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Abstract

We present a technique to prove innermost normalisation of term rewriting
systems (TRSs) automatically. In contrast to previous methods, our technique
is able to prove innermost normalisation of TRSs that are not terminating.

Our technique can also be used for termination proofs of all TRSs where
innermost normalisation implies termination, such as non-overlapping TRSs
or locally con
uent overlay systems. In this way, termination of many (also
non-simply terminating) TRSs can be veri�ed automatically.

1. Introduction

Innermost rewriting, i.e. rewriting where only innermost redexes are contracted,
can be used to model call-by-value computation semantics. For that reason, there
has been an increasing interest in innermost normalisation (also called innermost
termination), i.e. in proving that the length of every innermost reduction is �nite.
Techniques for proving innermost normalisation can for example be utilized for
termination proofs of functional programs (modelled by TRSs) or of logic programs.
(When transforming logic programs into TRSs, innermost normalisation of the TRS
implies termination of the logic program [AZ95].)

While both termination and innermost normalisation are undecidable properties
[HL78], several techniques have been developed for proving termination of TRSs au-
tomatically (e.g. path orderings [Pla78, Der82, DH95, Ste95b], Knuth-Bendix order-
ings [KB70, DKM90], semantic interpretations [Lan79, BL87, BL93, Ste94, Zan94,
Gie95b], transformation orderings [BD86, BL90, Ste95a] etc. | for surveys see e.g.
[Der87, Ste95b]). However, there has not been any speci�c method for innermost
normalisation, i.e. the only way to prove innermost normalisation automatically was
by showing termination of the TRS. Therefore, none of the techniques could prove
innermost normalisation of non-terminating systems.

In the following we present a technique for innermost normalisation proofs. For
that purpose, in Sect. 2 we introduce a criterion for innermost normalisation. Subse-
quently, in Sect. 3 we develop a technique to check the requirements of this criterion
automatically. For every TRS, our technique generates a set of constraints such that
the existence of a well-founded ordering satisfying these constraints is su�cient for
innermost normalisation. Now standard techniques developed for automated termi-
nation proofs of TRSs can be applied for the generation of appropriate well-founded
orderings. In this way, innermost normalisation can be proved automatically. In
Sect. 4 and 5 our technique is re�ned further and in Sect. 6 we give a summary and
comment on connections and possible combinations with related approaches.
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For several classes of TRSs, innermost normalisation already su�ces for termi-
nation [Gra95, Gra96]. Moreover, several modularity results exist for innermost
normalisation [Kri95, Art96], which do not hold for termination. Therefore, for
those classes of TRSs termination can be proved by splitting the TRS and proving
innermost normalisation of the subsystems separately. The advantage of this ap-
proach is that there are several interesting TRSs where a direct termination proof
is not possible with the existing automatic techniques. However in many of these
examples, a suitable ordering satisfying the constraints generated by our method
can nevertheless be synthesized automatically. The reason is that for many TRSs
proving innermost normalisation automatically is essentially easier than proving
termination. In this way, innermost normalisation (and thereby, termination) of
many also non-simply terminating systems can now be veri�ed automatically. A
collection of numerous examples where our technique proved successful can be found
in Sect. 7 and Sect. 8.

2. A Criterion for Innermost Normalisation

In this section we introduce a new criterion for innermost normalisation. For that
purpose the notions of constructors and de�ned symbols (that are well-known for the
subclass of constructor systems) are extended to arbitrary TRSs. In the following,
the root of a term f(: : :) is the leading function symbol f .

2.1 Definition (De�ned Symbols and Constructors). Let R(F;R) be a TRS (with
the rules R over a signature F). Then DR = froot(l)jl ! r 2 Rg is the set of the
de�ned symbols of R and CR = F nDR is the set of constructors of R. To stress
the splitting of the signature we denote a TRS by R(D;C;R).

For example consider the following TRS, with the de�ned symbols f and g and the
constructors 0 and s.

f(g(x); s(0); y) ! f(y; y; g(x))
g(s(x)) ! s(g(x))

g(0) ! 0

In contrast to the existing approaches for termination proofs, which compare
left and right-hand sides of rules, in the following we only examine those subterms
that are responsible for starting new reductions. For that purpose we concentrate
on the subterms in the right-hand sides of rules that have a de�ned root symbol
(because these are the only terms a rewrite rule can ever be applied to).

More precisely, for every rule f(s1; : : : ; sn) ! C[g(t1; : : : ; tm)] (where f and g

are de�ned symbols and C denotes some context), we compare the argument tuple
s1; : : : ; sn with the tuple t1; : : : ; tm. In order to avoid the handling of tuples, for a
formal de�nition we extend the signature of the TRS by a new special tuple symbol F
for every de�ned symbol f in D. Now instead of the tuples s1; : : : ; sn and t1; : : : ; tm
we compare the terms F (s1; : : : ; sn) and G(t1; : : : ; tm). In this paper we assume
that the signature F consists of lower case function symbols only and we denote
the tuple symbols by the corresponding upper case symbols.

2.2 Definition (Dependency Pairs). Let R(D;C;R) be a TRS. If

f(s1; : : : ; sn)! C[g(t1; : : : ; tm)]

is a rewrite rule of R with f; g 2 D, then hF (s1; : : : ; sn); G(t1; : : : ; tm)i is a depen-
dency pair of R.
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In the above example we obtain the following dependency pairs:

hF(g(x); s(0); y);F(y; y; g(x))i (1)

hF(g(x); s(0); y);G(x)i (2)

hG(s(x));G(x)i (3)

Using the concept of dependency pairs we can now develop a criterion for in-
nermost normalisation. Note that in our example, we have the following in�nite
(cycling) reduction. (Here, s0 abbreviates s(0) etc.)

f(gs0; s0; gs0)! f(gs0; gs0; gs0)! f(gs0; sg0; gs0)! f(gs0; s0; gs0)! : : :

However, this reduction is not an innermost reduction, because in the �rst reduction
step the subterm gs0 is a redex and would have to be reduced �rst. It turns out
that although this TRS is not terminating, it is nevertheless innermost normalising.

In the following, innermost reductions are denoted by \
i
!".

Every in�nite reduction corresponds to an in�nite introduction of new redexes.
To trace these newly introduced redexes we consider special sequences of dependency
pairs, so-called chains. A sequence of dependency pairs is a chain if there exists
a substitution � such that for all consecutive pairs hsj ; tji and hsj+1; tj+1i in the
sequence we have tj� !�

R
sj+1� (cf. [AG97a]). In this way, the right-hand side of

every dependency pair can be seen as the newly introduced redex that should be
traced and the reductions tj� !�

R
sj+1� are necessary to normalize the arguments

of the redex that is traced. When regarding innermost reductions, arguments of
a redex should be in normal form before the redex is contracted. Moreover, when
concentrating on innermost reductions, the reductions of the arguments to normal
form should also be innermost reductions. This results in the following restricted
notion of a chain.

2.3 Definition (Innermost R-chains). Let R(D;C;R) be a TRS. A sequence of
dependency pairs hs1; t1i hs2; t2i : : : is called an innermost R-chain if there exists a

substitution �, such that all sj� are in normal form and tj�
i
!�
R
sj+1� holds for

every two consecutive pairs hsj ; tji and hsj+1; tj+1i in the sequence.

We always assume that di�erent (occurrences of) dependency pairs have disjoint
sets of variables and we always regard substitutions whose domain may be in�nite.
Hence, in our example we have the innermost chain

hG(s(x1));G(x1)i hG(s(x2));G(x2)i hG(s(x3));G(x3)i

because G(x1)�
i
!�
R
G(s(x2))� and G(x2)�

i
!�
R
G(s(x3))� holds for the substitution

� that replaces x1 by s(s(x3)) and x2 by s(x3). In fact any �nite sequence of
the dependency pair hG(s(x));G(x)i is an innermost chain. In the next section we
will demonstrate that the above TRS actually has no in�nite innermost chain. The
following theorem shows that the absence of in�nite innermost chains is a (su�cient
and necessary) criterion for innermost normalisation.

2.4 Theorem (Innermost Normalisation Criterion). A TRS R is innermost nor-
malising if and only if no in�nite innermost R-chain exists.

Proof. Su�cient Criterion

Let t be a term that starts an in�nite innermost reduction. Then the term t contains
a subterm1 f1(~u1) that starts an in�nite innermost reduction, but none of the

1We denote tuples of terms t1; : : : ; tn by ~t.
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terms ~u1 starts an in�nite innermost reduction, i.e. the terms ~u1 are innermost
normalising.
Let us consider an in�nite innermost reduction starting with f1(~u1). The arguments
~u1 are reduced innermost to normal form, say ~v1, and then a rewrite rule f1(~w1)!

r1 is applied to f1(~v1), i.e. a substitution �1 exists such that f1(~v1) = f1(~w1)�1
i
!R

r1�1. Hence, we have ~u1
i
!�
R ~w1�1 and the terms ~w1�1 are in normal form.

Now the in�nite innermost reduction continues with r1�1, i.e. the term r1�1 starts
an in�nite innermost reduction, too. Thus, r1 contains a subterm f2(~u2), i.e.
r1 = C[f2(~u2)] for some context C, such that f2(~u2)�1 starts an in�nite innermost
reduction and ~u2�1 are innermost normalising terms. The �rst dependency pair of
the in�nite innermost chain that we construct is hF1(~w1); F2(~u2)i corresponding to
the rewrite rule f1(~w1)! C[f2(~u2)].
The other dependency pairs of the in�nite innermost chain are determined in the
same way: Let hFi�1(~wi�1); Fi(~ui)i be a dependency pair such that fi(~ui)�i�1 starts
an in�nite innermost reduction and the terms ~ui�i�1 are innermost normalising.
Again, in zero or more steps fi(~ui)�i�1 reduces innermost to fi(~vi) with ~vi normal
forms. A rewrite rule fi(~wi) ! ri can be applied to fi(~vi) such that ri�i starts an
in�nite innermost reduction for some substitution �i with ~vi = ~wi�i.
Similar to the observations above, since ri�i starts an in�nite innermost reduction,
there must be a subterm fi+1(~ui+1) in ri such that fi+1(~ui+1)�i starts an in�nite
innermost reduction and ~ui+1�i are innermost normalising terms. This results in
the i-th dependency pair hFi(~wi); Fi+1(~ui+1)i in the innermost chain. In this way,
one obtains the in�nite sequence

hF1(~w1); F2(~u2)i hF2(~w2); F3(~u3)i hF3(~w3); F4(~u4)i : : :

It remains to prove that this sequence is really an innermost R-chain.

Note that Fi(~ui�i�1)
i
!�
R
Fi(~vi) where ~vi = ~wi�i and all terms ~wi�i and thus all

terms Fi(~wi)�i are normal forms. Since we assume that the variables of consecutive
dependency pairs are disjoint, we obtain one substitution � = �1 � �2 � �3 � : : :

such that Fi(~ui)�
i
!�
R
Fi(~wi)� for all i. Thus, this sequence is indeed an in�nite

innermost R-chain.

Necessary Criterion

We prove that any in�nite innermost R-chain can be transformed into an in�nite
innermost reduction. Assume there exists an in�nite innermost chain.

hF1(~s1); F2(~t2)i hF2(~s2); F3(~t3)i hF3(~s3); F4(~t4)i : : :

Hence, there must be a substitution � such that all Fj(~sj)� are in normal form and
such that

F2(~t2)�
i
!�
RF2(~s2)�; F3(~t3)�

i
!�
RF3(~s3)�; : : : ;

resp. fj(~tj)�
i
!�
R
fj(~sj)�, as R contains no Fj -rules for upper case symbols Fj .

Note that every dependency pair hF (~s); G(~t)i corresponds to a rewrite rule f(~s)!
C[g(~t)] for some context C. Since no redex occurs in ~s�, this reduction also follows

the innermost strategy, i.e. f(~s)�
i
!R C[g(~t)]�. Therefore, we obtain the following

in�nite innermost reduction.

f1(~s1)�
i
!R C1[f2(~t2)]�

i
!�
RC1[f2(~s2)]�

i
!R C1[C2[f3(~t3)]]�

i
!�
R : : :

ut

4



3. Automation of Innermost Normalisation Proofs

The advantage of our innermost normalisation criterion is that it is particularly
well suited for automation. In this section we present a method for proving the
absence of in�nite innermost chains automatically. For this automation we assume
the TRSs to be �nite, such that only �nitely many dependency pairs need to be
considered.

Assume that there is a sequence hs1; t1ihs2; t2ihs3; t3i : : : of dependency pairs
and a substitution � such that all terms sj� are in normal form and such that tj�
reduces innermost to sj+1� for all j. Then to prove that this sequence is �nite, it
su�ces to �nd a well-founded2 quasi-ordering % such that

s1� � t1� % s2� � t2� % s3� � t3� : : : (4)

In other words, we search for a quasi-ordering such that terms in dependency pairs
are decreasing and terms in between dependency pairs are weakly decreasing. The
reason for only demanding the weak inequalities tj� % sj+1� is that the terms tj�
and sj+1� are often identical.

To automate this search for a suitable ordering we now present a procedure
which, given a TRS, generates a set of constraints which are su�cient for (4).
Then standard techniques developed for termination proofs of TRSs can be used to
synthesize a well-founded quasi-ordering satisfying these constraints.

In the following we restrict ourselves to quasi-orderings where both % and �
are closed under substitution. To ensure that all dependency pairs are decreasing,
we demand s � t for all dependency pairs hs; ti. In our example this results in the
following constraints, cf. (1), (2), (3):

F(g(x); s(0); y) � F(y; y; g(x)); F(g(x); s(0); y) � G(x); G(s(x)) � G(x): (5)

Moreover, we have to ensure tj� % sj+1� whenever tj�
i
!�
R
sj+1� holds. For that

purpose we demand the constraints l%r for all those rules l ! r that can be used
in an innermost reduction of tj�. Note that as all terms sj� are normal, � is a
normal substitution (i.e. it instantiates all variables with normal forms). Hence,
for the dependency pairs (2) and (3) we directly obtain that no rule can ever be
used to reduce a normal instantiation of G(x) (because G is no de�ned symbol).
The only dependency pair whose right-hand side can be reduced if its variables are
instantiated with normal forms is (1), because this is a dependency pair with de�ned
symbols in the right-hand side. As the only de�ned symbol in F(y; y; g(x)) is g, the
only rules that may be applied on normal instantiations of this term are the two
g-rules of the TRS. Since these g-rules can never introduce a new redex with root
symbol f, these two g-rules are the only rules that can be used to reduce any normal
instantiation of F(y; y; g(x)). Hence, in this example we only have to demand that
these rules should be weakly decreasing.

g(s(x))% s(g(x)); g(0)%0 (6)

In general, to determine the usable rules, i.e. (a superset of) those rules that may
possibly be used in a reduction of a normal instantiation of t, we proceed as follows.
If t contains a de�ned symbol f , then all f -rules are usable and furthermore, all
rules that are usable for right-hand sides of f -rules are also usable for t.

3.1 Definition (Usable Rules). Let R(D;C;R) be a TRS. For any f 2 D let
Rls(f) = ff(~s) ! rjf(~s) ! r in Rg. For any term t, U(t) is the smallest sub-
set of R such that

2A quasi-ordering % is a re
exive and transitive relation and % is called well-founded if its
strict part � is well founded.
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� U(x) = ;,

� U(f(t1; : : : ; tn)) =

8<
:

Rls(f) [
S
l!r2Rls(f) U(r) [ U(t1) [ : : : [ U(tn)

if f 2 D

U(t1) [ : : : [ U(tn) if f 62 D

Hence, we have U(F(y; y; g(x))) = Rls(g) = fg(s(x))! s(g(x)); g(0)! 0g:
So the constraints (6) ensure that whenever F(y; y; g(x)) is instantiated by a

normal substitution �, then reductions can only decrease the value of the subterm
g(x)�. However, we have to guarantee that the value of the whole term F(y; y; g(x))
is weakly decreasing if an instantiation of g(x) is replaced by a smaller term. For that
purpose, we demand that F(y; y; g(x)) must be weakly monotonic on the position of
its subterm g(x), i.e. we also have to demand the following constraint:

x1 %x2 ) F(y; y; x1)%F(y; y; x2): (7)

To ease the formalization we only compute such monotonicity constraints for the
tuple symbols and for all other (lower case) symbols we demand weak monotonicity
in all of their arguments. In general, we obtain the following procedure for the
generation of constraints.

3.2 Theorem (Proving Innermost Normalisation). Let R be a TRS and let % be a
well-founded quasi-ordering where both % and � are closed under substitution. If %
is weakly monotonic on all symbols apart from the tuple symbols and if % satis�es
the following constraints for all dependency pairs hs; ti

(a) s � t,

(b) l%r for all usable rules l ! r in U(t),

(c) x1 %y1 ^ : : : ^ xn %yn ) C[x1; : : : ; xn]%C[y1; : : : ; yn], where C is a con-
text without de�ned symbols and f1; : : : ; fn are de�ned symbols such that
t = C[f1(~u1); : : : ; fn(~un)],

then R is innermost normalising.

Proof. Suppose hs1; t1ihs2; t2i : : : is an in�nite innermost R-chain. Then there
exists a substitution � such that sj� is in normal form and tj� reduces innermost
to sj+1� for all j. Hence, � replaces all variables by normal forms and therefore,
the only rules that can be applied in this reduction are the usable rules U(tj). All
usable rules are weakly decreasing and the terms tj are weakly monotonic on those
positions where they are applied. (This also holds for reductions in ~ui, because
all lower case symbols are weakly monotonic.) Hence, we have tj�%sj+1�. This
results in an in�nite decreasing sequence s1� � t1�%s2� � t2�% : : : which is a
contradiction to the well-foundedness of % . Thus, no in�nite innermost R-chain
exists and by Thm. 2.4, the TRS is innermost normalising. ut

Hence, in our example to prove innermost normalisation it is su�cient to �nd
a well-founded quasi-ordering satisfying the constraints in (5), (6), and (7). For
that purpose one may for instance use the well-known technique of synthesizing
polynomial orderings [Lan79]. For example, these constraints are ful�lled by the
polynomial ordering where the constant 0 is mapped to the number 0, s(x) is mapped
to x + 1, g(x) is mapped to x + 2, F(x; y; z) is mapped to (x � y)2 + 1, and G(x)
is mapped to x. Methods to synthesize polynomial orderings automatically have
for instance been developed in [Ste94, Gie95b]. Note that for our technique we
do not require the quasi-ordering to be weakly monotonic on tuple symbols. The
only monotonicity constraint in our example is (7), which is obviously satis�ed
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as F(x; y; z) is mapped to a polynomial which is weakly monotonic3 in its third
argument z. However, this polynomial is not weakly monotonic in x or y.

In this way, innermost normalisation of our example can be proved automati-
cally, i.e. this technique allows the application of standard techniques for innermost
normalisation proofs, even if the TRS is not terminating. Moreover, using the re-
sults of [Gra95], Thm. 3.2 can also be applied for proving termination of TRSs that
are non-overlapping (or for locally con
uent overlay systems).

As an example regard the following TRS by T. Kolbe where quot(x; y; z) is used

to compute 1 +
�
x�y

z

�
, if x � y and z 6= 0 (i.e. quot(x; y; y) computes

j
x
y

k
).

quot(0; s(y); s(z)) ! 0

quot(s(x); s(y); z) ! quot(x; y; z)
quot(x; 0; s(z)) ! s(quot(x; s(z); s(z)))

A problem with virtually all automatic approaches for termination proofs is that
they are restricted to simpli�cation orderings [Der79, Ste95b] and therefore can
only prove termination of TRS that are simply terminating. However, there are
numerous relevant and important terminating TRSs where simpli�cation orderings
fail. For instance, the above system is not simply terminating (the left-hand side of
the last rule is embedded in the right-hand side if z is instantiated with 0).

Nevertheless, with our technique we can prove innermost normalisation and
therefore termination of this system automatically. As quot is the only de�ned
symbol of this system, we obtain the following dependency pairs (where Q denotes
the tuple symbol for quot).

hQ(s(x); s(y); z);Q(x; y; z)i (8)

hQ(x; 0; s(z));Q(x; s(z); s(z))i (9)

Note that in this example there are no usable rules, as in the right-hand sides of the
dependency pairs no de�ned symbols occur. Hence, due to Thm. 3.2 we only have to
�nd a well-founded quasi-ordering such that both dependency pairs are decreasing.
These constraints are for instance satis�ed by the polynomial ordering where 0 is
mapped to the number 0, s(x) is mapped to x + 1, and Q(x; y; z) is mapped to
x + (x � y + z)2. Hence, innermost normalisation and thereby also termination
of this TRS is proved (as it is non-overlapping). Note that again we bene�t from
the fact that the tuple symbol Q need not be weakly monotonic in its arguments.
Therefore an interpretation like the polynomial x+(x�y+ z)2 may be used, which
is not weakly monotonic in any of its arguments. In fact, if the set of usable rules
is empty, the quasi-ordering need not even be weakly monotonic for any symbol.

4. A Re�nement using Innermost Dependency Graphs

While the method of Thm. 3.2 can be very successfully used for both innermost
normalisation and termination proofs, in this section we introduce a re�nement of
this approach, i.e. we show how the constraints obtained can be weakened. By
this weakening, the (automatic) search for a suitable quasi-ordering satisfying these
constraints can be eased signi�cantly.

3When using polynomial interpretations, the monotonicity constraint (c) of Thm. 3.2 can also
be represented as an inequality. For instance, if F is mapped to some polynomial [F], then instead
of (7) one could demand that the partial derivative of [F](y; y; x) with respect to x should be

non-negative, i.e. @[F](y;y;x)
@x

� 0, cf. [Gie95b].
If one uses other techniques (e.g. path orderings) which can only generate monotonic orderings,
then of course one may drop the monotonicity constraint (c).
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In order to ensure that every possible in�nite innermost chain would result in an
in�nite decreasing sequence of terms, in the preceding section we demanded s � t

for all dependency pairs hs; ti. However, in many examples it is su�cient if just
some of the dependency pairs are decreasing.

For instance, in the quot-example up to now we demanded that both dependency
pairs (8) and (9) had to be decreasing. However, two occurrences of the dependency
pair (9) can never follow each other in a chain, because Q(x1; s(z1); s(z1))� can
never reduce to any instantiation of Q(x2; 0; s(z2)). The reason is that the second
arguments s(z1) resp. 0 of these two terms have di�erent constructor root symbols.
Hence, any possible in�nite chain would contain in�nitely many occurrences of the
other dependency pair (8). Therefore it is su�cient if (8) is decreasing and if (9) is
just weakly decreasing. In this way, we obtain the following (weakened) constraints.

Q(s(x); s(y); z) � Q(x; y; z) (10)

Q(x; 0; s(z)) % Q(x; s(z); s(z)) (11)

In general, to determine those dependency pairs which may possibly follow each
other in innermost chains, we de�ne the following graph4.

4.1 Definition (Innermost Dependency Graph). The innermost dependency graph
of a TRS R is a directed graph whose nodes are the dependency pairs and there is

an arc from hs; ti to hv; wi if there exists a normal substitution � such that t�
i
!�
R
v�

and v� is a normal form.

(8) (9)

Figure 1: Innermost Dependency graph of the quot TRS

For instance, in the innermost dependency graph for the quot example there are
arcs from (8) to itself and to (9), and there is an arc from (9) to (8) (but not to
itself).

Now any in�nite innermost chain corresponds to a cycle in the innermost de-
pendency graph. Hence, it is su�cient that s � t holds for at least one dependency
pair on every cycle and that s% t holds for the other dependency pairs on the cycles.

4.2 Theorem (Proving IN with Innermost Dependency Graphs). Let R be a TRS
and let % be a well-founded quasi-ordering where both % and � are closed under
substitution. If % is weakly monotonic on all symbols apart from the tuple symbols,
if % satis�es the following constraints for all dependency pairs hs; ti on a cycle in
the innermost dependency graph

(a) s% t,

(b) l%r for all usable rules l ! r in U(t),

4Note that the conditions in Def. 4.1 are weaker than the conditions in the de�nition of inner-
most chains (Def. 2.3): Instead of using one \global" substitution � for all dependency pairs, now
one may use di�erent \local" substitutions �. Moreover, we only demand that these � should be
normal substitutions and that v� must be normal (but s� does not have to be in normal form
any more). The reason for this weakening is that the conditions of Def. 4.1 are more suitable for
automation.
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(c) x1 %y1 ^ : : : ^ xn %yn ) C[x1; : : : ; xn]%C[y1; : : : ; yn], where C is a con-
text without de�ned symbols and f1; : : : ; fn are de�ned symbols such that
t = C[f1(~u1); : : : ; fn(~un)],

and if s � t holds for at least one dependency pair hs; ti on each cycle in the
innermost dependency graph, then R is innermost normalising.

Proof. Every possible in�nite innermost R-chain corresponds to an in�nite path
in the innermost dependency graph. This in�nite path traverses at least one cycle
in�nitely many times. Note that s � t holds for one dependency pair hs; ti on
this cycle and that this dependency pair must occur in�nitely often in the in�nite
innermost chain. As we may assume, without loss of generality, that all other
dependency pairs in an in�nite innermost chain are also on cycles in the innermost
dependency graph, similar to the proof of Thm. 3.2 we again obtain an in�nite
sequence of inequalities of which in�nitely many inequalities are strict. This is a
contradiction to the well-foundedness of % . Thus, no in�nite innermost R-chain
exists and by Thm. 2.4, the TRS is innermost normalising. ut

Hence, in the quot example the constraints (10) and (11) are in fact su�cient
for innermost normalisation. A suitable quasi-ordering satisfying these weakened
constraints can easily be synthesized (for instance, one could use the polynomial
interpretation where 0 and s are interpreted as usual and where Q(x; y; z) is mapped
to x). This example demonstrates that this weakening of the constraints often
enables the use of much simpler orderings (e.g. now we can use a linear, weakly
monotonic polynomial ordering whereas for the original constraints of Sect. 3 we
needed a non-weakly monotonic polynomial of degree 2).

However, for an automation of Thm. 4.2 we have to construct the innermost
dependency graph. Unfortunately, this cannot be done automatically, since for two
terms t and v it is undecidable whether there exists a normal substitution � such
that t� reduces innermost to a normal form v�. Hence, we can only approximate
this graph by computing a supergraph containing the innermost dependency graph.
Note that t� may only reduce to v� for some normal substitution �, if either t has a
de�ned root symbol or if both t and v have the same constructor root symbol. Let
cap(t) denote the result of replacing all subterms in t with a de�ned root symbol
by di�erent fresh variables. Then t� may only reduce to v� if cap(t) and v are
uni�able. Moreover, the most general uni�er (mgu) of cap(t) and v must be a
normal substitution.

4.3 Theorem (Computing Innermost Dependency Graphs). Let R be a TRS. If
t� !�

R v� holds for some normal substitution � such that v� is a normal form,
then cap(t) and v unify and their mgu is a normal substitution.

Proof. By induction on the structure of t we show that if a normal substitution
� and a normal term u exists such that t� !�

R u, then there exists a normal
substitution � (whose domain only includes variables that were newly introduced
in the construction of cap(t) ) such that5 cap(t)�� = u. Thus in particular, if
t� !�

R
v�, we have cap(t)�� = v� (= v�� , because the variables of v� do not

occur in the domain of �). Hence, cap(t) and v unify. Moreover, for the mgu �

of cap(t) and v, there exists a substitution � with �� = �� . As both � and � are
normal, � must be a normal substitution, too.

If t is a variable, then t� is in normal form for any normal substitution �, hence
t� equals u. Moreover, we have cap(t) = t. So cap(t)� = u, i.e. in this case � is
the empty substitution.

5Here, \t��" is de�ned as \(t�)�", i.e. � is applied �rst.
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If the root symbol of t is de�ned, then cap(t) = x for some fresh variable x. Let
� replace x by u. Then we have cap(t)�� = cap(t)� = u and � is normal.

If t = c(t1; : : : ; tk) for some constructor c 2 C, then u has to be of the form
c(u1; : : : ; uk) and ti� !�

R
ui holds for all i. By the induction hypothesis we obtain

that normal substitutions �i exist such that cap(ti)��i = ui for all i. Note that
those variables in cap(ti) that were introduced by cap are disjoint from the newly
introduced variables in cap(tj) (for i 6= j). Hence, if � = �1�: : :��k, then for all i we
have cap(ti)�� = ui resp. cap(t)�� = c(cap(t1); : : : ;cap(tk))�� = c(u1; : : : ; uk) =
u and again, � is normal. ut

Now an approximation of the innermost dependency graph is computed by draw-
ing an arc from hs; ti to hv; wi if cap(t) and v unify (using a normal mgu �). In
this way we can compute the innermost dependency graph in the quot example au-
tomatically. There are also examples where the innermost dependency graph does
not contain any cycles.

f(x; g(x)) ! f(1; g(x))
g(1) ! g(0)

In this example, the �rst dependency pair hF(x; g(x));F(1; g(x))i does not occur
on a cycle in the innermost dependency graph, although cap(F(1; g(x))) = F(1; y)
uni�es with F(x; g(x)) using a mgu that replaces x by 1 and y by g(1). However,
g(1) is not a normal form and hence, this mgu is not a normal substitution. The
second dependency pair hG(1);G(0)i cannot occur on a cycle either, since G(0) does
not unify with G(1). Hence, using the re�ned technique of Thm. 4.2 we obtain no
constraint at all, i.e. innermost normalisation can be proved by only computing the
(approximation of) the innermost dependency graph.

5. Computing Dependency Graphs by Narrowing

To perform innermost normalisation proofs according to the method of Thm. 4.2 we
have to compute a graph containing the innermost dependency graph. However, for
some examples the approximation presented in the preceding section is too rough.
For instance, let us replace the last rule of the quot system by the following three
rules.

quot(x; 0; s(z)) ! s(quot(x; z + s(0); s(z)))
0+ y ! y

s(x) + y ! s(x+ y)

Now instead of dependency pair (9) we obtain

hQ(x; 0; s(z));Q(x; z + s(0); s(z))i: (12)

Note that in our approximation of the innermost dependency graph there would
be an arc from (12) to itself, because after replacing z + s(0) by a new variable,
the right- and the left-hand side of (12) obviously unify (and the mgu is normal).
Hence, due to Thm. 4.2 we would have to �nd an ordering such that (12) is strictly
decreasing. But then no linear or weakly monotonic polynomial ordering satis�es
all resulting inequalities in this example.

However, in the real innermost dependency graph, there is no arc from (12) to
itself, because, similar to the original dependency pair (9), there is no substitution
� such that (z + s(0))� reduces to 0. Hence, there is no cycle consisting of (12)
only and therefore it is su�cient if (12) is just weakly decreasing. In this way,
the simple (linear) polynomial ordering of the last section would also satisfy the
constraints resulting from this example (if the tuple symbol PLUS(x; y) is mapped
to x). Therefore to ease the innermost normalisation (resp. termination) proof of
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this example we need a method to compute a better approximation of the innermost
dependency graph.

Hence, we present a better technique to determine whether for two terms t and
v there exists a normal substitution � such that t� reduces innermost to the normal
form v�. For this purpose we use narrowing (cf. e.g. [Hul80]).

5.1 Definition (Narrowing). Let R be a TRS. A term t narrows to a term q (de-
noted by t R q), if there exists a nonvariable position p in t, � is the most general
uni�er of tjp and l for some rewrite rule l ! r of R, and q = t�[r�]p. (Here, the
variables of l! r must have been renamed to fresh variables.)

To �nd out whether t�
i
!�
Rv� holds for some normal substitution �, up to now

we checked whether cap(t) is uni�able with v. However, in those cases where t

itself is not already uni�able with v (i.e. in those cases where at least one rule of R
is needed to reduce t� to v�), instead of examining t and v we may �rst perform
all possible narrowing steps on t (resulting in new terms t1; : : : ; tn). Now it su�ces
to check whether tk� reduces innermost to v� for one k 2 f1; : : : ; ng.

For example, to �nd out whether Q(x; z + s(0); s(z))�
i
!�
R
Q(x2; 0; s(z2))� holds

for some normal substitution � we �rst compute all terms that Q(: : : z + s(0) : : :)
narrows to. Here, z + s(0) is the only nonvariable subterm which is uni�able with
a left-hand side of a rule. Hence, we only have

Q(: : : z + s(0) : : :)  R Q(: : : s(0) : : :) by the �rst + rule, and
Q(: : : z + s(0) : : :)  R Q(: : : s(x+ s(0)) : : :) by the second + rule.

Note that any term t can only be narrowed in one step to �nitely many terms
t1; : : : ; tn (up to variable renaming) and these terms t1; : : : ; tn can easily be com-
puted automatically.

In our example, now it su�ces to check whether a normal substitution � exists
such that Q(: : : s(0) : : :)� or Q(: : : s(x + s(0)) : : :)� reduces innermost to a normal
form Q(: : : 0 : : :)�. For that purpose we can use the technique presented in Thm. 4.3.
This technique immediately proves that such a substitution cannot exist because
neither s(0) nor cap(s(x + s(0))) unify with the subterm 0.

Of course instead of using the technique of Thm. 4.3 on the obtained terms,
we could also apply narrowing again and replace Q(: : : s(x + s(0)) : : :) by those

terms it narrows to. In general, to determine whether t�
i
!�

R
v� holds for some

normal substitution � one can apply an arbitrary number of narrowing steps to t.
Subsequently, the method of Thm. 4.3 is applied to test whether after application
of cap one of the resulting terms is uni�able with v (using a normal mgu).

By the use of narrowing we obtain a method to compute much better approxima-
tions of innermost dependency graphs. For instance, if in our example we perform
at least one narrowing step, then we can determine that the dependency pair (12)
does not form a cycle in the innermost dependency graph and then termination
can again be veri�ed using a linear, weakly monotonic polynomial ordering. The
following theorem proves the soundness of this approach.

5.2 Theorem (Computing Dependency Graphs by Narrowing). Let R be a TRS
and let t; v be terms with disjoint sets of variables. If there exists a normal substi-

tution � such that t�
i
!�
R
v� and v� is a normal form, then

� t and v are uni�able, or

� there exists a term q and a normal substitution � such that t R q,

q�
i
!�
R
v� and v� is a normal form.
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Proof. The proof is done by induction on the length of the reduction t�
i
!�
R
v�.

If the length is zero, then t and v unify. Otherwise we have t�
i
!R t0

i
!�
R
v� for

some term t0. As � is a normal substitution, the reduction t�
i
!R t0 cannot take

place \in �". Hence, t contains some subterm f(~u) such that a rule l ! r has
been applied to f(~u)�. In other words, l matches f(~u)� (i.e. l� = f(~u)�, where
� is a normal substitution, because for innermost reductions the terms ~u must be
in normal form). Hence, the reduction has the following form: t� = t�[f(~u)�]p =

t�[l�]p
i
!R t�[r�]p = t0: Similar to Def. 5.1 we assume that the variables of l ! r

have been renamed to fresh ones. Then �� is a uni�er of l and f(~u) and hence,
there also exists a mgu �. By the de�nition of most general uni�ers there must also
be a substitution � such that �� = �� . Here, � is a normal substitution because
both � and � are normal. As the variables of t and v are disjoint, we can assume
that � never introduces any variables from v. Thus, we may de�ne � to be like �

for the variables of v, i.e. v� = v� is a normal form.
Let q be the term t�[r�]p. Then t  R q holds by the de�nition of narrowing.

Moreover we have q� = t�� [r�� ]p = t��[r��]p = t�[r�]p = t0
i
!�
R
v� = v�: ut

6. Conclusion and Related Work

We have introduced a technique to automate innermost normalisation proofs of
term rewriting systems. For that purpose we have developed a new criterion for
innermost normalisation which is based on the concept of dependency pairs. To
automate the checking of this criterion, a set of constraints is synthesized for each
TRS and standard techniques developed for termination proofs can be used to
generate a well-founded ordering satisfying these constraints. If such an ordering
can be found, then innermost normalisation of the system is proved.

Our approach is the �rst automatic method which can also prove innermost nor-
malisation of systems that are not terminating. Moreover, our technique can also
very successfully be used for termination proofs of non-overlapping systems, because
for those systems innermost normalisation is already su�cient for termination. We
implemented our technique for the generation of constraints and a large collection
of TRSs of which innermost normalisation resp. termination has been proved auto-
matically can be found in Sect. 7 and Sect. 8. These examples include well-known
non-simply terminating challenge problems from literature as well as many practi-
cally relevant TRSs from di�erent areas of computer science (such as arithmetical
operations, several sorting algorithms, a reachability algorithm on graphs, a TRS
for substitutions in the lambda calculus etc.).

The concept of dependency pairs has been introduced in [Art96] and a �rst
automation of this concept can be found in [AG96b]. However, these approaches
were restricted to non-overlapping constructor systems without nested recursion,
whereas in the present paper we dealt with arbitrary rewrite systems. Moreover, in
contrast to these �rst approaches, in this paper we developed a complete criterion
for innermost normalisation and proved its soundness in a short and easy way
(while the corresponding proof in [Art96] was based on semantic labelling [Zan95]).
Finally, the introduction of innermost dependency graphs led to a considerably more
powerful technique than the method proposed in [AG96b].

Dependency pairs have a connection to semantic labelling [Zan95] (resp. to self -
labelling [MOZ96]). However, compared to semantic labelling the dependency pair
approach is better suited for automation, because here one does not have to �nd
an appropriate semantic interpretation. At �rst sight, there also seems to be a
similarity between innermost chains and innermost forward closures [LM78, DH95],
but it turns out that these approaches are fundamentally di�erent. While forward
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closures restrict the application of rules (to that part of a term created by previous
rewrites), the dependency pair approach restricts the examination of terms (to
those subterms that may possibly be reduced further). So in contrast to innermost
chains, innermost forward closures are reductions. Moreover, while the dependency
pair approach is very well suited for automation, we do not know of any approach
to automate the forward closure approach.

As our technique can only be applied for termination proofs if the TRS is non-
overlapping (or at least an overlay system with joinable critical pairs), in [AG97a] we
also showed how dependency pairs can be used for termination proofs of arbitrary
TRSs. However, as long as the system is non-overlapping, it is always advantageous
to prove innermost normalisation only (instead of termination). For instance, ter-
mination of the quot system can easily be proved with the technique introduced in
the present paper, whereas the constraints generated by the method of [AG97a] are
not satis�ed by any quasi-ordering which is amenable to automation (i.e. by any
total or quasi-simpli�cation ordering).

Most previous methods developed for automatic termination proofs are based on
simpli�cation orderings. For non-overlapping systems, these methods should always
be combined with our technique, because there are many examples where direct ter-
mination proofs using the standard methods fail, but these methods can neverthe-
less synthesize an ordering satisfying the constraints resulting from our technique.
Moreover, whenever a direct termination proof is possible with a simpli�cation or-
dering, then this simpli�cation ordering also satis�es the constraints resulting from
our technique. The only other approach for automated termination proofs of non-
simply terminating systems is a technique for generating transformation orderings
[BL90] by Steinbach [Ste95a]. Several examples which can automatically be proved
terminating by our technique, but where Steinbach's approach fails, can be found
in Sect. 8.

7. Examples of Innermost Normalisation Proofs

In this section and the next section a collection of examples is listed that demon-
strates the power of the described method.

The examples in this section are term rewriting systems that are not termi-
nating. Thus all methods based on proving termination fail in proving innermost
normalisation of these term rewriting systems. It is shown how our method can
automatically derive innermost normalisation of these term rewriting systems.

The examples in the next section are term rewriting systems for which innermost
normalisation su�ces to guarantee termination by the results of Gramlich [Gra95,
Gra96]. Many of these examples are term rewriting systems that are not simply
terminating. Therefore, their termination cannot be shown by most other automatic
methods. However, by our approach they can be proved terminating.

For proving termination of the examples, our technique �rst transforms the TRS
into a set of constraints. Three kinds of such constraints can be distinguished: For
each usable rewrite rule l ! r we obtain an inequality l%r and for each dependency
pair hs; ti on a cycle of the innermost dependency graph we obtain the inequality
s% t. Furthermore, for each cycle one of these inequalities must be strict, i.e. s � t.
Third, for each such dependency pair hs; ti we must demand that t must be weakly
monotonic on all positions p where the root of tjp is de�ned. We perform narrowing
to obtain a better approximation of the innermost dependency graph, therefore
we also mention the number of narrowing steps required for each example under
consideration (unless narrowing is not needed).

After having obtained the constraints, a well-founded quasi-ordering is gener-
ated, which is weakly monotonic for all symbols apart from the tuple symbols and
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which satis�es these constraints. In the following collection of examples we use two
di�erent methods for that purpose.

The �rst approach is the well-known approach of synthesizing polynomial order-
ings [Lan79]. Several techniques exist to derive polynomial interpretations automat-
ically, e.g. [Ste94, Gie95b]. In contrast to the use of polynomial orderings for direct
termination proofs, we can use polynomial interpretations with weakly monotonic
polynomials (and tuple symbols may be mapped to polynomials that are not even
weakly monotonic on all arguments). For instance, we may map a binary function
symbol f(x; y) to the polynomial x+1 which is not strictly monotonic in its second
argument. Moreover, we can map any function symbol to a constant.

The second approach is based on path orderings (e.g. recursive or lexicographic
path orderings) [Pla78, Der82, DH95, Ste95b]. Path orderings are simpli�cation
orderings that are easily generated automatically. Note that path orderings are
always strictly monotonic, whereas in our method we only need a weakly monotonic
ordering. For that reason, before synthesizing a suitable path ordering some of the
arguments of function symbols may be eliminated. More precisely, any function
symbol f can be replaced by a function symbol f of smaller arity. For instance, the
second argument of a binary function f may be eliminated. In that case every term
f(t; s) in the inequalities is replaced by f(t). By comparing terms resulting from
this replacement (instead of the original terms) we can take advantage of the fact
that f does not have to be strictly monotonic in its second argument.

Moreover, we also allow the possibility that a function symbol may be mapped
to one of its arguments. So a binary symbol f could also be mapped to its �rst
argument. Thus, any term f(t; s) in the inequalities would be replaced by t.

Note that there exist only �nitely many (and only few) di�erent possibilities to
eliminate arguments of function symbols. Therefore, all these possibilities can be
checked automatically.

7.1. First Running Example

For the �rst example of this paper

f(g(x); s(0); y) ! f(y; y; g(x))
g(s(x)) ! s(g(x))

g(0) ! 0

only one dependency pair is on a cycle of the innermost dependency graph, viz.
hG(s(x));G(x)i. Since no de�ned symbols occur in G(x), there are no usable rules.
Therefore, the only constraint on the ordering is given by

G(s(x)) � G(x)

which is easily satis�ed by the recursive path ordering.

7.2. Toyama Example

The most famous example of a TRS that is innermost normalising, but not termi-
nating, is the following system from [Toy87].

f(0; 1; x) ! f(x; x; x)
g(x; y) ! x

g(x; y) ! y

The TRS has only one dependency pair, viz. hF(0; 1; x);F(x; x; x)i. This dependency
pair does not occur on a cycle of the innermost dependency graph, since F(x1; x1; x1)
does not unify with F(0; 1; x2). Thus, no inequalities are generated and therefore
the TRS is innermost normalising.
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7.3. Variations on the Toyama Example, Version 1

The following modi�cation of the Toyama example

f(g(x; y); x; z) ! f(z; z; z)
g(x; y) ! x

g(x; y) ! y

is not a constructor system, since the subterm g(x; y) occurs in the left-hand side of
the �rst rule. Again the innermost dependency graph does not contain any cycles
and hence, this TRS is innermost normalising.

7.4. Variations on the Toyama Example, Version 2

The TRS
f(g(x); x; y) ! f(y; y; g(y))
g(g(x)) ! g(x)

is no constructor system either. The dependency pair hF(g(x); x; y);F(y; y; g(y))i
cannot occur in an in�nite innermost chain, since cap(F(y1; y1; g(y1))) does not
unify with F(g(x2); x2; y2). Hence, we only obtain the constraint

G(g(x)) � G(x)

as there are no usable rules. As this constraint is satis�ed by the recursive path
ordering, the TRS is innermost normalising.

7.5. Narrowing required, Version 1

In the following variant of the Toyama example

f(0; 1; x) ! f(g(x; x); x; x)
g(x; y) ! x

g(x; y) ! y

we need one narrowing step to determine that there are no cycles in the innermost
dependency graph (because f(g(x; x); x; x) narrows to f(x; x; x)). Hence, this TRS
is also innermost normalising.

7.6. Narrowing required, Version 2

Consider the following TRS

x+ 0 ! x

x+ s(y) ! s(x+ y)
f(0; s(0); x) ! f(x; x+ x; x)
g(x; y) ! x

g(x; y) ! y

which is not terminating as can be seen by the in�nite reduction

f(0; s(0); g(0; s(0))) ! f(g(0; s(0)); g(0; s(0)) + g(0; s(0)); g(0; s(0)))
! f(0; g(0; s(0)) + g(0; s(0)); g(0; s(0)))
! f(0; s(0) + g(0; s(0)); g(0; s(0)))
! f(0; s(0) + 0; g(0; s(0)))
! f(0; s(0); g(0; s(0)))
! : : :
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Innermost normalisation of this TRS can be proved if the innermost dependency
graph is computed using narrowing. The right projection of the dependency pair
hF(0; s(0); x);F(x; x + x; x)i narrows to both F(0; 0; 0) and F(s(y); s(s(y) + y); s(y)),
which are not uni�able with the left projection of this dependency pair. Therefore,
the only generated inequality for this TRS is

PLUS(x; s(y)) � PLUS(x; y)

which is satis�ed by the recursive path ordering. Hence, this TRS is proved inner-
most normalising.

7.7. Narrowing required, Version 3

The following modi�cation of the above TRS

x+ 0 ! x

x+ s(y) ! s(x+ y)
double(x) ! x+ x

f(0; s(0); x) ! f(x; double(x); x)
g(x; y) ! x

g(x; y) ! y

is also non-terminating. Similar to the example above, we now need two narrowing
steps to derive that the dependency pair

hF(0; s(0); x);F(x; double(x); x)i

does not occur on a cycle in the innermost dependency graph. The generated
inequality is therefore the same as for the above example, which is satis�ed by the
recursive path ordering. Hence, this TRS is proved innermost normalising.

7.8. Non-Normal Most General Uni�er

The following TRS
f(x; g(x)) ! f(1; g(x))
g(1) ! g(0)

is obviously not terminating as f(1; g(1)) can be reduced to itself.
The dependency pair

hF(x; g(x));F(1; g(x))i

does not occur on a cycle of the innermost dependency graph, because cap(F(1;
g(x1))) = F(1; y) and the mgu of F(1; y) and F(x2; g(x2)) is not a normal substi-
tution. (It replaces y by g(1).) Obviously, the other dependency pair hG(1);G(0)i
cannot occur on a cycle either. Thus, there are no cycles in the innermost depen-
dency graph. Hence, the TRS is innermost normalising.

7.9. Innermost Chains of Arbitrary Finite Length

The following non-terminating TRS has an innermost chain of any �nite length,
but it has no in�nite innermost chain, hence it is innermost normalising.

h(x; z) ! f(x; s(x); z)
f(x; y; g(x; y)) ! h(0; g(x; y))
g(0; y) ! 0

g(x; s(y)) ! g(x; y)
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An in�nite reduction is given by

h(0; g(0; s(0))! f(0; s(0); g(0; s(0)))! h(0; g(0; s(0))! : : :

The inequality resulting from the dependency pair on the only cycle in the innermost
dependency graph is

G(x; s(y)) � G(x; y):

(The reason is that the most general uni�er of cap(F(x1; s(x1); z1)) and F(x2; y2;
g(x2; y2)) is not normal.)

There are no usable rules. Thus, innermost normalisation is easily proved by
the polynomial interpretation that maps s(y) to y + 1 and G(x; y) to y.

7.10. Negative Coe�cients

The following non-terminating TRS has two dependency pairs on a cycle of the
innermost dependency graph, but it has no in�nite innermost chain. Hence, it is
innermost normalising.

h(0; x) ! f(0; x; x)
f(0; 1; x) ! h(x; x)
g(x; y) ! x

g(x; y) ! y

An in�nite reduction is given by

f(0; 1; g(0; 1)) ! h(g(0; 1); g(0; 1))

! h(0; g(0; 1))

! f(0; g(0; 1); g(0; 1))

! f(0; 1; g(0; 1)) ! : : :

The inequalities resulting from the dependency pairs on a cycle in the innermost
dependency graph are

H(0; x) % F(0; x; x)

F(0; 1; x) � H(x; x)

and there are no usable rules. These inequalities are satis�ed by the polynomial
interpretation where 0 and 1 are interpreted as usual and where H(x; y) and F(x; y; z)
are both mapped to (x� y)2.

Note that the constraints obtained in this example are not satis�ed by any
weakly monotonic total well-founded quasi-ordering. For that reason we used a
polynomial ordering with negative coe�cients.

7.11. Drosten example

A con
uent and innermost normalising TRS that is not terminating was given by
Drosten [Dro89].

f(0; 1; x) ! f(x; x; x)
f(x; y; z) ! 2

0 ! 2

1 ! 2

g(x; x; y) ! y

g(x; y; y) ! x

As there exists no cycle in the innermost dependency graph, the TRS is innermost
normalising.
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8. Examples of Termination Proofs

In this section a collection of non-overlapping resp. of locally con
uent overlay
systems is proved terminating by our technique. For these TRSs innermost nor-
malisation implies termination. Therefore, applying our technique to prove inner-
most normalisation to these TRSs results in an automatic approach for termination
proofs. In particular, this collection also includes several systems that are not simply
terminating, cf. [Der79, Ste95b].

As mentioned in Sect. 1, in contrast to termination there exist several modular-
ity results for innermost normalisation, e.g. [Kri95, Art96]. In particular, we can
use the following result for hierarchical combinations, cf. [AG96b]. A TRS is a hier-
archical combination of two subsystems if de�ned symbols of the �rst system occur
as constructors in the second system, but not vice versa. If R is such a hierarchical
combination of R0 with R1 and if the subsystem R0 is innermost normalising, then
one does not have to consider all dependency pairs of R, but it su�ces to examine
only those dependency pairs hF (: : :); G(: : :)i where f and g are de�ned symbols of
R1. In this way it is possible to prove innermost normalisation of hierarchical com-
binations by successively proving innermost normalisation of each subsystem and
by de�ning R0 to consist of those subsystems whose innermost normalisation has
already been proved before. (In other words, one only has to prove that there exists
no in�nite innermost chain consisting of dependency pairs of R1.) The justi�cation
for this approach is the following theorem.

8.1 Theorem (IN of Hierarchical Combinations). Let R(D0 [D1; C;R) be a hier-
archical combination of R0(D0; C;R0) and R1(D1; C [D0; R1). If R0 is innermost
normalising, then any in�nite innermost R-chain consists of dependency pairs of
R1 only.

Proof. Assume there exists an in�nite innermost R-chain in which an R0 de-
pendency pair occurs. By the de�nition of a hierarchical combination, then all
dependency pairs in this chain are dependency pairs of R0. For any innermost
chain, there is a substitution � such that all sj� are in normal form and such that

tj�
i
!�sj+1� holds for all consecutive pairs hsj ; tji, hsj+1; tj+1i in the sequence.
Since no de�ned symbols ofR1 occur in tj for any j and since all de�ned symbols

of R1 that occur in � occur in normal forms, any reduction tj�
i
!�sj+1� can only

use rules from R0. Therefore this sequence of dependency pairs is also an (in�nite)
innermost R0-chain. But due to Thm. 2.4 this is a contradiction to the fact that
R0 is innermost normalising. ut

This modularity result will be used in several of the following examples. How-
ever, in most of the examples innermost normalisation can also be proved without
application of the modularity result. In those of the following examples where the
modularity result is applied, the TRSs are presented as two sets of rewrite rules.
The upper system always denotes R0, whereas the bottom rules denote R1. In the
examples, termination of R0 is always easy to show (either by applying our method
again or by standard techniques, i.e. R0 is usually simply terminating).

First, our technique is used to prove termination of all examples of [AG96a] (Ex.
8.1 - 8.14). While the method of [AG96a, AG96b] was only applicable to a restricted
class of constructor systems (without nested recursion), the present technique can be
used for termination proofs of arbitrary locally con
uent overlay systems. Therefore,
subsequently we mention several examples that are no constructor systems or have
nested recursion, but where our technique can nevertheless prove termination.

In this paper we have presented a method for innermost normalisation which
can also be used for termination proofs if the TRS is non-overlapping or at least
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a locally con
uent overlay system. In [AG97a] however, we have also developed a
method for termination proofs of arbitrary TRSs (i.e. there, they do not have to be
locally con
uent overlay systems). Termination of the examples 8.15 - 8.27 can also
be proved by the method of [AG96c, AG97a]. However, as innermost normalisation
is essentially easier to prove than termination, when using the method of the present
paper, we often obtain considerably less constraints than when using the technique
of [AG97a]. For that reason, termination of the Examples 8.31 - 8.35 cannot be
shown automatically by the method of [AG97a] whereas with the technique of the
present paper we can prove innermost normalisation (and thereby termination)
automatically. On the other hand, there are also (overlapping) TRSs, where the
method of [AG97a] can prove termination, but the method of the present paper
cannot be used for that purpose, because for these systems innermost normalisation
is not su�cient for termination.

8.1. Division, Version 1

This is the running example of the article [AG96b], which is not simply terminating.

minus(x; 0) ! x

minus(s(x); s(y)) ! minus(x; y)

quot(0; s(y)) ! 0

quot(s(x); s(y)) ! s(quot(minus(x; y); s(y)))

In the termination proof of this example one can apply the modularity result of
Thm. 8.1. Then termination of R0 (the �rst two minus rules) is easily proved
(either by our approach or directly by the recursive path ordering, for example).

For innermost normalisation of R it now su�ces to show that there is no in�nite
innermost chain of dependency pairs of R1. For these dependency pairs of R1, the
subtraction rules are the usable rules and there is one dependency pair on a cycle
of the innermost dependency graph. This results in the constraints

Q(s(x); s(y)) � Q(minus(x; y); s(y))

x1 %x2 ) Q(x1; s(y))%Q(x2; s(y))

minus(x; 0) % x

minus(s(x); s(y)) % minus(x; y):

By mapping minus(x; y) to x, the recursive path ordering satis�es the demands
on the ordering.

With the other approach, of polynomials, a suitable quasi-ordering is also found
automatically. The normal ordering on the natural numbers together with the fol-
lowing interpretation of the function symbols satis�es the inequalities: the function
symbol 0 is mapped to the number 0, s(x) is mapped to x + 1, and Q(x; y) and
minus(x; y) are mapped to x.

These orderings could also be used for the innermost normalisation proof if the
modularity result would not be applied. Then one would obtain the additional
constraint MINUS(s(x); s(y)) � MINUS(x; y).

8.2. Division, Version 2

This TRS for division uses di�erent minus-rules. Again, it is not simply terminating.

pred(s(x)) ! x

minus(x; 0) ! x
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minus(x; s(y)) ! pred(minus(x; y))

quot(0; s(y)) ! 0

quot(s(x); s(y)) ! s(quot(minus(x; y); s(y)))

Again the TRS R0 is terminating (which can either be proved by our method or by
the recursive path ordering). The inequality obtained from the dependency pair of
R1 is

Q(s(x); s(y)) � Q(minus(x; y); s(y)):

The �rst three rules of the TRS are the usable rules, resulting in the three
inequalities

pred(s(x)) % x

minus(x; 0) % x

minus(x; s(y)) % pred(minus(x; y))

and the demand that Q(x; s(y)) should be weakly monotonic in x.
Synthesizing a suitable ordering is as easy as it was for the previous example,

since we just have to map minus(x; y) to x and pred(x) to x. The demands on
the ordering are then satis�ed by the recursive path ordering. (As for most of the
following examples, innermost normalisation could also be proved without using the
modularity result.)

8.3. Division, Version 3

This TRS for division uses again di�erent minus-rules. Similar to the preceding
examples it is not simply terminating. We always use functions like ifminus to encode
conditions and to ensure that conditions are evaluated �rst (to true or to false) and
that the corresponding result is evaluated afterwards. Hence, the �rst argument
of ifminus is the condition that has to be tested and the other arguments are the
original arguments of minus. Further evaluation is only possible after the condition
has been reduced to true or to false.

le(0; y) ! true

le(s(x); 0) ! false

le(s(x); s(y)) ! le(x; y)

minus(0; y) ! 0

minus(s(x); y) ! ifminus(le(s(x); y); s(x); y)

ifminus(true; s(x); y) ! 0

ifminus(false; s(x); y) ! s(minus(x; y))

quot(0; s(y)) ! 0

quot(s(x); s(y)) ! s(quot(minus(x; y); s(y)))

The subsystem R0 is terminating (this can be proved by our technique again). The
constraints generated for the dependency pairs of R1 are

Q(s(x); s(y)) � Q(minus(x; y); s(y))

x1 %x2 ) Q(x1; s(y))%Q(x2; s(y))

plus l%r for all rules of R0 (as all of these rules are usable).
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By the following mapping

minus(x; y) 7! x

ifminus(b; x; y) 7! x

the inequalities are satis�ed by the recursive path ordering.

8.4. Remainder, Version 1 - 3

Similar to the TRSs for division, we also obtain three versions of the following TRS
which again are not simply terminating. We only present one of them.

le(0; y) ! true

le(s(x); 0) ! false

le(s(x); s(y)) ! le(x; y)

minus(x; 0) ! x

minus(s(x); s(y)) ! minus(x; y)

mod(0; y) ! 0

mod(s(x); 0) ! 0

mod(s(x); s(y)) ! ifmod(le(y; x); s(x); s(y))

ifmod(true; s(x); s(y)) ! mod(minus(x; y); s(y))

ifmod(false; s(x); s(y)) ! s(x)

The TRS R0 is terminating. This can be proved by the recursive path ordering or
by our technique. The constraints generated for R1 are

MOD(s(x); s(y)) % IFmod(le(y; x); s(x); s(y))

IFmod(true; s(x); s(y)) � MOD(minus(x; y); s(y))

x1 %x2 ) IFmod(x1; s(x); s(y))% IFmod(x2; s(x); s(y))

x1 %x2 ) MOD(x1; s(y))%MOD(x2; s(y))

plus l%r for all rules of R0.
By mapping minus(x; y), MOD(x; y), and IFmod(b; x; y) to x, the interpreted in-

equalities are satis�ed by the recursive path ordering.

8.5. Greatest Common Divisor, Version 1 - 3

There are also three versions of the following TRS for the computation of the gcd,
which are not simply terminating. Again, we only present one of them.

le(0; y) ! true

le(s(x); 0) ! false

le(s(x); s(y)) ! le(x; y)

pred(s(x)) ! x

minus(x; 0) ! x

minus(x; s(y)) ! pred(minus(x; y))

gcd(0; y) ! 0

gcd(s(x); 0) ! 0
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gcd(s(x); s(y)) ! ifgcd(le(y; x); s(x); s(y))

ifgcd(true; s(x); s(y)) ! gcd(minus(x; y); s(y))

ifgcd(false; s(x); s(y)) ! gcd(minus(y; x); s(x))

(Of course we also could have switched the ordering of the arguments in the right-
hand side of the last rule. But this version here is even more di�cult: Termination
of the corresponding algorithm cannot be proved by the method of [Wal94], because
this method cannot deal with permutations of arguments.)

Termination ofR0 can be proved by our approach. The constraints for innermost
normalisation (from the dependency pairs of R1) are

GCD(s(x); s(y)) % IFgcd(le(y; x); s(x); s(y))

IFgcd(true; s(x); s(y)) � GCD(minus(x; y); s(y))

IFgcd(false; s(x); s(y)) � GCD(minus(y; x); s(x))

plus some monotonicity demands and l%r for all rules of R0.
A suitable mapping is given by

pred(x) 7! x

minus(x; y) 7! x

IFgcd(b; x; y) 7! IFgcd(x; y):

The interpreted inequalities are satis�ed by the recursive path ordering.
This example was taken from [BM79] resp. [Wal91]. A variant of this example

could be proved terminating using Steinbach's method for the automated generation
of transformation orderings [Ste95a], but there the rules for le and minus were
missing.

8.6. Logarithm, Version 1

The following TRS computes the dual logarithm.

half(0) ! 0

half(s(s(x))) ! s(half(x))

log(0) ! 0

log(s(s(x))) ! s(log(s(half(x))))

The TRS R0 is terminating (as proved by the recursive path ordering or by our
approach). To prove innermost normalisation of the whole system we obtain the
inequality

LOG(s(s(x))) � LOG(s(half(x)))

from the dependency pair of R1 as well as a monotonicity condition and l%r for
the (usable) half-rules.

A mapping for the function symbols is not needed since the inequalities are
satis�ed by the recursive path ordering. (Termination of the original system can
also be proved using the recursive path ordering.)

8.7. Logarithm, Version 2 - 4

The following TRS again computes the dual logarithm, but instead of half we now
use the function quot. Depending on which version of quot we use, we obtain three
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di�erent versions of the TRS (all of which are not simply terminating, since the
quot TRS already was not simply terminating).

minus(x; 0) ! x

minus(s(x); s(y)) ! minus(x; y)

quot(0; s(y)) ! 0

quot(s(x); s(y)) ! s(quot(minus(x; y); s(y)))

log(0) ! 0

log(s(s(x))) ! s(log(s(quot(x; s(s(0))))))

For innermost normalisation we obtain the constraints

LOG(s(s(x))) � LOG(s(quot(x; s(s(0)))))

x1 %x2 ) LOG(s(x1))%LOG(s(x2))

from the dependency pair of R1 and l%r for all rules of R0 (varying with the
di�erent versions of R0 we use).

The interpretation to derive a quasi-ordering that satis�es all inequalities is given
by: quot(x; y) and minus(x; y) are mapped to x.

8.8. Eliminating Duplicates

The following TRS eliminates duplicates from a list. To represent lists we use the
constructors nil and add, where nil represents the empty list and add(n; x) represents
the insertion of n into the list x. The function rm is used to eliminate all occurrences
of an element from a list.

eq(0; 0) ! true

eq(0; s(x)) ! false

eq(s(x); 0) ! false

eq(s(x); s(y)) ! eq(x; y)

rm(n; nil) ! nil

rm(n; add(m;x)) ! if rm(eq(n;m); n; add(m;x))

if rm(true; n; add(m;x)) ! rm(n; x)

if rm(false; n; add(m;x)) ! add(m; rm(n; x))

purge(nil) ! nil

purge(add(n; x)) ! add(n; purge(rm(n; x)))

Termination of R0 can be proved with our approach by considering this subsystem
as a combination of the eq rules and the other rules. ForR1 we obtain the constraint

PURGE(add(n; x)) � PURGE(rm(n; x)):

Moreover, PURGE must be (weakly) monotonic on its argument and l%r must holds
for all rules of R0.

A suitable mapping is

rm(n; x) 7! x

if rm(b; x; y) 7! y
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With this interpretation the inequalities are satis�ed by the recursive path ordering.
This example comes from [Wal91] and a similar example was mentioned in

[Ste95a], but in Steinbach's version the rules for eq and if rm were missing.
If in the right-hand side of the last rule, add(n; purge(rm(n; x))), the n would

be replaced by a term containing add(n; x) then we would obtain a non-simply
terminating TRS, but termination could still be proved with our technique in the
same way.

8.9. Selection Sort

This TRS from [Wal94] is obviously not simply terminating. The TRS can be used
to sort a list by repeatedly replacing the minimum of the list by the head of the
list. It uses replace(n;m; x) to replace the leftmost occurrence of n in the list x by
m.

eq(0; 0) ! true

eq(0; s(x)) ! false

eq(s(x); 0) ! false

eq(s(x); s(y)) ! eq(x; y)

le(0; y) ! true

le(s(x); 0) ! false

le(s(x); s(y)) ! le(x; y)

min(add(0; nil)) ! 0

min(add(s(n); nil)) ! s(n)

min(add(n; add(m;x))) ! ifmin(le(n;m); add(n; add(m;x)))

ifmin(true; add(n; add(m;x))) ! min(add(n; x))

ifmin(false; add(n; add(m;x))) ! min(add(m;x))

replace(n;m; nil) ! nil

replace(n;m; add(k; x)) ! if replace(eq(n; k); n;m; add(k; x))

if replace(true; n;m; add(k; x)) ! add(m;x)

if replace(false; n;m; add(k; x)) ! add(k; replace(n;m; x))

selsort(nil) ! nil

selsort(add(n; x)) ! ifselsort(eq(n;min(add(n; x))); add(n; x))

ifselsort(true; add(n; x)) ! add(n; selsort(x))

ifselsort(false; add(n; x)) ! add(min(add(n; x));

selsort(replace(min(add(n; x)); n; x)))

The TRS R0 is innermost normalising (resp. terminating) as can be proved by
application of our technique. To complete the innermost normalisation proof we
obtain the following inequalities for R1

SELSORT(add(n; x)) % IFselsort(eq(n;min(add(n; x))); add(n; x))

IFselsort(true; add(n; x)) � SELSORT(x)

IFselsort(false; add(n; x)) � SELSORT(replace(min(add(n; x)); n; x)):

Moreover, we have to demand l%r for all rules of R0, as all these rules are usable
and we obtain the following monotonicity constraints

x1 %x2 ) IFselsort(x1; add(n; x))% IFselsort(x2; add(n; x))

x1 %x2 ) SELSORT(x1)%SELSORT(x2)
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A suitable mapping is given by

add(n; x) 7! add(x)

s(n) 7! s

eq(x; y) 7! eq

le(x; y) 7! le

ifmin(b; x) 7! ifmin(x)

replace(x; y; z) 7! z

ifreplace(b; x; y; z) 7! z

IFselsort(b; x) 7! x:

Then the resulting inequalities are satis�ed by the recursive path ordering (where
add must be greater than SELSORT in the precedence).

While for all of the preceding examples, innermost normalisation could also be
proved without using the modularity result of Thm. 8.1, in this example the given
ordering would not satisfy the constraints resulting from the innermost normalisa-
tion proof of the whole system. However, if the �rst two min-rules were replaced
by min(add(n; nil)) ! element(n), then a similar ordering (without the mapping
s(n) 7! s) would satisfy the constraints obtained for the whole TRS.

8.10. Minimum Sort

This TRS can be used to sort a list x by repeatedly removing the minimum of it.
For that purpose elements of x are shifted into the second argument of minsort, until
the minimum of the list is reached. Then the function rm is used to eliminate all
occurrences of the minimum and �nallyminsort is called recursively on the remaining
list. Hence, minsort does not only sort a list but it also eliminates duplicates. (Of
course, the corresponding version of minsort where duplicates are not eliminated
could also be proved terminating with our method.)

eq(0; 0) ! true

eq(0; s(x)) ! false

eq(s(x); 0) ! false

eq(s(x); s(y)) ! eq(x; y)

le(0; y) ! true

le(s(x); 0) ! false

le(s(x); s(y)) ! le(x; y)

app(nil; y) ! y

app(add(n; x); y) ! add(n; app(x; y))

min(add(n; nil)) ! n

min(add(n; add(m;x))) ! ifmin(le(n;m); add(n; add(m;x)))

ifmin(true; add(n; add(m;x))) ! min(add(n; x))

ifmin(false; add(n; add(m;x))) ! min(add(m;x))

rm(n; nil) ! nil

rm(n; add(m;x)) ! if rm(eq(n;m); n; add(m;x))

ifrm(true; n; add(m;x)) ! rm(n; x)

if rm(false; n; add(m;x)) ! add(m; rm(n; x))

minsort(nil; nil) ! nil
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minsort(add(n; x); y) ! ifminsort(eq(n;min(add(n; x))); add(n; x); y)

ifminsort(true; add(n; x); y) ! add(n;minsort(app(rm(n; x); y); nil))

ifminsort(false; add(n; x); y) ! minsort(x; add(n; y))

As in the other examples, the TRS R0 can be proved terminating by recursively
applying our technique. For R1 we obtain the following inequalities

MINSORT(add(n; x); y) � IFminsort(eq(n;min(add(n; x))); add(n; x); y)

IFminsort(true; add(n; x); y) % MINSORT(app(rm(n; x); y); nil)

IFminsort(false; add(n; x); y) % MINSORT(x; add(n; y))

and the following monotonicity constraints (where we neglect monotonicity demands
for positions which have a de�ned symbol above them).

x1 %x2 ) IFminsort(x1; add(n; x); y)% IFminsort(x2; add(n; x); y)

x1 %x2 ) MINSORT(x1; nil)%MINSORT(x2; nil)

Moreover, l%r must hold for all rules of R0.
The synthesized ordering is a (weakly monotonic) polynomial ordering where

false, true, 0, nil, eq and le are mapped to 0, s(x) is mapped to x + 1, min(x) and
ifmin(b; x) are mapped to x, add(n; x) is mapped to n+ x + 1, app(x; y) is mapped
to x + y, rm(n; x) and if rm(b; n; x) are mapped to x, MINSORT(x; y) is mapped to
(x+ y)2 + 2x+ y + 1 and IFminsort(b; x; y) is mapped to (x+ y)2 + 2x+ y.

This example is inspired by an algorithm from [BM79] and [Wal94]. In the
corresponding example from [Ste95a] the rules for le, eq, if rm, and ifmin were missing.

8.11. Quicksort

The following TRS is used to sort a list by the well-known quicksort-algorithm. It
uses the functions low(n; x) and high(n; x) which return the sublist of x containing
only the elements smaller or equal (resp. larger) then n.

le(0; y) ! true

le(s(x); 0) ! false

le(s(x); s(y)) ! le(x; y)

app(nil; y) ! y

app(add(n; x); y) ! add(n; app(x; y))

low(n; nil) ! nil

low(n; add(m;x)) ! if low(le(m;n); n; add(m;x))

if low(true; n; add(m;x)) ! add(m; low(n; x))

if low(false; n; add(m;x)) ! low(n; x)

high(n; nil) ! nil

high(n; add(m;x)) ! ifhigh(le(m;n); n; add(m;x))

ifhigh(true; n; add(m;x)) ! high(n; x)

ifhigh(false; n; add(m;x)) ! add(m; high(n; x))

quicksort(nil) ! nil

quicksort(add(n; x)) ! app(quicksort(low(n; x));

add(n; quicksort(high(n; x))))
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The TRS R0 can be proved terminating by our approach. For R1 we obtain l%r

for all rules of R0 (except the app-rules because they are not usable), QUICKSORT
must be weakly monotonic on its argument, and we have to demand the following
constraints.

QUICKSORT(add(n; x)) � QUICKSORT(low(n; x))

QUICKSORT(add(n; x)) � QUICKSORT(high(n; x))

A suitable mapping is

low(n; x) 7! x

high(n; x) 7! x

if low(b; n; x) 7! x

ifhigh(b; n; x) 7! x:

This interpretation and the recursive path ordering satisfy the demands on the
ordering.

Steinbach could prove termination of a corresponding example with transforma-
tion orderings [Ste95a], but in his example the rules for le, if low, ifhigh, and app were
omitted.

If in the right-hand side of the last rule,

app(quicksort(low(n; x)); add(n; quicksort(high(n; x))));

one of the n's was replaced by a term containing add(n; x) then we would obtain a
non-simply terminating TRS. With our method, termination could still be proved
in the same way.

8.12. Permutation of Lists

This example is a TRS from [Wal94] to compute a permutation of a list. For
instance, shu�e([1; 2; 3; 4; 5]) reduces to [1; 5; 2; 4; 3].

app(nil; y) ! y

app(add(n; x); y) ! add(n; app(x; y))

reverse(nil) ! nil

reverse(add(n; x)) ! app(reverse(x); add(n; nil))

shu�e(nil) ! nil

shu�e(add(n; x)) ! add(n; shu�e(reverse(x)))

Termination of R0, the �rst four rules, can easily be proved by the recursive path
ordering or by our technique. For innermost normalisation we obtain the constraint

SHUFFLE(add(n; x)) � SHUFFLE(reverse(x));

SHUFFLE must be weakly monotonic, and l%r must hold for all rules of R0.
A suitable (polynomial) interpretation is: nil is mapped to 0, add(n; x) is mapped

to x+ 1, SHUFFLE(x) and reverse(x) are mapped to x and app(x; y) is mapped to
x+ y.
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8.13. Reachability on Directed Graphs

To check whether there is a path from the node x to the node y in a directed graph
g, the term reach(x; y; g; �) must be reducible to true with the rules of the TRS of
this example from [Gie95a]. The fourth argument of reach is used to store edges
that have already been examined but that are not included in the actual solution
path. If an edge from u to v (with x 6= u) is found, then it is rejected at �rst. If an
edge from x to v (with v 6= y) is found then one either searches for further edges
beginning in x (then one will never need the edge from x to v again) or one tries
to �nd a path from v to y and now all edges that were rejected before have to be
considered again.

The function union is used to unite two graphs. The constructor � denotes the
empty graph and edge(x; y; g) represents the graph g extended by an edge from x

to y. Nodes are labelled with natural numbers.

eq(0; 0) ! true

eq(0; s(x)) ! false

eq(s(x); 0) ! false

eq(s(x); s(y)) ! eq(x; y)

or(true; y) ! true

or(false; y) ! y

union(�; h) ! h

union(edge(x; y; i); h) ! edge(x; y; union(i; h))

reach(x; y; �; h) ! false

reach(x; y; edge(u; v; i); h) ! if reach 1(eq(x; u); x; y; edge(u; v; i); h)

if reach 1(true; x; y; edge(u; v; i); h) ! if reach 2(eq(y; v); x; y; edge(u; v; i); h)

if reach 2(true; x; y; edge(u; v; i); h) ! true

if reach 2(false; x; y; edge(u; v; i); h) ! or(reach(x; y; i; h);

reach(v; y; union(i; h); �))

if reach 1(false; x; y; edge(u; v; i); h) ! reach(x; y; i; edge(u; v; h))

The TRSR0 can be proved innermost normalising (and terminating) very easily,
e.g. by our technique. For R1 we obtain

REACH(x; y; edge(u; v; i); h) % IFreach 1(eq(x; u); x; y; edge(u; v; i); h)

IFreach 1(true; x; y; edge(u; v; i); h) % IFreach 2(eq(y; v); x; y; edge(u; v; i); h)

IFreach 2(false; x; y; edge(u; v; i); h) � REACH(x; y; i; h)

IFreach 2(false; x; y; edge(u; v; i); h) � REACH(v; y; union(i; h); �)

IFreach 1(false; x; y; edge(u; v; i); h) � REACH(x; y; i; edge(u; v; h));

several (weak) monotonicity conditions, and l%r for all rules of R0 except the
or-rules (because these rules are not usable).

A mapping to polynomials results in a suitable ordering. The interpretation is:
eq(x; y), true, false, �, 0, and s(x) are mapped to 0, edge(x; y; g) is mapped to g+2,
union(g; h) is mapped to g+h, REACH(x; y; g; h) is mapped to (g+h)2+2g+h+2,
IFreach 1(b; x; y; g; h) is mapped to (g + h)2 + 2g + h+ 1, and IFreach 2(b; x; y; g; h) is
mapped to (g + h)2 + 2g + h.
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8.14. Comparison of Binary Trees

This TRS is used to �nd out if one binary tree has less leaves than another one. It
uses a function concat(x; y) to replace the rightmost leaf of x by y. Here, cons(u; v)
is used to built a new tree with the two direct subtrees u and v.

concat(leaf; y) ! y

concat(cons(u; v); y) ! cons(u; concat(v; y))

less leaves(x; leaf) ! false

less leaves(leaf; cons(w; z)) ! true

less leaves(cons(u; v); cons(w; z)) ! less leaves(concat(u; v); concat(w; z))

The two rules of R0 are easily proved terminating. For R1 we obtain

LESS LEAVES(cons(u; v); cons(w; z)) � LESS LEAVES(concat(u; v); concat(w; z)):

Moreover, the concat-rules must be weakly decreasing and less leavesmust be weakly
monotonic on both arguments.

A suitable (polynomial) interpretation is: leaf is mapped to 0, cons(u; v) is
mapped to 1 + u + v, concat(u; v) is mapped to u + v, and LESS LEAVES(x; y) is
mapped to x.

If concat(w; z) in the second argument of less leaves (in the right-hand side of
the last rule) would be replaced by an appropriate argument, we would obtain a
non-simply terminating TRS whose termination could be proved in the same way.

8.15. Average of Naturals

The following overlay system, which computes the average of two numbers [DH95],
is locally con
uent and therefore innermost normalisation su�ces for proving ter-
mination.

average(s(x); y) ! average(x; s(y))

average(x; s(s(s(y)))) ! s(average(s(x); y))

average(0; 0) ! 0

average(0; s(0)) ! 0

average(0; s(s(0))) ! s(0)

For proving innermost normalisation of this TRS we have to �nd a well-founded
ordering satisfying the constraints

AVERAGE(s(x); y) � AVERAGE(x; s(y))

AVERAGE(x; s(s(s(y)))) � AVERAGE(s(x); y)):

(There are no usable rules.)
In this way, termination of this TRS is easily proved by mapping s(x) to x+ 1,

and AVERAGE(x; y) to 2x+ y.

8.16. Plus and Times

The following TRS [DH95] is again a locally con
uent overlay system. To ease
readability we use an in�x notation for + and �.

x+ 0 ! x
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0+ x ! x

x+ s(y) ! s(x+ y)

s(x) + y ! s(x+ y)

x� 0 ! 0

x� s(y) ! (x� y) + x

The constraints for innermost normalisation of R0 are

PLUS(x; s(y)) � PLUS(x; y)

PLUS(s(x); y) � PLUS(x; y)

which are satis�ed by the recursive path ordering.
For R1 we obtain

TIMES(x; s(y)) � TIMES(x; y)

which is also satis�ed by the recursive path ordering.

8.17. Addition with Nested Recursion

The following (non-overlapping) TRS for addition from [Ste95a] has nested recur-
sion.

0+ y ! y

s(x) + 0 ! s(x)

s(x) + s(y) ! s(s(x) + (y + 0))

The `natural' polynomial interpretation (where + is mapped to the addition)
maps left and right-hand sides of the rules to the same numbers. Therefore this
polynomial ordering cannot be used for a direct termination proof, but it neverthe-
less satis�es the constraints generated by our method. (Here all rules are usable.) In
this way, innermost normalisation (and thereby, termination) can easily be proved.

8.18. Multiplication and Addition

The following (non-overlapping) system is taken from [Der87, p. 101].

x� (y + 1) ! (x� (y + (1� 0))) + x

x� 1 ! x

x+ 0 ! x

x� 0 ! 0

The only inequalities resulting from a dependency pair on a cycle of the inner-
most dependency graph is

TIMES(x; y + 1) � TIMES(x; y + (1� 0))

and all rules are usable (hence, we have to demand l%r for all rules). Moreover,
TIMES must be weakly monotonic on its second argument.

This system is not simply terminating (and in [Der87] it is used to illustrate the
use of the semantic path ordering). However, with our method termination of this
example can be proved automatically. The constraints obtained are satis�ed by the
natural polynomial ordering, where TIMES(x; y) is mapped to y.
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8.19. Nested Recursion 1

The following non-overlapping system was introduced in [Gie96, `nest2'] as an ex-
ample for a small TRS with nested recursion where all simpli�cation orderings fail.

f(0; y) ! 0

f(s(x); y) ! f(f(x; y); y)

With our approach, however, an automated innermost normalisation (and hence,
termination) proof is directly possible. For instance, we may use a polynomial
ordering where 0 and s are interpreted as usual and both f(x; y) and F(x; y) are
mapped to x.

8.20. Nested Recursion 2

This system (by Christoph Walther), which is similar to the preceding one, has been
examined in [Ste95a].

f(0) ! s(0)

f(s(0)) ! s(0)

f(s(s(x))) ! f(f(s(x)))

The constraints resulting from our technique are satis�ed by the polynomial
ordering, where f(x) is mapped to the constant 1, F(x) is mapped to x, and where
0 and s are interpreted as usual.

8.21. Nested Recursion 3

As an example of a string rewriting system with minimal ordinal !! associated to
it, Hans Zantema and Maria Ferreira presented the following TRS [FZ93].

f(g(x)) ! g(f(f(x)))

f(h(x)) ! h(g(x))

The inequalities corresponding to this system, except for the inequalities corre-
sponding to the two rules (as both of them are usable), are

F(g(x)) � F(f(x))

F(g(x)) � F(x)

and F must be weakly monotonic.
All constraints are satis�ed by the polynomial interpretation mapping f(x) and

F(x) to x, h(x) to 0 and g(x) to x+ 1.

8.22. A System which is not left-linear

The following TRS, originally from Geerling [Gee91], cannot be proved terminating
by the recursive path ordering (but one needs a generalization of the recursive path
ordering as de�ned in [Fer95]). It is also very easily proved terminating by the
automatic technique described in this paper.

f(s(x); y; y) ! f(y; x; s(x))

The mapping of F(x; y; z) to x+y satis�es the inequality obtained by the technique.
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8.23. Determining Cycles in Innermost Dependency Graphs 1

The following system is from [Ste95a].

f(a; b) ! f(a; c)

f(c; d) ! f(b; d)

With our method, the termination proof for this system is trivial, because its inner-
most dependency graph does not contain any cycles. This can easily be determined
automatically, as F(a; c) does not unify with F(a; b) or F(c; d), neither does F(b; d)
unify with F(a; b) or F(c; d).

8.24. Determining Cycles in Innermost Dependency Graphs 2

Another example in which the innermost dependency graph plays an important role
is a TRS introduced in [FZ95] to demonstrate the technique of `dummy elimination'.

f(g(x)) ! f(a(g(g(f(x))); g(f(x))))

Since F(a(: : :)) does not unify with F(g(x)), the only inequality to satisfy is

F(g(x)) � F(x)

which is easily satis�ed by the recursive path ordering.

8.25. A TRS which is not totally terminating 1

The most famous example of a TRS that is terminating, but not totally terminating
is the following [Der87].

f(a) ! f(b)

g(b) ! g(a)

With our approach, innermost normalisation (resp. termination) of this system
is again obvious, because the innermost dependency graph does not contain any
cycles (as F(b) does not unify with F(a) and G(a) does not unify with G(b)). Hence,
innermost normalisation is proved.

8.26. A TRS which is not totally terminating 2

A TRS introduced in [Fer95] as an example of a TRS that is not totally terminat-
ing and in particular for which the recursive path ordering and the Knuth-Bendix
ordering cannot be used to prove termination, is given by:

p(f(f(x))) ! q(f(g(x)))

p(g(g(x))) ! q(g(f(x)))

q(f(f(x))) ! p(f(g(x)))

q(g(g(x))) ! p(g(f(x)))

Termination is trivially concluded from the fact that there are no cycles in the
innermost dependency graph.
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8.27. Reversing Lists

The following system is a slight variant of a TRS proposed in [HH82, `brev']. Here,
\x. l" represents the insertion of an element x in front of the list l and \x. y. l"
abbreviates \x. (y. l)". Given a list x. l, the function rev calls two other functions
rev1 and rev2, where rev1(x; l) returns the last element of x. l and rev2(x; l) returns
the reversed list rev(x. l) without its �rst element. Hence, rev(rev2(y; l)) returns the
list y. l without its last element. Note that this system is mutually recursive and
that mutually recursive functions also occur nested.

rev1(0; nil) ! 0

rev1(s(x); nil) ! s(x)

rev1(x; y. l) ! rev1(y; l)

rev(nil) ! nil

rev(x. l) ! rev1(x; l). rev2(x; l)

rev2(x; nil) ! nil

rev2(x; y. l) ! rev(x. rev(rev2(y; l)))

Termination of R0 is easily proved (e.g. by the recursive path ordering or by
our technique). For innermost normalisation the resulting inequalities from the
dependency pairs of R1 are

REV(x. l) � REV2(x; l)

REV2(x; y. l) % REV(x. rev(rev2(y; l)))

REV2(x; y. l) % REV(rev2(y; l))

REV2(x; y. l) � REV2(y; l);

l%r for all rules and a monotonicity condition. These constraints are satis�ed by
a polynomial ordering, where nil is mapped to 0, x. l is mapped to l + 1, rev(l) is
mapped to l, the symbols rev1(x; l), 0, and s(x) are all mapped to the constant 0,
and rev2(x; l) is mapped to l. The tuple symbol REV(l) is mapped to the identity
and REV2(x; l) is mapped to l.

8.28. Even and Odd

The following (non-simply terminating) TRS can be used to compute whether a
natural number is even resp. odd. More precisely, evenodd(t; 0) reduces to true if t
is even and evenodd(t; s(0)) reduces to true if t is odd. (In other words, the second
argument of evenodd determines whether evenodd computes the \even" or the \odd"
function. Such rewrite systems are often obtained when transforming mutually
recursive functions into one function without mutual recursion, cf. [Gie96].)

not(true) ! false

not(false) ! true

evenodd(x; 0) ! not(evenodd(x; s(0)))

evenodd(0; s(0)) ! false

evenodd(s(x); s(0)) ! evenodd(x; 0)
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We obtain the following constraints for innermost normalisation (and hence,
termination) of R.

EVENODD(x; 0) % EVENODD(x; s(0))

EVENODD(s(x); s(0)) � EVENODD(x; 0)

By mapping EVENODD(x; y) to x, the recursive path ordering satis�es these
constraints.

8.29. Modularity, Version 1

The following example demonstrates the usefulness of modularity results.

f(c(x; s(y))) ! f(c(s(x); y))

g(c(s(x); y)) ! g(c(x; s(y)))

Modularity results (such as Thm. 8.1 or a result from [MT91] stating that com-
pleteness is modular for constructor systems with disjoint sets of de�ned symbols)
allow us to prove innermost normalisation (and thereby, termination) of both rules
separately. So we may use di�erent well-founded orderings for the constraint

F(c(x; s(y))) � F(c(s(x); y))

and the constraint
G(c(x; s(y))) � G(c(s(x); y))

(i.e. one time we can map c(x; y) to y and one time we can map it to x). In this
way, the termination proof of this system is trivial.

8.30. Modularity, Version 2

A second example for which it really matters that di�erent orderings may be found
for di�erent parts of the TRS is the following TRS

f(s(x)) ! f(x)
g(0. y) ! g(y)
g(s(x). y) ! s(x)
h(x. y) ! h(g(x. y)):

By using the modularity result of Thm. 8.1, innermost normalisation of the TRS

f(s(x)) ! f(x)
g(0. y) ! g(y)
g(s(x). y) ! s(x)

has to be proved �rst, which is easily established. It remains to prove that no
in�nite innermost chain consisting of the dependency pair

hH(x. y);H(g(x. y))i

exists. This is proved by �nding a suitable ordering satisfying the inequalities

g(0. y) % g(y)
g(s(x). y) % s(x)
H(x. y) � H(g(x. y)):

A suitable well-founded quasi-ordering satisfying these inequalities is given by a
polynomial interpretation, where g(x) and s(x) are mapped to 0, x. y is mapped to
1 and H(x) is mapped to x. Hence, by using the modularity result, the TRS can
be proved innermost normalising automatically. Since the TRS is non-overlapping,
termination of this TRS is thereby proved.
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8.31. Second Running Example

The second example of this paper

quot(0; s(y); s(z)) ! 0

quot(s(x); s(y); z) ! quot(x; y; z)
quot(x; 0; s(z)) ! s(quot(x; s(z); s(z)))

is a non-simply terminating TRS. As is explained in Sect. 4 the only two demands
on the ordering are given by

Q(s(x); s(y); z) � Q(x; y; z) and

Q(x; 0; s(z)) % Q(x; s(z); s(z)):

The mapping of Q(x; y; z) to x and the recursive path ordering satisfy these de-
mands.

Termination of this system cannot be proved automatically using the method of
[AG97a], as the constraints generated by the technique of [AG97a] are not satis�ed
by any total or quasi-simpli�cation ordering. The reason is that in the latter method
there is no concept of usable rules and that this method is restricted to weakly
monotonic orderings.

8.32. Second Running Example with Plus Rules

Changing the last rule of the above example such that s(z) is computed by adding
1 to z results in the TRS

0+ y ! y

s(x) + y ! s(x+ y)
quot(0; s(y); s(z)) ! 0

quot(s(x); s(y); z) ! quot(x; y; z)
quot(x; 0; s(z)) ! s(quot(x; z + s(0); s(z))):

This TRS is, as the previous one, not simply terminating. By performing one
narrowing step on the term QUOT(x; z+ s(0); s(z)) we obtain that there is only one
cycle in the approximation of the innermost dependency graph. The only usable
rules are the rules for addition. Therefore, the only inequalities to solve are

0+ y % y

s(x) + y % s(x + y)
PLUS(s(x); y) � PLUS(x; y)

QUOT(s(x); s(y); z) � QUOT(x; y; z)
QUOT(x; 0; s(z)) % QUOT(x; z + s(0); s(z))

By mapping QUOT(x; y; z) to x these inequalities are satis�ed by the recursive path
ordering. Hence, the TRS is terminating.

8.33. A non-totally terminating TRS

The following example is from [Ste95a].

f(x; x) ! f(a; b)

b ! c

This TRS is not totally terminating (and the constraints generated by the
method of [AG97a] are not satis�ed by any total well-founded quasi-ordering).
However, with our method innermost normalisation (and thereby, termination) can
easily be proved. The reason is that after applying one narrowing step to f(a; b)
we obtain f(a; c) which is not uni�able with f(x; x). Hence, there is no cycle in the
innermost dependency graph.
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8.34. Intervals of Natural Numbers

The following TRS from [Ste95a]

intlist(nil) ! nil

intlist(x. y) ! s(x). intlist(y)
int(0; 0) ! 0. nil

int(0; s(y)) ! 0. int(s(0); s(y))
int(s(x); 0) ! nil

int(s(x); s(y)) ! intlist(int(x; y))

is non-overlapping, too. No narrowing is needed to obtain that there are only two
cycles in the dependency graph. Furthermore, we obtain that the set of usable rules
is empty. The generated inequalities are

INTLIST(x. y) � INTLIST(y)

INT(0; s(y)) % INT(s(0); s(y))

INT(s(x); s(y)) � INT(x; y):

By mapping INT(x; y) to y these inequalities are satis�ed by the recursive path
ordering. Thus, the TRS is terminating. Again, termination of this system cannot
be proved automatically using the method of [AG97a].

8.35. Renaming in the Lambda Calculus

The following system is a variation of an algorithm from [MA96]. The purpose of
the function ren(x; y; t) is to replace every free occurrence of the variable x in the
term t by the variable y. If the substitution of x by y should be applied to a lambda
term lambda(z; t) (which represents �z:t), then we �rst apply an �-conversion step
to lambda(z; t), i.e. we rename z to a new variable (which is di�erent from x or
y and which does not occur in lambda(z; t)). Subsequently, the renaming of x to
y is applied to the resulting term. For that reason in this TRS there is a nested
recursive call of the function ren.

Variables are represented by var(l) where l is a list of terms. Therefore, the
variable var(x. y. lambda(z; t). nil) is distinct from x and y and from all variables
occurring in lambda(z; t).

and(true; y) ! y

and(false; y) ! false

eq(nil; nil) ! true

eq(t. l; nil) ! false

eq(nil; t. l) ! false

eq(t. l; t0. l0) ! and(eq(t; t0); eq(l; l0))

eq(var(l); var(l0)) ! eq(l; l0)

eq(var(l); apply(t; s)) ! false

eq(var(l); lambda(x; t)) ! false

eq(apply(t; s); var(l)) ! false

eq(apply(t; s); apply(t0; s0)) ! and(eq(t; t0); eq(s; s0))

eq(apply(t; s); lambda(x; t)) ! false

eq(lambda(x; t); var(l)) ! false

eq(lambda(x; t); apply(t; s)) ! false
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eq(lambda(x; t); lambda(x0; t0)) ! and(eq(x; x0); eq(t; t0))

if(true; var(k); var(l0)) ! var(k)

if(false; var(k); var(l0)) ! var(l0)

ren(var(l); var(k); var(l0)) ! if(eq(l; l0); var(k); var(l0))

ren(x; y; apply(t; s)) ! apply(ren(x; y; t); ren(x; y; s))

ren(x; y; lambda(z; t)) ! lambda(var(x. y. lambda(z; t). nil);

ren(x; y; ren(z; var(x. y. lambda(z; t). nil); t)))

Termination of R0 can for instance be proved by the recursive path ordering (or
by our technique). To complete the innermost normalisation proof, we obtain the
following constraints for R1.

REN(x; y; apply(t; s)) � REN(x; y; t)

REN(x; y; apply(t; s)) � REN(x; y; s)

REN(x; y; lambda(z; t)) � REN(z; var(x. y. lambda(z; t). nil); t)

REN(x; y; lambda(z; t)) � REN(x; y; ren(z; var(x. y. lambda(z; t). nil); t))

Moreover, REN must be weakly monotonic on its third argument and l%r must
hold for all rules of the TRS (as all rules are usable).

A well-founded ordering satisfying these constraints can easily be synthesized
automatically. For instance, one can use the following polynomial interpretation
where REN(x; y; t) is mapped to t, ren(x; y; t) is also mapped to t, lambda(x; t) is
mapped to t+ 1, apply(t; s) is mapped to t + s + 1, and(x; y) is mapped to y, and
where nil, var(l), true, false, eq(t; s), and if(x; y; z) are all mapped to the constant 0.

This TRS is non-simply terminating because the left-hand side of the last rule
is embedded in its right-hand side. Since the TRS is a locally con
uent overlay
system, innermost normalisation su�ces for termination. Note that the modularity
result of Thm. 8.1 is essential for this termination proof. If termination of the whole
system would have to be proved at once, then the resulting inequalities would not
be satis�ed by any polynomial or path ordering. For that reason the method of
[AG97a] (for termination instead of innermost normalisation) cannot handle this
example automatically.
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