformation of the proof
in Lemma 5.4 is done. The resulting path decompositionPD= (V1; : : : ;Vt) has a nodefv1g,
and is still a nice path decomposition with nice pathP. Supposev1 occurs in(Vj ; : : : ;Vj 0), let
l , j � l � j 0, be such thatVl = fv1g. For each partial one-pathH 00 connected tov1 that has an
edge occurring on the left side ofVj and for which for each vertexw, fv1;wg 2 E2(S), do the
following. Make a path decomposition of width one ofS[V(H 00)] and addv1 to each node. The
result is a path decompositionPD0 of width two of S[V(H 00)[fv1g]. Delete all vertices ofH 00

from all nodes ofPD, and addPD0 betweenVl andVl+1 in PD. Let PD denote the obtained
path decomposition ofH, and suppose again thatv1 occurs in(Vj ; : : : ;Vj 0). If there is no partial
one-path connected tov1 of which an edge occurs on the left side ofVj , let H 00 denote a partial
one-path connected tov1 which does contain a vertexw for which fv1;wg 2 E2(S). ThenH 00

occurs within(Vj ; : : : ;Vt). Note thatv1 2V1. Let PD0 = rev(PD[V(H 00)[fv1g])++PD[V�
V(H 00)]. Now use unfolding as in the proof of Lemma 5.1 to make sure thatPD is a nice path
decomposition and that the end point of the nice path is an end point of a pathP00 2 P1(H 00).
Condition 2 now holds.

3. If H[V�fv1g] has four or more components, but for each vertexw of each partial one-
path connected tov1, fv1;wg 2 E2(S), thenPD can be transformed as follows. First apply
the transformations as in the proof of Lemma 5.4. LetVl denote a node ofPD for which
Vl = fv1g. Next, for each partial one-pathH 0 that is connected tov1, delete all vertices ofH 0

from PD, make a path decomposition of width one ofS[V(H 0)], addv1 to each node of this
path decomposition, and put the obtained path decomposition of width two ofS[V(H 0)[fv1g]
betweenVl andVl+1. Delete all empty nodes fromPD. Note thatV1 containsv1. For each
partial one-pathH 0 connected tov1 and for each end pointw of a pathP0 2 P1(H 0), we can now

33

5 Three-Intervalizing Sandwich Trees

make a nice path decomposition of width two ofS with nice pathP = (u1; : : : ;uq), such that
u1 = w as follows. Make a path decompositionPD0 = (W1; : : : ;Wr) of width one ofS[V(H 0)],
such thatw2W1. Letw0 2V(H 0) such thatfv1;w0g 2E(H). Letm, 1�m� r, be such thatWm

is the rightmost node which containsw0. If m= 1, then letPD0 be rev(PD0), and letm= r. Add
v1 to eachWi , i �m. Let PD0 denote this path decomposition. ThenPD0++PD[V�V(H 0)] is
a nice path decomposition of width two ofSthat satisfies condition 3. 2

The next lemma is the analog of Lemma 5.5 for the case that the underlying treeH has a
vertexv for which H[V(H)�fvg] has pathwidth one.

Lemma 5.6. Let S be a sandwich tree of pathwidth two, H= G1(S), and suppose there is a
v2V(H) for which H[V�fvg] has pathwidth one. Let P= (v1) 2 P2(H) such that H[V(H)�
fv1g] has at least two components which have pathwidth one. Suppose there is a nice path
decomposition PD of width two of S with nice path P= (u1; : : : ;uq) such that P contains v1.
Then the following holds.

1. If H[V�fv1g] has three or less components, then there are two partial one-paths H0 and
H 00, H0 6= H 00, connected to v1, such that u1 is an end point of some path inP1(H 0), and
uq is an end point of some path inP1(H 00).

2. If H[V �fv1g] has four or more components and there are two or more partial one-
paths connected to v1 which have a vertex w for whichfv1;wg =2 E2(S), then there are
two partial one-paths H0 and H00, H0 6= H 00, connected to v1, such that H0 and H00 both
contain a vertex w for whichfv1;wg =2 E2(S), and there is a nice path decomposition of
width two of S with nice path(w1; : : : ;wr) such that w1 is an end point of some path in
P1(H 0), and wr is an end point of some path inP1(H 00).

3. If H[V�fv1g] has four or more components and exactly one partial one-path H0 con-
nected to v1 has a vertex w for whichfv1;wg =2 E2(S), then for each partial one-path H00

connected to v1, H0 6= H 00, there is a nice path decomposition of width two of S with nice
path(w1; : : : ;wr) such that w1 is an end point of some path inP1(H 0), and wr is an end
point of some path inP1(H 00).

4. If H[V�fv1g] has four or more components and for each vertex w of each partial one-
path connected to v1, fv1;wg 2 E2(S), then for each two partial one-paths H0 and H00

connected to v1, H0 6= H 00, there is a nice path decomposition PD0 of width two of S with
nice path(w1; : : : ;wr) such that w1 is an end point of some path inP1(H 0), and wr is an
end point of some path inP1(H 00).

Proof. Similar to the proof of Lemma 5.5. 2

Let S be a sandwich tree, such thatH = G1(S) has pathwidth two. It now follows that
the number of possible nice paths that have to be tried to find out whether there is a nice path
decomposition of width two ofSis bounded by a constant. LetA be a set of possible nice paths
of S. We callA a set ofpotentially nice pathsif there are setsU1;U2 �V(S), for which the
following conditions hold. First supposeP2(H) = (v1; : : : ;vs) for somes> 1. Let H denote
the set of all partial one-paths connected tov1, and letH 0 denote the set of all partial one-paths
connected tov1 which have a vertexw for whichfv1;wg =2 E2(S).

34

1. A = fP= (u1; : : : ;uq) j u1 2U1^uq 2U2^P is path fromu1 to uqg

2. If jH j � 3, thenU1 is the set of all end points of all paths inP1(H 0), for all H 0 2H .

3. If jH j � 4 andjH 0j � 1, thenU1 is the set of all end points of all paths inP1(H 0) for all
H 0 2H .

4. If jH j � 4 andjH 0j = 0, then there is a partial one-pathH 0 2 H such thatU1 is the set
of end points of all paths inP1(H 0).

5. The analogs of conditions 2 – 4 also hold forU2 with respect to the partial one-paths
connected tovs.

If for eachP2 P2(H), P= (v) for somev2V(S), then we can give a similar set of condi-
tions, derived from Lemma 5.6.

Lemmas 5.5 and 5.6 imply the following result.

Theorem 5.2. Let S be a sandwich tree for which H= G1(S) has pathwidth two. LetA be a
set of potentially nice paths of S. The following holds.

� The size ofA is bounded by a constant.

� There is a (nice) path decomposition of width two of S if and only if there is a nice path
decomposition of width two of S with nice path P such that P2 A .

Algorithm PW2 described on page 31 now looks as follows.

Algorithm PW2(S)
Input: Sandwich treeSfor which G1(S) has pathwidth two
Output: true if Shas pathwidth two,false otherwise
1. A set of potentially nice paths ofS
2. for all P2A
3. do if Nice Path(P) then return true
4. return false

We now concentrate on algorithm NicePath, which checks for a given potentially nice path
whether there is a nice path decomposition of width two ofS with this nice path. The basic
structure of this algorithm is as follows. The algorithm walks along the given nice pathP=
(v1; : : : ;vq), from vertexv1 to vertexvq. During this walk, it ‘processes’ the partial one-paths
that are connected to the vertexvi that it currently passes. To be able to describe the processing
step more precisely, we first further analyze the structure of a nice path decomposition of width
two of a sandwich tree.

In the following discussion, letS= (V;E1;E2) be a sandwich tree of pathwidth two, let
H = G1(S), and letPD = (V1; : : : ;Vt) be a nice path decomposition ofS with nice pathP =
(v1;v2; : : : ;vq).

We first show that the number of partial one-paths that is connected to one vertex of the
nice path for which the algorithm has to perform substantial computations is bounded.

35

5 Three-Intervalizing Sandwich Trees

Lemma 5.7. There is a nice path decomposition PD0 of width two of S with nice path P in
which for each v2 V(P) for which there are at least two partial one-paths connected to v,
the following holds. For each partial one-path H0 that is connected to v, if H0 contains only
vertices w for whichfv;wg 2 E2, then H0 occurs within the occurrence of v in PD0.

Proof. Follows directly from Lemmas 5.3 and 5.4. 2

Lemma 5.7 and Lemma 5.3 show that if a vertexv of the nice path has two or more partial
one-paths connected to it, then the algorithm has to do significant computations for at most two
partial one-paths connected tov, since there are at most two of these partial one-paths which
have a vertexw for whichfv;wg =2 E2.

Lemma 5.8. There is a nice path decomposition PD0 of width two of S with the same nice
path P in which no two partial one-paths of H[V�V(P)] overlap, i.e. for each pair of distinct
partial one-paths H0 and H00 connected to P, there is no node Vi containing a vertex of H0 and
a vertex of H00.

Proof. Suppose there are two partial one-pathsH 0 andH 00 connected tov 2V(P) andv0 2
V(P), respectively, for which there is a nodeVm containing vertices ofH 0 and ofH 00. Suppose
the vertices ofH 0 occur in(Vj ; : : : ;Vj 0) and the vertices ofH 00 occur in(Vl ; : : : ;Vl 0). It is not
possible thatj � l � l 0 � j 0, since eachVi , j � i � j 0, contains a vertex ofP and a vertex ofH 0,
but H 00 has pathwidth one. Similarly, it is not possible thatl � j � j 0 � l 0. Suppose w.l.o.g.
that j � l � j 0 � l 0. Let i be such thatl � i � j 0. Vi does not contain an edge ofH 0 or an edge
of H 00, sinceH 0 andH 00 have no vertices in common. This means thatVj 0 ; : : : ;Vl all contain the
same vertex ofH 0, sayw, the same vertex ofH 00, sayw0, and the same vertex ofP, sayv. Hence
j 0 = l . Butw andw0 are not adjacent, henceVl can be split intoV 0

l andV 00
l , withV 0

l = fv;wg, and
V 00

l = fv;w0g. ThenPD0 = (V1; : : : ;Vl�1;V 0
l ;V

00
l ;Vl+1; : : : ;Vt) is also a nice path decomposition

of width two of width two ofSwith nice pathP.
In this way, all overlaps can be removed fromPD, which results in a nice path decomposi-

tion with nice pathP, without overlapping partial one-paths. 2

From now on, we assume that in any nice path decomposition, the partial one-paths con-
nected to the nice path do not overlap, and hence this also holds forPD.

Lemma 5.9. Let vm 2 V(P), let H0 be a partial one-path connected to vm, and suppose H0

occurs in(Vj ; : : : ;Vj 0). Let vl 2V(P) be the leftmost vertex on P which occurs in(Vj ; : : : ;Vj 0)
(i.e. there is no i< l for which vi occurs in(Vj ; : : : ;Vj 0)), and vl 0 2V(P) the rightmost.

Then vl 2Vj, vl 0 2Vj 0 , and for all i, l< i < l 0, vi and sticks adjacent to vi occur only within
(Vj ; : : : ;Vj 0), and there is no partial one-path connected to vi, except H0 if m= i.

Proof. NodeVj contains a vertex on the path fromv1 to vl . ButVj does not contain any vertex
vi with 1� i < l . Hencevl 2Vj , andvl 0 2Vj 0 . Furthermore,Vj andVj 0 both contain an edge of
H 0. This means thatVj andVj 0 can not contain another vertex ofV(H)�V(H 0). Hence for each
i, l < i < l 0, it is not possible thatvi or any vertex of a stick or a partial one-path connected to
vi is an element ofVp for somep, 1� p< j _ j 0 < p� t. So all vertices and edges on the path

36

from vl to vl 0 occur within(Vj ; : : : ;Vj 0). Suppose there is a partial one-pathH 00 6= H 0 which is
connected tovi for somei, l < i < l 0. ThenH 00 must occur within(Vj ; : : : ;Vj 0). But each node
in (Vj ; : : : ;Vj 0) contains a vertex ofP and a vertex ofH 0. This gives a contradiction. 2

Definition 5.3. Let 1� m� q, and letH 0 partial one-path connected tovm, H 0 occurs in
(Vj ; : : : ;Vj 0). Let vl be the leftmost vertex onP which occurs in(Vj ; : : : ;Vj 0), andvl 0 the right-
most. We say thatH 0 uses(the interval)[l ; l 0].

Figure 7 shows an example of Definition 5.3: partial one-pathH 0 is connected to a vertexvm

of the pathP. In the figure, only a part of the underlying graphH is drawn. The pathP1(H 0)
is the path fromu to w. In the occurrence(Vj ; : : : ;Vj 0) of H 0 in the path decompositionPD of
width two,vl , u and a sticku0 of u occur inVj , andvl 0 , w and a stickw0 of w occur inVj . Hence
H 0 uses[l ; l 0], which is shown by the dashed lines in the graph (note that the dashed lines are
edges of the interval completion ofPD). All vertices vi , l < i < l 0, and sticks adjacent tovi

occur only within(Vj ; : : : ;Vj 0).

u
u0

w
w0

vl vl 0 vm

vl vl 0

w

vm

w

w0

u

u0

Vj Vj 0

P

H 0

P1(H 0)

G1(S)

PD

Figure 7: Example of a partial one-pathH 0 that uses[l ; l 0].

As a corollary of Lemma 5.9, we also have the following result.

Corollary 5.1. Let H0 and H00 be two partial one-paths connected to P, suppose H0 uses[j; j 0]
and H00 uses[l ; l 0]. If j 0 > l, then H0 occurs on the right side of H00, and if l0 > j, then H00 occurs
on the right side of H0.

In the following corollaries, we summarize some earlier lemmas in terms of intervals.

Corollary 5.2. Let H0 be a partial one-path which is connected to vm for some m,1�m� q.
Let H00 be another partial one-path which is connected to P. Suppose H0 uses[j; j 0] and H00

uses[l ; l 0]. The following holds.

1. Either j� l 0 or l � j 0.

2. Either l0 �m or l�m.

37

5 Three-Intervalizing Sandwich Trees

Proof. Part 1 follows from Lemma 5.8 and Lemma 5.9. Part 2 follows from Lemma 5.9.2

The following corollary is depicted in Figure 8.

Corollary 5.3. Let vm 2V(P), H1; : : : ;Hnr the partial one-paths connected to vm. For each i,
1� i � nr, suppose Hi uses[ji; j 0i].

1. There is at most one i,1� i � nr, for which j0i >m and there is at most one i0, 1� i0 � nr,
for which ji < m, and all others have ji = j 0i = m.

2. If there is an i such that ji < m and j0i > m, then nr= 1.

3. If nr � 2, then PD can be transformed into nice path decomposition of width two of S
with the same nice path, such that for each Hi, 1� i � nr, if each vertex w2V(Hi) has
fvm;wg 2 E2, then ji = j 0i = m.

H3

vj1 vj 01 vm = vj3 = vj 03

H1

vj2 vj 02

H2

P

vj1 vj 01

H1

P vm

I

II

Figure 8: Example for Corollary 5.3. In Part I,nr = 3. In Part II,H1 uses[j1; j 01] with j1 <m<
j 01. Hencenr = 1.

Proof. Part 1 follows from Lemma 5.3, part 2 from Lemma 5.4, and part 3 from Lemma 5.7.
2

In the next lemmas, we further bound the number of possible values for the intervals[j; j 0]
that a partial one-path connected toP can use.

Lemma 5.10. Let vm;vm0 2V(P), m0 > m, and let H0 be a partial one-path connected to vm,
H 00 a partial one-path connected to vm0 . Suppose H0 uses[j; j 0], m0 � j � j 0 � q and H00 uses
[l ; l 0], 1� l � l 0 � q. Then

1. either l0 �m or l� j 0, and

2. if l � j 0 then H00 occurs on the right side of H0 and j0 = j = m0.

Proof. There are three possibilities for[l ; l 0], namely

38

a. 1� l � l 0 �m,

b. j 0 � l � l 0 � q, or

c. m� l � l 0 � j and neither case a nor case b holds.

We first show that case c is not possible. Supposem� l � l 0 � j and cases a and b do not hold.
SupposeH 0 occurs in(Vr ; : : : ;Vr 0), H 00 occurs in(Vs; : : : ;Vs0). See also Figure 9. Vertexvl is the
only vertex ofH[V�V(H 00)] occurring inVs andm< l 0, which means thatvm does not occur
in Vs0 or on the right side ofVs0 . Furthermore,vl 0 is the only vertex ofH[V�V(H 00)] occurring
in Vs0 and l < j 0, which means that vertices ofH 0 occur on the right side ofVs0 . But Vs0 does
contain a vertex ofH 00 or vertexvm, as can be seen from Figure 9, which gives a contradiction.
Hence only cases a and b are possible, which means that condition 1 holds.

H 00

vj vj 0

H 0

P vm vm0

vl vl 0

vl vl 0

Vs Vs0

vj vj 0

Vr Vr 0

vm v
;m0

H 0

H 00

P

Figure 9: Example of partial one-pathsH 0 and H 00 as used in the proof of condition 1 of
Lemma 5.10.

We now have to prove condition 2. Suppose thatl � j 0 andH 00 occurs on the left side of
H 0, see part I of Figure 10. Suppose again thatH 0 occurs in(Vr ; : : : ;Vr 0) andH 00 occurs in
(Vs; : : : ;Vs0). Thens� s0 < r � r 0. m< m0 � l , sovm occurs only on the left side ofVs. But
no node of(Vs; : : : ;Vs0) contains a vertex ofH 0 or vm, which gives a contradiction. HenceH 00

occurs on the right side ofH 0, i.e. s> r 0, see part II of Figure 10. Supposej 0 > m0. Then
vm0 only occurs on the left side ofVr 0 . But Vr 0 does not contain a vertex ofH 00, which gives a
contradiction. Hencej = j 0 = m0. 2

Lemma 5.11. Let vm;vm0 2V(P), m0 > m, and let H0 be a partial one-path connected to vm,
H 00 a partial one-path connected to vm0 . Suppose H0 uses[j; j 0], m0 � j � j 0 � q and H00 uses
[l ; l 0], 1� l � l 0 �m. Then m0 = m+1 or m0 = m+2 and vm+1 has degree two; there is a node
in PD containing vm, vm+1 and vm0 , and H0 and H00 have typeI.

Proof. SupposeH 0 occurs in(Vr ; : : : ;Vr 0) andH 00 occurs in(Vs; : : : ;Vs0). Thens0 < r, since
l 0 < j. Let Vr 0 = fvj 0 ;u;u0g, u;u0 2 V(H 0) andVs = fvl ;w;w0g, w;w0 2V(H 00). Supposeu is

39

5 Three-Intervalizing Sandwich Trees

H 00

vj vj 0

H 0

P vm vm0

vl vl 0

vj vl 0

Vr Vr 0

vj vj 0

Vs Vs0

vm0

H 00

H 0

P

I

II

Figure 10: Example of partial one-pathsH 0 and H 00 as used in the proof of condition 2 of
Lemma 5.10.

an end point of a pathP0 2 P1(H 0) andw is an end point of a pathP00 2 P1(H 00). See also
part I of Figure 11. Vertexvm does not occur in(Vr ; : : : ;Vr 0), henceu andu0 are not adjacent
to vm. Similarly, w andw0 are not adjacent tovm0 . Let S0 be the sandwich graph obtained from
S by adding the edgesfu0;vj 0g andfw0;vlgg to E1. Note thatS0 is a sandwich graph, since
fu0;vj 0g;fw0;vlgg 2 E2. The path decompositionPD is also a path decomposition ofS0. We
first prove thatm0 = m+ 1 or m0 = m+2 andvm+1 has degree two and that there is a node
containingvm, vm+1 andvm0 .

Supposem0 > m+1. ThenG1(S) contains three disjoint paths betweenvm andvm0 , as can
be seen in Figure 11, part I. According to Lemma 3.2.2 of de Fluiter [1997],PD is a path
decomposition of the sandwich graphS00 which is obtained fromS0 by adding edgefvm;vm0g.
See part II of Figure 11 for graphG1(S00). GraphG1(S00) contains three chordless cycles which
have edgefvm;vm0g in common. At least one of these chordless cycles, sayC, must have three
vertices, and the vertexv 2 V(C) with v 6= vm;vm0 has degree two, i.e. it is only adjacent to
vm andvm0 . CycleC can not be the cycle containing vertices ofH 0 or H 00, sinceu andu0 are
not adjacent tovm in S, andw andw0 are not adjacent tovm0 in S. Hence it must be the cycle
consisting ofvm;vm+1; : : : ;vm0 . So eitherm0 = m+1, orm0 = m+2 andvm+1 has degree two.
Furthermore, the two or three verticesvm, vm+1 andvm0 occur in one node.

We now prove thatH 0 andH 00 both have type I. LetC0 be the chordless cycle ofG1(S00)
which containsvl and letC00 be the chordless cycle ofG1(S00) which containsvj 0 . C0 andC00 have
edgefvm;vm0g in common. All edges between verticesvl ; : : : ;vj 0 , edges between vertices from
vl+1; : : : ;vj 0�1 and their adjacent vertices, and all edges ofH 0 andH 00 occur within(Vs; : : : ;Vr 0),
see part III of Figure 11. SupposeH 0 has type II or III, then letv 2V(P1(H 0)) be such that
v is adjacent tovm if H 0 has type II, orv has distance two tovm if H 0 has type III (part II of
Figure 11). Thenv2V(C0), and there is a vertex connected tov that does not have degree one.
This means thatv should occur in the leftmost node containing an edge ofC0. This is nodeVr 0 ,
butVr 0 = fvj 0 ;u;u0g, andu0;u 6= v. Contradiction. 2

40

H 0vl

H 00

P vm

vm0 vl j

vj

Vs

vj 0

Vr 0

P

vm0

w
w0

u
u0

u

u0vm

ww0

H 0vl

H 00

P vm

vm0
vl jww0

u u0

C0 C00

v

H

G1(S00)

PD

I

II

III

Figure 11: Example of the use of partial one-pathsH 0 andH 00 for Lemma 5.11.

41

5 Three-Intervalizing Sandwich Trees

Let i1; i2; : : : ; it be integers such that 1� i1 < i2 < � � �< it � q, and

fi1; : : : ; itg= fi j there is a partial one-path connected tovig:

Furthermore, leti�1 = i0 = 1 andit+1 = it+2 = q. Algorithm Nice Path processes the sandwich
tree from left to right, i.e. it starts with vertexvi1, it processes the partial one-paths connected to
vi1 and computes a ‘partial’ nice path decomposition of this. Then it goes tovi2 and processes
the partial one-paths connected tovi2 with use of the partial nice path decomposition forvi1,
and computes a new partial nice path decomposition from this, etc. We now define this partial
nice path decomposition more precisely.

Definition 5.4 (Partial Nice Path Decomposition). LetV 0 �V, let v2V 0. Let

E0
2 = E2[ffu;wg j u;w2V ^u =2V 0g:

A partial nice path decompositionof (S[V 0];v) is a path decompositionPD of S[V 0] with vertex
v in the rightmost node, such that there is aPD0 for which PD++PD0 is a nice path decompo-
sition of the sandwich graph(V;E1;E0

2) with nice pathP.

More informally, a partial nice path decomposition of(S[V 0];v) is a path decomposition ofS[V 0]
with vertexv in the rightmost node and which can be extended to a nice path decomposition of
Swith nice pathP if we forget about the limitations ofE2 in the rest of the graph.

We do not need all possible setsV 0 for partial nice path decompositions, so in the next
definition, we give short cuts for the kind of sets we need.

Definition 5.5. For eachm; i with 1�m� i� q, letVi
m�V be the vertex set defined as follows.

Vi
m =fvj j 1� j � ig[fw2V(S) j 9 j1� j < i^w is a stick connected tovjg[

fw2V(S) j 9H0; j1� j �m^H 0 is a partial one-path connected tovj ^w2V(H 0)g

Let Si
m = S[Vi

m]. Furthermore, for each partial one-pathH 0 connected to the pathv1; : : : ;vm, let
Si

m�H 0 denoteS[Vi
m�V(H 0)].

The following definition gives the exact information that is computed by NicePath.

Definition 5.6. The information that NicePath computes consists of two variablesall and
allbo1, both arrays from 0 tot, such that for eachk, 0� k� t, all[k] has two fieldsok, which is
a boolean, andmin, which is an integer, andallbo[k] has two fieldsok, which is a boolean, and
tr, which is a set of partial one-paths. After vertexvik is processed for somek, 1� k� t, all[k]
andallbo[k] have the following values (letm= ik).

� all[k]:ok= true if and only if there is a partial nice path decomposition of(Sj
m;vj) for

some j, ik � j � ik+1.

If all[k]:ok= true, thenall[k]mindenotes the smallestj, ik � j � ik+1, for which there is
a partial nice path decomposition of(Sj

m;vj). If all[k]:ok= false, thenall[k]min= ∞.

1all stands for ‘all partial one-paths ofvik are processed’, andallbo stands for ‘all but one partial one-paths of
vik are processed’

42

� allbo[k]:ok= true if and only if

– there are two or more partial one-paths connected tovm, and

– there is a partial one-pathH 0 connected tovm, for which

a. there is a partial nice path decomposition of(Sm
m�H 0;vm), and

b. H 0 has a vertexw for whichfvm;wg =2 E2.

Furthermore,all[0]:ok= true, all[0]min= 1,allbo[0]:ok= false andallbo[0]:tr = o=.

If allbo[k]:ok= true, thenallbo[k]:tr is the set of partial one-pathsH 0 connected tovm

for which condition a and b hold, otherwise,allbo[k]:tr = o=.

Clearly, there is a nice path decomposition of width two ofS with nice pathP if and only if
all[t]:ok holds.

Algorithm Nice Path looks as follows.

Algorithm Nice Path(P)
Input: PathP= (v1; : : : ;vq) which is a possible nice path ofS
Output: true if there is a nice path decomposition ofSwith nice pathP, false otherwise
1. Let i1; : : : ; it be the set of integersj 2 f1; : : : ;qg for which there is at least one partial

one-path connected tovj , and such that for alll , il < il+1.
2. all[0]:ok;all[0]min true;1
3. allbo[0]:ok;allbo[0]:tr false;o=
4. for k 1 to t
5. do computeall[k] andallbo[k] from all[i] andallbo[i], i < k
6. return all[t]:ok

In the remainder of this section, we describe the computation in line 5 in more detail. Let
k� 1. Let m= ik, n = ik+1, nn= ik+2, p = ik�1 and pp= ik�2. Let H1; : : : ;Hnr denote the
partial one-paths connected tovm.

For the computation ofall[k], we distinguish between two cases, namely the case that
nr > 1 and the case thatnr = 1. For the computation ofallbo[k], allbo[k]:ok= false if nr = 1,
so forallbo[k], we only consider the case thatnr � 2.

The Computation of all[k] for the Case thatnr > 1

We first analyze the possible cases if there is a partial nice path decomposition of(Sa
m;va)

(m� a� n). Supposea is an integer,m� a� n andPD0 is a partial nice path decomposition
of (Sa

m;va). Suppose that for eachi, Hi uses[ji ; j 0i]. By Corollaries 5.1 – 5.3 and Lemma 5.11,
there are two possibilities (see also Figure 12):

1. all partial one-paths connected to somevl , 1� l < m, occur on the left side of all partial
one-paths connected tovm, or

2. p < m, there is one partial one-pathHc connected tovm and one partial one-pathF
connected tovp such thatF occurs on the right side ofHc, all partial one-pathsHi 6= Hc

which are connected tovm occur on the right side ofF, and all partial one-pathsF 0 6= F
connected to somevl , l < m, occur on the left side ofHi.

43

5 Three-Intervalizing Sandwich Trees

In the first case, for eachi, eitherp� ji � j 0i �mor m� ji � j 0i � a, and for eachF 0 connected
to vl , l < m, F 0 uses[b;b0], whereb0 �minf ji j 1� i � nrg (part I of Figure 12). In the second
case,pp� jc� j 0c� p, for all i 6= c, m� ji � j 0i � a, F uses[m;m], and for allF 0 6=F connected
to vl , l < m, F 0 uses[b;b0], whereb0 � jc (part II of Figure 12).

= vj1
= vj 01

P
vmvb0 va

P
vpvpp vavj vj 0

vm

II

H1

H1

vp

F

vb0

H2 H3

vj3 vj 03
vj2 vj 02

I

H2 H3

vj3 vj 03

Figure 12: The two possible cases of the use of allHi, 1� i � 3.

For each of these two cases, we have to check whether it is possible. Therefore, we compute
two values and combine these.

Definition 5.7. Let cl andfr be variables, each having a boolean fieldok and an integer field
min, denoting the following.

� cl:ok= true if and only if there is a partial nice path decomposition of(Sa
m;va) for some

a, m� a� n, in which each partial one-pathF connected tovl , l < m, occurs on the left
side of each partial one-path connected tovm.

If cl:ok = true, then clmin denotes the smallesta for which this holds. Otherwise,
clmin= ∞.

� fr :ok= true if and only if there is a partial nice path decomposition of(Sa
m;va) for some

a, m� a� n in which

– there is ani, 1� i � nr, Hi uses[j; j 0] for some j 0 � p, andHi has a vertexw for
whichfvm;wg =2 E2, and

– there is a partial one-pathF connected tovp which uses[m;m], and eitherF is the
only partial one-path connected tovp, or F has a vertexw0 for whichfvp;w0g =2E2.

If fr:ok= true, thenfrmindenotes the smallesta for which this holds. Otherwise,frmin=
∞.

44

From the discussion above and Lemma 5.7, it follows that

all[k]:ok= cl:ok_ fr:ok

all[k]min= minfclmin; frming:

We now show howcl andfr can be computed. First considercl.

Computation of cl

We first analyze the case thatcl:ok= true.

Lemma 5.12. Suppose cl:ok and let PD= (V1; : : : ;Vt) be a partial nice path decomposition
of (Sclmin

m ;vclmin) in which no partial one-path connected to vp occurs on the right side of a
partial one-path connected to vm. Then all[k�1]:ok= true, and there is a partial nice path
decomposition PD0 of (Sclmin

m ;vclmin) in which

1. no partial one-path connected to vp occurs on the right side of a partial one-path con-
nected to vm,

2. PD0[Vall[k�1]min
p] is a partial nice path decomposition of(Sall[k�1]min

p ;vall[k�1]min),

3. for each i, if for each w2V(Hi), fw;vmg 2 E2, then Hi uses[m;m],

4. for each i, if Hi uses[j; j 0], then j� all[k�1]min, and

5. there is an i, such that Hi uses[j;clmin], m� j � clmin.

Proof. According to Lemma 5.7, we may assume that condition 3 holds forPD, otherwise,
we first transformPD such that 3 holds.

We next show that condition 5 holds already forPD. Let a, 1� a� nr, be such that no
partial one-pathHi, 1� i �nr, occurs on the right side ofHa. SupposeHa uses[j; j 0]. Thenm�
j � j 0 � clmin. SupposeHa occurs in(Vs; : : : ;Vs0). Thenvj 0 2Vs0 , and(Vs0+1; : : : ;Vt) contains
only edges between verticesfvj 0 ; : : : ;vclming[f sticks ofvj 0 ; : : : ;vclming. Hence(V1; : : : ;Vs0)

restricted toV j 0
m is a partial nice path decomposition of(Sj 0

m;vj 0) with the same properties as
PD. This means thatclmin= j 0, and hence condition 5 holds.

Let Vr be the rightmost node ofPD containing an edge of(Sp
p;vp). If vp 2 Vr , then

(V1; : : : ;Vr) restricted to(Sp
p;vp) is a partial nice path decomposition of(Sp

p;vp). Henceall[k�
1]:ok= true andall[k�1]min= p. Let l = p.

If vp =2Vr , then there is exactly onel , p< l �m, such thatvl 2Vr . It can be seen that in
this case,(V1; : : : ;Vr) restricted toVl

p is a partial nice path decomposition of(Sl
p;vl). Hence

all[k�1]:ok= true andall[k�1]min� l .
We now construct a partial nice path decompositionPD0 of (Sclmin

m ;vclmin) which satisfies
conditions 1 – 5. LetPD2 = (Vr+1; : : : ;Vt), and remove all occurrences of vertices ofVl

p and

sticks ofvl from PD2. LetPD1 be a partial nice path-decomposition of(Sall[k�1]min
p ;vall[k�1]min).

Let PD3 be a path decomposition of width one ofS0,

S0 = S[fvall[k�1]min; : : : ;vlg[f sticks ofvall[k�1]min; : : : ;vlg];

45

5 Three-Intervalizing Sandwich Trees

with vertexvall[k�1]min in the leftmost node and vertexvl in the rightmost node. Note that this is
possible, sinceS0 consists of path fromvall[k�1]min to vl with sticks. LetPD0 = PD1++PD2++

PD3. It is easy to see thatPD0 is a partial nice path decomposition of(Sclmin
m ;vclmin) which

satisfies conditions 1 – 5. 2

The lemma implies that, ifall[k�1]:ok= false, thencl:ok= false and we do not have to
compute anything. Suppose thatall[k�1]:ok= true, and letmin= all[k�1]min.

In order to computecl, we compute the smallest value ofa, m� a� n, for which there is
a partial nice path decompositionPD of (Sa

m;va) in which

Condition 1. PD[Vmin
p] is a partial nice path decomposition of(Smin

p ;vmin),

Condition 2. for eachi, 1� i � nr, if each vertexw of Hi hasfw;vmg 2 E2, thenHi uses
[m;m], otherwise,H 0

i uses[j; j 0] for somemin� j � j 0 �mor m� j � j 0 = a.

If this value fora exists, thencl:ok= true andclmin= a, otherwisecl:ok= false.
Let H 0

1; : : : ;H
0
nr0 denote the partial one-paths connected tovm which have a vertexw for

which fvm;wg =2 E2. Note that ifnr0 > 2, thencl:ok= false. Supposenr0 � 2. We distinguish
between the cases thatnr0 = 0, nr0 = 1 andnr0 = 2.

The case thatnr0=0. If nr0=0, then we can easily make a partial nice path decomposition of
(Sm

m;vm) from a partial nice path decomposition of(Smin
p ;vmin) (see the proof of Lemma 5.12).

Hencecl:ok= true andclmin= m.

The case thatnr0 = 1. Supposenr0 = 1. Supposecl:ok= true, and letPD be a partial nice
path decomposition of(Sclmin

m ;vclmin) for which conditions 1 and 2 hold. SupposeH 0
1 uses

[j; j 0]. There are two possibilities: eithermin� j � j 0 �m andclmin= m or m� j � j 0 � n
andclmin= j 0.

For finding the value ofcl as described above, we do the following. First we check whether
H 0

1 can use[j; j 0] for somemin� j 0 � j � m, i.e. if we can extend a partial nice path de-
composition of(Smin

p ;vmin) into a partial nice path decomposition of(Sm
m;vm). If so, we make

cl:ok= true andclmin= m. If not, then we find the smallestj 0, m< j 0 � n, for whichH 0
1 can

use[j; j 0] for somem� j � j 0, i.e. for which we can extend a partial nice path decomposition

of (Smin
p ;vmin) into a partial nice path decomposition of(Sj 0

m;vj 0) in which H 0
1 uses[j; j 0]. If we

can find such aj 0, then we makecl:ok= true andclmin= j 0. Otherwise, we makecl:ok= false.
We now first show how to check whetherH 0

1 can use[j; j 0] for somemin� j � j 0 �m.
Let P0 2 P1(H 0

1), let u andw be the two end points ofP0. Let v2V(H 0
1) such thatfv;vmg 2

E1, and letV 0 be the subset ofV containing all vertices ofH 0
1, all verticesvmin; : : : ;vm, and all

sticks connected tovmin+1; : : : ;vm�1. Let dum denote a dummy vertex, and letSu denote the
sandwich graph with

V(Su) =V 0[fdumg

E1(Su) = E1(S[V
0])[ffdum;ug;fdum;vmingg

E2(Su) = E2(S[V
0])[ffdum;vg j v2V 0g:

46

If v 6= w andv is not a stick ofw, then additionally add edgefw;vmg to E1(Su). Note that it
may be the case thatfw;vmg =2 E2(Su). Therefore, we callSu an almost-sandwich graph. See
also Figure 13: part I showsG1(Su) for the case thatv 6= w andv is not a stick ofw, and part II
showsG1(Su) for the other case. Now the almost-sandwich graphSu is an almost-sandwich
block with sticks.

P
vm

vu w

vmin

vm

vu w

vmin

dumP0

H 0

G1(Su)
0

P
vm

v= wu

vmin

vm

v= wu

vmin

dumP0

H 0

G1(Su)
0

I

II

Figure 13: Example of the almost-sandwich graphSu.

DefineSw in the same way, but with the roles ofu andw exchanged.

Lemma 5.13.There are j and j0, min� j � j 0 �m, such that H01 can use[j; j 0] if and only if
one of the following holds.

a. Su is a sandwich graph and there is a path decomposition of width two of Su with edge
fdum;vming in the leftmost node and vertex vm in the rightmost node.

b. Sw is a sandwich graph and there is a path decomposition of width two of Sw with edge
fdum;vming in the leftmost node and vertex vm in the rightmost node.

Proof. For the ‘if’ part, suppose condition a holds. LetPD be a partial nice path decompo-
sition of (Smin

p ;vmin). Let PD0 be a path decomposition of width two ofSu with fdum;vming in
the leftmost node andvm in the rightmost node. Remove all occurrences ofdum from PD0, and
on the left side, add a nodefvmin;xg for each stickx of vmin. Let PD00 be a path decomposition
of width one of all partial one-paths exceptH 0

1 that are connected tovm, and add vertexvm to
each node ofPD00. NowPD++PD0++PD00 is a partial nice path decomposition ofSm

m in which
H 0

1 uses[j; j 0] for somemin� j � j 0 �m.
For the ‘only if’ part, letPD= (V1; : : : ;Vt) be a partial nice path decomposition of(Sm

m;vm)
in which PD[Vmin

p] is a partial nice path decomposition of(Smin
p ;vmin) andH 0

1 uses[j; j 0] for
somemin� j � j 0 � m. SupposeH 0

1 occurs in(Vs; : : : ;Vs0). Suppose w.l.o.g. that there is a
nodeVa with Va = fvmg anda> j 0 (Lemma 5.4). Note thatj < m, sinceH 0

1 has a vertexx for
which fvm;xg =2 E2. Note also that eitherVs or Vs0 containsu and a stick ofu, and eitherVs0 or
Vs containsw and a stick ofw. Suppose w.l.o.g. thatu2Vs andw2Vs0 . Let u0;w0 2V(H 0) such
thatu0 2Vs, w0 2Vs0 , andu0 is a stick adjacent tou, w0 is a stick adjacent tow. For an example,
see Figure 14. Part I shows again the case thatv 6= w andv not a stick ofw, and part II the other
case.

47

5 Three-Intervalizing Sandwich Trees

u
u0

w
w0

vj vm

vj vm vm

w

w0

u

u0

Vs Vs0

P

H 0

1

Va

v

vm

v

I
PD

u
u0

w
w0

vj vm

vj vj 0 vm

w

w0

u

u0

Vs Vs0

P

H 0

1

Va

II

PD

vj 0

Figure 14: Examples for the proof of Lemma 5.13.

Consider the sequencePD0 = (Vs; : : : ;Va). Note thatvm 2 Va andVs = fu;u0;vjg. Let
W be the subset ofV containing all vertices ofH 0

1, verticesvj ; : : : ;vm and sticks of vertices
vj+1; : : : ;vm�1. Remove all vertices inV �W from PD0. Note that all vertices ofW occur
within PD0, and all edges inE1 between vertices ofW occur withinPD0. HencePD0 is a path
decomposition of width two ofS[W].

Remember thatv is the vertex ofH 0
1 for whichfv;vmg 2 E(S). If v 6= w andv is not a stick

of w, then j 0 = m, sincev occurs only on the left side ofVs0 , and there is aVi , s� i < s0, with
v2Vi andvm2Vi (Lemma 3.3.5 of de Fluiter [1997]). Hencefw;vmg �Vs0 , which means that
fw;vmg 2 E2 andSu is a sandwich graph.

Let V 00 be the set of verticesvmin; : : : ;vj and all sticks ofvmin+1; : : : ;vj . Make a path
decompositionPD00 of width one ofS[V 00] with vertex vmin in the leftmost node and vertex
vj in the rightmost node. Add vertexdum to each node ofPD00. Now PD00++PD0 is a path
decomposition of width two ofSu with edgefvmin;dumg in the leftmost node and vertexvm in
the rightmost node. This completes the proof. 2

Lemma 5.14. It takes O(N2) time to check whether H01 can use[j; j 0] for some j and j0,
min� j � j 0 �m, where N is the number of vertices of Su or Sw.

Proof. Su andSw are almost-sandwich blocks with sticks, and hence the lemma follows from
Lemma 4.6. 2

We now show how to find the smallestj 0, m< j 0 � n, for whichH 0
1 can use[j; j 0] for some

m� j � j 0. This is very similar to the previous computation.
Again, letP0 2 P1(H 0

1), let u andw be the two end points ofP0. Let v2V(H 0
1) such that

fv;vmg 2 E1. But now, letV 0 �V(S) contain all vertices ofH 0
1, all verticesvm; : : : ;vn, and all

sticks connected tovm+1; : : : ;vn�1. Let Su = S[V 0]. If v 6= w andv is not a stick ofw, then
additionally add edgefw;vmg to E1(Su). See also Figure 15. (Note that again, it may be the
case thatfw;vmg =2 E2(Su).) Now the almost-sandwich graphSu is an almost-sandwich block
with sticks and loose endsu andvn.

48

P
vm

vw u
P0

G1(Su)
0

I

II

vn vm

vw u

vn

P
vm

w u
G1(Su)

0

vn vm

w u

vn

Figure 15: Example ofSu.

DefineSw in the same way, but with the roles ofu andw exchanged. The following lemma
resembles Lemma 5.13

Lemma 5.15.Let j0 be an integer, m� j 0 � n. There is a j, m� j � j 0, such that H01 can use
[j; j 0] if and only if one of the following holds.

a. S0u = Su[V 0�fvj 0+1; : : : ;vng�f sticks of vj 0 ; : : : ;vng] is a sandwich graph and there is a
path decomposition of width two of S0u with vm in the leftmost node and vj 0 , u and a stick
u0 of u in the rightmost node.

b. S0w = Sw[V 0�fvj 0+1; : : : ;vng�f sticks of vj 0 ; : : : ;vng] is a sandwich graph and there is a
path decomposition of width two of S0w with vm in the leftmost node and vj 0 , w and a stick
w0 of w in the rightmost node.

Proof. For the ‘if’ part, suppose condition a holds. LetPD be a partial nice path decom-
position of(Sm

p ;vm). Such a partial nice path decomposition exists sinceall[k�1]:ok= true
andmin� m. For eachHi, Hi 6= H 0

1, make a path decomposition of width one ofS[V(Hi)],
and add vertexvm to each node. Add all these path decompositions on the right side ofPD.
Furthermore, add a nodefvm;xg for each stickx of vm on the right side ofPD.

Let PD0 be a path decomposition of width two ofS0u with vm in the leftmost node andu and

vj 0 in the rightmost node. NowPD++PD0 is a partial nice path decomposition of(Sj 0
m;vj 0), in

which H 0
1 uses[j; j 0] for somem� j � j 0.

The ‘only if’ part can be proved in almost the same way as the ‘only if’ part of Lemma 5.13.
2

Lemma 5.16.It takes O(N2) time to check whether H01 can use[j; j 0] for some m� j � j 0 � n
and to find the smallest j0 for which this holds. (N is the number of vertices of Su or Sw.)

Proof. Su andSw are almost-sandwich blocks with sticks and loose ends. By Corollary 4.2,
we can find the smallestj, m� j � n, for which there is a path decompositionPD of width
two of S0u as defined in condition a of Lemma 5.15 withvm in the leftmost node andvj 0 andu
in the rightmost node. Sincej is minimal, the rightmost node ofPD also contains a stick of
u. This means that we can find the smallestj for which condition a holds inO(N2) time. The
same holds for condition b. 2

49

5 Three-Intervalizing Sandwich Trees

This completes the description of the computation ofcl for the case thatnr0 = 1.

The case thatnr0 = 2. Supposenr0 = 2, i.e. there are two partial one-pathsH 0
1 andH 0

2 con-
nected tovm which have a vertexw for which fvm;wg =2 E2. Remember thatclmin is the
smallest value ofa, m� a� n, for which there is a partial nice path decompositionPD of
(Sa

m;va), which satisfies conditions 1 and 2 as described on page 46. If there is such ana, then
cl:ok= true andclmin= a, otherwise,cl:ok= false.

Supposecl:ok = true, andPD is a partial nice path decomposition of(Sclmin
m ;vclmin) for

which conditions 1 and 2 on page 46 hold. SupposeH 0
1 uses[j1; j 01] and H 0

2 uses[j2; j 02].
There are two possibilities: eithermin� j1 � j 01 � m, m� j2 � j 02 � n andclmin= j 02, or
min� j2� j 02�m, m� j1� j 01� n andclmin= j 01.

For findingcl as described above, we do the following. First we check

� whetherH 0
1 can use[j1; j 01] for somemin� j1� j1�m, i.e. we can extend a partial nice

path decomposition of(Smin
p ;vmin) into a partial nice path decomposition of(Sm

m�H 0
2;vm)

in which H 0
1 uses[j1; j 01] for somemin� j1� j 01�m, and

� whetherH 0
2 can use[j2; j 02] for somem� j2 � j 02 � n, i.e. we can extend a partial nice

path decomposition of(Sm
m�H 0

2;vm) into a partial nice path decomposition of(S
j 02
m;vj 02

),
and we find the smallestj 02 for which this holds (j 02 = ∞ if it does not hold).

Then we check whetherH 0
2 can use[l2; l 02] for somemin� l2� l 02�mandH 0

1 can use[l1; l 01] for
somem� l1� l 01� n and we find the smallestl 01 for which this holds (l 01 =∞ if it does not hold).
If one of them is possible, then we makecl:ok= true andclmin= minf j 02; l

0
1g. Otherwise, we

makecl:ok= false.
The algorithm to checking whetherH 0

i (i = 1;2) can use[j; j 0] for somemin� j � j 0 �m
is described above, for the case thatnr0 = 1 (pages 46 – 48). The algorithm for computing
the smallestl 0, m� l 0 � n, for which there is anl , m� l � l 0, such thatH 0

i (i = 1;2) can use
[l ; l 0] is also described above for the case thatnr0 = 1 (pages 48 – 49). Both algorithms take
O(N2) time, whereN denotes the number of vertices inH 0

1, H 0
2, vmin; : : : ;vn and all sticks of

vmin+1; : : : ;vn�1.
This completes the description of the computation ofcl for the case that there are two or

more partial one-paths connected tovm. We conclude with the following corollary.

Corollary 5.4. If there are two or more partial one-paths connected to vm, then it takes
O(N2) time to compute cl, where N denotes the number of vertices vp; : : : ;vn, all sticks of
vp+1; : : : ;vn�1, and vertices of all partial one-paths connected to vm.

Computation of fr

We assume thatk> 1, otherwise,f t:ok= false.
Let H 0

1; : : : ;H
0
nr0 denote the partial one-paths connected tovm which contain a vertexw with

fw;vmg =2E2. LetF1; : : : ;Fc denote the partial one-paths connected tovp. LetF 0
1; : : : ;F

0
c0 denote

the partial one-paths connected tovp which contain a vertexw for whichfw;vpg =2 E2.
Note that ifnr0 > 2, thenfr :ok= false. If nr0 = 0, then, by definition offr, fr :ok= false.

Similarly, if c0 > 2, or if c� 2 andc0 = 0, we makefr :ok= false.

50

Suppose 1� nr0 � 2, 1� c0 � 2, and eitherc0 > 0 or c = 1. We distinguish between two
cases, namely the case thatc= 1 and the case thatc> 1.

The case thatc= 1. We first analyze the case thatfr:ok= true.

Lemma 5.17.Suppose fr:ok and let PD be a partial nice path decomposition of(Sfrmin
m ;vfrmin)

in which there is a partial one-path H0a, 1� a� 2, which occurs on the left side of partial
one-path F1. Then all[k� 2]:ok = true, and there is a partial nice path decomposition of
(Sfrmin

m ;vfrmin) in which

1. PD[Vall[k�2]min
pp] is a partial nice path decomposition of(Sall[k�2]min

pp ;vall[k�2]min),

2. H0
a uses[j; j 0], where all[k�2]min� j � j 0 � p,

3. F1 uses[m;m],

4. for each partial one-path Hi, 1� i � nr, Hi =2 fH 0
1; : : : ;H

0
nr0g, Hi uses[m;m], and

5. if nr0 = 2, then H03�a uses[l ; frmin], for some m� l � frmin.

Proof. By Lemma 5.7, we may assume that condition 4 holds forPD. Furthermore, we may
assume that condition 5 holds: ifnr0 = 2 andH 0

3�a uses[l ; l 0] for somem� l � l 0 < frmin, then
we can prove thatfrmin is not minimal (see also proof of Lemma 5.12).

Let Vr be the rightmost node ofPD0 containing an edge of(Spp
pp;vpp). If vpp 2 Vr , then

(V1; : : : ;Vr) restricted toV pp
pp is a partial nice path decomposition of(Spp

pp;vpp). Henceall[k�
2]:ok= true andall[k�2]min� pp. Let l = pp.

If vpp =2 Vr , then there is anl , pp< l � p, such thatvl 2 Vr . It can be seen that in this
case,(V1; : : : ;Vr) restricted toVl

pp is a partial nice path decomposition of(Sl
pp;vl). Hence

all[k�2]:ok= true andall[k�2]min� l .
We now construct a partial nice path decomposition of(Sfrmin

m ;vfrmin) for which conditions
1 – 5 hold. LetPD3 = (Vr+1; : : : ;Vt), and remove all occurrences of vertices from(Sl

pp;vl)

from PD3. Let PD1 be a partial nice path decomposition of(Sall[k�2]min
pp ;vall[k�2]min). Let PD2

be a path decomposition of width one ofS[fvall[k�2]min; : : : ;vlg[f sticks ofvall[k�2]min; : : : ;vlg]
with vall[k�2]min in the leftmost node andvl in the rightmost node.

let PD0=PD1++PD2++PD3. It is easy to see thatPD0 is a partial nice path decomposition
of (Sfrmin

m ;vfrmin) which satisfies conditions 1 – 5. 2

The lemma implies that, ifall[k�2]:ok= false, thenfr:ok= false and we do not have to
compute anything. Suppose thatall[k�2]:ok= true, and letmin0 = all[k�2]min.

We computefr as follows. We letfrmin be smallest value,m� frmin� n, for which there
is a partial nice path decompositionPD of (Sclmin

m ;vclmin) which satisfies conditions 1 – 5 of
Lemma 5.17. If this value can be found, thenfr :ok= true, otherwise,fr :ok= false.

Supposefr :ok= true, and letPD be a partial nice path decomposition of(Sfrmin
m ;vfrmin) for

which conditions 1 – 5 of Lemma 5.17 hold. For eachi, 1� i � nr0, supposeH 0
i uses[ji ; j 0i]. If

nr0 = 1, thenmin0 � j1� j 01 � p andclmin= m. If nr0 = 2, there are two possibilities: either

51

5 Three-Intervalizing Sandwich Trees

min0 � j1� j 01� p , m� j2� j 02� n andfrmin= j 02, or min0 � j2� j 02� p , m� j1� j 01� n
andfrmin= j 01.

For finding the value offr as described above, we do the following. Ifnr0 = 1, then we
check whetherH 0

1 can use[j; j 0] for somemin0 � j � j 0 � p and at the same timeF1 can
use[m;m], i.e. whether we can extend a partial nice path decomposition of(Smin0

pp ;vmin0) into a
partial nice path decomposition of(Sm

m;vm) in whichH 0
1 uses[j; j 0] for somemin0 � j � j 0 � p

andF1 uses[m;m]. If so, we makefr:ok= true andfrmin= m, otherwise,fr :ok= false.
If nr0 = 2, then fori = 1;2, we do the following.

a. We check whetherH 0
i can use[j; j 0] for somemin0 � j � j 0 � p and at the same time

F1 can use[m;m], i.e. whether we can extend a partial nice path decomposition of
(Smin0

pp ;vmin0) into a partial nice path decompositionPD of (Sm
m�H 0

3�i;vm) in which H 0
i

uses[j; j 0] for somemin0 � j � j 0 � p andF1 uses[m;m].

b. We find the smallestli , m� li � n, for which H 0
3�i can use[l ; li] for somem� l � li ,

i.e. for which we can extend a partial nice path decomposition of(Sm
m�H 0

3�i0;vm) into a
partial nice path decomposition of(Sli

m;vli) (li = ∞ if this is not possible).

If both a and b are not possible, thenli = ∞. Now, if both l1 andl2 equal∞, thenfr :ok= false.
Otherwise,fr :ok= true andfrmin= minfl1; l2g.

In the case thatnr0 = 2, finding the smallest value ofj 0, m� j 0 � n for which a partial one-
pathH 0 connected tovm can use[j; j 0] for somem� j � j 0 can be done in the way described
for the computation ofcl on pages 48 – 49. Therefore, we only describe how to check whether
F1 can use[m;m] andH 0

1 can use[j; j 0] for somemin0 � j � j 0 � p at the same time. Note that
this is only possible if bothF1 andH 0

1 are of type I, and if eitherm= p+1 or m= p+2 and
vm+1 has no sticks (Lemma 5.11). So suppose this holds.

Let P0 2 P1(H 0
1), let u be the end point ofP0 for which the path fromvm to u containsP0.

Furthermore, letP00 2 P1(F1) and letw be the end point ofP00 for which the path fromvp to w
containsP00 (see also part I of Figure 16). LetV 0 �V(S) be the set containing all vertices of
H 0

1 and ofF1, all verticesvmin0 ; : : : ;vm, and all sticks connected tovmin0+1; : : : ;vm�1. Let dum
be a dummy vertex, and letS0 denote the sandwich graph defined as follows.

V(S0) =V 0[fdumg

E1(S
0) = E1(S[V

0])[ffdum;ug;fdum;vmin0gg

E2(S
0) = E2(S[V

0])[ffdum;vg j v2V 0gg:

See also Figure 16. The sandwich graphS0 is a sandwich block with sticks and loose endsw
andvm (although loose endw is actually not ‘loose’).

Lemma 5.18.H 0
1 can use[j; j 0] for some min0 � j � j 0 � p and F1 can use[m;m] at the same

time if and only if there is a path decomposition of width two of S0 with edgefdum;vmin0g in
the leftmost node and vm and w in the rightmost node.

Proof. For the ‘if’ part, we can easily combine a partial nice path decomposition of(Smin0
pp ;vmin0)

and a path decomposition of width two ofS0 with edgeffdum;vmin0g in the leftmost node and

52

P
vm

u

vmin0

P0

H 0

1

I

II

vp

F1
P00

vm
u

vmin0 vp

w

dum

u0

w0

w

u0

w0

G1(S0)

Figure 16: Example ofS0.

with w andvm in the rightmost node into a nice partial path decomposition of(Sm
m;vm) if nr0 = 1

and of(Sm
m�H 0

2;vm) if nr0 = 2.
For the ‘only if’ part, letPD= (V1; : : : ;Vt) be a partial nice path decomposition of(Sm

m;vm)
if nr0=1 and of(Sm

m�H 0
2;vm) if nr0=2, in whichPD[Vmin0

pp] is a partial nice path decomposition

of (Smin0
pp ;vmin0) andH 0

1 uses[j; j 0] for somemin0 � j � j 0 � p andF1 uses[m;m], and allHi,
Hi =2 fH 0

1;H
0
2g, use[m;m].

SupposeH 0
1 occurs in(Vr ; : : : ;Vr 0) andF1 occurs in(Vs; : : : ;Vs0). By Lemma 5.10,r 0 �

s. Furthermore, by (the proof of) Lemma 5.11,u 2 Vr and w 2 Vs0 , andvj 2 Vr and vm 2
Vs0 . Consider the subsequencePD0 = (Vr ; : : : ;Vs0). Note that all vertices ofH 0

1 and F1 and
all verticesvj ; : : : ;vm and all sticks adjacent tovj+1; : : : ;vm�1 occur inPD0. Also, all edges
between these vertices occur inPD0. Remove all occurrences of other vertices fromPD0.

We transformPD0 into a path decomposition of width two ofS0 with fdum;vmin0g in the
leftmost node withvm and w in the rightmost node. On the left side ofPD0, add a node
fdum;u;vjg. Furthermore, make a path decompositionPD00 of the sub-sandwich graph ofS
induced by the verticesvmin0 ; : : : ;vj and the sticks adjacent tovmin0+1; : : : ;vj with vertexvmin0

in the leftmost node and vertexvj in the rightmost node. Add vertexdum to each node ofPD00.
Now PD00++PD0 is a path decomposition of width two ofS0 with the desired vertices in the
leftmost and rightmost nodes. 2

Lemma 5.19. It takes O(N2) time to check whether H01 can use[j; j 0] for some j and j0,
min0 � j � j 0 � p and F1 can use[m;m0] at the same time (where N is the number of vertices
of S0).

Proof. S0 is a sandwich block with sticks and loose ends, and hence Corollary 4.2 implies the
lemma. 2

The case thatc> 1. Supposec> 1, i.e. there arec> 1 partial one-pathsF1; : : : ;Fc connected
to vp. Remember that we assume that 1� c0 � 2, otherwisefr :ok= false.

53

5 Three-Intervalizing Sandwich Trees

We first analyze the case thatfr :ok= true.

Lemma 5.20.Suppose fr:ok and let PD be a partial nice path decomposition of(Sfrmin
m ;vfrmin)

in which there are partial one-paths H0a, 1� a� nr0 and F0b, 1� b� c0, such that H0a occurs on
the left side of F0b. Then allbo[k�1]:ok= true, and there is a partial nice path decomposition

of (Sfrmin
m ;vfrmin) in which

1. there is an F0 2 allbo[k�1]:tr such that

(a) PD[V p
p �F 0] is a partial nice path decomposition of(Sp

p�F 0;vp), and

(b) F0 uses[m;m],

2. H0
a uses[p; p],

3. for each Hi, 1� i � nr and Hi =2 fH 0
1; : : : ;H

0
c0g, H0

i uses[m;m], and

4. if nr0 = 2, then H03�a uses[l ; frmin] for some m� l � frmin.

Proof. We may assume that condition 4 holds forPD (see also proof of Lemma 5.17). By
Corollaries 5.2 and 5.3 and Lemma 5.11,PD already is a partial nice path decomposition
satisfying conditions 1 – 4. 2

The lemma implies that, ifallbo[k�1]:ok= false, thenfr :ok= false and we do not have to
compute anything. Suppose thatallbo[k�1]:ok= true.

Lemma 5.20 shows that we can computefr as follows. We letfrmin be the smallest value,
m� frmin� n, for which there is a partial nice path decompositionPD of (Sfrmin

m ;vfrmin) which
satisfies conditions 1 – 4 of Lemma 5.20. If this value can be found, thenfr:ok= true, otherwise
fr :ok= false.

Supposefr :ok = true, and letPD be a partial nice path decomposition of(Sfrmin
m ;vfrmin)

for which conditions 1 – 4 hold. For eachi, 1� i � nr0, supposeH 0
i uses[ji; j 0i], and for each

Fa2 allbo[k�1]:tr , supposeFa uses[la; l 0a]. If nr0= 1, thenj1 = j 01 = p. If nr0= 2, there are two
possibilities forH 0

1 andH 0
2: either j1 = j 01 = p, m� j2� j 02� frmin, or vice versa. Similarly,

if there is oneFa 2 allbo[k�2]:tr , thenla = l 0a = m, but if there are twoFa;Fb 2 allbo[k�2]:tr ,
then eitherla = l 0a = m, or lb = l 0b = m.

For finding the value offr as described above, we do the following.
If nr0 = 1 then we check whetherH 0

1 can use[p; p] and at the same time there is anF 0 2
allbo[k�1]:tr which can use[m;m], i.e. whether there is anF 0 2allbo[k�1]:tr for which we can
extend a partial nice path decomposition of(Sp

p�F 0;vp) into a partial nice path decomposition
of (Sm

m;vm) in which H 0
1 uses[p; p] andF 0 uses[m;m]. If so, thenfr :ok= true andfrmin= m.

If nr0 = 2 then fori = 1;2, we check whetherH 0
i can use[p; p] and, at the same time, there

is anF 0 2 allbo[k�1]:tr which can use[m;m], and if so, we find the smallestji, m� ji � n,
for which H 0

3�i can use[j; ji] for somem� j � ji , i.e. for which we can extend a partial

nice path decomposition of(Sm
m�H 0

3�i;vm) into a partial nice path decomposition of(Sji
m;vji)

(ji = ∞ if this is not possible). If both possibilities do not work, thenfr :ok= false. Otherwise,
fr :ok= true andfrmin= minf j1; j2g.

54

In the case thatnr0 = 2, finding the smallest value ofj 0, m� j 0 � n for which a partial one-
pathH 0 connected tovm can use[j; j 0] for somem� j � j 0 can be done in the way described
for the computation ofcl on pages 48 – 49.

Checking whetherF 0
1 can use[m;m] andH 0

1 can use[p; p] can be done in the same way as
checking whetherF 0

1 can use[m;m0] andH 0
1 can use[j; j 0] for someall[k�2]min� j � j 0 � p

(pages 52 – 53): usep instead ofall[k�2]min. The underlying graph of sandwich graphS0

then looks as in Figure 17.

P
vm

u P0

H 0

I

II

vp

F 0P00

vm
u

vp

w

dum

u0

w0

w

u0

w0

G1(S0)

Figure 17: Example ofS0.

All computations described above can be done inO(N2), whereN is the number of vertices
involved in the computation.

This completes the description of the case thatc0 > 1. We conclude with the following
corollary.

Corollary 5.5. It takes O(N2) time to compute fr, where N denotes the number of vertices
vpp; : : : ;vn, all sticks of vpp+1; : : : ;vn�1, and vertices of all partial one-paths of vp and vm.

This completes the description of the computation ofall[k] for the case that the numbernr
of partial one-paths connected tovm is at least two.

Corollary 5.6. It takes O(N2) time to compute all[k] if nr � 2, where N denotes the number of
vertices vpp; : : : ;vn, all sticks of vpp+1; : : : ;vn�1, and vertices of all partial one-paths connected
to vp and vm.

The Computation of all[k] for the Case thatnr = 1

We first analyze the possible cases if there is a partial nice path decomposition of(Sa
m;va)

(m� a� n). Supposea is an integer,m� a� n andPD0 is a partial nice path decomposition
of (Sa

m;va). Suppose thatH1 uses[j; j 0]. By Corollaries 5.1 – 5.3 and Lemma 5.11 there are
two possibilities (see also Figure 18):

1. all partial one-paths connected to somevi , 1� i < m, occur on the left side ofH1, or

55

5 Three-Intervalizing Sandwich Trees

2. p< m, there is one partial one-pathF connected tovp such thatF occurs on the right
side ofH1, and all partial one-pathsF 0 6= F connected to somevi , i < m, occur on the
left side ofH1.

In the first case,p� j � j 0 � n, and for all partial one-pathsF 0 connected tovi , i < m, if F 0

uses[b;b0], thenb0 � j (part I of Figure 18). In the second case,pp� j � j 0 � p, F uses[l ; l 0]
for somem� l � l 0 � n, and all partial one-pathsF 0 connected to somevi , i < m andF 0 6= F,
use[b;b0] for someb0 � j (part II of Figure 18).

vj vj
P

vmvb0 va

P
vpvpp vavj vj 0

vm
II

I

H1

H1H1

vp

F

vb0

vl vl 0

Figure 18: The two possible cases for the use ofH1.

Similarly to the case thatnr > 1, for each of these two cases, we have to check whether it
is possible. Therefore, we again compute two values and combine these.

Definition 5.8. Let cl andfr be variables, each having a boolean fieldok and an integer field
min, denoting the following.

� cl:ok= true if and only if there is a partial nice path decomposition of(Sa
m;va) for some

a, m� a� n, in which each partial one-pathF connected tovl , l < m, occurs on the left
side ofH1.

If cl:ok = true, then clmin denotes the smallesta for which this holds. Otherwise,
clmin= ∞.

� fr :ok= true if and only if there is a partial nice path decomposition of(Sa
m;va) for some

a, m� a� n in which

– H1 uses[j; j 0] for some j 0 � p, and

– there is a partial one-pathF connected tovp which uses[m;m], and eitherF is the
only partial one-path connected tovp, or F has a vertexw0 for whichfvp;w0g =2E2.

If fr:ok= true, thenfrmindenotes the smallesta for which this holds. Otherwise,frmin=
∞.

56

From the discussion above and Lemma 5.7, it follows that

all[k]:ok= cl:ok_ fr:ok, and

all[k]min= minfclmin; frming:

We now show howcl andfr can be computed. First considercl.

Computation of cl

We first analyze the case thatcl:ok= true.

Lemma 5.21. Suppose cl:ok and PD is a partial nice path decomposition of(Sclmin
m ;vclmin)

in which no partial one-path connected to vi, i < m, occurs on the right side of H1. Then
all[k� 1]:ok = true, and there is a partial nice path decomposition PD0 of (Sclmin

m ;vclmin) in
which

1. no partial one-path connected to vp occurs on the right side of H1,

2. PD0[Vall[k�1]min
p] is a partial nice path decomposition of(Sall[k�1]min

p ;vall[k�1]min),

3. H1 uses[j; j 0] for some all[k�1]min� j � j 0 � clmin, and

4. the rightmost node of PD contains an edge of Sm
m.

Proof. We first show that condition 3 holds already forPD. Let PD= (V1; : : : ;Vt), and letVr ,
1� r � t, be the rightmost node containing an edge ofSm

m. Let vj , m� j � clmin, be such that
either j = m or vm =2Vr andvj 2Vr . Note thatvj is uniquely defined. Now it can be seen that
all edges between vertices offvm; : : : ;vjg[f sticks ofvm; : : : ;vj�1g occur within(V1; : : : ;Vr).
Hence(V1; : : : ;Vr) restricted toV j

m is a partial nice path decomposition of(Sj
m;vj) with the

same properties asPD. This means thatj = clminandr = t.
The remainder of the proof is similar to the proof of Lemma 5.12 2

The lemma implies that, ifall[k�1]:ok= false, thencl:ok= false and we do not have to
compute anything. Suppose thatall[k�1]:ok= true, and letmin= all[k�1]min.

In order to computecl, we let clmin be the smallest value,m� clmin� n, for which
there is a nice partial path decompositionPD of (Sa

m;va) which satisfies conditions 1 – 4 of
Lemma 5.21. If we can find this value, thencl:ok= true, otherwise,cl:ok= false.

We distinguish between two cases, namely the case thatH1 has type I and the case thatH1

has type II or III. We start with the latter one.

The case thatH1 has typeII or III . Lemma 5.2 shows that in each nice path decomposition
of width two of S with nice pathP, if H1 uses[j; j 0] for somep� j � j 0 � n, then j � m�
j 0, and hence this means that, ifcl:ok = true and PD is a partial nice path decomposition
of (Sclmin

m ;vclmin) satisfying conditions 1 – 4 or Lemma 5.21, then the rightmost node ofPD
contains an edge ofH1, and henceH1 uses[j;clmin], for somem� j � clmin.

For findingclminas described above, we find the smallest value ofj 0, m� j 0 � n, for which
H1 can use[j; j 0] for somemin� j � j 0, i.e. we for which we can extend a partial nice path

57

5 Three-Intervalizing Sandwich Trees

decomposition of(Smin
p ;vmin) into a nice partial nice path decomposition of(Sj 0

m;vj 0) in which
H1 uses[j; j 0]. If there is such anj 0, we makecl:ok= true andclmin= j 0, otherwise, we make
cl:ok= false. We now first show how to find this minimum value forj 0.

Let P0 2 P1(H1), let u andw be the two end points ofP0. Let v2V(H1) such thatfv;vmg 2
E1. Let V 0 �V(S) contain all vertices ofH1, all verticesvmin; : : : ;vn, and all sticks connected
to vmin+1; : : : ;vn�1. Let Su denote the sandwich graph with

V(Su) =V 0[fdumg

E1(Su) = E1(S[V
0])[ffdum;ug;fdum;vmingg

E2(Su) = E2(S[V
0])[ffdum;vg j v2V 0g:

See Figure 19 for an example of the underlying graph ofSu for the case thatH1 has type III.
The sandwich graphSu is a sandwich block with sticks and loose endsw andvn.

P
vm

u w

vmin vm

u w

vmin

dumP0

H 0

G1(Su)
vn

vn

Figure 19: Example ofG1(Su).

DefineSw in the same way, but with the roles ofu andw exchanged.

Lemma 5.22.Let j0 be an integer, m� j 0 � n. Then H01 can use[j; j 0] for some min� j �m if
and only if one of the following holds.

a. There is a path decomposition of width two of

Su[V(Su)�fvj 0+1; : : : ;vmg�f sticks of vj 0 ; : : : ;vmg]

with edgefdum;vming in the leftmost node, and vj 0 , w and a stick w0 of w in the rightmost
node.

b. There is a path decomposition of width two of

Sw[V(Sw)�fvj 0+1; : : : ;vmg�f sticks of vj 0 ; : : : ;vmg]

with edgefdum;vming in the leftmost node, and vj 0 , u and a stick u0 of u in the rightmost
node.

Proof. The proof is similar to the proofs of Lemma 5.13 and Lemma 5.15. 2

Lemma 5.23. If H1 has typeII or III , then it takes O(N2) time to compute cl, where N is the
number of vertices of Su or Sw.

Proof. Su andSw are sandwich blocks with sticks and loose ends, and hence the lemma follows
from Corollary 4.2 and the proof of Lemma 5.16. 2

58

The case thatH1 has typeI. This case is a little more complicated, since ifcl:ok= true, then
in a partial nice path decomposition of(Sclmin

m ;vclmin) satisfying conditions 1 – 4 of Lemma 5.21,
the rightmost node does not necessarily contain an edge ofH1, and hence it is possible thatH1

uses[j; j 0], for somej 0 < clmin.
We compute the value ofcl as follows. We compute the smallesta, m� a� n, for which we

can extend a partial nice path decomposition of(Smin
p ;vmin) into a partial nice path decomposi-

tion of (Sa
m;va) in which the rightmost node contains an edge ofSm

m (and henceH1 uses[j; j 0]
for somemin� j � j 0 � a). If there is no sucha, thencl:ok= false, otherwise,cl:ok= true
andclmin= a.

Let P0 2 P1(H1), letu andw be the end points ofP0, such that the path fromu to vm contains
w. Furthermore, letw0 be the neighbor ofvm in H1. Note that eitherw= w0 or w0 is a stick of
w. Let V 0 �V(S) contain all vertices ofH1, all verticesvmin; : : : ;vn, and all sticks connected
to vmin+1; : : : ;vn�1. Let b be an integer defined as follows. Ifmin� m�2, thenb = 4. If
min= m�1 thenb= 3, and ifmin= m, thenb= 2. Fori = 1; : : : ;b, let xi be vertices defined
as follows: x1 = w, x2 = w0, if b� 3 thenx3 = vm�1, and if b= 4 thenx4 = vm�2 (note that
x1 = x2 if w= w0). Let Su denote the sandwich graphs with

V(Su) =V 0[fdumg

E1(Su) = E1(S[V
0])[ffdum;ug;fdum;vmingg

E2(Su) = E2(S[V
0])[ffdum;vg j v2V 0g:

See also Figure 20 for and example of the underlying graphs ofSu. Note that for eachi,
1� i � b, the sandwich graphSu is a sandwich block with sticks and loose endsxi andvn.

P
vm

u w= x1

vmin

P0

H 0

vn
w0 = x2

x3x4 vm

u x1

vmin vn

x2

x3x4

dum

G1(Su)

Figure 20: Example ofG1(Su) for b= 4.

Let c be an integer defined as follows:c = 4 if n� m+2, c = 3 if n = m+1 andc = 2
if n= m. For i = 1; : : : ;c, let yi be vertices defined as follows:y1 = w, y2 = w0, if c� 3 then
y3 = vm+1, and ifc= 4 theny4 = vm+2 (note thaty1 = y2 if w= w0). For eachi, 1� i � c, let
Si

w denote the sandwich graph with

V(Si
w) =V 0[fdumg

E1(S
i
w) = E1(S[V

0])[fffdum;yig;fdum;vmingg

E2(S
i
w) = E2(S[V

0])[ffdum;vg j v2V 0g:

See also Figure 21 for examples of the underlying graphs ofSi
w for i = 1 andi = 3 (c = 4).

Now for i = 1; : : : ;c, the sandwich graphSi
w is a sandwich block with sticks and loose endsu

andvn.

59

5 Three-Intervalizing Sandwich Trees

P
vm

u
w= y1

vmin[k�1]

P0H 0

y4

w0 = y2

G1(S1
w)

dum

G1(S3
w)

y3 vn

vm

uy1

vmin[k�1]

y4

y2
y3

vn

vm

uy1vmin[k�1]

y4

y2

y3
vn

dum

Figure 21: Example ofS1
w andS3

w for c= 3.

Lemma 5.24.Let j be an integer, m� j � n. We can extend a partial nice path decomposition
of (Smin

p ;vmin) into a partial nice path decomposition PD of(Sj
m;vj) for which

1. H1 uses[j; j 0] for some min� j � j 0 � clmin, and

2. the rightmost node of PD contains an edge of Sm
m,

if and only if one of the following holds.

a. There is an i,1� i � b, for which there is a path decomposition of width two of

S̃u = Su[V(Su)�fvj+1; : : : ;vng�f sticks of vj ; : : : ;vng]

with edgefdum;vming in the leftmost node, and vj , xi and a neighbor of xi in Sm
m in the

rightmost node.

b. There is an i,1� i � c for which there is a path decomposition of width two of

S̃i
w = Si

w[V(Si
w)�fvj+1; : : : ;vng�f sticks of vj ; : : : ;vng]

with edgefdum;vming in the leftmost node, and vj , u and a stick u0 of u in the rightmost
node.

Proof. For the ‘if’ part, we can easily combine a partial nice path decomposition of(Smin
p ;vmin)

and a path decomposition as described in a or b into a partial nice path decomposition of
(Sj

m;vj) satisfying conditions 1 and 2.
For the ‘only if’ part, supposePD = (V1; : : : ;Vt) is a partial nice path decomposition of

(Sj
m;vj) satisfying conditions 1 and 2. SupposeH1 uses[l ; l 0] for somemin� l � l 0 � j. There

are three cases:

1. min� l �m� l 0 � j,

2. min� l � l 0 < m, and

60

3. m< l � l 0 � j.

1. In the same way as in the proof of Lemma 5.22, we can show that either

� there is a path decomposition of width two ofS̃u with edgefdum;vming in the leftmost
node and with verticesvj , w and a stick ofw in the rightmost node, and hence a holds,
or

� there is a path decomposition ofS̃1
w with edgevmin in the leftmost node andvj , u and a

stick ofu in the rightmost node, and hence b holds.

2. We show that there is ani, 1� i � b, for which there is a path decomposition of width
two of S̃u with edgefdum;vming in the leftmost node andvj , xi and a neighbor ofxi in Sm

m in
the rightmost node.

SupposeH1 occurs in(Vr ; : : : ;Vr 0). ThenVr = fu;u0;vlg for some sticku0 of u. Let W
denote the set of verticesvl ; : : : ;vm, the sticks ofvl+1; : : : ;vm�1, and the vertices ofH1. Let
G= G1(S[W]), and letG0 be the graph obtained fromG by adding an edge betweenu andvl .
See also Figure 22. Note thatG0 is a cycleC with sticks.

P vm

u

w0

P0

H1

w

vl vl 0

u0

G0

vm

u

w0

w

vl vl 0

u0

Figure 22: Example ofG0.

NodeVt contains an edge ofSm
m and thus ofG. Hence all edges ofG occur in(Vr ; : : : ;Vt).

Let PD0 denote the sequence(Vr ; : : : ;Vt). Sincefu;vlg �Vr , this means thatG0 also occurs in
PD0. SupposeC occurs in the subsequence(Vs; : : : ;Vs0) of PD0. Sincevm occurs in(Vs; : : : ;Vs0),
vj 2Vt , and there is a path fromvm to vj , this means thatvm 2Vs0 (Lemma 3.4.3 of de Fluiter
[1997]), and henceVs0 \V(C) � fvm;x1;x2; : : : ;xbg (Lemma 3.4.5 of de Fluiter [1997]). But
that means thatVt contains one of the verticesx1; : : : ;xb and a neighbor of this vertex inG: if
t = s0, then eitherfx1;vmg �Vt or fx3;vmg �Vt , and if t > s0, thenVt contains a stick ofC in
G0, and a vertex ofC to which this stick is connected. Sincevm has no sticks inG0, this means
thatxi 2Vt for somei, 1� i � b. Let i�, 1� i� � b, be such thatxi� 2Vt , and lety2V(G) such
thatfxi� ;yg 2 E(G) andy2Vt .

We can now transformPD0 into a path decomposition of width two ofS̃u with fdum;vming
in the leftmost node andvj , xi� andy in the rightmost node. LetS0 denote the sandwich graph
of pathwidth one induced by the verticesvmin; : : : ;vl and the sticks ofvmin+1; : : : ;vl . Make a
path decompositionPD1 of width one ofS0 with vertexvmin in the leftmost node and vertexvl

in the rightmost node, and add vertexdum to each node of this path decomposition. LetPD0

bePD1++ffvl ;u;dumg++PD0. ThenPD0 is the desired path decomposition ofS̃u.
3. In the same way as for 2, we can show that there is ani, 1� i � c, for which there is a

path decomposition of width two of̃Si
w with vmin anddum in the leftmost node, andvj , u and a

stick of u in the rightmost node. 2

61

5 Three-Intervalizing Sandwich Trees

The lemma implies thatclmin is the smallestj, m� j � n, for which either a or b from the
lemma holds. If such aj exists, thencl:ok= true, and otherwise,cl:ok= false. Hence we have
the following result.

Lemma 5.25. If H1 has typeI, then it takes O(N2) time to compute cl, where N is the number
of vertices of S1u.

Proof. For eachi, Su is a sandwich block with sticks and loose endsxi and vn, andSi
w

is a sandwich block with sticks and loose endsu and vn. Hence the lemma follows from
Corollary 4.2 and the proof of Lemma 5.16. 2

This completes the description of the computation ofcl for the case thatnr = 1.

Computation of fr

An arguments similar to the argument for the computation offr for the case thatnr > 1 shows
that Corollary 5.5 also holds for the case thatnr = 1. We do not give a precise description
of this argument here: all computations can be derived directly from the computations for the
case thatnr > 1.

This completes the description of the computation ofall[k] for the case that the numbernr
of partial one-paths connected tovm is one. We conclude with the following theorem.

Theorem 5.3. Let k� 1. Given the values of all[l] and allbo[l] for l < k, it takes O(N2)
time to compute all[k], where N denotes the number of vertices vik�2; : : : ;vik+1, all sticks of
vik�2+1; : : : ;vik+1�1, and vertices of all partial one-paths connected to vik�1 and vik.

The Computation of allbo[k]

If nr = 1, thenallbo[k]:ok= false. Supposenr > 1. Let H 0
1; : : : ;H

0
nr0 denote the partial one-

paths connected tovm for which each vertexw hasfw;vmg 2 E2.
If nr0 = 0, then by definition, we makeallbo[k]:ok= false. If 1 � nr0 � 2, then fori = 1;2,

we check whether there is a partial nice path decomposition of(Sm
m�H 0

i ;vm). If there is noi
for which this holds, thenallbo[k]:ok= false, otherwise,

allbo[k]:ok= true, and

allbo[k]:tr = fH 0
i j 1� i � 2^ there is a partial nice path decomposition of(Sm

m�H 0
i ;vm):

To check whether there is a partial nice path decomposition of(Sm
m�H 0

i ;vm) for somei,
1� i � nr0, we use the same computations as are used for the determination ofall[k] if nr > 1.
We do not describe these computations again, but immediately conclude with the following
theorem.

Theorem 5.4. Let k� 1. Given the values of all[l] and allbo[l] for l < k, it takes O(N2)
time to compute allbo[k], where N denotes the number of vertices vik�2; : : : ;vik+1, all sticks of
vik�2+1; : : : ;vik+1�1, and vertices of all partial one-paths connected to vik�1 and vik.

62

This completes the description of the computations ofall andallbo. From Theorem 5.4
it can be seen that algorithm NicePath as described on page 43 takesO(n2) time, wheren
denotes the number of vertices of the sandwich tree.

To complete this section, we give algorithm 3-ISGTree, which, given a sandwich treeS,
returnstrue if there is a three-intervalization ofS, andfalse otherwise.

Algorithm 3-ISG Tree(S)
Input: Sandwich treeS= (V;E1;E2)
Output: true if there is a three-intervalization ofS, false otherwise
1. Check ifG1(S) has pathwidth two, if not,return false.
2. Find the setP2(G1(S)), and a setA of potentially nice paths ofS, and for eachP2A , the

partial one-pathsH 0 connected toP and there setsP1(H 0).
3. for all P2 A
4. do if Nice Path(P) then return true
5. return false

This algorithm can again be made constructive.

Theorem 5.5. There exists an O(n2) algorithm that solves3-ISG for sandwich trees.

6 Three-Intervalizing Sandwich Graphs

The algorithm for 3-ISG on sandwich graphs is very similar to the algorithm for 3-ISG on
sandwich trees. Therefore, we only give a brief description of this algorithm.

Suppose we are given an input sandwich graphS. Let G= G1(S). If G is not connected,
then we apply the algorithm for all connected components ofG. SupposeG is connected. IfS
is a sandwich block with sticks, or ifSis a sandwich tree, then we can use one of the algorithms
given in Sections 4 and 5. Otherwise, the following is done. First, it is checked whetherG has
pathwidth at most two, and if so, the structure ofG is computed as in Chapter 3 of de Fluiter
[1997]: the set of pathsPG is computed, and for each pathP2 PG, the set of partial one-paths
connected toP is computed, and the interconnections between vertices ofP, partial one-paths
connected toP and blocks ofG are determined.

From this setPG of paths, it is then computed whether there is a path decomposition of
width two of S. We again only consider nice path decompositions, which are defined slightly
different from the nice path decompositions of sandwich trees.

Definition 6.1 (Nice Path Decomposition). LetS= (V;E1;E2) be a sandwich graph of path-
width two, let G = G1(S), supposeG is connected, but is not a tree. LetPG = (v1; : : : ;vs),
let PD= (V1; : : : ;Vt) be a path decomposition of width two ofS. ThenPD is anice path de-
compositionof S if there are no two consecutive nodes which are equal,V1 contains an edge
e= fv;v0g 2 E1 andVt contains an edgee0 = fx;x0g 2 E1, in such a way thatx 6= v and the path
from v to x containsPG. Furthermore, one of the following condition holds forV1 ande, and
analogously forVt ande0.

63

6 Three-Intervalizing Sandwich Graphs

1. s= 0, B is the only block ofG, e2 E(H 0) for some componentH 0 of Gtr containing a
vertexw2V(B) of stateE1 or I1, such thatv is an end point of the pathP0 containing
P1(H 0) andw, andv 6= w.

2. s= 0, B is the only block ofG, e2 E(G), v2V(B) and eitherv0 is a stick adjacent tov,
or v0 2V(B).

3. s� 1, e2 E(H 0) for some partial one-pathH 0 connected tov1 such thatv is an end point
of some pathP0 2 P1(H 0),

4. s� 1, e2 E(H 0) for some componentH 0 of Gtr containing a vertexw of stateE1 or I1
of a block containingv1, such thatv is an end point of the pathP0 containingP1(H 0) and
w, andv 6= w.

5. s�1, there is a blockB containingv1 such thatv2V(B)�fv1g, and eitherfv;v0g2E(B)
or v0 is a stick adjacent tov.

Thenice path P0 corresponding to nice path decompositionPD is defined as follows. Ifs= 0,
thenP0 is the empty path if condition 2 holds for bothV1 andVt . If condition 1 holds forV1,
and 2 forVt , thenP0 is the path fromv to the vertexw 2V(B) for which v andw are in the
same component ofGtr . Analogously, if condition 1 holds forVt and 2 holds forV1, thenP0 is
the path from the vertexw2V(B) to x, such thatw andx are in the same component ofGtr .
If condition 1 holds for bothV1 andVt , thenP0 is the largest common subsequence of all paths
from v to x. If s� 1, thenP0 is the largest common subsequence of all paths fromw to w0 in G,
wherew= v1 if condition 5 holds forV1, w= v otherwise, andw0 = vs if condition 5 holds for
Vt , w= x otherwise.

Figure 23 shows an example of all conditions in Definition 6.1. InG1, s= 0, and inG2, s� 1.
If v andv0 are equal toa1 anda01, b1 andb01 or c1 andc01, then case 1 holds. Ifv2V(B1), andv0

is either a stick adjacent tov, or fv;v0g 2 E(B1), then case 2 holds (e.g. ifv= d1 andv0 = d01).
If v= b2, andv0 is equal tob02 or b002, then case 3 holds. Ifv= a2 andv0 = a02, then case 4 holds,
and if v 2 V(B2), andv0 is either a stick adjacent tov, or fv;v0g 2 E(B2) (e.g. if v = c2 and
v0 = c02)then case 5 holds.

The analog of Theorem 5.1 also holds for general sandwich graphs:Shas pathwidth two
if and only if there is a nice path decomposition of width two ofS(which can again be proved
by ‘unfolding’).

In the algorithm, we only check for a bounded number of nice paths (a set of ‘potentially’
nice paths) whether there is a nice path decomposition with this nice path. We can show with
a lemma analogous to Lemma 5.5 and Lemma 5.6 that this is possible.

Checking whether there is a nice path decomposition with a given potentially nice path
P = (v1; : : : ;vq) is done in the same way as for sandwich trees: we start withm= 1, and
‘process’ all partial one-paths connected tov1, and, in addition, all blocks containingv1. Then,
we repeatedly incrementm, and after each increment operation, we ‘process’ the partial one-
paths connected tovm, and the blocks containingvm, by using the information fromvi , i < m.
Finally, whenm= q, we have processed all partial one-paths and blocks, and we know whether
there is a nice path decomposition ofSwith nice pathP.

64

REFERENCES

a1 b1
c1

B1

a01 b01
c01

a2

B2

a02

v1 v2

b2

b02
b002

s= 0

s� 1

G1

G2

d1

d01

c1c01

Figure 23: Examples of possible values ofv andv0 as defined in Definition 6.1.

The processing of all partial one-paths connected to a vertexvm, and all blocks containing
vm strongly resembles the processing of partial one-paths as described in Section 5 for sandwich
trees. There are a lot more cases to consider, but each case can be solved in a similar way, with
the use of Lemma 4.6 and Corollary 4.2.

References

BODLAENDER, H. L. AND B. DE FLUITER [1995]. Intervalizingk-colored graphs. Tech-
nical Report UU-CS-1995-15, Department of Computer Science, Utrecht University,
Utrecht.

BODLAENDER, H. L. AND B. DE FLUITER [1996]. On intervalizingk-colored graphs for
DNA physical mapping.Disc. Appl. Math. 71, 55–77.

BODLAENDER, H. L. AND T. KLOKS [1993]. A simple linear time algorithm for triangu-
lating three-colored graphs.J. Algorithms 15, 160–172.

DE FLUITER, B. [1997].Algorithms for Graphs of Small Treewidth. Ph.D. thesis, Utrecht
University.

ELLIS, J. A., I. H. SUDBOROUGH, AND J. TURNER [1994]. The vertex separation and
search number of a graph.Information and Computation 113, 50–79.

FELLOWS, M. R., M. T. HALLETT, AND H. T. WAREHAM [1993]. DNA physical map-
ping: Three ways difficult (extended abstract). In T. Lengauer (Ed.),Proceedings of the
1st Annual European Symposium on Algorithms ESA’96, Volume 726 of Lecture Notes
in Computer Science, pp. 157–168. Springer-Verlag, Berlin.

GOLUMBIC, M. C., H. KAPLAN, AND R. SHAMIR [1994]. On the complexity of DNA
physical mapping.Advances in Applied Mathematics 15, 251–261.

65

REFERENCES

MÖHRING, R. H. [1990]. Graph problems related to gate matrix layout and PLA folding. In
E. Mayr, H. Noltemeier, and M. Sysło (Eds.),Computational Graph Theory, Computing
Suppl. 7, pp. 17–51. Springer-Verlag, Berlin.

66

