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Abstract

Diagnosis was among the first subjects investigated when digital computers became
available. It still remains an important research area, in which several new developments
have taken place in the last decade. One of these new developments is the use of detailed
domain models in knowledge-based systems for the purpose of diagnosis, often referred
to as model-based diagnosis. Typically, such models embody knowledge of the normal
or abnormal structure and behaviour of the modelled objects in a domain. Models of
the structure and workings of technical devices, and causal models of disease processes
in medicine are two examples. In this article, the most important notions of diagnosis
and their formalisation are reviewed and brought in perspective. In addition, attention is
focused on a number of general frameworks of diagnosis, which offer sufficient flexibility
for expressing several types of diagnosis.
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1 Introduction

Diagnosis is commonly viewed as the interpretation of case-specific findings in the context
of knowledge from a problem domain to obtain an indication of the presence and absence of
defects or faults, and also of the nature of the problem. Computer-aided diagnosis was among
the first applications investigated when digital computers became available more than four
decades ago. It still remains an important research area, in which several new developments
have taken place in the last decade. Diagnosis is the subject of this review article.

It is customary to distinguish between diagnostic systems based on symbolic, or quali-
tative, reasoning technology, and those based on probability theory and statistics, although
some systems offer a mixture of the two approaches. In this paper, we focus on systems based
on symbolic reasoning technology.

It is, perhaps, not surprising that medicine was one of the first areas in which diagnostic ex-
pert systems were developed. Classical diagnostic medical expert systems are: INTERNIST-1
and its commercially available successor QMR, expert systems in the broad domain of in-
ternal medicine [Miller et al., 1982; Bankowitz et al., 1989], CASNET, an expert system
for the diagnosis and treatment of glaucoma [Kulikowski & Weis, 1982; Weiss et al., 1978],
ABEL, an expert system for the management of electrolyte and acid-base derangements [Patil,
1981; Patil et al., 1982], and the well-known MYCIN system, an expert system for the diag-
nosis and treatment of septicaemia and meningitis [Buchanan & Shortliffe, 1984; Shortliffe,
1976]. Many diagnostic systems have also been developed in technical fields, solving a wide
variety of diagnostic problems. Early examples of such systems are SPERIL, a system that
assisted in assessing damage to buildings after an earthquake [Ishizuka et al., 1981], and
CRIB, a system that assisted in diagnosing computer hardware faults [Johnson & Keravnou,
1988].

Although all systems mentioned above can be viewed as knowledge-based systems for di-
agnosis, they are actually based on different, sometimes related, principles, as is apparent
from the descriptions available in the literature (e.g. [Buchanan & Shortliffe, 1984], [Clancey
& Shortliffe, 1984], [Johnson & Keravnou, 1988], [Szolovits, 1982] contain extensive descrip-
tions of several systems). Until recently, however, no theoretical framework was available to
formally describe and compare the various underlying principles. At a conceptual level, it
was evident that the knowledge bases of some of the systems captured models of structure
and behaviour in a domain. Such systems have been called model-based or ‘first principles’
systems [Weiss et al., 1978; Davis, 1983]. The knowledge bases of other systems, however, did
not embody an explicit model of structure and behaviour, but rather consisted of encoded
human expertise in solving particular problems in the underlying domain. Currently, the term
empirical associations is often employed to denote such knowledge. The classical example of
such a system is MYCIN [Shortliffe, 1976].

The model-based approach to diagnosis has been successfully applied to fault finding
in electronic circuits. Early work in this field is described in [Brown et al., 1982], [Davis,
1984], [Genesereth, 1984] and [De Kleer, 1976]. The study of simple electronic circuits has
yielded much insight into the nature of the diagnostic process. More importantly, one of the
first formal theories of diagnosis emerged from this research: the theory of consistency-based
diagnosis as proposed by R. Reiter [Reiter, 1987]. Consistency-based diagnosis offers a logic-
based framework to formally describe diagnosis of abnormal behaviour in a device or system,
using a model of normal structure and functional behaviour. Basically, consistency-based
diagnosis amounts to finding faulty device components that account for a discrepancy be-
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tween predicted normal device behaviour and observed (abnormal) behaviour. The predicted
behaviour is inferred from a formal model of normal structure and behaviour of the device.

The systems CASNET and ABEL, mentioned above, are other early examples of model-
based systems, but the principles of these systems differ from those used for technical devices.
In particular, consistency-based diagnosis is not very suitable to describe diagnostic prob-
lem solving in these systems. Both CASNET and ABEL contain a representation of disease
progress in terms of cause-effect (causal) relationships. In a sense these cause-effect relation-
ships capture the ‘behaviour’ of disease processes. Causal knowledge is also incorporated in
recent systems like the Oxford System of Medicine (OSM), [Fox et al., 1990b], a large medical
expert system for general practitioners, and the DILEMMA toolset, [Huang et al., 1993], and
generally seems to gain in importance in knowledge engineering.

Where consistency-based diagnosis traditionally employs a model of normal behaviour,
abduction has been the principal model-based technique for describing and analysing diagnosis
using a model of abnormal behaviour in terms of cause-effect relationships [Console et al.,
1989; Console & Torasso, 1990a; Josephson & Josephson, 1994; Reggia et al., 1983; Peng &
Reggia, 1990; Poole, 1988; Wu, 1991]. Early work on abduction has been done by H.E. Pople
(cf. [Pople, 1973; Pople, 1977]) and D. Poole (cf. [Poole et al., 1987]). Some of the early
diagnostic systems that incorporated causal knowledge, such as ABEL and CASNET, are
nowadays viewed as being, at least partially, abductive in nature. In abductive diagnosis,
diagnostic problem solving consists of establishing a diagnosis using cause-effect relationships
with a set of observed findings (effects) as the starting point. In abduction, a system reasons
from effects to causes, instead of from causes to effects. Because the reasoning from causes to
effects can be accomplished using logical deduction, in a sense abductive reasoning is carried
out in a direction reverse to that of deduction.

Logical deduction, however, also has its place in the picture, because it has been used
to formalise reasoning with the logical analogues of empirical associations [Lucas, 1993]. In
the context of diagnosis, reasoning with empirical associations is often referred to as heuristic
classification [Clancey, 1985].

Although much work has now been done to formalise diagnosis, it has been difficult to
capture the concept of diagnosis in a precise, formal and also general way, leaving room
for various types of diagnosis. Both consistency-based diagnosis and abductive diagnosis
have been looked upon as core concepts for formal frameworks of diagnosis, but, as we shall
see, other formalisations are also possible. A formal framework of diagnosis offers means
to formally describe and analyse various notions of diagnosis. The frameworks described in
the literature are either logic-based (cf. for example [Console et al., 1991], [Konolige, 1994],
[Poole, 1990b; Poole, 1994], and [Ten Teije & Van Harmelen, 1994]) or based on set theory
(cf. for example [Josephson & Josephson, 1994] and [Lucas, 1996a)).

The formalisation of diagnosis is the subject reviewed in this article. The structure of this
article is as follows. First, the nature of the diagnostic process is sketched. Next, the various
core approaches to diagnosis described in the literature are reviewed. Finally, the various
approaches to diagnosis are compared to each other, and a number of frameworks that offer
means for the general description of diagnosis are discussed.
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2 Diagnostic problem solving

Discovering what is wrong in a particular situation is one of the central activities in real life;
this process is usually called diagnosis or diagnostic problem solving. The process may be
viewed as the selective gathering and interpretation of information as evidence for or against
the presence or absence of one or more defects in a system. This informal definition reveals
that the following aspects are of central importance to diagnostic problem solving. Firstly,
the gathering of information, and secondly, the interpretation of the gathered information
for determining what is wrong, for example with a patient or a device. In medicine, defects
are disorders of a patient; in technical domains, defects are faults of a device. In medicine,
the information-gathering process is usually carried out in a systematic, structured fashion,
because there are an enormous number of diagnostic tests available to the clinician, that
cannot all be carried out. Furthermore, some diagnostic tests cause discomfort to the patient,
or carry even some risk of causing disease or death. By restricting the selection of diagnostic
tests in early diagnosis to those that do no harm or cause little discomfort to the patient, as
is common practice in medical diagnosis, diagnostic tests are performed only when necessary.
In technical fields, it is sometimes impossible to gather certain information because of time
constraints, costs involved, or physical impossibility. Although the information-gathering
process is a characteristic feature of diagnosis, the interpretation of information as evidence
for or against a diagnostic solution is a more fundamental aspect of diagnostic problem solving.

The information-gathering process together with related aspects, such as the process of
generating, and accepting or rejecting diagnostic hypotheses are sometimes referred to as the
dynamic aspects of diagnostic problem solving. They yield specific problem-solving behaviour.
Establishing an actual diagnostic solution requires knowledge of what constitutes a diagnosis
of a particular problem; the various aspects involved are sometimes referred to as the static
aspects of diagnostic problem solving. This article focuses on these static aspects of diagnostic
problem solving.

In general, diagnostic problem solving, like many other forms of problem solving, may be
described using the scientific notion of the empirical cycle, which describes the framework un-
derlying empirical research [Popper, 1959]. It states that empirical research encompasses: (1)
formulating a hypothesis, (2) testing that hypothesis, and (3) rejecting the hypothesis when it
fails to pass the tests, or accepting the hypothesis when it successfully passes the tests.! The
process may start again with (1), in which case the formulation of a new hypothesis possibly
involves adjusting a hypothesis previously rejected. In Figure 1, this view of diagnostic prob-
lem solving as an instance of the empirical cycle is depicted. Testing involves the application
of procedures for the verification and falsification of a hypothesis using observed findings and
domain knowledge. In general, a hypothesis may be a complex structure or mechanism. In
diagnostic problem solving, however, a hypothesis is usually taken to be a collection of ‘de-
fects’, where each defect is assumed to be either present or absent. This simplification may
not always be justified, for example because the defects may be interrelated to each other
in some particular way, which could be part of the hypothesis. For example, a hypothesis
may be whether or not a process A is causally related to a process B. Nevertheless, this
simplification is invariably made in diagnostic systems, and seems acceptable in the light of
developed applications. A diagnosis may be conceived as an accepted hypothesis concerning
a particular defect or collection of defects; the results of diagnostic tests correspond to the

!Popperians may read instead: ‘not rejecting the hypothesis so long as it has not been falsified by a test’.
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Figure 1: Diagnostic problem solving and the empirical cycle.

observed findings.

The literature on diagnosis more or less follows the terminology and structure of the
empirical cycle. For example, [Davis & Hamscher, 1988] views diagnostic problem solving as
three fundamental subproblems:

(1) Hypothesis generation (or hypothesis formation);
(2) Hypothesis testing;
(3) Hypothesis discrimination.

The subproblem of hypothesis discrimination concerns selecting from the hypotheses accepted
on the basis of a measure of plausibility. This process may entail collecting additional observed
findings.

The basic framework of diagnostic problem solving as the empirical cycle can be refined
in several ways. For example, there may be an ordering on the set of hypotheses, such as an
ordering from generic to specific, or an ordering by the value of a real-valued utility function
associated with the hypotheses. A class of defects may be taken as a generic hypothesis, and
a specific defect may be viewed as a specific hypothesis. Such orderings are especially useful
in guiding the problem-solving process, information gathering included. For example, the
process may be decomposed into several stages working from generic towards more specific
hypotheses, or from hypotheses with high associated utility to those with low associated
utility. It is well-known that guiding the problem-solving process, using information collected
at earlier stages, may be quite effective in reducing the number of tests to be performed. It
may also result in a step-wise reduction in the number of defects to be considered, due to the
rejection of specific hypotheses motivated by the earlier rejection of more generic hypotheses.
This approach to handling hypotheses and observable findings is an example of a so-called
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(diagnostic) problem-solving strategy [Newell & Simon, 1972]. Problem-solving strategies are
beyond the scope of this article, because they belong to the dynamics of diagnosis.

3 Conceptual basis of diagnosis

Although the description of diagnostic problem solving given in Section 2 carries much of
the flavour of the process of diagnosis, it is still an imprecise description and, in fact, several
formal theories have been proposed to capture the concept of diagnosis more precisely. In
doing so, however, researchers became aware that there are actually various conceptual models
of diagnosis, determined by the kind of knowledge involved. As stated in Section 1, diagnosis
concerns the interpretation of observed findings in the context of knowledge from a problem
domain. A good starting point for describing diagnosis at a conceptual level are the various
types of knowledge that play a role in diagnostic applications.

The knowledge embodied in a diagnostic system may be based on one or more of the
following descriptions:

(1) A description of the normal structure and functional behaviour of a system.

(2) A description of abnormal functional behaviour of a system; abnormal structure is
usually not taken into account.

(3) An enumeration of defects and collections of observable findings for every possible defect
concerned, without the availability of explicit knowledge concerning the (abnormal)
functional behaviour of the system.

(4) An enumeration of findings for the normal situation.

These types of knowledge may coexist in real-life diagnostic systems, but it is customary to
emphasise their distinction in conceptual and formal theories of diagnosis. Similar classifi-
cations of types of knowledge appear in the literature on diagnosis, although often no clear
distinction is made between the conceptual, formal and implementation aspects of diagnostic
systems. For example, [Davis & Hamscher, 1988] and [Poole, 1988] distinguish diagnostic
rule-based systems, by which they mean diagnostic systems based on knowledge of the third
type mentioned above, from diagnostic systems incorporating knowledge of structure and be-
haviour, i.e. knowledge of the first and second type mentioned above. However, rule-based
systems with a sufficiently expressive production-rule formalism can be used to implement
any diagnostic system, including those based on knowledge of structure and behaviour.

An observed finding that has been gathered in diagnosing a problem is often said to be
either a ‘normal finding’, i.e. a finding that matches the normal situation, or an ‘abnormal
finding’, i.e. a finding that does not match the normal situation. Based on the four types of
knowledge mentioned above, and the two sorts of findings, three different conceptual models
of diagnosis are usually distinguished; they will be called:

e Dewiation-from-Normal-Structure-and-Behaviour diagnosis, abbreviated to DNSB diag-
nosis,

e Matching-Abnormal-Behaviour diagnosis, abbreviated to MAB diagnosis, and

e Abnormality-Classification diagnosis, abbreviated to AC diagnosis.
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Figure 2: Deviation-from-normal-structure-and-behaviour (DNSB) diagnosis.

Below, we shall discuss the relationship between these three conceptual models of diagnosis
and the four types of knowledge mentioned above. A formal theory of diagnosis has been
proposed for each of these conceptual models of diagnosis. In the remainder of this section,
each of the three conceptual models of diagnosis will be discussed, and the corresponding
formal theory of diagnosis is mentioned. The formal theories of diagnosis are discussed in
depth in Section 4.

DNSB diagnosis. For diagnosis based on knowledge concerning normal structure and be-
haviour, little or no explicit knowledge is available about the relationships between defects of
the system, on the one hand, and findings to be observed when certain defects are present,
on the other hand. Hence, DNSB diagnosis typically employs knowledge of the first and
fourth types mentioned above. From a practical point of view, the primary motivation for
investigating this approach to diagnosis is that in many domains little knowledge concern-
ing abnormality is available, which is certainly true for new human-developed artifacts. For
example, for a new device that has just been released from the factory, experience with re-
spect to the faults that may occur when the device is in operation is lacking. Thus, the
only conceivable way in which initially such faults can be handled is by looking at the normal
structure and functional behaviour of the device. Yet, even if knowledge concerning abnormal
behaviour is available, exhaustive description may be sometimes too cumbersome compared
with a model of normal behaviour.

For the purpose of diagnosis, the actual behaviour of a physical device, called observed
behaviour, is compared with the results of a model of normal structure and behaviour of
the device, which may be taken as predicted behaviour. Both types of behaviour can be
characterised by findings. If there is a discrepancy between the observed and the predicted
behaviour, diagnostic problem solving amounts to isolating the components in the device
that are not properly functioning, using a model of the normal structure and behaviour of
the device [Brown et al., 1982; Davis, 1984; Davis & Hamscher, 1988; Genesereth, 1984; De
Kleer, 1976]. In doing so, it is assumed that the model of normal structure and behaviour is
sufficiently accurate and correct. Figure 2 depicts DNSB diagnosis in a schematic way. DNSB
diagnosis is frequently erroneously called model-based diagnosis in the literature, as if it were
the only instance of model-based diagnosis. It is also called consistency-based dagnosis, but
in this article this term is reserved for the corresponding formal theory of diagnosis. DNSB
diagnosis has been developed in the context of troubleshooting in electronic circuits [Davis &
Hamscher, 1988]. A well-known program that supports DNSB diagnosis, and includes various
strategies to do so efficiently, is the General Diagnostic Engine (GDE) [De Kleer & Williams,
1987; Forbus & De Kleer, 1993].

Above, we have reviewed the conceptual basis of diagnosis based on a model of normal
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Figure 3: Matching-abnormal-behaviour (MAB) diagnosis.

structure and behaviour, which we have called DNSB diagnosis. The formal counterpart of
DNSB diagnosis, called consistency-based diagnosis, originates from work by R. Reiter, [Re-
iter, 1987]; consistency-based diagnosis will be discussed in detail below. As far as known
to the author, DNSB diagnosis-like approaches have been used in medical applications on a
limited scale (cf. for example [Downing, 1993]); there is more work in which DNSB diagnosis
has been applied to solve technical problems (cf. [Beschta et al., 1993; Dague, 1994; Hamscher,
1994; Ng, 1991; Sauthier & Faltings, 1992; Stefanini et al., 1993]).

MAB diagnosis. For diagnosis based on knowledge of abnormal behaviour, diagnostic prob-
lem solving amounts to simulating the abnormal behaviour using an explicit model of that
behaviour. Hence, in MAB diagnosis the use of knowledge of abnormal behaviour (the second
type mentioned above) is emphasised. By assuming the presence of certain defects, some
observable abnormal findings can be predicted. It can be investigated which of these assumed
defects account for the observed findings by matching the predicted abnormal findings with
those observed. In Figure 3, MAB diagnosis is depicted schematically. In most applications
of MAB diagnosis, the domain knowledge that is used for diagnosis consists of causal rela-
tionships. Two, strongly related, formal counterparts of MAB diagnosis have been proposed
in the literature. The first formal theory, referred to as the set-covering theory of diagnosis,
is based on set theory: causal knowledge is expressed as mathematical relations, used for
diagnosis. This theory originates from work by J.A. Reggia and others [Reggia et al., 1983].
The second theory is based on logic. Early work in this area has been done by P.T. Cox and
T. Pietrzykowski [Cox & Pietrzykowski, 1987], D. Poole [Poole et al., 1987], and by L. Con-
sole and P. Torasso [Console et al., 1989; Console & Torasso, 1990a]. Based on the type of
reasoning employed to formalise MAB diagnosis, i.e. reasoning from effects to causes instead
of from causes to effects, this theory of diagnosis is also referred to as abductive diagnosis.
Theorist [Poole et al., 1987; Poole, 1990c] and CHECK [Console & Torasso, 1989] are two
systems supporting MAB diagnosis.

AC diagnosis. Where DNSB and MAB diagnosis employ a model of normal or abnormal
structure and behaviour for the purpose of diagnosis, the third conceptual model of diagnosis
uses neither. The knowledge employed in this conceptual model of diagnosis consists of the
enumeration of more or less typical evidence that can be observed, i.e. observable findings,
when a particular defect or defect category is present (the third type of knowledge mentioned
above). For example, sneezing is a finding that may be typically observed in a disorder
like common cold. This form of knowledge has been referred to as empirical associations in
Section 1 (the phrase ‘compiled knowledge’ is also employed) [Buchanan & Shortliffe, 1984].
Diagnostic problem solving amounts to establishing which of the elements in a finite set of
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Figure 4: Abnormality-classification (AC) diagnosis.

defects have associated findings that account for as many of the findings observed as possible,
as is shown in Figure 4. The enumeration of findings for the normal situation (knowledge
of the fourth type mentioned above) is sometimes also used in AC diagnosis, together with
knowledge of the third type; then, observed findings are classified in terms of present and
absent defects. The main goal of AC diagnosis, however, remains the classification of ob-
served findings in terms of abnormality. AC diagnosis is often referred to in the literature as
heuristic classification [Clancey, 1985], although this term is broader, since it also includes
a reasoning strategy. The MYCIN system, [Shortliffe, 1976], is the classical system in which
this conceptual approach to diagnosis has been adopted. AC diagnosis can be characterised
in terms of logical deduction in a straightforward way. We shall refer to this formalisation of
AC diagnosis as hypothetico-deductive diagnosis.

A comparison of the three conceptual models of diagnosis is given in Table 1. Obviously,
the various models of diagnosis discussed above can also be combined. To solve real-life di-
agnostic problems in a domain, it is likely that a mixture of conceptual models of diagnosis
as distinguished above will be required. Since the resulting systems use various types of
knowledge, e.g. both knowledge of structure and behaviour, and empirical associations, the
result is known as diagnosis with multiple models [Struss, 1992]. Several programs have been
developed that offer limited possibility to carry out diagnostic problem solving using multiple
models; examples of such programs are GDE™ [De Kleer, 1977; Struss & Dressler, 1989] and
Sherlock [De Kleer & Williams, 1989]. These programs use DNSB diagnosis as their core
approach.

Although in the literature it is emphasised that the conceptual models of diagnosis dis-
cussed embody different forms of diagnosis, they have much in common. For example, the
type of knowledge used in DNSB diagnosis can be viewed as an implicit, or intensional, version
of the type of knowledge used in AC diagnosis (if restricted to normality classification), which
is an explicit or extensional type of knowledge; the associations between normal observable

\ | DNSB MAB AC |
Type of knowledge normal structure and causal model of empirical
behaviour abnormality associations
Formalisation consistency-based abductive and hypothetico-
diagnosis set-covering deductive
diagnosis diagnosis
Examples of systems | GDE Theorist/CHECK EMYCIN

Table 1: Comparison of typical conceptual models of diagnosis.
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findings and the absence of defects are hidden in the specified normal behaviour in DNSB
diagnosis. DNSB and MAB diagnostic problem solving are based on some kind of simulation
of behaviour; such simulation of behaviour is absent in AC diagnosis.

4 Formal theories of diagnosis

There have been several attempts to formalise the various conceptual models of diagnosis
discussed above; most, but not all, of these formalisations are based on logic. The most
important formal theories of diagnosis will be reviewed below.

4.1 Consistency-based diagnosis

The formal theory of diagnosis originally proposed by R. Reiter, [Reiter, 1987], was motivated
by the desire to provide a formal underpinning of diagnostic problem solving using knowledge
of the normal structure and behaviour of technical devices, i.e. DNSB diagnosis. The theory
of diagnosis may be viewed as the logical foundation of earlier work in DNSB diagnosis by J.
de Kleer et al. [De Kleer, 1976; De Kleer & Williams, 1987], Brown and colleagues [Brown et
al., 1982], R. Davis and H. Shrobe [Davis & Shrobe, 1983; Davis, 1984], and M.R. Genesereth
[Genesereth, 1984]. The logical formalisation uses results from earlier work by R. Reiter,
[Reiter, 1980], and J. McCarthy, [McCarthy, 1986], on nonmonotonic reasoning. We shall
sometimes refer to this theory of diagnosis as Reiter’s formal theory of diagnosis.

Reiter’s theory of diagnosis was later extended by De Kleer et al. [De Kleer et al., 1992];
in this section, both formalisations will be introduced in a single, logical framework. Where
appropriate, the differences between Reiter’s original proposal, [Reiter, 1987], and the exten-
sions proposed in [De Kleer et al., 1992] will be indicated. This formal theory of diagnosis is
often referred to as the consistency-based theory of diagnosis, or consistency-based diagnosis
for short.

The logical specification of knowledge concerning structure and behaviour in Reiter’s
theory is a triple § = (SD, COMPS, O), called a system, where

e SD denotes a finite set of formulae in first-order predicate logic, specifying normal
structure and behaviour, called the system description;

e COMPS denotes a finite set of constants (nullary function symbols) in first-order logic,
denoting the components of the system;

e O denotes a finite set of formulae in first-order predicate logic, denoting observations,
i.e. observed findings.

It is, in principle, possible to specify normal as well as abnormal (faulty) behaviour within
a system description SD, but originally SD was designed to comprise a logical specification
of normal behaviour of the modelled system only, thus yielding the intended formalisation of
DNSB diagnosis. The essential part of a formal model of normal structure and behaviour of
a system consists of logical axioms of the form

ﬂAbnormal(C) — Onorm (1)

where ¢ € COMPS, and 0,4, denotes a finding that may be observed if the component c is
normal, i.e. is nondefective. The observable finding 0,4y, need not be unique. Axioms of the
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above form are provided for each component ¢ € COMPS. These axioms will be referred to
as normality azioms. It is assumed that the finding o0,,n may be observed in reality when
component ¢ of the device, that has been modelled in logic, is operating normally. Such an
observed finding is called a normality observation. The subscript norm is used to emphasise
that a particular finding represents a normal result; in Section 4.2 and further, the subscript
ab is used to indicate an abnormal finding. These subscripts are only used for clarity and
have no additional meaning; they will often be omitted. The predicate symbol ‘Abnormal’ is
sometimes referred to as the fault mode (also behavioural mode) of the component [De Kleer
& Williams, 1989]. The literal ‘Abnormal(c)’ denotes the component ¢ to be defective if
satisfied. Other predicate names, such as ‘OK’, ‘Correct’, are also employed in the literature,
with similar intended meaning and use as the negation of an ‘Abnormal’ literal.

Diagnostic problem solving is formalised as a method for finding the source of inconsistency
in the logical description of the (normal) functioning of a system when supplied with observed
findings, where some of the observed findings are the result of a system defect in reality.
Hence, inconsistency formalises the notion of discrepancy in DNSB diagnosis as indicated
in Figure 2. If it is assumed that the atom Abnormal(c) is false, i.e. the component c is
functioning normally, inconsistency will arise given the observed finding =0, with logical
implication (1). This result is interpreted in Reiter’s theory as an indication that the defect
may be localised in component c¢. This gives rise to the hypothesis that component c is
defective, i.e. Abnormal(c) is true, and the inconsistency is resolved if the assumption that
Abnormal(c) is false was its only source. In [Davis, 1984], this effect of relaxing logical
constraints is referred to as constraint suspension.

Adopting the definition from [De Kleer et al., 1992], a diagnosis in the theory of consistency-
based diagnosis can be defined as follows.

Definition 1 (consistency-based diagnosis). Let S = (SD,COMPS, O) be a system. Let
Hp = {Abnormal(c) | c € COMPS}

be the set of all positive ‘Abnormal’ literals, and
Hy = {—Abnormal(c) | c € COMPS}

be the set of all negative ‘Abnormal’ literals. Furthermore, let H C Hp U Hy be a set, called
a hypothesis, such that

H = {Abnormal(c) | c € D} U {—-Abnormal(c) | COMPS\D}

for some D C COMPS. Then, the hypothesis H is a (consistency-based) diagnosis of S if the
following condition, called the consistency condition, holds:

SDUHUO¥ L (2)
i.e. SD U H U O is consistent.

Here, ¥ stands for the negation of the logical entailment relation, and L represents ‘falsum’.
The consistency condition (2) captures DNSB diagnosis in terms of consistency-based diag-
nosis under the assumption that the axioms in SD provide a completely accurate and correct
representation of a physical system. A diagnosis is just a hypothesis that is accepted. In
the formalisation by De Kleer et al., [De Kleer et al., 1992], each literal Abnormal(c) € H
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Figure 5: Full adder.

is interpreted as being defective; a literal ~Abnormal(c) € H indicates component ¢ to be
nondefective. In the original theory by Reiter, [Reiter, 1987], the set D above is taken as a
diagnosis, with the extra requirement that D is minimal with respect to set inclusion. Then,
each component ¢ in a diagnosis D for which Abnormal(c) is true is interpreted as being
defective. According to expression (2), taking D = COMPS leads to the trivial diagnosis that
all components are defective (or the defective components are among the set of all compo-
nents). Reiter, therefore, incorporated in the original theory the requirement that the set D
must be a minimal set with respect to set inclusion, fulfilling the consistency condition. How-
ever, later it was recognised that minimality according to set inclusion is merely a measure
of plausibility, which may not be appropriate when knowledge of abnormal behaviour is also
included in the system description SD, and the minimality criterion was left out of the basic
definition [De Kleer et al., 1992]. Moreover, other measures of plausibility (cf. [Tuhrim et al.,
1991] in the context of abduction) may also apply. The application of the formal theory by
Reiter is illustrated by a classical example from the literature [Genesereth, 1984].

Example 1. Consider the logical circuit depicted in Figure 5, which represents a full adder,
i.e. a circuit that can be used for the addition of two bits with carry-in and carry-out bits.
The components X; and X, represent exclusive-OR gates, A1 and As represent AND gates,
and R; represents an OR gate.

The system description, as provided in [Reiter, 1987], consists of the following axioms:

Vz(ANDG(z) A ~Abnormal(z) — out(z) = and(inl(z),in2(z)))
Vz(XORG(z) A mAbnormal(z) — out(x) = zor(inl(z),in2(x)))
Vz(ORG(z) A mAbnormal(z) — out(z) = or(inl(z),in2(x)))

(

which describe the (normal) behaviour of each individual component (gate), and

out(X1) = 1in2(As)
out(X1) = inl(Xy)
out(Az) = inl(Ry)
inl(As) = n2(Xy)
inl(X1) = inl(Ar)
in2(X1) = in2(4;)
out(A1) = n2(Ry)
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which gives information about the connections between the components, i.e. information
about the normal structure, including some electrical relationships. Finally, the various gates
are defined:

ANDG (4,)
ANDG (4y)
XORG (X))
XORG(X)
ORG(R,)

Appropriate axioms for a Boolean algebra are also assumed to be available.
Now, let us assume that

O = {in1(X;) =1,in2(X1) = 0,in1 (A2) = 1, out(X2) = 0, out(Ry) = 0}

Note that out(R;) = 1 is predicted using the model of normal structure and behaviour
in Figure 5, which is in contrast with the observed output out(R;) = 0. Assuming that
H = {—~Abnormal(c) | c € COMPS}, it follows that

SDUHUO

is inconsistent. This confirms that some of the output signals observed differ from those
expected under the assumption that the circuit is functioning normally. Using Formula (2),
a possible diagnosis is, for instance,

H' = {Abnormal(X1),~Abnormal(X2), mAbnormal(A;),
—Abnormal(Asz), 7 Abnormal (Ry)}

since
SDUH' UO

is consistent. In terms of Reiter’s original definition, the corresponding diagnosis would be
D' = {X;}. Note that, given the diagnosis H', no output is predicted for the circuit; the
assumption Abnormal(X;) completely blocks transforming input into output by the modelled
circuit, because

SD U H' UO\{out(Xs) = 0} ¥ out(Xs) =0

In a sense, this is too much, because there was no discrepancy between the predicted and
observed output of gate X5. Nevertheless, the hypothesis H' is a diagnosis according to
Definition 1. <

It is interesting to look at consistency-based diagnosis in a more intuitive way. What the
theory actually expresses is that if components that may be defective are removed from a
system or device, and the resulting newly predicted behaviour, or no behaviour at all, does
not contradict the observed behaviour, then a diagnosis has been established. This is a rather
crude approach to diagnosis. Imagine that we have a formal model of an electrical device,
including its electric plug, then simulating the removal of the plug from its socket, thus
recovering consistency, will provide us with a diagnosis for a defective system. According to
the theory, the plug will be identified as the culprit, which, of course, is absurd if the device
was in operation prior to the removal of the plug, although incorrectly. K. Konolige, [Konolige,
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1994], refers to diagnoses produced by consistency-based diagnosis as ezcuses, to reflect that
it may not be possible to explain such diagnoses in terms of cause-effect relationships.

In addition to a definition of consistency-based diagnosis, [De Kleer et al., 1992] introduces
the concepts of partial diagnosis and kernel diagnosis. A partial diagnosis is an abbreviated
representation for a set of diagnoses that have certain ‘Abnormal’ and ‘—Abnormal’ literals
in common. For example, in addition to H' in Example 1,

H" = {Abnormal (X1), Abnormal(X3), ~Abnormal (Ay),
- Abnormal(As), ~Abnormal(Ry1)}

is also a diagnosis. The two diagnoses H' and H” can be abbreviated as the partial diagnosis
P = {Abnormal(X1), ~Abnormal (A;), 2 Abnormal (Az), 2 Abnormal (Ry) }

which explicitly indicates that the actual status of component X35 is irrelevant, adopting for
the other components the status mentioned in the partial diagnosis P. Note that a partial
diagnosis is not a real diagnosis according to Definition 1, because not all components are
assigned unique ‘Abnormal’ modes. A kernel diagnosis is simply a partial diagnosis that is
minimal with respect to set inclusion.

Above, it was assumed that a system description SD is expressed using standard logic,
using standard, monotonic logical entailment to define the notion of consistency-based diag-
nosis, but this is not essential. We may as well use some nonmonotonic logic. However, even
when restricted to standard, monotonic logic, the notion of consistency-based diagnosis is
nonmonotonic: observing additional findings may result in cancelling prior diagnoses [Reiter,
1987].

Example 2. Reconsider the system description SD from Example 1. Assume that
O = {in1(X;) =1,in2(X1) = 0,in1 (A2) = 1, out(Xq) = 0}
Then, the diagnosis is equal to

H" = {=Abnormal(X1), ~Abnormal(Xs), ~Abnormal (A1),
—Abnormal(As), ~Abnormal (R1)}

or, in Reiter’s original notation: D" = & (there are no faults). Observing out(R;) = 0 yields,
among others, the diagnosis mentioned in Example 1 (D' = {X1} in Reiter’s notation), but
H" (D" = @) is not longer a diagnosis. &

Reiter, [Reiter, 1987], has also given an analysis of consistency-based diagnosis in terms of
default logic (cf. [Besnard, 1989]). A system description SD and a set of observed findings O
are supplemented with default rules of the form

: = Abnormal(c)

= Abnormal(c)

for each component ¢, yielding a default theory. A default rule as above expresses that
—Abnormal(c) may be assumed for component ¢, if assuming —Abnormal(c) does not give
rise to inconsistency. Hence, in computing an extension of the resulting default theory, these
default rules will only be applied under the condition that they do not violate consistency,
which is precisely the effect of the consistency condition (2). This mapping of a system S to
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default logic offers an object-level characterisation of the meta-level description of consistency-
based diagnosis given in Definition 1.

In Section 5, the application of Reiter’s theory to the logical formalisation of MAB diag-
nosis will be discussed. The techniques proposed by Reiter are not the only possible ways
to formalise DNSB and MAB diagnosis; D. Poole has proposed other logical techniques for
the same purpose in terms of his Theorist framework of hypothetical reasoning [Poole et al.,
1987; Poole, 1990a; Poole, 1990b; Poole, 1994]. This work, however, bears great resemblance
to the work by Reiter with respect to DNSB diagnosis, and to the work by Console and
Torasso with respect to MAB diagnosis, which will be discussed in the following section. The
Theorist framework is discussed in Section 5.

4.2 Abductive diagnosis

The formalisation of MAB diagnosis has been extensively studied by L. Console and P. Torasso
[Console et al., 1989; Console & Torasso, 1990a]. In their theory, the abnormal behaviour of
a system is specified in terms of abnormal states and resulting abnormal findings. Normal
findings may also be included, but these are less useful for diagnosis, since an abnormal state
is often causally related to a large number of normal findings. Diagnostic problem solving is
formally described as the problem of accounting for a given set of observed findings, referred
to in the theory as manifestations, by the simulation of abnormal behaviour. The simulation
process is accomplished by deduction with logical axioms, describing abnormal behaviour,
and assumed (abnormal) states.
The logical axioms are Horn clauses of the following form and meaning

Statey A --- A State, — o (3)
Statey A -+ A State,, — State (4)
State; A -+ A State, — d (5)
where State and State;, © = 1,...,n, are positive literals representing part of the internal

state of a modelled system, d is a defect (or disorder), and o is an observable finding. In a
number of articles, extension to general Horn clauses (Horn clauses with negation as failure)
is proposed (cf. [Console et al., 1991; Preist et al., 1994]). For simplicity’s sake, we shall
adopt the Horn-clause restriction in this section. It is assumed that the set of Horn clauses is
hierarchical, i.e. no cyclic dependencies among atoms in clauses are allowed (which contrasts
with the situation in logic programming, where cyclic dependencies are almost the rule). In
the original abductive theory of diagnosis by Console and Torasso, as described in [Console et
al., 1989], a finding appearing in the conclusion of a logical implication represents an abnormal
finding. In [Console & Torasso, 1990b], however, normal findings are also allowed. Recall
that, when necessary for clarity, abnormal findings are denoted by o04p; similarly, normal
findings are denoted by 0,05 -

A state literal is employed for the simulation of the occurrence of (abnormal) behaviour
using the logical specification. It corresponds to a parameter with a value. For example, if
the parameter pressure(blood) can take values decreased, normal and increased, then

pressure(blood) = increased

corresponds to a state. The intuitive meaning of formulae of the form (3) is: ‘presence
of Statey,..., State, causes the (abnormal) finding o', i.e. if Statey, ..., State, hold in the
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system, (abnormal) finding o must be observed. Formulae of the form (4) express that a
collection of states is causally related to another state, i.e. if the states Statei,..., State,
occur then State occurs as well. Axioms that conform to the two axiom schemata above are
sometimes referred to as abnormality arioms. Note that the notion of causality is expressed
in the theory using logical implication. Logical implication is employed to express a causal
relationship between states and observable findings, and between states and states. Axioms of
the form (5) can be viewed as classification arioms because they classify a collection of states
as a particular defect. The idea originates from the CASNET system [Weiss et al., 1978]. If
sufficient state literals are assumed or derived to satisfy the antecedent of an axiom of the
form (5), a defect d can be derived. In the theory by Console and Torasso, a defect is actually
defined in terms of a collection of states. This can be expressed by using a bi-implication (+)
instead of an implication, as in axiom schema (5). However, when adopting this formalisation
for diagnosis, the implications from right to left (<) are not involved. Classification axioms
are not an essential ingredient of the theory of diagnosis by Console and Torasso; they are
merely used to attach diagnostic labels to collections of states. Note that in the classification
axioms, logical implication is used to express a classification instead of a causal relationship,
as in the abnormality axioms. Due to the manifold uses of logical implication, the theory
provides no clear logical meaning for the various relationships, including causality, underlying
the theory of diagnosis. To express the theory in terms of defects and findings only, thus
enabling us to analyse the essentials of the theory, states are identified with defects. Thus,
axioms of the form (4) and (5) are collapsed into one axiom schema; the classification axioms
are given no further consideration. In the following, it shall be assumed that axioms are of
the following two forms:

dyN---Nd, — o (6)
diN---Ndp, — d (7)
where d,d;, 1 = 1,...,n, represent defects. We shall try to convey the essentials of the theory,

using the uniform terminology and notation adopted in this article, thus deviating in some
respects from the original papers.

Console and Torasso also provide a mechanism in their logical formalisation to weaken
the causality relation. To this end, literals « are introduced into the premises of the axioms
of the form (6) and (7), which can be used to block the deduction of an observable finding o
or defect d if the defects d;, i = 1,...,n, hold true, by assuming the literal « to be false. The
weakened axioms have the following form:

diA-ANdyAay — o (8)
diA-ANdyhag — d 9)

The literals « are called incompleteness-assumption literals, abbreviated to assumption liter-
als. Axioms of the form (6) — (9) are now taken as the (abnormality) axioms.

In the following, let C = (DFS, OBS, CM) stand for a causal specification in the theory of
diagnosis by Console and Torasso, where:

e DFS denotes a set of possible defect and assumption literals;
e OBS denotes a set of possible (positive and negative) observable finding literals;

e CM (‘Causal Model’) stands for a set of logical (abnormality) axioms of the form (6) —

9).
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Subsets of the set DFS will be called hypotheses. A causal specification can then be employed
for the prediction of observable findings in the sense of Figure 3.

Definition 2 (prediction). Let C = (DFS,OBS,CM) be a causal specification. Then, a
hypothesis H C DFS is called a prediction for a set of observable findings O C OBS if

(1) CMUH E O, and

(2) CMUH is consistent.

Hence, the notion of prediction formalises the arrow in the lower half of Figure 3; the resulting
set of findings O corresponds to the predicted (observable) findings in the same figure.

An abductive diagnostic problem A is now defined as a pair A = (C, O), where O C OBS
is called a set of observed findings. A set of observed findings corresponds to the box in the
upper half of Figure 3.

Formally, a solution to an abductive diagnostic problem A can be defined as follows.

Definition 3 (solution). Let A = (C,0) be an abductive diagnostic problem, where C =
(DFS,OBS,CM) is a causal specification with CM a set of abnormality azioms of the form
(6) — (9), and O C OBS a set of observed findings. A hypothesis H C DFS is called a solution
to A if:

(1) Voe O: CMUH Fo (covering condition);
(2) Yoe O°: CMUH ¥ —o (consistency condition)
where O° is defined by:

0°={-0€ OBS|0€ OBS,0 ¢ O, o is a positive literal }

In the work by Console and Torasso, the set CM U H is called a ‘world’ if H is a prediction;
the set CM U H is called a ‘final world’ if H is a solution to an abductive diagnostic problem
[Console et al., 1989; Console & Torasso, 1990a]. Note that the sets O and O€ are disjoint, and
that if 0 € O then —o ¢ O°¢. The set O° stands for findings assumed to be false, because they
have not been observed (and are therefore assumed to be absent). But any finding may also
be unknown. Thus, rather than providing a single definition, Console and Torasso provide
in their articles several alternatives for this set O¢. The definition provided in Definition 3
above is just one of the alternatives.

Condition (1) is called the covering condition, because it requires that each observed
finding is accounted for by a solution H. Note that any solution to a diagnostic problem
A = (C,0) is a prediction for O according to Definition 2. Condition (2) is called the
consistency condition, because it can be restated as follows

CMUHUOFE L

A set of defects in a prediction H is also called a set of perturbations [Console & Torasso,
1990al; in [Console & Torasso, 1991] the term abducibles is employed for literals that may be
assumed as part of diagnostic problem solving.

In the original formulation of the theory only those defects (states) are admitted to H
which do not appear in the conclusions of implications; such defects are called initial defects
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(initial states in the original theory). The covering condition defined above ensures that suf-
ficient defects and assumption literals are assumed to account for all given observed findings.
The consistency condition helps to ensure that not too many defect and assumption literals
are assumed. Although it is only necessary to include an assumption literal « in a solution
for implications d A o, — 0 and d A ag — d' if the defect d is deducible from the assumed
(initial) defects and assumption literals, Definition 3 does not always prevent their inclusion
in a solution.

An entire solution H may be taken as a diagnosis, but following [Console et al., 1989], a
diagnosis is considered to consist of the defect literals in a solution H.

Definition 4 (abductive diagnosis). Let A = (C,0) be an abductive diagnostic problem,
where C = (DFS, OBS, CM) is a causal specification. Let H be a solution to A. Then, the set
of all defects D C H is called an (abductive) diagnosis of A.

Recall that in [Console et al., 1989], a diagnosis is obtained by applying the classification
axioms (5); a distinction is therefore made in [Console et al., 1989] between a solution H
for which the covering and consistency conditions are satisfied, i.e. the set of defect and
assumption literals contained in a ‘final world’ — this world is called a causal explanation —
and the set of defects resulting from an explanation, which is called a diagnosis (originally, a
solution). However, from a formal point of view, the distinction is not essential.

Example 3. Consider the causal specification C = (DFS, OBS, CM), with
DFS = {fever, influenza, sport, a1, az}

and
OBS = {chills, thirst, myalgia, —chills, —thirst, —myalgia }

‘Myalgia’ means painful muscles. The following set of logical formulae CM, representing
medical knowledge concerning influenza and sport, both ‘disorders’ with frequent occurrence,
is given:

fever A ay — chills
influenza — fever

fever — thirst

influenza A as — myalgia
sport — myalgia

For example, influenza A ag — myalgia means that influenza may cause myalgia; influenza —
fever means that influenza always causes fever. For illustrative purposes, a causal knowledge
base as given above is often depicted as a labelled, directed graph G, which is called a causal
net, as shown in Figure 6. Suppose that the abductive diagnostic problem A = (C,O) must
be solved, where the set of observed findings O = {thirst, myalgia}. Then, O¢ = {—chills}.
There are several solutions to this abductive diagnostic problem (for which the consistency
and covering conditions are fulfilled):

H, = {influenza, oz}
Hy = {influenza, sport}
Hjs = {fever, sport}
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Figure 6: A knowledge base with causal relations.

i

H, = {fever, influenza, as}

Hjs = {influenza, az, sport}

Hg = {fever, influenza, sport }
Hy; = {fever, influenza, as, sport }

The following diagnoses correspond to these solutions:

Dy = {influenza}

Dy = {influenza, sport}

D3 = {fever, sport}

D, = {fever, influenza}

Dy = {fever, influenza, sport}

For example, the diagnosis Dy = {fever,influenza} means that the patient has influenza
with associated fever. Restricting to initial defects would yield the solutions H;, Ho and
Hs and the diagnoses D and Dsy. Finally, note that, for example, the hypothesis H =
{a1, a9, fever, influenza} is incompatible with the consistency condition. &

Because in this theory of diagnosis, the observable findings are logically entailed by the
assumption of the presence of certain states, and the reasoning goes in a sense in a direction
reverse to that of the logical implication, i.e. from the consequent to the premise, the theory
is often referred to as the abductive theory of diagnosis, or abductive diagnosis for short.

Several researchers (cf. [Poole, 1988; Console et al., 1991]) have noted a close correspon-
dence between abduction and the predicate completion of a logical theory, as originally pro-
posed by K. Clark in connection with negation as finite failure in logic programming [Clark,
1978]. Consider the following example.

Example 4. Suppose that sport and influenza are two ‘disorders’; this may be expressed
in predicate logic as follows:

Disorder(sport)
Disorder (influenza)

The following logical implication is equivalent to the conjunction of the two literals above:
Vz((x = sport V x = influenza) — Disorder(z))

assuming the presence of the logical axioms for equality, and also assuming that constants
with different names are not equal. Suppose that sport and influenza are the only possible
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disorders. This can be expressed by adding the following logical implication:
Vz(Disorder(z) — (z = sport V x = influenza)) (10)

to the implication above. For example, adding Disorder(asthma) to logical implication (10)
yields an inconsistency, because asthma is neither equal to sport nor equal to influenza: the
conclusion

asthma = sport V asthma = influenza

cannot be satisfied. Now, suppose that the literal Disorder(asthma) is removed, but that
‘asthma’ remains a valid constant symbol. Then, —Disorder (asthma) is a logical consequence
of formula (10); this formula ‘completes’ the logical theory by stating that disorders not
explicitly mentioned are assumed to be false. Formula (10) is called a completion formula.$

The characterisation of abduction as deduction in a completed logical theory is natural,
because computation of the predicate completion of a logical theory amounts to adding the
only-if parts of the formulae to the theory, i.e. it ‘reverses the arrow’ which is exactly what
happens when abduction is applied to derive conclusions. After all, abductive reasoning
is reasoning in a direction reverse to logical implication. In an intuitive sense, predicate
completion expresses that the only possible causes (defects) for observed findings are those
appearing in the abnormality axioms; assumption literals are taken as implicit causes. Where
the characterisation of abduction by means of the covering and consistency conditions may
be viewed as a meta-level description of abductive diagnosis, the predicate completion can be
taken as the object-level characterisation, i.e. in terms of the original axioms in CM. [Poole,
1988] and [Console et al., 1991] note that, in contrast to the predicate completion in logic
programming, predicate completion should only pertain to literals appearing as a consequence
of the logical axioms in CM, i.e. finding literals and defect literals that can be derived from
other defects and assumption literals. This set of defects and observable findings is called the
set of non-abducible literals, denoted by A; the set DFS\ A is then called the set of abducible
literals.
Let us denote the axiom set CM by

CM = {(,01,1 — Q1,... y P1,n1 — a1,

©m,1 7 Amy- s Pmnm am}

where A = {a; |1 < ¢ < m} is the set of non-abducible (finding or defect) literals and
each ¢; ; denotes a conjunction of defect literals, possibly including an assumption literal.

The predicate completion of CM with respect to the non-abducible literals A, denoted by
COMP[CM; A] (cf. [Genesereth & Nilsson, 1987]), is defined as follows:

COMP[CM; A] =CMU {a1 — (,01,1\/ -V P1,n1s

A — @m,lv ---V (Pm,nm}

The predicate completion of CM makes explicit the fact that the only causes of non-abducible
literals (findings and possibly also defects) are the defects and assumption literals given as a
disjunct in the consequent. For example,

ogp > d1V---Vd,
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indicates that only the defects from the set {d1,...,d,} can be used to explain the observed
finding o4p.

Predicate completion of abnormality axioms with respect to a set of non-abducible literals
can now be used to characterise diagnosis. Let 1 and 1’ be two logical formulae. It is said that
1) is more specific than ' iff 1) F 9’. Using the predicate completion of a set of abnormality
axioms CM, we now have the following definition.

Definition 5 (solution formula). Let A= (C,0O) be an abductive diagnostic problem and let
COMP[CM; A] be the predicate completion of CM with respect to A, the set of non-abducible
literals in A. A solution formula S for A is defined as the most specific formula consisting
only of abducible literals, such that

COMP[CM; AJUOUO°E S
where O° is defined as in Definition 3.

Hence, abductive diagnosis is transformed to hypothetico-deductive diagnosis (cf. Section 4.4).
A solution formula is obtained by applying the set of equivalences in COMP[CM; A] to a set
of observed findings O, augmented with those findings not observed, O¢, yielding a logical
formula that includes all possible solutions according Definition 3, given the equivalences in
COMP[CM; A]. The following theorem, which is proven in [Console et al., 1991], reveals
an important relationship between the meta-level characterisation of abductive diagnosis, as
presented in Definition 3, and the object-level characterisation of diagnosis in Definition 5.2

Theorem 1. Let A= (C,0) be an abductive diagnostic problem, where C = (DFS, OBS, CM)
is a causal specification. Let O° be defined as in Definition 3, and let S be a solution formula
for A. Let H C DFS be a set of abducible literals, and let I be an interpretation of A, such
that for each abducible literal a € DFS: Fra iff a € H. Then, H is a solution to A iff E1 S.

Proof. (=): The set of defect and assumption literals H is a solution to .4, hence, for each
0 € O: CMUH F o, and for each o' € O°: CM U H ¥ =0'. The solution formula S is
the result of rewriting observed findings in O and non-observed findings in O° using the
equivalences in COMP[CM; 4] to a formula merely consisting of abducibles. Assume that S
is in conjunctive normal form. Conjuncts in S are equivalent to observed findings o € O, that
are logically entailed by CM U H, or to non-observed findings —o € O°¢ that are consistent
with CM U H. Hence, an interpretation I for which F; H, that falsifies each abducible in
DFS\H, satisfying every o € O and each —o € O° that has been rewritten, must satisfy this
collection of conjuncts, i.e. S.

(«<): If S is in conjunctive normal form, S must be the result of rewriting observed findings o €
O and non-observed findings in O¢ to (negative or positive) abducibles, using the equivalences
in COMP[CM; 4]. Since an interpretation I that satisfies H and S must also satisfy each
finding 0 € O and those =0 € O° that have been rewritten to S, it follows that I can be
chosen such that F; O¢, i.e. H must be a solution to A. O

This theorem reveals an important property of the abductive theory of diagnosis. Sometimes,
a solution to an abductive diagnostic problem is capable of satisfying a solution formula in

2Contrary to our treatment, in [Console et al., 1991], a solution H of an abductive problem A is defined by
SLD resolution with the negation as finite failure rule, i.e. SLDNF resolution, such that CMUH Fsrpne OUO®,
i.e. the covering and consistency conditions are merged.
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the technical, logical sense.

Example 5. Reconsider the set of logical axioms given in Example 3. The predicate
completion of CM is equal to

COMP[CM; { chills, thirst, myalgia, fever}]

= CM U {chills — fever A a1,
fever — influenza,
thirst — fever,
myalgia — (influenza A ag) V sport}

= {chills <> fever A ay,
fever < influenza,
thirst <> fever,
myalgia <> (influenza A ag) V sport}

Note that

COMP[CM; { chills, thirst, myalgia, fever}] U O U O¢ E
(influenza A ag) V (influenza A sport)

given that O = {thirst, myalgia} and O°¢ = {—chills}. Although
COMP[CM; { chills, thirst, myalgia, fever }] U O U O° E —(fever A ay)

the formula —(fever A ), which is a logical consequence of —chills and chills <> (fever Aaq),
is not part of the solution formula S = (influenza A as) V (influenza A sport), because the
literal fever is non-abducible. It holds, in accordance with Theorem 1, that

Fr H; = Fy (influenza A as) V (influenza A sport)

for ¢+ = 1,2,5, where H; is a solution given in Example 3 consisting only of abducible literals,
for suitable interpretations I. Here, it even holds that H; F S, because S does not contain
any negative defects or assumption literals entailed by non-observed findings in O°. &

Although the theory by Console and Torasso is restricted to reasoning with causal domain
knowledge, other types of knowledge, referred to as contertual information by Console and
Torasso, is also dealt with in the theory. Contextual information is incorporated to render
the causal relation conditional on certain findings, e.g. in

dNo— o

the finding literal o acts as a condition with regard to the causal relation between the defect d
and the finding o’. For example, in a medical setting, many causal relations are age-specific;
hence, the observed (normal) finding ‘age o v’, where o denotes an ordering predicate and v
an integer, could be employed to express such conditional causality.

Above we have defined abductive diagnosis using propositional logic. The definition in
terms of predicate logic reveals some additional subtleties, yielding various alternative defini-
tion for the set of findings not observed and assumed to be absent, O¢. Findings o are denoted
in predicate logic using a predicate symbol p, indicating a particular group of findings or a
test. For example, in ‘Sign(fever)’, the predicate symbol ‘Sign’ denotes a group of patient
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findings; in ‘Serum_copper (patient, high)’, the predicate symbol ‘Serum_copper’ indicates the
result of a diagnostic test. The consequences of using predicate logic to define abductive
diagnosis will be briefly introduced by means of the following example.

Example 6. Consider the following (partial) set of abnormality axioms CM, expressed in
first-order predicate logic as follows:

Disorder(influenza) —  Symptom(cough)
Disorder(influenza) —  Sign(fever)

Disorder (pulmonary_embolism) —  Blood_chemistry(Os-level, low)

where the (ground) literals Symptom (cough), Sign(fever) and Blood_chemistry(Oz-level, low)
stand for observable findings, and the ‘Disorder’ literals represent defects. The finding literals
o0, representing abnormal observable findings, are taken from the following set of positive
finding literals:

OBSp = {Symptom(cough), Symptom (headache),
Sign(fever), Sign(hypertension),
Blood_chemistry(O2-level, low), Blood_chemistry (Sodium, low) }

and the set of negative finding literals is equal to

OBSy = {—~Symptom(cough), ~Symptom (headache),
—Sign(fever), = Sign(hypertension),
= Blood_chemistry (Oz-level, low), ~ Blood_chemistry (Sodium, low) }

with OBS = OBSp U OBSy. Now, let O = {Sign(fever), Blood_chemistry(Oaz-level, low)} be
a set of observed findings. Usually, it is assumed that O C OBSp, because only positive
findings can be accounted for by Horn clauses in CM. The set O¢ C OBS, representing the
findings not observed, is constructed in accordance with Definition 3. In the present case, the
set O° is equal to

0°¢ = {—~Symptom (cough), = Symptom (headache),
=Sign(hypertension),
= Blood_chemistry(Sodium, low)}

Thus, test results denoted by the predicate symbol ‘Symptom’ are assumed to be absent.
Note that when applying this version of the consistency definition, obtained by the definition
of O¢, the defect Disorder(influenza) cannot be part of any diagnosis, because this would
clash with the consistency condition. Although, on first thought, the set

{Disorder (pulmonary_embolism)}

may seem to represent a diagnosis, it turns out that there exists no diagnosis at al. The
reason is that

CM U { Disorder (pulmonary_embolism)} ¥ Sign(fever)

i.e., the covering condition fails to hold.
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A second, alternative version of the theory is presented in [Console & Torasso, 1990b] and
[Console & Torasso, 1991]. In these articles, the consistency condition is reformulated, by
adopting another definition for the set O°, as follows. The set O¢ C OBSy is defined by:

0¢ = {~n(t) € OBSy | n(s) € O, # 5}

where 7 stands for a predicate symbol, and ¢ and s are constants. The consistency condition
remains the same, but its effects on the computation of a diagnosis differs, because of the
altered definition of O¢. For the example diagnostic problem, the set O¢ is equal to

0° = {—Sign(hypertension), — Blood_chemistry (Sodium, low)}

Note that the literals = Symptom (cough) and ~Symptom (headache) are missing from this set,
because none of the literals in the set of observed findings O has ‘Symptom’ as predicate
symbol. Thus, the test results with respect to test ‘Symptom’ are assumed to be unknown. A
diagnosis in this case is H = {Disorder (influenza), Disorder (pulmonary_embolism)}, because

CM U H E {Sign(fever), Blood_chemistry(Oz-level, low)}

(in fact, the literal Symptom (cough) is also entailed), and O°¢ is consistent with CM and H.
Note that H = { Disorder (influenza), Disorder (pulmonary_embolism)} yields an inconsistency
if taken as a hypothesis using the first version of the consistency condition. <&

The intuitive basis of the two versions of the consistency condition in abductive diagnosis,
yielded by different logical interpretations of findings not observed, can be clarified in terms
of diagnostic problem solving as follows.? In the first version of the consistency condition,
it is assumed that all findings associated with a defect, present in the real world, will be
observed. If a finding is not included among the findings in the set of observed findings, it is
assumed to be absent; absent findings are denoted by negative literals. The basic assumption
is that all findings of defects that are absent will not be observed, i.e. are absent (if unique
for the defect), hence, it can safely be assumed that all findings not observed are negative.
Although this may not be justified in diagnostic problem solving — it could be more natural
to take the findings as unknown — the assumption of the negative literals has the technical
advantage of blocking the inclusion of defects that are not present in the real world according
to the theory, because some observable finding associated with the defect is not included in
the set of observed findings. This is precisely the effect required. Now, if, as in the example
above, only part of the unique findings of a defect occurs among the set of observed findings,
there must be something wrong, either with the abnormality axioms CM, or with the set of
observed findings. It seems therefore justified that no diagnosis is established in this case.
However, this result is only valid if one accepts as a basic assumption that every possible cause
(defect) of a finding is included in the set of abnormality axioms CM, which also constituted
the basis of the predicate completion discussed above (at the risk of ambiguity with respect
to database theory, one might call this the closed world assumption of abduction).

The second version of the consistency condition in abductive diagnosis is similar to the
first version, except that it is assumed that if no information concerning a specific diagnostic
test is available,— recall that every test corresponds to a different predicate symbol — it is
assumed to be unknown. Now, if some defect d is included in a solution H and

CMU{d}F o

3We remark that this interpretation is the author’s own, no such interpretation appears in the papers by
Console and Torasso.
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where o ¢ O, this means that the model predicts that if the test is actually carried out, the
finding o will be observed. If it is not observed, or turns out to be false, i.e. -0, some action
needs to be undertaken, but no specific ideas concerning this situation appear in the papers of
Console and Torasso. However, if the test has been carried out, i.e. there exists some finding
o' with the same predicate symbol as o, and o € O, then again no diagnosis exists, because
-0 € O° would hold.

The abductive theory of diagnosis discussed above may be viewed as a formalisation of
particular parts of the expert system shell CHECK [Console & Torasso, 1989; Torasso &
Console, 1989]. This system can be used to build hybrid diagnostic systems for domains in
which causal, hierarchical and heuristic knowledge coexist. As far as known to the author,
CHECK has been used as an experimental platform on which various prototype systems have
been developed, including diagnosis of automobile engine failure and diagnosis of liver disease.

4.3 Set-covering theory of diagnosis

Instead of choosing logic as the language for MAB diagnosis, as discussed above, others have
adopted set theory as their formal language. This approach to the formalisation of diagnosis
is referred to as the set-covering theory of diagnosis, or parsimonious covering theory [Reggia
et al., 1983; Allemang et al., 1987; Peng & Reggia, 1990; Wu, 1991]. The treatment of the
set-covering theory of diagnosis in the literature deals only with the modelling of restricted
forms of abnormal behaviour of a system.

The specification of the knowledge involved in diagnostic problem solving consists of the
enumeration of all findings that may be present (and observed) given the presence of each
individual defect distinguished in the domain; the association between each defect and its
associated set of observable findings is interpreted as an uncertain causal relation between
the defect and each of the findings in the set of observable findings. Instead of the terms
‘defect’ and ‘finding’ the terms ‘disorder’ and ‘manifestation’ are employed in descriptions of
the set-covering theory of diagnosis. In the following, we have chosen to uniformly employ
the terms ‘defect’ and ‘finding’ instead. The basic idea of the theory with respect to diagnosis
is that each finding in the set of observed findings in a given diagnostic situation must be
causally related to at least one present defect; the collected set of present defects thus obtained
can be taken as a diagnosis. As with the theory of diagnosis by Console and Torasso, this
reasoning method is usually viewed as being abductive in nature, because the reasoning goes
from findings to defects, using causal knowledge from defects to findings.

More formally, the triple N' = (DFS, OBS, C) is called a causal net in the set-covering
theory of diagnosis, where

e DFS is a set of possible defects,
e OBS is a set of elements called observable findings, and

e (' is a binary relation
C C DFS x OBS

called the causation relation.

A diagnostic problem in the set-covering theory of diagnosis is then defined as a pair D =
(N, 0), where O C OBS is a set of observed findings. It is assumed that all defects d € DFS
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are potentially present in a diagnostic problem, and all findings 0 € OBS will be observed when
present. In addition, all defects d € DFS have a causally related observable findings o € OBS,
and vice versa, i.e. Vd € DFS 30 € OBS : (d,0) € C, and Yo € OBS 3d € DFS : (d,0) € C.
No explicit distinction is made in the theory between positive (present), negative (absent)
and unknown defects, and positive (present), negative (absent) and unknown findings. The
causation relation is often depicted by means of a labelled, directed acyclic graph, which, as
N, is called a causal net [Peng & Reggia, 1990].

Let p(X) denote the power set of the set X. It is convenient to write the binary causation
relation C' as two functions. Since in the next section, such functions are intensively employed,
we adopt a notation that slightly generalises the notation proposed in [Peng & Reggia, 1990].
The first function

e : p(DFS) — p(OBS)
called the effects function, is defined as follows; for each D C DFS:
e(D) = | e({d}) (11)
deD

where

e({d}) = {o|(d,0) € C}
and the second function
c: p(OBS) — p(DFS)
called the causes function, is defined as follows; for each O C OBS:
c(0) = | e({o})
0€0

where

c({o}) = {d](d,0) € C}

Hence, knowledge concerning combinations of findings and defects is taken as being composed
of knowledge concerning individual defects or findings, which is not acceptable in general. This
is a strong assumption, because it assumes that no interaction occurs between defects. In
[Peng & Reggia, 1990], no attention is given to this subject.

A causal net can now be redefined, in terms of the effects function e above, as a triple
N = (DFS, OBS,e).

Given a set of observed findings, diagnostic problem solving amounts to determining sets
of defects — technically the term cover is employed — that account for all observed findings.
Formally, a diagnosis is defined as follows.

Definition 6 (set-covering diagnosis). Let D = (N,0) be a diagnostic problem, where
N = (DFS,0BS,¢) is a causal net and O denotes a set of observed findings. Then, a (set-
covering) diagnosis of D is a set of defects D C DFS, such that:

e(D)2 0 (12)



4 FORMAL THEORIES OF DIAGNOSIS 27

In the set-covering theory of diagnosis the technical term ‘cover’ is employed instead of ‘diag-
nosis’; ‘diagnosis’ will be the name adopted in this article. Due to the similarity of condition
(12) with the covering condition in the abductive theory of diagnosis, this condition is called
the covering condition in the set-covering theory of diagnosis. Actually, set-covering diag-
nosis can be mapped to abductive diagnosis in a straightforward way, thus revealing that
set-covering diagnosis is more restrictive than abductive diagnosis. Just by mapping each
function value

e({d}) ={o1,...,0n}

to a collection of logical implications, taken as abnormality axioms CM of a causal specification
C = (DFS, OBS, CM), of the following form:

dhNa,, — o1
dNoy, — 09

dANa,, — on

abductive diagnosis for such restricted causal specifications and set-covering diagnosis coin-
cide.

Since it is assumed that e(DFS) = OBS is satisfied, i.e. any finding o € OBS is a possible
causal effect of at least one defect d € DFS, there exists a diagnosis for any set of observed
findings O, because

e(DFS) 2 O

always holds (explanation existence theorem, [Peng & Reggia, 1990]).

A set of defects D is said to be an ezplanation of a diagnostic problem D = (N, O), with
O a set of observed findings, if D is a diagnosis of O and D satisfies some additional criteria.
Various criteria, in particular so-called criteria of parsimony, are in use. The basic idea is
that among the various diagnoses of a set of observable findings, those that satisfy certain
criteria of parsimony are more likely than others. Let D = (N, O) be a diagnostic problem,
then some of the criteria as mentioned in [Peng & Reggia, 1990; Tuhrim et al., 1991] are:

e Minimal cardinality: a diagnosis D of O is an explanation of D iff it contains the
minimum number of elements among all diagnoses of O;

e Irredundancy: a diagnosis D of O is an explanation of D iff no proper subset of D is a
diagnosis of O;

e Relevance: a diagnosis D of O is an explanation of D iff D C ¢(O);

e Most probable diagnosis: a diagnosis D of O is an explanation of D iff P(D|O) >
P(D'|O) for any diagnosis D' of O.

In addition, in [Charniak & Shimony, 1994], [Santos, 1994] and [Santos & Santos, 1996]
minimal-cost diagnosis is defined. A diagnosis D of a set of observed findings O is called a
minimal-cost explanation of D iff

Z cost(d) < Z cost(d)

deD deD’
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for each diagnosis D' of O, where cost is a function associating real values with defects
d € DFS. The cost of a diagnosis may be anything, varying from financial costs to some
subjective feeling of importance expressed by numbers. However, [Charniak & Shimony, 1994]
choose as a semantics of cost function information for the negative logarithm of probabilities.
Under this interpretation, a minimal-cost diagnosis is identical to a most probable diagnosis.

Although not every diagnosis is an explanation, any diagnosis may be seen as a solution to
a diagnostic problem, where diagnoses which represent explanations conform to more strict
conditions than diagnoses that do not. The term ‘explanation’ refers to the fact that a
diagnosis in the set-covering theory of diagnosis can be stated, and thus be explained, in
terms of cause-effect relationships. A better choice, in our opinion, would have been the
adoption of the term ‘explanation’ for what is now called ‘cover’ in the theory, and to refer
to what are now called ‘explanations’ by the name of ‘parsimonious explanations’. To avoid
confusion, the term ‘explanation’ will not be used in the sequel. Instead, we shall speak of a
‘minimal-cardinality diagnosis’, an ‘irredundant diagnosis’, a ‘minimal-cost diagnosis’ and so
on.

For minimal cardinality, a diagnosis which consists of the smallest number of defects
among all diagnoses is considered the most plausible diagnosis. Minimal cardinality is a
suitable parsimony criterion in domains in which large combinations of defects are unlikely
to occur. For example, in medicine, it is generally more likely that a patient has a single
disorder than more than one disorder. Irredundancy expresses that it is not possible to leave
out a defect from an explanation without losing the capability of explaining the complete set
of observed findings, i.e.

e(D)2 0O

for each D C D', where D' is an irredundant diagnosis. The relevance criterion states that
every defect in an explanation has at least one observable finding in common with the set
of observed findings. This seems an obvious criterion, but note that the notion of uncertain
causal relation employed in the set-covering theory of diagnosis does not preclude situations
in which a defect is present, although none of its causally related observable findings have
been observed. These three definitions of the notion of explanation are based on general set-
theoretical considerations. In contrast, the most probable diagnosis embodies some knowledge
of the domain, in particular with respect to the strengths of the causal relationships. We shall
not deal with such probabilistic extensions of the set-covering theory of diagnosis any further.

Example 7. Consider the causal net N' = (DFS, OBS, C), where the effects function e is
defined by the causation relation C, i.e.

e(D) = | e({d})
deD
where
{cough, fever, sneezing} if d = influenza

e({d}) = { {cough, sneezing} if d = common cold
{fever, dyspnoea} if d = pneumonia

It states, for example, that a patient with influenza will be coughing, sneezing and have a
fever; a patient with a common cold will show the same findings, except fever, and a patient
with pneumonia will have a fever and dyspnoea (shortness of breath). The associated graph



4 FORMAL THEORIES OF DIAGNOSIS 29

influenza cough
I fever
common col
sneezing

pneumonia

> dyspnoea

Figure 7: Causal net.

representation G¢ of C' is shown in Figure 7. It holds, among others, that
e({influenza, common cold}) = {cough, fever, sneezing}

Based on the causal net C, the following causes function c is obtained:

c(0) = | e({o})
o€0
with
{influenza, common cold} if o = cough
{influenza, pneumonia} if o = fever
{influenza, common cold} if o = sneezing
{pneumonia} if 0 = dyspnoea

c({o}) =

Suppose D = (N, 0) is a diagnostic problem, with O = {cough, fever} a set of observed
findings, then a diagnosis of D is

D, = {influenza}
but

Dy = {influenza, common cold}
D3 = {common cold, pneumonia}

and Dy = {influenza, common cold, pneumonia} are also diagnoses for O. All of these diag-
noses are relevant diagnoses, because

c({cough, fever}) 2 D;

where 1 = 1,...,4. Irredundant diagnoses of O are D; and D3. There is only one minimal
cardinality diagnosis, viz. D; = {influenza}. Now suppose that O = {cough}, then for
example D = {influenza, pneumonia} would not have been a relevant diagnosis, because

c({cough}) = {influenza, common cold} 2 D
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Other, more domain-specific, definitions of the notion of explanation have only been developed
recently. Such domain-specific knowledge can be effective in reducing the size of the set of
diagnoses generated by a diagnostic system. For example, [Tuhrim et al., 1991] demonstrated
that the use of knowledge concerning the three-dimensional structure of the brain by means
of a binary adjacency relation in a neurological diagnostic expert system, based on the set-
covering theory of diagnosis, could increase the diagnostic accuracy of the system considerably.

In [Peng & Reggia, 1990], it is shown that the causation relation C can be extended for the
representation of multi-layered causal nets, in which defects are causally connected to each
other, finally leading to observable findings. By computation of the reflexive, transitive closure
of the causation relation, C*, the basic techniques discussed above immediately apply. The
reflexive closure makes it possible to enter defects as observed findings, which are interpreted
as already established defects, yielding a slight extension to the theory treated above.

In the set-theoretical formalisation of diagnosis by Bylander et al., [Bylander et al., 1992],
an effects function e is used to represent both the knowledge base and the method of diagnostic
problem solving. In contrast to the theory by Peng and Reggia, the function e can be used
to represent diagnostic interactions among defects, because the assumption that e(D) is the
union of function values e({d}), for each d € D, is not generally assumed. A diagnosis D is
defined by e(D) = O, where O is a set of observed findings, i.e. every finding must be covered
by the set of defects D, which is very restrictive.

Charniak and Shimony, [Charniak & Shimony, 1994], and Santos, [Santos, 1994], generalise
set-covering theory by representing causal knowledge as directed AND/OR graphs. Hence,
various types of causal interaction can be represented. A diagnosis is defined as a minimal-cost
solution, i.e. they restrict to cost-based abduction.

INTERNIST-1/QMR is an example of an expert system with a basis related to the set-
covering theory [Miller et al., 1982; Bankowitz et al., 1989; Peng & Reggia, 1990]. The
system is not a direct implementation of the theory reviewed above; in fact, the system
predates the theory for about a decade. However, knowledge in INTERNIST-1/QMR is
organised in a way very similar to that of set-covering theory, and a diagnosis produced
by the system bears great resemblance to a diagnosis in set-covering theory. It deviates
from this theory in several respects, in particular by employing domain-specific heuristics in
selecting diagnoses [Peng & Reggia, 1990]. RED is an expert system in the domain of blood
bank antibody analysis [Josephson & Josephson, 1994; Punch IIT et al., 1990; Smith et al.,
1985]. This system can also be described in terms of the set-covering theory of diagnosis,
although several aspects of the system go beyond the theory, such as the representation of
interactions among particular antibody reactions, requiring a generalisation of the set-covering
theory [Bylander et al., 1992] (See also Section 5). Peirce is a domain-independent tool that
generalised on the techniques used in RED [Punch III et al., 1990]. In [Tuhrim et al., 1991], an
expert system for the diagnosis of brain lesions, based on the set-covering theory of diagnosis
is described. Of the systems mentioned above, the last system is based most clearly on the
principles described in this section.

4.4 Hypothetico-deductive diagnosis

The third approach to diagnosis mentioned in Section 3, AC (Abnormality Classification)
diagnosis, originates from work by E.H. Shortliffe, B.G. Buchanan, W.J. Clancey and E.A.
Feigenbaum in the MYCIN project [Shortliffe, 1976; Buchanan & Shortliffe, 1984; Clancey
& Letsinger, 1984]. The knowledge incorporated in that expert system, and in similar sys-
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tems for AC diagnosis, is based on the body of experience accumulated in handling a large
number of cases, such as the patients a physician sees in medical practice. The knowledge is
extracted from textbooks or human experts. We have called this type of knowledge empirical
associations, i.e. the knowledge consists of associations between typical observable findings
and defects; knowledge about the underlying mechanisms (if available) is not represented.

In most practical systems (e.g. the HEPAR system, [Lucas & Janssens, 1991]), the for-
mal counterparts of empirical associations are organised according to some underlying model
distinguished in the collection of empirical associations. A typical example is a distinction
between families of disorders and specific disorders, i.e. a taxonomy of disorders, that can
be exploited in problem solving. Hence, expert systems based on empirical associations are
model-based like the other systems discussed above, because they are also based on a model
of the problem domain, although the nature of the model is different. It is possible to char-
acterise AC diagnosis in a more formal way. We shall refer to this formal counterpart of
AC diagnosis as hypothetico-deductive diagnosis, a term suggested in [Campbell, 1976] and
[Macartney, 1988].

A hypothetico-deductive diagnostic problem consists of a set of logical axioms, called an
empirical model EM, of the form

caN---ANep =g (13)

where ¢; and g represent either negative or positive defects and findings, represented in logic
as negative or positive literals, and if every ¢; is a finding, then ¢ should be a defect. Logical
implication in the formalisation of empirical associations (13) may be viewed as a classification
relation. A set of observed findings is represented as a set of ground literals, where each literal
is of the finding type. For example, a typical logical axiom might be

o1N--Noy —d

which expresses that a set of observable findings O = {01,..., 0} represents necessary and
sufficient evidence for establishing the presence of the defect d as part of a diagnosis. One
difference between the theories of hypothetico-deductive diagnosis and abductive diagnosis is
that, in hypothetico-deductive diagnosis, observed findings and defects need not be causally
related to each other. Some of the findings may be interpreted as abnormal; other findings,
such as, for example, age of a patient in a medical application, may not. The function of
normal findings in empirical associations is similar to that of conditional causality introduced
in Section 4.2, viz. to condition a particular piece of knowledge on a specific piece of evidence.
Now, let B = (DFS, OBS,EM) denote an associational specification, where:

e DFS denotes a set of (positive and negative) possible defects,
e OBS denotes a set of (positive and negative) observable findings, and
e EM denotes the logical representation of a set of empirical associations of the form (13).

A hypothetical-deductive diagnostic problem is then defined as a pair H = (B,0), where
O C OBS denotes a set of observed findings. A diagnosis based on empirical associations can
be defined as follows.

Definition 7 (hypothetico-deductive diagnosis). Let H = (B,0) be a hypothetico-deductive
diagnostic problem, where B = (DFS, OBS,EM) is an associational specification, and O is a
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Knowledge base Knowledge base
Originator specification interpretation Diagnosis
Reiter functional relations deduction counsistency
Console & Torasso causality abduction covering

deduction counsistency

Reggia et al. causality abduction set covering
Bylander et al. diagnostic relation  none set covering
Shortliffe et al. empirical deduction classification

associations

Table 2: Comparison of formal theories of diagnosis.

set of observed findings. Let © C DFS be a set of defects, called a hypothesis. Then, D C ©
is called a (hypothetico-deductive) diagnosis of H if

D={de®|EMUOE d}

Note that, in contrast with the theories discussed above, a single hypothesis is initially given
in hypothetico-deductive diagnosis; it stands for the defects that are initially given to be
of interest. In the theory of hypothetico-deductive diagnosis, defects are logically entailed
by the observed findings (usually implemented by a deductive calculus, hence the adjective
hypothetico-deductive).

In contrast with the other theories of diagnosis, there are a large number of nonexperimen-
tal applications available that may be viewed as hypothetico-deductive diagnostic systems.

The technical characteristics of the various formal theories of diagnosis, discussed in the
previous sections, are summarised in Table 2.

5 Frameworks of diagnosis

Having described the various formal theories of diagnosis, the question arises in what sense
these theories are related to each other, and whether it is possible to develop generalisations
based on these theories. Actually, several originators of theories of diagnosis have investigated
the expressiveness of their theory for modelling other conceptual models of diagnosis than
those for which the theory was originally designed. In this section, we summarise and comment
on results found in the literature, and discuss various general frameworks of diagnosis.

5.1 Expressiveness of theories of diagnosis

Reiter has shown that the framework of consistency-based diagnosis provides enough descrip-
tive power to capture the set-covering theory of diagnosis [Reiter, 1987]. In Reiter’s formali-
sation, the normality axioms in the original theory of consistency-based diagnosis are changed
into abnormality axioms, simply by replacing ‘components’ by ‘defects’. These axioms have
the following form

—Abnormal(d) — —Present(d) (14)
for each defect d, stating that under normal conditions defect d is not present, and

0qp — Present(dy) V ---V Present(d,) (15)
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for each observable abnormal finding o4 and related defect d;, i = 1,...,n. Formulae of the
form (14) express hypotheses, namely that a particular defect may be absent (—Present(d))
if it does not give rise to an inconsistency. As we have discussed in Section 4.2, formulae of
the form (15) may be seen as the predicate completion [Clark, 1978], of finding literals in
formulae of the form

Present(d) — ogp

i.e. if CM denotes the set of formulae of the last form, with defect literals Present(d;), ...,
Present(dy,) in the premise, then the predicate completion COMP[CM; 0,5] with regard to
the finding o4 is equal to

COMP[CM;044] = CM U {04 — Present(d;) V ---V Present(dy)}

This states that the only causes of the finding o, to be present (and observed) are the
defects di,...,d,. As discussed above, this same kind of knowledge is expressed, although
implicitly, in the abductive theory of diagnosis; it is also expressed in the set-covering theory
of diagnosis, but the differences between the reasoning methods employed (consistency-based
reasoning, logical abduction, and set covering) dictate a different representation (syntax) in
all three formal theories. Informally, in the consistency-based diagnosis formalisation of MAB
diagnosis, diagnostic problem solving is carried out as follows. Given an observed finding o,
associated with a defect d;, 1 = 1,...,n, a disjunction

Present(dy) V -+ -V Present(d,)

is deduced, which is reduced by cancelling out atoms using axiom (14), assuming certain
defects not to be present, i.e. Abnormal(d) is false, yielding a (subset minimal) diagnosis. The
effect of axiom (14) corresponds to producing irredundant diagnoses in the set-covering theory
of diagnosis, in the sense that a minimal diagnosis with respect to set inclusion is produced.
Reiter shows that there exists a (subset minimal) diagnosis according to the consistency-based
reformulation of the set-covering theory of diagnosis iff there exists an equivalent irredundant
diagnosis in the set-covering theory (although at the time Reiter’s result was published, the
notion of irredundant diagnosis had not yet appeared in the literature) [Reiter, 1987).
Console and Torasso have studied the use of the consistency condition in abductive diag-
nosis for modelling DNSB diagnosis, i.e. diagnosis using a specification of a model of normal
structure and behaviour in a way resembling the work of Reiter [Reiter, 1987; Console &
Torasso, 1990b; Console & Torasso, 1991]. By taking the empty set for the set of observed
findings that must be covered, the covering condition in abductive diagnosis becomes

CMUHEO'

where O' = @; a diagnosis is the result of satisfaction of the consistency condition only,
because the covering condition is always satisfied in this case. Thus, consistency-based di-
agnosis in the sense of Reiter is obtained. However, the meaning of the logical axioms is
entirely different from the meaning originally attached to the logical axioms, because they
now represent normal behaviour of a device; d represents some normal state of a component
of the device and a finding o in the conclusion of a Horn clause d — o represents a finding
that may be observed when the component is in its normal state, i.e. o represents a normality
finding 0y0rm- By varying between O' = @ and O’ = O, for example by taking for O’ the
set of all abnormal findings 045 occurring in O, DNSB and MAB diagnosis can be integrated
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within the same abductive framework [Console & Torasso, 1990b; Console & Torasso, 1991].
The resulting abductive framework is referred to as ‘the spectrum of logical definitions of
diagnosis’.

We may conclude by saying that generalisation of the formal theories of diagnosis discussed
above has shown that there is no such thing as a unique formalisation of a conceptual model
of diagnosis. Although the formal theories can be applied to formalise conceptual models
of diagnosis other than those for which they were originally designed, the results often lack
conceptual clarity.

5.2 Generalisation towards frameworks of diagnosis

The principal difficulty of developing a theory of diagnosis lies, undoubtedly, in the design of
a mapping of some intuitively appealing conceptual model of diagnosis to a formal language,
such as logic or set theory. We know beforehand that both logic and set theory are sufficiently
expressive [Lewis & Papadimitriou, 1981]; so, this is not where the problem lies. The selection
of an appropriate logic, or an appropriate fragment of set theory, however, is much more
difficult. The insights gained from the formal theories discussed in Section 4 have facilitated
researchers in coming up with more general frameworks of diagnosis.

In [Ten Teije & Van Harmelen, 1994] it is proposed to extend the spectrum of logical
definitions of diagnosis, discussed in Section 5.1, by leaving the choice of the relations for
defining the covering and consistency conditions open (one trivial possibility would be to
choose the logical entailment relation F as a basis for both relations, another choice would be
an approximate entailment relation, such as defined by Schaerf and Cadoli [Schaerf & Cadoli,
1995; Ten Teije & Van Harmelen, 1996]), and by making it possible to choose an arbitrary
decomposition of the set of observed findings O into OF€, the set that must be consistent
with a diagnosis, and O’, the set that must be covered by a diagnosis. As a consequence,
the resulting framework is more flexible than the original framework, although it is still in
the spirit of the original spectrum of logical definitions of diagnosis. While the framework is
tailored to diagnosis, devising suitable definitions for the covering and consistency relations
is far from trivial.

D. Poole and colleagues have developed a theory and an implementation of a form of hypo-
thetical reasoning, called Theorist [Poole et al., 1987]. Theorist may be used as a framework
of diagnosis, but it is not restricted in any way to diagnostic problem solving. Moreover, there
are no inherent relationships between Theorist and any of the conceptual models of diagnosis.
The present implementation of the Theorist framework, however, is more or less tailored to
abductive diagnosis.

In Theorist, a diagnostic problem must be specified in terms of a set of facts, denoted by
FACTS, a set of hypotheses, denoted by HYP, and a set of constraints, denoted by C. The set
of facts FACTS and constraints C' are collections of arbitrary closed formulae in first-order
logic; hypotheses act as a kind of defaults that might become instantiated, and assumed to
hold true, in the reasoning process. A set FACTS U H is called an ezplanation of a closed
formula g, where H is a set of ground instances of hypothesis elements in HYP, iff:

(1) FACTSUH F g, and
(2) FACTSUHUC ¥ L.

On first sight, the framework looks a lot like the framework of abductive diagnosis discussed
in Section 4.2, but it is much more general, mainly due to the unrestricted nature of its
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default al.
default a2.
default fever.
default influenza.
default sport.

fact chills <- fever and al.
fact fever <- influenza.

fact thirst <- fever.

fact myalgia <- influenza and aZ2.
fact myalgia <- sport.

constraint not chills. % Oc

Figure 8: Specification of an abductive diagnostic problem in Theorist.

elements. In terms of the abductive theory of diagnosis, we would have called H a solution,
if the abnormality axioms CM were taken as FACTS, the set of findings not observed O°¢
as constraints C, and the set of observed findings O as g. Obviously, because there is no
fixed diagnostic interpretation in Theorist, the framework can be used as a basis for various
other notions of diagnosis, such as consistency-based diagnosis (just take g = T). A similar
framework of diagnosis has been proposed by K. Konolige [Konolige, 1994]; in this theory,
called the default causal net theory, the partitioning of a logical theory into various meaningful
elements is a bit different from that of Theorist. However, there are too many similarities
with Theorist to justify an extensive description in this overview.

Example 8. Figure 8 presents a specification of the abductive diagnostic problem from
Example 3 in terms of the Theorist implementation [Poole, 1990c], where Oc denotes the set
of findings assumed to be absent, O¢, taken as constraints in Theorist. The following query:

explain thirst and myalgia.

yields the following results:

Answer
Theory

Answer
Theory

Answer
Theory

Answer
Theory

is
is
is
is
is
is
is
is

thirst and myalgia
[a2,influenza,fever]

thirst and myalgia
[sport,fever]

thirst and myalgia
[a2,influenzal]

thirst and myalgia
[sport,influenzal

Theories are solutions in the abductive theory of diagnosis. Only a subset of the solutions
mentioned in Example 3 are computed, because in Theorist it is assumed that every observed
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Cushing’s
disease » moon face
dyspnoea

pulmonary

infection \:
fever

iron-deficiency
anaemia

low
serum iron

Figure 9: Nonmonotonic interaction between disorders.

finding need be explained only once by a diagnosis. &

Although logic offers powerful tools for designing and studying notions of diagnosis, formal-
ising diagnosis in logical terms may be cumbersome. In particular, when it is necessary to
resort to non-standard logics, there is a lurking danger that the original subject of research
(diagnosis) is taken over by the study of logic. Instead of taking logic as a language to de-
velop a framework of diagnosis, we might also adopt set theory as our language of choice and
generalise the set-covering theory of diagnosis. This approach, which is more straightforward
than logical analysis, has been investigated in [Lucas, 1996a]. The approach is introduced by
the following example.

Example 9. Consider a medical diagnostic problem, where a patient may have Cush-
ing’s disease — a disease caused by a brain tumour producing hyperfunctioning of the adrenal
glands — pulmonary infection and iron-deficiency anaemia. We shall not enumerate all symp-
toms and signs causally associated with these medical problems; it suffices to note that moon
face is a sign associated with Cushing’s disease, fever and dyspnoea (shortness of breath)
are associated with pulmonary infection, and low levels of serum iron are characteristic for
iron-deficiency anaemia. However, in a patient in whom Cushing’s disease and pulmonary
infection coexist there usually is no fever. This indicates that there exists an interaction
between the two disorders, Cushing’s disease and pulmonary infection, that is nonmonotonic,
i.e. the co-occurrence of the two disorders produces fewer findings than the union of their
associated observable findings. Figure 9 depicts this simple problem. Note that we can nei-
ther represent this knowledge by a causal specification (refraining from non-standard logic)
as used in abductive diagnosis, nor in terms of an effects function as used in the set-covering
theory of diagnosis. <

Interactions among defects (disorders) can be expressed by means of a mapping of sets of
defects to sets of observable findings. Such a mapping will be called an evidence function.
More formally, let 3 = (DFS, OBS, e) be a diagnostic specification, where, again, DFS denotes
a set of possible defects (disorders), and OBS denotes a set of observable findings. Positive
defects d (findings 0) and negative defects —d (findings —0) denote present defects (findings)
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and absent defects (findings), respectively. If a defect d or a finding o is not included in a
set, it is assumed to be unknown. Let a set Xp denote a set of positive elements, and let
Xn denote a set of negative elements, such that Xp and Xy are disjoint. It is assumed that
DFS = DFSpUDFSy and OBS = OBSp UOBSy. Now, an evidence function e is a mapping

e: p(DFS) — p(OBS)U{L}
such that:

(1) for each o € OBS there exists a set D C DFS with o € (D) or —o € e(D) (and possibly
both);

(2) if d,~d € D then e(D) = L;
(3) if e(D) # L and D' C D then e(D’) # L.

If e(D) # L, it is said that e(D) is the set of observable findings for D; otherwise, it is said
that D is inconsistent. Inconsistency here means that a particular combination of defects
is not allowed. According to the definition above, we may have that both o € e(D) and
-0 € e(D), which simply means that these findings may alternatively, e.g. at different times,
occur given the combined occurrence of the defects in the set D.

For the medical knowledge depicted in Figure 9, it holds, among others, that:

e({Cushing’s disease}) = {moon face}
e({pulmonary infection}) = {fever,dyspnoea}
e({ Cushing’s disease, pulmonary infection}) = {moon face, dyspnoea}

The property

e({ Cushing’s disease, pulmonary infection}) 2 e({ Cushing’s disease}) U
e({pulmonary infection})

formally expresses that the interaction between Cushing’s disease and pulmonary infection is
nonmonotonic.

Various semantic properties of a domain for which a diagnostic system must be built can
be expressed precisely as interactions in terms of evidence functions. An example of a local
interaction reflected in an evidence function is causality; it is formalised as e(D') C e(D),
with the following meaning: ‘the set of defects D causes the set of defects D”’.* This is the
same sort of knowledge as used in abductive diagnosis (cf. Section 4.2). We may also have
that defects exhibit no interactions at all, which is a global property, expressed as follows:

e(D) = J e({d})

deD

for each consistent set D C DFS. Observe that this evidence function corresponds to the
effects function (11) in the set-covering theory of diagnosis. Other semantic properties (with
respect to observable findings) can be defined in this fashion quite easily [Lucas, 1996a).

To employ an evidence function for the purpose of diagnosis, it must be interpreted with
respect to the actually observed findings. The interpretation of an evidence function and the

“We do not claim that this property formalises causality; it only expresses the notion of causality in terms
of diagnosis.
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hypothesis knowledge base
H e

notion observed
findings
0
diagnosis
Rzae\ H (O)

Figure 10: Schema of notion of diagnosis, diagnostic problem and solution.

observed findings that is adopted, can be viewed as a notion of diagnosis applied to solve the
diagnostic problem at hand.

More formally, let P = (2, 0) be a diagnostic problem, where ¥ = (DFS,OBS,e) and
O C OBS is a set of observed findings. Let Ry, denote a notion of diagnosis R applied to X,
then a mapping

Rs.e, : p(OBS) — p(DFS) U {u}

will either provide a diagnostic solution for a diagnostic problem P, or indicate that no
solution exists, denoted by u (undefined). Here, H denotes a hypothesis, which is taken to
be a set of defects (H C DFS), and e, called the resiricted evidence function of e, is a
restriction of e with respect to the power set p(H):

e : p(H) = p(OBS) U{L}

where for each D C H: eg(D) = e(D). A restricted evidence function ez can be thought
of as the relevant part of a knowledge base with respect to a hypothesis H. An R-diagnostic
solution, or R-diagnosis for short, with respect to a hypothesis H C DFS, is now defined as
the set

Rs e, (0), where Ry ,(O) C H if a solution exists.

The general idea is illustrated in Figure 10. To illustrate the flexibility of the framework,
consider again the notion of weak causality as defined in the abductive theory of diagnosis,
which is obtained by the addition of assumption literals « to individual abnormality axioms
of a causal model CM.

Example 10. Consider the abductive problem A = (C,0), with causal specification
C = (DFS, OBS,CM), where CM is equal to:

fever Aay —  thirst

fever Nag —  sweating
pneumonia N ag — fever
pulmonary_embolism N ay —  dyspnoea
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and where fever, pneumonia, and pulmonary_embolism are defects (disorders). The resulting
evidence function e is defined by the following restriction € of the evidence function e:

{thirst, sweating} if D = {fever}
{thirst, sweating} if D = {pneumonia}

é(D) =< {dyspnoea} if D = {pulmonary_embolism}
1 if D = {—fever, pneumonia}
15} if D is a singleton set different from those above

yielding a diagnostic specification ¥ = (DFS, OBS, e), where the function e is obtained from
é by taking the union of non-specified, consistent function values. For example,

e({pneumonia, pulmonary_embolism}) = {thirst, sweating, dyspnoea }

&

Given the definition of a diagnostic problem P, it is possible to solve it using various notions of
diagnosis. For example, the notion of diagnosis that corresponds to abductive diagnosis with
weakly causal relations as introduced above, is called the notion of weak-causality diagnosis,
denoted by WC. It is defined as follows:

u  otherwise

WCs,e, (0) = {

This notion of diagnosis is precisely the same as set-covering diagnosis, except that it is
defined for general evidence functions, and not only for those evidence functions that are free
of interaction.

Example 11. Reconsider the previous example. Let the set of observed findings be
equal to O = {thirst, sweating}, then the set H = {fever,ai,as} is an abductive solution
to A = (C,0), because the covering and consistency conditions are satisfied; the associated
diagnosis is D = {fever}. In terms of the set-theoretical framework, we have

WCE’erever} (O) = {fever}

Hence, the results of the (set-theoretical) notion of weak-causality diagnosis and the (logical)
notion of abductive diagnosis with a weakly causal model CM do indeed coincide. <

Other notions of diagnosis, such as consistency-based diagnosis or a notion of diagnosis based
on strongly causal knowledge, can be defined in a straightforward way. For example, where
the notion of strong causality diagnosis is obtained in the theory of abductive diagnosis by
doing away with incompleteness assumption literals, the same notion is obtained in the set-
theoretical framework by replacing the D relation in the definition of the function WC by
equality =. The resulting notion of diagnosis expresses that all predicted observable findings
must be observed, and vice versa.

It is also straightforward to define notions of diagnosis in terms of the set-theoretical
framework that offer some approximating or refinement form of diagnosis. For example, the
following notion of diagnosis, called most general subset diagnosis [Lucas, 1996b],

if H is consistent, and

U H CH H, .
GSyye y (E) = e n(H') C B JH'CH:ey(H')CE

u otherwise
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is more flexible than strong-causality diagnosis. Intuitively, a most general subset diagnosis
is the smallest set of defects that includes all accepted subhypotheses of a given hypothesis,
where an accepted subhypothesis concerns observable findings that all have been observed.

Example 12. Reconsider Example 10. Let O = {thirst, sweating, dyspnoea} be the set of
observed findings. Then, we have that

WCE’eI{feveT,pneumonia} (O) =u

i.e. the observed findings in O cannot be accounted for using weak-causality diagnosis. How-
ever, it holds that

Gsz’el{fever,pneumonia} (O) = {fever, pneumonia}

This expresses that at least part of the observed findings in O can be accounted for by the
hypothesis {fever, pneumonia}. &

Hypothetico-deductive diagnosis can be described using the set-theoretical framework as a
specific form of most general subset diagnosis. Assuming for simplicity’s sake that the asso-
ciated evidence function exhibits no interaction, most general subset diagnosis expresses that
a defect is accepted as part of a diagnosis if all its associated typical observable findings have
been observed. With some slight extensions, it is also possible to model the effect of grouping
various findings with respect to a defect, which is usually expressed in rule-based systems by
defining more than one rule with the same conclusion.

6 Discussion

The overview of the various approaches to diagnostic problem solving presented above indi-
cates that, on the one hand, several different formalisations of the same conceptual model of
diagnosis exist, whereas, on the other hand, several different conceptualisations of diagnosis
fit into the same formal framework. Unfortunately, the various conceptual models of diagnosis
presented in the literature are still commonly referred to by the name of their formal counter-
part, suggesting that a unique linkage does exist between a formal theory and a conceptual
model of diagnosis.

Each formal theory of diagnosis discussed has originally been developed to capture one
specific conceptual approach to diagnosis. This remains visible, in spite of attempts of gener-
alisation. They seem too intimately linked with their conceptual bases to be taken as genuine
formal frameworks of diagnosis. The theory of consistency-based diagnosis as proposed by
Reiter, [Reiter, 1987], and De Kleer et al., [De Kleer et al., 1992], provides a framework of both
DNSB and MAB diagnosis, although the theory appears rather cumbersome for expressing
MAB diagnosis. It does not provide a suitable basis for AC diagnosis. As the theory is based
on the general, logical notion of (in)consistency, it is not expressive enough to capture many
of the essential features of diagnostic problem solving in a straightforward way. Inconsistency
may be a suitable notion to describe deviation from the normal situation of a device, but
as a model for the description of the relationships among defects and findings it is highly
unnatural.

In the abductive theory of diagnosis proposed by Console and Torasso, specific assump-
tions are made with respect to the causal nature of the knowledge involved. Their formal-
isation implicitly assumes that logical implication provides a suitable axiomatisation of the
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notion of causality. However, only the transitive nature of logical implication seems to meet
the properties of causality; the reflexive and contrapositive properties of implication will not
hold for all notions of causality. The interpretation of causal knowledge in the theory by
Console and Torasso is achieved through the logical entailment relation, which is also used,
together with the consistency and covering condition, to define notions of diagnosis. Hence,
no clear distinction is made between the interpretation of a knowledge base — to determine
what logically follows from the knowledge base — and applying this interpretation to deter-
mine a diagnosis. Furthermore, by the monotonicity of the entailment relation, certain types
of knowledge, e.g. knowledge in which observable findings are cancelled due to interaction
among defects, are precluded from formalisation. Extension to general Horn clause logic has
been investigated by several researchers (cf. [Console et al., 1991] and [Preist et al., 1994]),
but this is only one of the possibilities.

The set-covering theory of diagnosis aims, like the abductive theory of diagnosis, at de-
scribing a domain in terms of causality. Unlike the abductive theory of diagnosis, only a single
concept of causality is employed, which is only made more expressive by the interpretation
of causal relations as conditional probabilities [Peng & Reggia, 1990], yielding a formalism
that is much alike the belief-network formalism [Lucas & Van der Gaag, 1991; Pearl, 1988].
Furthermore, a knowledge base consists only of a specification of single defects in terms of
associated findings; in this way, it is not possible to model interactions among defects. More-
over, the notion of set-covering diagnosis (explanation) is fixed, with the exception of the
notion of minimal diagnosis, which is variable in the theory. Finally, no clear distinction is
made between the interpretation of a knowledge base in terms of causality and the process
of diagnosis. We concluded that many of the restrictions underlying theories of diagnosis are
too strong, certainly if they are to be used as frameworks of diagnosis.

The Theorist framework may be taken as a framework of diagnosis, but it seems more
appropriate to view it as a general framework of hypothetical or default reasoning. Here, the
relationship with diagnosis is actually too weak to accept it as a framework of diagnosis. The
‘spectrum of logical definitions of diagnosis’ by Console and Torasso, [Console & Torasso,
1991], with its generalisation by Ten Teije and Van Harmelen, [Ten Teije & Van Harmelen,
1994], is much more tailored to the encoding of conceptual models of diagnosis. Further
extension of the spectrum to temporal model-based diagnosis has been proposed recently
[Brusoni et al., 1996]. For defining hypothetico-deductive diagnosis, however, this approach
is not very suitable.

Although logic has been adopted as a language for formalisation in most formal theories of
diagnosis, set theory offers a powerful alternative. For example, the set-theoretical framework
of diagnosis proposed in [Lucas, 1996a] leaves much freedom to the designer of a diagnostic
theory, because it does not require the designer to comply with the constraints of some
predefined semantics, such as underlying standard logic. Of course, it is usually desirable
to define notions of diagnosis that closely mirror the meaning of a knowledge base. An
advantage is that the framework supports the design of notions of diagnosis from scratch, and
various kinds of interactions can be expressed readily in the framework. A disadvantage of
the framework is that it is rather extensional in nature, hence less suitable for the modelling
of domain knowledge.

Although during the last few years, research has focused on frameworks of diagnosis, it is
not clear as yet whether frameworks of diagnosis offer substantial advantages, theoretically
or practically, over the now well-established theories of diagnosis. In particular, it would
be interesting to investigate the potentials of frameworks of diagnosis to act as a basis for
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building real-life applications.
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