
Termination of

context-sensitive rewriting

H. Zantema
Utrecht University, Department of Computer Science,
P.O. box 80.089, 3508 TB Utrecht, The Netherlands

e-mail: hansz@cs.ruu.nl

Abstract

Context-sensitive term rewriting is a kind of term rewriting in which

reduction is not allowed inside some �xed arguments of some function

symbols. We introduce two new techniques for proving termination of

context-sensitive rewriting. The �rst one is a modi�cation of the tech-

nique of interpretation in a well-founded order, the second one is implied

by a transformation in which context-sensitive termination of the origi-

nal system can be concluded from termination of the transformed one. In

combination with purely automatic techniques for proving ordinary termi-

nation, the latter technique is purely automatic too.

1 Introduction

The function computing the factorial is usually de�ned as follows:

fact(x) = if(x = 0; 1; x � fact(x� 1));

together with some standard rules like if(true; x; y) = x and if(false; x; y) = y.
Considered as a term rewriting system however, the rule

fact(x)! if(x = 0; 1; x � fact(x� 1))

is not terminating. Apparently here general term rewriting does not reect what
is intended by the de�nition. In the de�nition the purpose is that �rst the �rst
argument of if will be reduced to false or true, then the rules if(true; x; y) = x

and if(false; x; y) = y will be used to eliminate the if-symbol. In describing this
computation process in terms of rewriting, we see that in the intended computa-
tion never a redex is reduced inside the second or third argument of an if-symbol.
At this point it turns out to be natural to de�ne a kind of restricted rewriting
corresponding to usual rewriting with the extra restriction that reduction inside
the second or third argument of an if-symbol is not allowed. More general, for

1

every symbol we can de�ne inside which of its arguments reduction is allowed or
not. This kind of rewriting is called context-sensitive rewriting. It is introduced
and discussed by Salvador Lucas, [5, 7, 6]. For further motivation we refer to
those papers, here the emphasis is on introduction and justi�cation of new tech-
niques for proving termination of context-sensitive rewriting, shortly denoted as
context-sensitive termination.

First we extend the well-known notions of reduction orders and monotone
algebras to generalize to the framework of context-sensitive rewriting, arriving at
two if-and-only-if-characterizations of context-sensitive termination. The latter
one about monotone algebras implies a practical technique for proving context-
sensitive termination, quite similar to polynomial interpretations as used for prov-
ing ordinary termination.

A �rst investigation of proving context-sensitive termination was given in [7].
The main result was that context-sensitive termination of a rewrite system can be
concluded from ordinary termination of a transformed system. Roughly speaking
in the transformed system all arguments at forbidden positions are removed in
the left and right hand sides of the rules. However, in most realistic examples
the transformed system is not terminating, or is not even a well-de�ned rewrite
system since the proposed right hand sides contain variables that are not in the
corresponding left hand sides.

Our main result is the presentation and justi�cation of a more involved trans-
formation for which context-sensitive termination of a rewrite system also can be
concluded from ordinary termination of the transformed system. In our transfor-
mation the transformed system is always well-de�ned as a rewrite system, while
termination of the transformed system can often be proved fully automatic by
means of recursive path order or Knuth-Bendix order. The de�nition of the trans-
formation is very simple and fully constructive, by which the combination with
well-known automatic techniques for proving ordinary termination yields a fully
automatic technique for proving context-sensitive termination. Roughly speak-
ing, compared with the technique of [7], in our transformation the arguments at
forbidden positions are marked instead of removed. For correctness some extra
rules have to be added for handling the unmarking needed when in a reduction
forbidden positions change into allowed positions.

By means of our transformation we show how context-sensitive termination
can be proved fully automatic for a number of non-terminating examples describ-
ing recursive programs with an if-then-else-construction or selecting arguments
in in�nite lists. For none of the examples the method from [7] is applicable.

2 Preliminaries

Let T (F ;X) denote the set of terms over a signature F and a set of variables
X , where every f 2 F has a �xed arity ar(f). A rewrite rule over F is de�ned

2

to be a pair of terms l ! r with l; r 2 T (F ;X), l 62 X , and all variables in r

also occur in l. A term rewriting system (TRS) over F is de�ned to be of a set
of rewrite rules over F . A map � : F ! P(IN) is called a replacement map for

F if 1 � i � ar(f) for all i 2 �(f), for all f 2 F . For any constant c we have
�(c) = ; for every replacement map �, hence in de�ning a replacement map the
images for constants may be left implicit.

If R is a TRS over F and � is a replacement map for F , then the correspond-
ing context-sensitive rewrite relation ,!R;� is de�ned inductively to be the least
relation satisfying

� l� ,!R;� r� for all rules l ! r in R and all � : X ! T (F ;X);

� if t ,!R;� u, f 2 F and i 2 �(f) then

f(t1; : : : ; ti�1; t; ti+1; : : : ; tn) ,!R;� f(t1; : : : ; ti�1; u; ti+1; : : : ; tn)

for all t1; : : : ; ti�1; ti+1; : : : ; tn 2 T (F ;X).

Intuitively, the replacement map describes the arguments in which rewriting is
allowed. The de�nition of ,!R;� given in [5, 7, 6] looks slightly di�erent: there it is
based on the notation for positions as being strings of natural number. However,
it is easy to check that both de�nitions are equivalent. We chose our de�nition
since it directly reects the inductive structure of ,!R;� and we never need the
position notation.

The usual rewrite relation !R is a particular case of the context-sensitive
rewrite relation, namely!R=,!R;� for the replacement map � de�ned by �(f) =
f1; : : : ; ar(f)g for all f 2 F .

A binary relation ! is called terminating if no in�nite sequence of elements
ti exists for which ti ! ti+1 for all i 2 IN. A TRS R is called terminating if
!R is terminating; for a replacement map � it is called �-terminating if ,!R;� is
terminating.

If �(f) � �0(f) for all f 2 F and two replacement maps �; �0, then clearly
every ,!R;�-reduction is a ,!R;�0-reduction too, as was already remarked in [5].
Hence �-termination follows from �0-termination, in particular �-termination fol-
lows from termination, as was already remarked in [7].

For proving termination of TRSs many techniques have been developed. Stan-
dard techniques for automatic proving termination include recursive path order
and Knuth-Bendix order; for overviews we refer to [4, 8]. A more recent approach
for an automatic technique is proposed in [1]. Often stronger but less automatic
techniques are polynomial interpretations ([3]), transformation order ([2]) and
semantic labelling ([10]).

3

3 Context-sensitive reduction orders and inter-

pretations

Let � be a replacement map for a signature F . A �-reduction order on T (F ;X)
is de�ned to be a well-founded order > on T (F ;X) satisfying

� if t > u and � : X ! T (F ;X) then t� > u�, and

� if t > u, f 2 F and i 2 �(f) then

f(t1; : : : ; ti�1; t; ti+1; : : : ; tn) > f(t1; : : : ; ti�1; u; ti+1; : : : ; tn)

for all t1; : : : ; ti�1; ti+1; : : : ; tn 2 T (F ;X).

A �-reduction order > on T (F ;X) is called compatible with a TRS R over F if
l > r for every rewrite rule l ! r in R. For the replacement map � de�ned by
�(f) = f1; : : : ; ar(f)g for all f 2 F , the notion of �-reduction order coincides
with the usual notion of reduction order.

Proposition 1 A TRS R is �-terminating if and only if it admits a compatible

�-reduction order > on T (F ;X).

Proof: If R is �-terminating then choose > to be ,!+
R;�. It is a well-founded

order since ,!R;� is terminating and it satis�es both requirements for being a
�-reduction order due to the de�nition of ,!R;�.

On the other hand, if > is a �-reduction order that is compatible with R,
then one proves that t > u for any t; u satisfying t ,!R;� u by induction on the
de�nition of ,!R;�. Since > is well-founded, the relation ,!R;� is terminating,
hence R is �-terminating. 2

As usual, an F -algebra is de�ned to consist of a set A, and for every f 2 F
a function fA : An ! A, where n = ar(f). Write FA for the collection of all
algebra operations fA.

A �-monotone F-algebra (A;FA; >) is de�ned to be an F -algebra (A;FA)
provided with an order > on A such that each algebra operation is strictly mono-
tone in every �-argument. More precisely, if f 2 F , i 2 �(f) and a > b for
a; b 2 A, then

fA(a1; : : : ; ai�1; a; ai+1; : : : ; an) > f(a1; : : : ; ai�1; b; ai+1; : : : ; an)

for all a1; : : : ; ai�1; ai+1; : : : ; an 2 A. A �-monotone F -algebra (A;FA; >) is called
well-founded if the order > on A is well-founded.

For � : X ! A we de�ne the term evaluation [�] : T (F ;X)! A inductively
by

[�](x) = �(x);

[�](f(t1; : : : ; tn)) = fA([�](t1); : : : ; [�](tn))

4

for x 2 X ; f 2 F ; t1; : : : ; tn 2 T (F ;X). Write t >A t0 if and only if [�](t) > [�](t0)
for all � : X ! A. Intuitively, t >A t0 means that for each interpretation of the
variables in A the interpreted value of t is greater than that of t0.

Proposition 2 Let � be a replacement map and let (A;FA; >) be a non-empty

well-founded �-monotone F-algebra. Then the relation >A on T (F ;X) de�ned

above is a �-reduction order.

Proof: The relation >A is irreexive since A 6= ; and > is irreexive. It is
transitive and well-founded since > is transitive and well-founded.

Next observe that [�](t�) = [[�]��](t) for all t 2 T (F ;X); � : X ! T (F ;X); � :
X ! A, which is easily proved by induction on the structure of t. Then

[�](t�) = [[�] � �](t) > [[�] � �](u) = [�](u�)

for t >A u and all � : X ! A, hence t� >A u�.
The remaining property required in the de�nition of �-reduction order fol-

lows from the fact that each algebra operation is strictly monotone in every
�-argument. 2

Proposition 3 Let � be a replacement map over F . A TRS R over F is

�-terminating if and only if a non-empty well-founded �-monotone F-algebra

(A;FA; >) exists for which >A is compatible with R.

Proof: The `if'-part is immediate from Propositions 1 and 2.
For the `only if'-part, assume R is �-terminating. De�ne A = T (F ;X), let

fA(t1; : : : ; tn) = f(t1; : : : ; tn), and de�ne > to coincide with ,!+
R;�. One easily

veri�es that (A;FA; >) is a non-empty well-founded �-monotone algebra. We
still have to prove that l >A r for each rewrite rule l ! r. Let � : X ! A. Since
A = T (F ;X) we see that � is a substitution. Then [�](t) = t� for each term t,
which is easily proved by induction on the structure of t. Since l ! r is a rewrite
rule, the term l� can be reduced in one step to r�. So

[�](l) = l� > r� = [�](r):

This holds for every � : X ! A, so l >A r, which we had to prove. 2

For the replacement map � de�ned by �(f) = f1; : : : ; ar(f)g for all f 2 F ,
the notion of well-founded �-monotone algebra coincides with the notion of well-
founded monotone algebra from [9]; in this way Proposition 1 in [9] is a special
case of Proposition 3.

The way of proving �-termination of a TRS is now as follows: choose a well-
founded partially ordered set (A;>), de�ne for each operation symbol f a cor-
responding operation fA that is strictly monotone in every �-argument, and for

5

which [�](l) > [�](r) for all rewrite rules l ! r and all � : X ! A. Then
according to Proposition 3 the TRS is terminating.

The problem is how to choose the partially ordered set and the operations.
The simplest useful choice for (A;>) is (IN+; >), the set of strictly positive integers
with the ordinary ordering. In many applications this is a fruitful choice.

Example 1. Let R consist of the rules

g(x) ! h(x)
c ! d

h(d) ! g(c)

The cyclic reduction g(c) !R h(c) !R h(d) !R g(c) shows that R is not
terminating, and not even �-terminating if 1 2 �(h). The cyclic reduction
g(c) !R g(d) !R h(d) !R g(c) shows that R is not �-terminating if 1 2 �(g).
Now we prove that R is �-terminating for � de�ned by �(g) = �(h) = ;. We
choose the well-founded �-monotone algebra A consisting of positive integers with
the usual order, where we choose cA = 2; dA = 1; gA(1) = 4; hA(1) = 3; gA(x) =
x; hA(x) = x� 1 for all x > 1. Indeed we have

gA(x) > hA(x) for all x 2 A,
cA > dA;

hA(dA) = 3 > 2 = gA(cA);

proving that R is �-terminating by Proposition 3. Note that neither gA nor hA
is strictly monotone in its argument.

Example 2. From [6] we take the following rewrite system

sel(0; x : y) ! x

sel(s(x); y : z) ! sel(x; z)
from(x) ! x : from(s(x)):

Here `:' is the cons function: x : y means that the element x is put in front of
the list y. The �rst two rules describe a general mechanism to select the n-th
element from an arbitrary list. The last rule describes a de�nition of a particular
in�nite list. The combination can be used to compute the n-th element of this
list, for instance

sel(s(s(0)); from(0))! sel(s(s(0)); 0 : from(s(0)))!

sel(s(0); from(s(0)))! sel(s(0); s(0) : from(s(s(0))))!

sel(0; from(s(s(0))))! sel(0; s(s(0)) : from(s(s(s(0)))))! s(s(0)):

The strategy applied here corresponds to a lazy evalution strategy, which in
this case means that no reduction is allowed inside an argument of the symbol

6

`:'. In terms of context-sensitive rewriting this corresponds to choosing �(:) =
;. For this system the essential point is that no reduction is allowed inside
the right argument of `:'; this weakening of the restriction is given by de�ning
�(:) = f1g. For the other symbols we do not have restrictions and we choose
�(s) = �(from) = f1g, �(sel) = f1; 2g. Clearly the system is not terminating,
but it is �-terminating as can be proved as follows. We choose the well-founded �-
monotone algebra A consisting of positive integers with the usual order, where we
choose 0A = 1; sA(x) = x+1; x :A y = x+(y div 2); selA(x; y) = 2x�y; fromA(x) =
2x + 4 for all x; y 2 A. One easily veri�es that sA; selA and fromA are strictly
monotone in all of their arguments, and that :A is strictly monotone in its �rst
argument (not in its second). Further we have

selA(0A; x :A y) = 2 � (x + (y div 2)) > x

selA(sA(x); y :A z) = 2x+1 � (y + (z div 2)) > 2x � z = selA(x; z)

fromA(x) = 2x+ 4 > 2x + 3 = x :A fromA(sA(x));

for all x; y; z > 0, proving that R is �-terminating by Proposition 3.

Proposition 3 is not only useful for proving context-sensitive termination of
particular rewrite systems, it can also be used for obtaining theoretical results. In
particular it implies a simpler proof of the main result of [7]. There for a TRS R

and a replacement map � a TRS R� is introduced obtained from R by removing
all arguments at forbidden positions in all left and right hand sides of the rules
of R. It may happen that the result is not a TRS, then it is left unde�ned. The
result of [7] states that R is �-terminating if R� is terminating. A simple proof of
this statement can be given as follows: it is easily veri�ed that R� is terminating
if and only if a non-empty well-founded �-monotone F -algebra (A;FA; >) exists
in which fA(x1; : : : ; xn) does not depend on xi for al f 2 F and i 62 �(f) and
for which >A is compatible with R. This property immediately implies that R is
�-terminating by Proposition 3.

4 A transformational method

Throughout this section we �x a signature F and a corresponding replacement
map �. We extend the signature F to a signature F 0 by adding a fresh symbol f
for every f 2 F , with ar(f) = ar(f) for every f 2 F . Further we assume a fresh
unary symbol a in F 0. The overlining is extended to terms by de�ning

x = x for x 2 X

f(t1; : : : ; tn) = f(t1; : : : ; tn) for f 2 F ; t1; : : : ; tn 2 T (F 0;X).

Next we de�ne a function � : T (F ;X) ! T (F 0;X) meant to overline root
symbols of subterms for which reduction is not allowed. It is de�ned inductively

7

as follows:
�(x) = x for x 2 X

�(f(t1; : : : ; tn)) = f(u1; : : : ; un) for f 2 F ,

where ui = �(ti) if i 2 �(f), and ui = �(ti) if i 62 �(f). We de�ne the TRS
Bar(F) over F 0 as follows:

Bar(F) =

8><
>:

a(f(x1; : : : ; xn)) ! f(x1; : : : ; xn) for all f 2 F
f(x1; : : : ; xn) ! f(x1; : : : ; xn) for all f 2 F

a(x) ! x

The purpose of the system Bar(F) is that overlining can freely be added, while
overlining only may be removed in combination with an a symbol. The latter
is needed to be able to remove overlining in case a rule is applied by which a
forbidden position changes into an allowed position.

As usual for a term t the set Var(t) denotes the set of variables in t, inductively
de�ned by Var(x) = fxg for x 2 X and Var(f(t1; : : : ; tn)) =

Sn
i=1 Var(ti), for

f 2 F ; t1; : : : ; tn 2 T (F ;X). We shall use the set Forb(t) � Var(t) describing
variables at forbidden positions, inductively de�ned by

Forb(x) = ; for x 2 X
Forb(f(t1; : : : ; tn)) = (

S
i2�(f) Forb(ti)) [(

S
i62�(f) Var(ti))

for f 2 F ; t1; : : : ; tn 2 T (F ;X). This means that a variable x occurring in a
term t is contained in Forb(t) if and only if x occurs in a forbidden argument of
one of the operation symbols in t.

For any term t we de�ne the substitution �(t) as follows:

x�(t) = a(x) if x 2 Forb(t)
x�(t) = x if x 62 Forb(t).

Let R be any TRS over F . Then we de�ne

�(R) = f �(l)! (�(r))�(l) j l ! r 2 R g:

For instance, if R is the TRS from Example 2 then �(R) consists of the rules

sel(0; x : y) ! x

sel(s(x); y : z) ! sel(x; a(z))
from(x) ! x : from(s(x)):

Now we can state a basic result; after proving it we will present our main
result as an optimization of this proposition.

Proposition 4 Let R be a TRS over F for which the TRS �(R) [Bar(F) is

terminating. Then R is �-terminating.

8

In order to prove this proposition we need a couple of lemmas.

Lemma 5 Let t 2 T (F ;X). Then

a(t)!Bar(F) t !
�
Bar(F) t:

Proof: Straightforward. 2

De�ne �(�);�(�) : X ! T (F 0;X) by x�(�) = �(x�) and x�(�) = �(x�) for
all x 2 X .

Lemma 6 Let � : X ! T (F ;X) and let t 2 T (F ;X). Then

�(t�)!�
Bar(F) �(t)

�(�) and �(t�)!�
Bar(F) �(t)

�(�)
:

Proof: We apply induction on t. For t = x 2 X we have �(x�)!�
Bar(F) �(x

�) =

x�(�) = �(x)�(�) by Lemma 5, and �(x�) = x�(�) = �(x)
�(�)

, and we are done.
For t = f(t1; : : : ; tn) we write ui = �(ti) and vi = �(t�i) if i 2 �(f), and

ui = �(ti) and vi = �(t�i) if i 62 �(f). Then we have

�(t�) = f(v1; : : : ; vn); and �(t)�(�) = f(u
�(�)
1 ; : : : ; u�(�)n);

�(t�) = f(v1; : : : ; vn); and �(t)
�(�)

= f(u
�(�)
1 ; : : : ; u�(�)n);

hence it su�ces to prove that vi !
�
Bar(F) u

�(�)
i for i = 1; : : : ; n. In case of i 2 �(f)

this follows from the �rst half of the induction hypothesis, in case of i 62 �(f)
this follows from the second half of the induction hypothesis. 2

For a substitution � and a term t the substitution �(�; t) is de�ned by

x�(�;t) = �(x�) if x 2 Forb(t)
x�(�;t) = �(x�) if x 62 Forb(t).

Lemma 7 Let � be a substitution and let t 2 T (F ;X). Then

�(t�)!�
Bar(F) (�(t))

�(�;t):

Proof: We apply induction on t. For t = x 2 X we have x 62 Forb(x) = ;, and
hence

�(x�) = x�(�;x) = (�(x))�(�;x):

For t = f(t1; : : : ; tn) we again write

�(t�) = �(f(t�1 ; : : : ; t
�
n)) = f(v1; : : : ; vn)

9

where vi = �(t�i) if i 2 �(f), and vi = �(t�i) if i 62 �(f). As before let ui = �(ti)
if i 2 �(f), and ui = �(ti) if i 62 �(f). Since �(t) = f(u1; : : : ; un), it su�ces to

prove vi !
�
Bar(F) u

�(�;t)
i for i = 1; : : : ; n.

First assume i 62 �(f). Since Var(ti) � Forb(t) we have x�(�;t) = �(x�) = x�(�)

for all x 2 Var(ti). From Lemma 6 we conclude

vi = �(t�i)!
�
Bar(F) �(ti)

�(�)
= �(ti)

�(�;t)
= u

�(�;t)
i

which we had to prove.
For the remaining case assume i 2 �(f). Then vi = �(t�i). From the induction

hypothesis we conclude �(t�i)!
�
Bar(F) �(ti)

�(�;ti). Since Forb(ti) � Forb(t) we have

x�(�;ti) = �(x�) = x�(�;t) for all x 2 Forb(ti). For x 62 Forb(ti) we have x�(�;ti) =
�(x�), and either x�(�;t) = �(x�) or x�(�;t) = �(x�). Since �(x�) !�

Bar(F) x
�(�;t)

by Lemma 5, we have x�(�;ti) !�
Bar(F) x

�(�;t) for all x 2 Var(ti). Hence

vi = �(t�i)!
�
Bar(F) �(ti)

�(�;ti) !�
Bar(F) �(ti)

�(�;t) = u
�(�;t)
i ;

concluding the proof. 2

Lemma 8 Let � : X ! T (F ;X) and let t 2 T (F ;X). Then

�(t)�(�) !�
Bar(F) �(t

�) and �(t)
�(�)

!�
Bar(F) �(t

�):

Proof: Again we apply induction on t. For t = x 2 X we have �(x)�(�) =

x�(�) = �(x�), and �(x)
�(�)

= x�(�) = �(x�) !�
Bar(F) �(x

�) by Lemma 5, and
we are done.

For t = f(t1; : : : ; tn) we again write ui = �(ti) and vi = �(t�i) if i 2 �(f), and
ui = �(ti) and vi = �(t�i) if i 62 �(f). Then we have

�(t)�(�) = f(u
�(�)
1 ; : : : ; u�(�)n) and �(t�) = f(v1; : : : ; vn);

�(t)
�(�)

= f(u
�(�)
1 ; : : : ; u�(�)n) and �(t�) = f(v1; : : : ; vn);

hence it su�ces to prove that u�(�)i !�
Bar(F) vi for i = 1; : : : ; n. In case of i 2 �(f)

this follows from the �rst half of the induction hypothesis, in case of i 62 �(f)
this follows from the second half of the induction hypothesis. 2

Lemma 9 Let l ! r be a rule in R and let � be a substitution. Then

�(l�)!+
�(R)[Bar(F) �(r

�):

10

Proof: From Lemma 7 we conclude �(l�)!�
Bar(F) �(l)

�(�;l). From the de�nition

of �(R) we conclude �(l)�(�;l) !�(R) (�(r)�(l))�(�;l). For x 2 Var(l) we have

(x�(l))�(�;l) = a(�(x�)) if x 2 Forb(l), and (x�(l))�(�;l) = �(x�) if x 62 Forb(l). So
for all x 2 Var(l) we have (x�(l))�(�;l) !�

Bar(F) �(x
�) = x�(�) by Lemma 5, hence

(�(r)�(l))�(�;l) !�
Bar(F) �(r)

�(�). Combining all these steps and Lemma 8 yields

�(l�)!�
Bar(F) �(l)

�(�;l) !�(R) (�(r)
�(l))�(�;l) !�

Bar(F) �(r)
�(�) !�

Bar(F) �(r
�):

2

Lemma 10 Let t ,!R;� u. Then �(t)!+
�(R)[Bar(F) �(u).

Proof: We apply induction on the de�nition of ,!R;�. The base step exactly co-
incides with Lemma 9. For the induction step assume t ,!R;� u, �(t)!+

�(R)[Bar(F)

�(u), f 2 F , i 2 �(f), t1; : : : ; ti�1; ti+1; : : : ; tn 2 T (F ;X). We have to prove that

�(f(t1; : : : ; ti�1; t; ti+1; : : : ; tn))!
+
�(R)[Bar(F) �(f(t1; : : : ; ti�1; u; ti+1; : : : ; tn)):

This is immediate since we can write

�(f(t1; : : : ; ti�1; t; ti+1; : : : ; tn)) = f(u1; : : : ; ui�1;�(t); ui+1; : : : ; un)

and

�(f(t1; : : : ; ti�1; u; ti+1; : : : ; tn)) = f(u1; : : : ; ui�1;�(u); ui+1; : : : ; un):

2

Now we can prove Proposition 4.
Proof: Assume that R is not �-terminating. Then ,!R;� admits an in�nite
reduction. By applying � to all terms in this in�nite reduction this gives rise to
an in�nite reduction of �(R)[Bar(F) according to Lemma 10. This contradicts
the assumption that �(R) [Bar(F) is terminating. This concludes the proof of
Proposition 4. 2

It turns out that the overlined symbols that do not occur in �(R) do not play
an essential role. They can be eliminated by the following construction. For a
TRS R over F let F0 consist of the symbols f 2 F for which f occurs in �(l)
or �(r) for some l ! r in R. Remember that both �(R) and F0 depend on the
choice of the replacement map �; we �xed � and omitted � in our notation for
saving space.

De�ne 	(R; �) = �(R)[Bar(F0); without referring to �(R) and Bar(F0) this
means that

	(R; �) =

8>>><
>>>:

�(l) ! (�(r))�(l) for all l ! r 2 R,
a(f(x1; : : : ; xn)) ! f(x1; : : : ; xn) for all f 2 F0,

f(x1; : : : ; xn) ! f(x1; : : : ; xn) for all f 2 F0,
a(x) ! x

11

Lemma 11 The TRS 	(R; �) is terminating if and only if �(R) [Bar(F) is

terminating.

Proof: Since 	(R; �) � �(R) [Bar(F), termination of �(R) [Bar(F) implies
termination of 	(R; �).

For the converse we introduce a function � removing redundant bars. It is
de�ned inductively as follows.

�(x) = x for all x 2 X
�(f(t1; : : : ; tn)) = f(�(t1); : : : ; �(tn)) for all f 2 F
�(f(t1; : : : ; tn)) = f(�(t1); : : : ; �(tn)) for all f 2 F0

�(f(t1; : : : ; tn)) = f(�(t1); : : : ; �(tn)) for all f 2 F n F0.

Write �(R) [Bar(F) = S [T where S consists of the rules f(x1; : : : ; xn) !
f(x1; : : : ; xn) for f 2 F nF0, and T consists of the other rules of �(R) [Bar(F).
One easily veri�es that �(t) = �(u) for t !S u and �(t)!	(R;�) �(u) for t !T u.
Assume that �(R)[Bar(F) = S[T admits an in�nite reduction and that 	(R; �)
is terminating. Then applying � on the terms in the in�nite S[T -reduction yields
by the above observation an in�nite S-reduction, contradiction. 2

Now we arrive at the main theorem.

Theorem 12 Let R be a TRS over F and let � be a replacement map for which

the TRS 	(R; �) is terminating. Then R is �-terminating.

Proof: Immediate from Proposition 4 and Lemma 11. 2

We like to stress here that given a TRS R and a replacement map �, the con-
struction of 	(R; �) is purely mechanical and very simple: R is copied, according
to � some symbols are overlined and in some right hand sides some a-symbols
may be added, and for the symbols that are overlined the corresponding Bar(F)-
rules are added. Surprisingly, often termination of 	(R; �) can be proved purely
mechanically and simply too by recursive path order, hence automatic proving
context-sensitive termination according to Theorem 12, even if R is not termi-
nating itself.

Example 3. As in Example 2 let R consist of the rules

sel(0; x : y) ! x

sel(s(x); y : z) ! sel(x; z)
from(x) ! x : from(s(x));

describing the computation of the n-th element of a particular in�nite list. We
choose the same �, de�ned by �(:) = �(s) = �(from) = f1g, �(sel) = f1; 2g. In
Example 3 we proved that R is indeed �-terminating. However, in that proof we

12

needed an ad hoc choice for interpretation in the naturals. Now we can prove
�-termination of R purely mechanically: according to Theorem 12 it su�ces to
prove termination of 	(R; �) consisting of the rules

sel(0; x : y) ! x

sel(s(x); y : z) ! sel(x; a(z))
from(x) ! x : from(s(x))

a(from(x)) ! from(x)
from(x) ! from(x)

a(x) ! x:

Termination of 	(R; �) is proved by recursive path order: choose a precedence
> satisfying sel > a > from > from, from > s and from >:, and give sel the
lexicographic status from left to right.

Example 4. The former example is easily extended. For instance by the rules

f(x) ! x : f(g(x))
g(0) ! s(0)

g(s(x)) ! s(s(g(x)))

the term f(0) describes the in�nite list of numbers of the shape 2k� 1 for k � 0.
By adding the �rst two rules of the former system we can compute the n-th
element of this list. If we choose �(g) = f1g and �(:); �(s) and �(sel) as before,
the system 	(R; �) reads

sel(0; x : y) ! x sel(s(x); y : z) ! sel(x; a(z))
f(x) ! x : f(g(x)) g(0) ! s(0)

g(s(x)) ! s(s(g(x))) a(f(x)) ! f(x)
f(x) ! f(x) a(x) ! x:

which is again proved to be terminating by recursive path order: choose a prece-
dence > satisfying sel > a > f > f , f > g > s and f >:, and give sel the
lexicographic status from left to right.

Example 5. Let R consist of the rules

f(x) ! if(x; c; f(true)))
if(true; x; y) ! x

if(false; x; y) ! y;

describing a simple recursive function with an if-construction. From the �rst rule
we see that R is not terminating. In the unfolding of the recursion no reduction
in the third argument of if is allowed. If we correspondingly choose �(f) = f1g,

13

�(if) = f1; 2g then indeed we can prove that R is �-terminating by means of
Theorem 12. The TRS 	(R; �) consists of the rules

f(x) ! if(x; c; f(true))) if(true; x; y) ! x

if(false; x; y) ! a(y) a(f(x)) ! f(x)
f(x) ! f(x) a(x) ! x:

Termination of 	(R; �) is easily proved by means of a interpretation in positive
integers (choose cA = trueA = 1; falseA = 4; fA(x) = x + 3; fA(x) = x; aA(x) =
x + 4; ifA(x; y; z) = x+ y + z), or by a Knuth-Bendix order.

One can wonder whether the converse of Theorem 12 also holds: is 	(R; �)
terminating if R is �-terminating? Unfortunately, this does not always hold, as
is shown by the next example.

Example 6. Let R consist of the rules

g(x) ! h(x)
c ! d

h(d) ! g(c)

and choose �(g) = �(h) = ;. In Example 1 we saw that R is not terminating but
it is �-terminating. On the other hand 	(R; �) consists of the rules

g(x) ! h(a(x)) c ! d

h(d) ! g(c) a(c) ! c

a(d) ! d c ! c

d ! d a(x) ! x

and admits the in�nite cyclic reduction

g(c)! h(a(c))! h(c)! h(d)! h(d)! g(c)! � � � :

It seems to be possible to re�ne the de�nition of 	(R; �) in such a way that
Theorem 12 still holds, and in this example the rule g(x) ! h(a(x)) in 	(R; �)
is replaced by g(x)! h(x), by which 	(R; �) is terminating. The idea is that in
the re�nement for a rule l ! r the a-symbols are not plugged in all x-symbols in
r for x 2 Forb(l), but only at x-occurrences of r at forbidden positions. We did
not elaborate this possible improvement: even then we do not arrive at a version
of Theorem 12 for which also the converse holds.

5 Conclusions and further research

We generalized the well-known notions of reduction orders and monotone alge-
bras for ordinary termination of rewriting to similar notions for context-sensitive

14

termination. We presented a transformation by which context-sensitive termina-
tion of a given TRS follows from termination of a transformed TRS, by which
well-known techniques for proving termination can be applied for proving context-
sensitive termination. Possible directions for future research include:

� Directly de�ning �-reduction orders in the style of recursive path order,
by which automatic proofs of context-sensitive termination can be given
without an intermediate transformation.

� Optimizing the transformation. For instance, R consisting of the rule
f(x) ! g(h(f(x))) is �-terminating for �(f) = �(h) = f1g, �(g) = ;
while 	(R; �) contains the non-terminating rule f(x) ! g(h(f(x))). We
also developed another correct transformation (not described in this paper)
by which the transformed system contains the rule f(x)! g(h(f(x))) and
is proved to be terminating by recursive path order. Although this looks
more natural and powerful than the transformation described in this paper,
it is not. In particular, for less arti�cial examples containing if-then-else-
constructions or selection in in�nite lists, standard techniques fail to prove
termination of the alternative transformed system. Moreover, this alterna-
tive tranformation still allows �-terminating TRSs for which the tranformed
version is non-terminating.

� Treating more involved examples like the factorial example that we men-
tioned in the introduction, or the sieve of Eratosthenes.

References

[1] Arts, T., and Giesl, J. Termination of constructor systems. In Proceedings of the 7th
Conference on Rewriting Techniques and Applications (1996), vol. 1103 of Lecture Notes
in Computer Science, Springer, pp. 63{77.

[2] Bellegarde, F., and Lescanne, P. Termination by completion. Applicable Algebra in
Engineering, Communication and Computing 1, 2 (1990), 79{96.

[3] Ben-Cherifa, A., and Lescanne, P. Termination of rewriting systems by polynomial
interpretations and its implementation. Science of Computing Programming 9, 2 (1987),
137{159.

[4] Dershowitz, N. Termination of rewriting. Journal of Symbolic Computation 3, 1 and 2
(1987), 69{116.

[5] Lucas, S. Fundamentals of context-sensitive rewriting. In Proceedings of the 22nd Semi-
nar on Current Trends in Theory and Practice of Informatics (SOFSEM95) (1995), J. S.
M. Bartosek and J. Wiedermann, Eds., vol. 1012 of Lecture Notes in Computer Science,
Springer, pp. 405 { 412.

[6] Lucas, S. Context-sensitive computations in conuent programs. In Proceedings of the
8th International Symposium on Programming Languages: Implementations, Logics and
Programs (PLILP96) (1996), H. Kuchen and S. D. Swierstra, Eds., vol. 1140 of Lecture
Notes in Computer Science, Springer, pp. 408{422.

15

[7] Lucas, S. Termination of context-sensitive rewriting by rewriting. In Proceedings of the
23rd International Colloquium on Automata, Languages and Programming (ICALP96)
(1996), F. Meyer auf der Heide and B. Monien, Eds., vol. 1099 of Lecture Notes in Com-
puter Science, Springer, pp. 122 { 133.

[8] Steinbach, J. Simpli�cation orderings: history of results. Fundamenta Informaticae 24
(1995), 47{87.

[9] Zantema, H. Termination of term rewriting: interpretation and type elimination. Journal
of Symbolic Computation 17 (1994), 23{50.

[10] Zantema, H. Termination of term rewriting by semantic labelling. Fundamenta Infor-
maticae 24 (1995), 89{105.

16

