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Abstract

We study the problems involved in the recursive de�nition of (quasi) orders on
terms, focussing on the question of establishing well-de�nedness, and the properties
required for partial and quasi-orders: irre
exivity and transitivity, and re
exivity and
transitivity, respectively. These properties are in general di�cult to establish and this
has in many cases come down in the literature as folklore results. Here we present a
general scheme that allows us to show that relations are well-de�ned and represent
partial or quasi-orders. Known path orders as semantic, recursive and lexicographic
path order as well as Knuth-Bendix order �t into the scheme. Additionally we will
also discuss how to obtain other properties commonly found in term orders (amongst
which well-foundedness) as an integrated feature of the scheme.
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1 Introduction

Recursively de�ned (quasi) orders on terms (and in particular well-founded ones) play an
important role in the theory of rewriting, from termination proofs to completion procedures.
Most, if not all, of such orders found in the literature belong to the family of the so-called
path orders. The basic idea behind path orders is the construction of orders on terms
starting from a well-founded order on the signature F (usually called a precedence). In
general a term s is greater than any term built from \smaller" terms connected together
under a function symbol smaller, in the precedence, than the root (i. e., the top symbol) of
s. Thus path orders compare the roots of the terms using the precedence and for equal or
equivalent roots, subterms are compared recursively in some manner. The di�erent ways
of doing this subterm's comparison give rise to di�erent path orders.

Path orders originated with the work of Plaisted (path of subterms orderings [20, 21])
and Dershowitz (recursive path order [2, 3]) at the end of the seventies. Since then other
orders have been proposed and the original ones improved; examples of such orders include
the lexicographic path order [13], the recursive decomposition ordering [12], the path order-
ing [14]. Based on the earlier examples, others have been proposed and a lot of work has
been done on generalizing and improving existing ones (see [18, 23]). For an exhaustive
account on path orders and their history, see [26].

When giving a recursive de�nition of a path order, several problems are posed. One
of them is well-de�nedness of the order, i. e., one should see that an object of the sort
that is being de�ned exists. Another important aspect concerns the properties that make
a relation a partial or quasi-order, i. e., irre
exivity and transitivity, and re
exivity and
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transitivity, respectively. In general these properties, especially transitivity, are quite di�-
cult to establish. Even though these are essential issues in the theory of recursively de�ned
term orders, they haven't received the attention they deserve and need, and many results
concerning path orders have come down in the literature either as folklore theorems or
with unconvincing proofs. Furthermore the inexistence of an uni�ed framework for the
de�nition of such orders has the unpleasant consequence that every time a new order is
proposed, even if that order strongly resembles known ones, all properties have to be shown
anew.

Here we propose a remedy to this situation. We present a general scheme such that any
recursive relation on terms de�ned according to our scheme will result in a well-de�ned
partial or quasi-order on terms. The advantages of our approach are twofold:

� proving well-de�nedness, (ir)re
exivity and transitivity has to be done only once,
namely for the scheme presented; then for any particular recursively de�ned relation
on terms that we want to establish as a partial or quasi-order, we only need to check
that the relation satis�es the properties required by the scheme, and this check is
in general substantially simpler than establishing well-de�nedness, (ir)re
exivity and
transitivity.

� the abstraction provided by the scheme allows for a better understanding of the
mechanisms behind the de�nition of these orders and the scheme itself can be used
for de�ning new path orders; furthermore, the scheme can be combined with results
from [9, 10], in order to ensure well-foundedness of the orders.

Many if not all of the orders known in the literature are instances of the schemes
presented. As an example we show how four of the most representative path orders,
namely recursive path order [3, 4], semantic path order [13], lexicographic path order [13],
and Knuth-Bendix order [16], �t in the scheme.

The rest of the paper is organized as follows. In sec. 2 we introduce some needed notions
about Complete Partial Orders and most of the terminology/notions on terms that are used
through out out the paper. In sec. 3 we introduce the scheme for recursive de�nitions of
path quasi-orders and discuss the properties enjoyed by the scheme. We also show how
spo and rpo can be seen as instances of our scheme. In sec. 4 we present another scheme
for the recursive de�nitions of path partial orders on terms. Because quasi-orders and
partial orders are essentially di�erent, the schemes for their de�nition are also di�erent. It
would be possible to use a common framework for de�ning both schemes but the treatment
would actually become more complicated. In the same section, and as was done for the
quasi-order case, the properties of the scheme are discussed, and we also show how lpo and
kbo can be obtained as instances of the scheme presented. We conclude in sec. 5.

2 Preliminaries

In this section we introduce the notions over orders, CPO's and the algebra of terms needed
to comprehend the rest of the paper.
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2.1 Orderings, CPO's and monotone functions

We begin by introducing the concepts of quasi and partial orders.

De�nition 2.1. A binary relation � on a set S is said to be

� (ir)re
exive if (:)s�s, for all s 2 S,

� symmetric if � satis�es (u�v ) v�u), for all u; v 2 S,

� transitive if � satis�es (u�v ^ v�w) u�w), for all u; v; w 2 S.

De�nition 2.2. A binary relation � on a set S is said to be:

� an equivalence relation if it is re
exive, symmetric and transitive. The set S=� =
fhjsji�j s 2 Sg is the quotient of S modulo � and hjsji� is the �-equivalence class of
the element s 2 S, i. e., hjsji�= fx 2 Sj x�sg.1

� a (strict) partial order , or simply order if it is transitive and irre
exive. We use the
terminology poset meaning a set with a partial order.

� a quasi-order if it is transitive and re
exive; we denote such relations in general by
�.

Quasi-orders also appear in the literature under the name pre-orders. Any quasi-order
� de�nes an equivalence relation, namely �\�, and a partial order, namely �n� (or its
inverse � n�). We usually denote the induced equivalence relation by � and the induced
partial order by �. But when need arises, we will also use the following notation:

De�nition 2.3. If � is a quasi-order over a set S then ord(�) = � n � and eq(�) =
� \ �, i. e., ord(�) represents a partial order contained in �, and eq(�) represents the
equivalence relation contained in �.

Conversely, given a partial order � and an equivalence �, their union does not always
de�ne a quasi-order (the transitive closure of their union does). However if � and � satisfy

(� � � � �) � � (1)

where � represents composition, then � [ � is a quasi-order, of which � is the strict part
and � the equivalence part.

From now on if we characterize a quasi-order via �[�, we assume that the condition
(1) is satis�ed. Also we take as partial order de�ned by a quasi-order � the relation
� = � n �. Note that if � and � satisfy condition 1, then � \ � = ;, as we want it
to be: if this condition is not satis�ed we have that a � b � a, for some elements a; b, and
this con
icts either with irre
exivity or condition 1.

1Note that the equivalence class of an element does not depend on the element chosen for its represen-
tative.
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De�nition 2.4. Given a quasi-order � over S and the quotient S=� consisting of the
(�-) equivalence classes of � (which are are denoted by hj ji), we can extend � to S=� in
a natural way, namely by de�ning hjsji= hjtji if and only if s � t.

The following lemma is not di�cult to prove.

Lemma 2.5. In the conditions of de�nition 2.4, the relation = on S=� is well-de�ned.
Furthermore = is a partial order over S=�.

Note that well-de�nedness means that = does not depend on the class representative
and is a consequence of the fact that � and � satisfy condition (1). When the extension
= is well-de�ned we abusively write � instead of =.

De�nition 2.6. Given a partial order � (respectively quasi-order �) over some set S, we
say that � (respectively �) is

� well-founded if and only if � (respectively �) has no in�nite descending sequences,
i. e., there are no sequences of the form s0 � s1 � s2 � : : :.

� total if and only if for any elements u; v 2 S we have either u = v (resp. s � v) or
u � v or v � u.

We consider two useful extensions of partial orders, namely the multiset and lexico-
graphic extensions. First we have to de�ne the domain of these extensions.

De�nition 2.7. Let S be any set. A �nite multiset over S is a function � : S ! IN such
that the set fs 2 Sj �(s) 6= 0g is �nite. The set of all �nite multisets over S is denoted by
M(S).

Intuitively a �nite multiset is a �nite set where elements can be repeated �nitely many
times. For any s 2 S, �(s) just gives the frequency (number of occurrences) of the element
s in the multiset.

We will use a set-like notation ff gg to denote a multiset. Operations similar to the
ones applied on sets (e. g. 2, [, � etc.) are also applied to multisets. We will use round
symbols to denote operations on sets (e. g. �) and similar squared symbols for the same
operation on multisets (e. g. v), whenever possible. Some operations, like 2, n, will be
denoted ambiguously by the same symbol. In the following we abbreviate �nite multiset
to multiset.

De�nition 2.8. Let S be any set and n 2 IN, �xed. Then Sn represents the set of
sequences of elements of S of size exactly n. S� =

S
k�0 S

k represents all possible sequences
over S, where S0 contains only the empty sequence �. We use the notation S�n for the
set

Sn
k=0 S

k. Elements of Sk, for any k, are denoted by hs1 � � � ski, where \�" denotes
concatenation.
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We now consider posets and de�ne the multiset and lexicographic extension of the
orders. The following de�nition is due to Dershowitz and Manna [6].

De�nition 2.9. Let (S;>) be a poset. The multiset extension of > overM(S) is denoted
by >mul and de�ned as follows: X >mul Y if and only if there are multisets X0; Y0 2 M(S)
satisfying

� X0 6= ; and X0 � X,

� Y = (X nX0) [ Y0,

� 8y 2 Y0 9x 2 X0 : x > y.

The following lemma is proven in [6].

Lemma 2.10. If (S;>) is a poset then (M(S); >mul) is also a poset. Furthermore, >
is well-founded (respectively total) on S if and only if >mul is well-founded (respectively
total) on M(S).

De�nition 2.11. Let (S;>) be a poset. The lexicographic extension of > over Sn, S�n

(for some �xed n 2 IN) or S� is de�ned as follows:

u1 � � �uk >lex v1 � � � vm ()

(
m < k ^ 81 � j � m : uj = vj; or
91 � j � minfm; kg : (uj > vj) ^ (81 � i < j : ui = vi)

Note that when restricted to Sn, the �rst condition is irrelevant.
We have a result similar to lemma 2.10.

Lemma 2.12. If (S;>) is a poset then (Sn; >lex), (S
�n; >lex) and (S�; >lex) are also

posets. Furthermore, > is well-founded on S if and only if >lex is well-founded on Sn or
S�n and > is total on S if and only if >lex is total on Sn, S�n or S�.

Note that if > is well-founded, >lex is not necessarily well-founded on S�, as the fol-
lowing example shows.

Example 2.13. Let S = fa; bg with a > b. Then we have the in�nite descending chain

a >lex ba >lex bba >lex bbba >lex : : :

This problem can easily be avoided if we take the length of the sequence into consider-
ation, i. e., if we de�ne

u1 � � �uk >
�
lex v1 � � � vm ()

(
k > m; or
m = k and u1 � � �uk >lex v1 � � �vm

We have that >�
lex is a partial order whenever S is a partial order. Furthermore >�

lex is
well-founded (respectively total) if and only if > is well-founded (respectively total).
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Sometimes we are also interested in the lexicographic combination of orders over pos-
sibly di�erent sets.

De�nition 2.14. Given n � 1 posets (Ai; >i), then �, the lexicographic product of the
orders >i, 1 � i � n, over the set A1 � : : :� An, is de�ned as

(u1; : : : ; un) � (v1; : : : ; vn) ()

(
91 � j � n : (uj >j vj and

(81 � i < j : ui = vi))

It is not di�cult to see that � is a partial order over A1 � : : : � An. Furthermore �
is well-founded (respectively total) over A1 � : : : � An if and only if >i is well-founded
(respectively total) over Ai, for all 1 � i � n.

We can also de�ne the multiset and lexicographic extensions and lexicographic product
for quasi-orders. Direct de�nitions similar to the de�nitions 2.9, 2.11 and 2.14, can be
given, but the simplest way of de�ning these concepts is, in our view, to consider the
equivalence classes.

De�nition 2.15. Let � = > [ � be a quasi-order over S and let hjaji denote the �-
equivalence class of the element a 2 S. Let = denote the extension of > to the quotient
S=� of the �-equivalence classes, =mul its multiset extension on M(S=�), and =lex its
lexicographic extension on (S=�)� ((S=�)n, (S=�)�n, for some n) The multiset extension
of � is denoted by �mul and de�ned as follows:

ffa1; � � � ; amgg eq(�mul) ffb1; � � � ; bngg () ffhja1ji; � � � ; hjamjigg = ffhjb1ji; � � � ; hjbnjigg

ffa1; � � � ; amgg ord(�mul) ffb1; � � � ; bngg () ffhja1ji; � � � ; hjamjigg =mul ffhjb1ji; � � � hjbnjigg

The lexicographic extension of � is denoted by �lex and de�ned as follows:

ha1 � : : : � ami eq(�lex) hb1 � : : : � bni () hhja1ji� : : : � hjamjii = hhjb1ji� : : : � hjbnjii
ha1 � : : : � ami ord(�lex) hb1 � : : : � bni () hhja1ji� : : : � hjamjii =lex hhjb1ji� : : : � hjbnjii

It is important to note that both ord(�lex) and ord(�mul) are di�erent from the
lexicographic and multiset extensions, respectively, of >, the strict part of �. Consider
the set S = fa; bg and the quasi-order � satisfying re
exivity and a � b and b � a. Then
> is the empty relation. We have that ha � ai ord(�lex) hbi and ffa; agg ord(�mul) ffbgg,
while ha � ai 6>lex hbi and ffa; agg 6>mul ffbgg.

The relations �lex and �mul are themselves quasi-orders, satisfying condition 1 and
preserving both well-foundedness and totality. More precisely:

Lemma 2.16. In the conditions of de�nition 2.15,

� �mul= ord(�mul) [ eq(�mul) is a quasi-order satisfying condition 1. Furthermore
� is well-founded (respectively total) over a set S if and only if �mul is well-founded
(respectively total) over M(S).
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� �lex= ord(�lex) [ eq(�lex) is a quasi-order satisfying condition 1. Furthermore �
is well-founded over a set S if and only if �lex is well-founded over Sn (or S�n), for
a �xed n � 1. Also � is total over a set S if and only if �lex is total over Sn (S�n

or S�).

The lexicographic product of n � 1 quasi-orders (Ai;�i), 1 � i � n, is de�ned similarly
to the lexicographic product of partial orders, we only need to change equality in de�nition
2.14 to �i, the equivalence relation contained in �i, while the equivalence relation associ-
ated to the lexicographic product is de�ned by using equality of the equivalence classes, as
in de�nition 2.15.

The main purpose of this paper is the de�nition of recursive orderings on terms and
recursive de�nitions are related to �xed points. As usual, given a function f : A ! A,
a �xed point of f is an element a 2 A satisfying f(a) = a. Not all functions have �xed
points, but it is possible to ensure the existence of �xed points if both the domain and the
functions satisfy certain conditions. A possibility is to require A to be a CPO and f to
be continuous. We now introduce these concepts. For more detailed information, see for
example Davey and Priestley [1].

De�nition 2.17. Let (P;>) be a poset and let S be a subset of P . An element p 2 P
is named an upper bound for S if it satis�es p � s, for all s 2 S. The supremum of S,
denoted by

W
S, when it exists, is the least upper bound of S, i. e.,

�
W
S � s, for all s 2 S,

� if p is an upper bound for S then p �
W
S.

The supremum of P (when it exists) is named the greatest element or top.

We note that the notions of lower bound , greatest lower bound or minimum and least
element (or bottom) have a dual de�nition.

De�nition 2.18. Let D be a non-empty subset of a poset (P;>). D is said to be directed
if for any �nite subset F of D there is an element d 2 D which is an upper bound for F .

De�nition 2.19. A poset (P;>) is a complete partial order , abbreviated to CPO , if it
satis�es the following conditions:

� P has a least element,

� every directed subset of P has a supremum.

Example 2.20. A very simple example of CPO is the powerset of P , for any set P ,
ordered by strict inclusion. The least element is the empty set and the supremum of any
family of sets, and in particular a directed one, is the union of the elements in the family.
This CPO also has a greatest element, namely P itself.
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De�nition 2.21. Let (P;>) and (Q;�) be two CPO's. A function f : P ! Q is said to
be:

� (weakly) order-preserving or weakly monotone if x > y ) f(x) � f(y);

� continuous if for every directed set D of P we have f(
W
>D) =

W
� f(D).

Note that in the de�nition above we do not need the existence of a least element
neither in P nor in Q. In fact the de�nition of continuous function can be weakened to
requiring that the condition for the supremums holds whenever they exist. Note also that
if a function is continuous it is also weakly monotone since for any pair of elements x; y
such that x > y, the set fx; yg is directed and its supremum is x. Continuity now gives
f(
W
fx; yg) = f(x) � f(y), by de�nition of supremum.
We now present the �xed-point result we need.

Theorem 2.22. Let (P;>) be a CPO with least element ?. Let f : P ! P be any
function. We have:

1. if f is order-preserving then f has a least �xed point. Furthermore if
_

n�0
fn(?) is

a �xed point then it is the least �xed-point.

2. if f is continuous then f has a least �xed point given by
_

n�0
fn(?).

For a proof of these statements see [1]. Note that the set ffn(?)j n � 0g is a directed
set and so the supremum is well-de�ned.

2.2 Terms and Rewriting Systems

We introduce some notions over terms and rewriting needed in the sequel. More complete
information about term rewriting and its applications can be found in the surveys of Klop
[15], Dershowitz and Jouannaud [5], and Plaisted [22].

Throughout this section (and the rest of the paper) we will use the following convention:
whenever an object (relation, set, etc.) is de�ned inductively, we always have in mind the
smallest object of the same type as the one being de�ned, satisfying the conditions speci�ed
in the de�nition, i. e., all other objects of the same type satisfying the conditions of the
de�nition, will contain the object being de�ned.

De�nition 2.23. A signature or alphabet F is a (non-empty) set of function symbols,
each of which has associated an arity given by the function arity : F ! IN. Elements of
F with arity 0 are also called constants; constants are denoted usually by c instead of c().
We will also use the notation f=n meaning that symbol f has arity n.

It is not essential to consider that each function symbol has an associated �xed arity.
Instead arity(f) can be any non-empty subset of the natural numbers, i. e., arity(f) 2

9



P(IN) n ;. If for at least one element f 2 F , arity(f) contains more than one element,
we speak of a varyadic signature. Otherwise we speak of a �xed-arity signature.

To de�ne the set of terms we will also use variables. In the following X will represent
a countable set of variables (whose elements we usually denote by letters x; y; z; : : :). The
function arity is extended to the elements of X : they have arity 0.

De�nition 2.24. Let F be a signature and let X denote a countable set of variables with
F \ X = ;. The set of terms over F and X is denoted by T (F ;X ) and the set of ground
terms over F by T (F); they are de�ned inductively as follows:

� X ;F0 � T (F ;X ), F0 � T (F); where F0 represents the set of constants,

� f(t1; : : : ; tn) 2 T (F ;X ) (respectively T (F)), if f 2 F admits arity n � 1 and
ti 2 T (F ;X ) (respectively T (F)) for any 1 � i � n.

De�nition 2.25. For any term t, #c(t) denote the number of occurrences of the symbol or
variable c in t, and jtj denotes the total number of function symbols and variables occurring
in t (obviously jtj =

X
c2F[X

#c(t)).

We sometimes need to abstract from the actual form of the whole term and concentrate
on parts of it. For that we use contexts. Intuitively a context is a term containing \holes"
that can be �lled with other terms. In general a context may have more than one occurrence
of 2. For our purposes, we only need to consider contexts with exactly one occurrence of
2, so we give a more restricted de�nition of context.

De�nition 2.26. Let F be a signature and 2 a constant not occurring in F . A (linear)
context is a term over T (F [ f2g;X ) with exactly one occurrence of2 (the trivial context).
Given a context C[2] (also denoted by C[ ]) and a term t 2 T (F ;X ), C[t] denotes the
term obtained by replacing the occurrence of 2 by t.

We will often need to perform induction on the de�nition of linear contexts, i. e., if we
want to prove some property for a term C[t], for any linear context C and (any) term t,
we prove that the property holds for (all) t and then assuming that the property holds for
D[t], where D is a linear context, we prove the property holds for f(: : : ; D[t]; : : :), for any
f 2 F with appropriate arity. It is not di�cult to see that this is equivalent to proving the
property for (all) t and then prove that if the property holds for a term s then it also holds
for f(: : : ; s; : : :), for any f 2 F , arity permitting. This fact will be used when performing
induction on linear contexts.

De�nition 2.27. We say that a term t is a subterm of a term s if we have s = C[t], for
some linear context C; s is also called a superterm of t. If C is not the trivial context then
t is a proper subterm of s. Furthermore if s = f(t1; : : : ; tn), for some n � 1, the terms
ti, with 1 � i � n, are called the principal subterms of s and they are denoted by ~s; the
function symbol f is the root symbol of s, usually denoted by root(s).
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De�nition 2.28. A substitution � is a function from X to T (F ;X ); such a func-
tion can be extended to an endomorphism over T (F ;X ) as follows �(f(t1; : : : ; tn)) =
f(�(t1); : : : ; �(tn)), for any f 2 F admitting arity n � 0, and terms t1; : : : ; tn 2 T (F ;X ).
A ground substitution is a substitution whose image lies in T (F). We usually denote �(t)
by t�.

We will deal with some particular relations on terms we de�ne next.

De�nition 2.29. A binary relation � over T (F ;X ) is said to be closed under contexts
(monotonic or satisfying the replacement property) if whenever s�t then for any linear
context C[ ] also C[s]�C[t]. Equivalently, s�t ) f(: : : ; s; : : :)�f(: : : ; t; : : :), for all non-
constant f 2 F . If � is a quasi-order on T (F ;X ), we say that � is strictly closed under
contexts if both its equivalence and strict part are closed under contexts.

De�nition 2.30. A binary relation � over T (F ;X ) is said to be closed under substitutions
(stable or satisfying the full invariance property) if whenever s�t then for any substitution
� : X ! T (F ;X ) also s��t�. If � is a quasi-order on T (F ;X ), we say that � is
strictly closed under substitutions if both its equivalence and strict part are closed under
substitutions.

De�nition 2.31. Let F be a signature. A precedence is a partial or quasi-order on F
denoted respectively by � or �.

We will consider special orderings on terms which are simply the extension of a prece-
dence to the set ot terms.

De�nition 2.32. A quasi-order � on T (F ;X ) is said to be precedence based if there
is some precedence � on F such that s � t () root(s) � root(t), for any terms
s; t 2 T (F ;X ). A partial order � is precedence based if there is some precedence � such
that s � t () root(s)� root(t), for any terms s; t 2 T (F ;X )

De�nition 2.33. A term rewriting system (TRS) is a tuple (F ;X ; R), where R is a subset
of (T (F ;X ) n X ) � T (F ;X ). The elements of R are called the rules of the TRS and are
usually denoted by l ! r, with l being the lefthand-side (lhs) of the rule, r the righthand-
side (rhs) and they satisfy the following condition: any variable occurring in r also occurs
in l.

The rules of a TRS induce a relation on terms as follows.

De�nition 2.34. A TRS (F ;X ; R) induces a reduction relation on T (F ;X ), denoted by
!R, as follows: s !R t if and only if s = C[l�] and t = C[r�], for some linear context
C, substitution � and rule l ! r 2 R. We call s !R t a reduction or rewrite step and
say that t is obtained from s by contracting or reducing the redex l�, i. e., replacing the
redex l� by its contractum r�. The transitive closure of !R is denoted by !+

R and its
re
exive-transitive closure by !�

R. A rewrite sequence is a sequence of reduction steps
t0 !R t1 !R � � �, and may be �nite or in�nite.

11



3 A scheme for the de�nition of quasi-orders

In this section we present a construction that allows us to recursively de�ne quasi-orders on
terms. We start with a �xed quasi-order � and recursively build a path order which uses
both the �xed quasi-order and some kind of lifting of quasi-orders, i. e., a function that
transforms quasi-orders in quasi-orders. The main idea then is to de�ne an appropriate
CPO and weakly monotone function such that the quasi-order we have in mind is or can
be derived from a �xed point of the function.

3.1 The CPO of quasi-orders

Since our aim is to de�ne a quasi-order it seems reasonable to choose as underlying set for
our construction the set of all quasi-orders. Then we still have to de�ne an appropriate
order on it such that the ordered structure will be a CPO.

Let S be a set and de�ne QOS to be the set of all quasi-orders on S, i. e., QOS = f� �
S � S : � is a quasi-orderg. We now de�ne a relation = in QOS as follows:

� = �0 ()

(
� � �0; and
ord(�) � ord(�0)

It is not di�cult to see that= is indeed a partial order (irre
exivity follows from the �rst
condition above and transitivity is a consequence of the fact that � and � are transitive).
Furthermore we have:

Lemma 3.1. The poset (QOS;=) is a CPO with bottom element given by equality, i.
e., the relation f(s; s)j s 2 Sg, and with the supremum of directed sets given by the union
of the elements in the set.

Proof It is clear that the bottom element is equality since any re
exive relation contains
equality which is itself a quasi-order. Suppose now that D is a directed set of quasi-
orders and take

S
D. We have to see that

S
D is a quasi-order and that for any

element � 2 D, we have
S
D w �. The relation

S
D is indeed re
exive since it is the

union of re
exive relations. As for transitivity, suppose we have elements s; t; u 2 S
such that s (

S
D) t and t (

S
D) u; then there are elements �1; �2 2 D such that s �1 t

and t �2 u. Since D is directed, there is an element �3 2 D such that �3 w �1; �2
and since �3 is transitive, we conclude that s �3 u and so s (

S
D) u, as we wanted.

Now we see that
S
D is an upper bound for D. Let � be an arbitrary element of D.

It is obvious that
S
D � �, but we still have to see that ord(

S
D) � ord(�).

Suppose that (s; t) 2 ord(�), then s � t and :(t � s). We also have s (
S
D) t; suppose

we have t (
S
D) s. Then an element �0 2 D has to exist such that t �0 s. Since D is

directed, there is an element �00 2 D such that �00 w �; �0; thus we have s �00 t and
t �00 s, which means that (s; t) 2 eq(�00). But this contradicts the fact that �00 w �
and (s; t) 2 ord(�) (since ord(�00) � ord(�)). So we must have :(t (

S
D) s) and
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ord(
S
D) � ord(�). We have just seen that

S
D is an upper bound for any � 2 D,

we still need to see that it is the least upper bound. Let then � 2 QOS be an upper
bound for D; this means that

� � � �, for all � 2 D, and therefore � �
S
D;

� ord(�) � ord(�), for all � 2 D. We need to see that ord(�) � ord(
S
D).

Let (a; b) 2 ord(
S
D), then also (a; b) 2

S
D and therefore (a; b) 2 �, for some

� 2 D. If we would have (a; b) 2 eq(�) then also (b; a) 2 � �
S
D and therefore

we would have (a; b) 2 eq(
S
D). So we must have (a; b) 2 ord(�) � ord(�),

so we conclude that ord(�) � ord(
S
D).

By the above
S
D is indeed the least upper bound of D and the proof is complete.

2

Some remarks are in order here. The CPO structure we have built so far is rather
complicated. Another possibility yielding an easier to handle CPO would be the set of all
relations ordered by strict inclusion. And indeed this structure works �ne if we are dealing
with partial orders mainly because in the case of partial orders inclusion of partial orders
coincides with inclusion of sets. For quasi-orders and what we have in mind, that is not so.
We want inclusion of quasi-orders to respect the strict and equivalent parts and therefore
inclusion of quasi-orders no longer coincides with inclusion of sets. So a richer di�erent
kind of CPO has to be de�ned and a good candidate seemed to be the set of quasi-orders
ordered by an appropriate partial order.

The last tool we need is the function allowing the construction of new quasi-orders from
existing ones. Such a function is called a status and is de�ned as follows.

De�nition 3.2. Let S be a set. A status is a function � : QOS ! QOS which is weakly
monotone with respect to the CPO (QOS;=), i. e., � = �0 ) �(�) w �(�0).

3.2 The quasi-order scheme

From now on we �x our CPO to be (QOT (F ;X );=). Let � be a �xed quasi-order on T (F ;X )
and let � be a status, in the sense of de�nition 3.2, with domain QOT (F ;X ). We de�ne the
following function:

De�nition 3.3. The function H : QOT (F ;X ) ! QOT (F ;X ) is de�ned as follows: s =
f(s1; : : : ; sk) H(�) t, with f 2 F [ X , having arity k � 0, s1; : : : ; sk 2 T (F ;X ), if one of
the following conditions holds:

1. t = g(t1; : : : ; tm), for some g 2 F [ X , having arity m � 0, and some t1; : : : ; tm 2
T (F ;X ), and for all 1 � j � m, we have s H(�) tj and :(tj H(�) s), and either

(a) s � t, or

(b) s � t and s ord(�(�)) t, or
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(c) s � t and s eq(�(�)) t, and for all 1 � j � k we have that t H(�) sj and
:(sj H(�) t); or

2. 91 � i � k : si H(�) t.

It is not di�cult to see that the function H de�nes a relation on T (F ;X ) (all recursive
references apply to terms of strictly smaller size, so the recursion ends), however in order
to see that the function is well-de�ned, we need to prove the following lemma.

Lemma 3.4. If � is a quasi-order in T (F ;X ) then H(�) is also a quasi-order in T (F ;X ).

Proof We need to see thatH(�) is both re
exive and transitive, i. e., that for all s; t; u 2 S

a) s H(�) s, and

b) s H(�) t and t H(�) u implies s H(�) u.

We prove a) and b) simultaneously by induction on jsj+ jtj+ juj. Let then s; t; u be
minimal terms (i. e., terms for which the sum jsj + jtj + juj is minimal) such that
s H(�) t and t H(�) u and for which properties a) and b) are not yet satis�ed. We
�rst see that s H(�) s. Suppose s = f(s1; : : : ; sk), for some f 2 F [ X , and k � 0.
If there is 1 � i � k such that si H(�) s, then by condition 2 of de�nition 3.3, we
get that s H(�) s. Otherwise we have that for all 1 � i � k, :(si H(�) s) and (by
induction hypothesis) si H(�) si and therefore (clause 2 of de�nition 3.3) s H(�) si,
for all 1 � i � k. Since both � and eq(�(�)) are equivalence relations, we also have
that s � s and s eq(�(�)) s, so applying condition 1c of de�nition 3.3, we conclude
that s H(�) s, and this proves a).

For b), we have to consider the di�erent cases in de�nition 3.3 by which we can
conclude that s H(�) t and t H(�) u: 16 cases in total. The cases where 2 occurs
are trivially solved using the induction hypothesis: for 2 vs. f1a, 1b, 1c, 2 g, we have
si H(�) t H(�) u, and induction hypothesis allows us to conclude that si H(�) u and
therefore that sH(�) u. As for the cases f 1a, 1b, 1c g vs. 2, we have sH(�) tj H(�) u
and again induction hypothesis gives s H(�) u.

In the remaining cases, namely f 1a, 1b, 1c g vs. f 1a, 1b, 1c g, the following holds:
s H(�) ul and :(ul H(�)s), for all 1 � l � k where s = f(s1; : : : ; sm); t = g(t1; : : : ; tn)
and u = h(u1; : : : ; uk), for some f; g; h 2 F [ X , and m;n; k � 0. Indeed, since
s H(�) t H(�) ul, for all 1 � l � k, induction hypothesis immediately gives s H(�) ul,
for all such l; and if for some l it would be ul H(�) s then since s H(�) t, induction
hypothesis would also give ul H(�) t, contradicting the fact that, for all l holds
:(ul H(�) t) (remember which cases we are considering). Therefore it must be
:(ul H(�) s) for all 1 � l � k. If we now see that one of the cases 1a, 1b, 1c holds
for s and u, we are done. For cases 1a vs. f 1a, 1b, 1c g, we have that s � t � u,
so s � u, and case 1a holds for s; u, showing that s H(�) u. We can draw the same
conclusion for cases f 1b, 1c g vs. 1a.
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As for cases 1b vs. f 1b, 1c g, we have that s � u (from s � t � u) and that
s ord(�(�)) u (from s ord(�(�)) t and t �(�) u). In this cases, we can conclude
that case 1b holds for s; u. We can draw the same conclusion for case 1c vs. 1b.

Finally we check the case 1c vs. 1c. First note that whenever p H(�) q by case 1c,
then also q H(�) p again by case 1c. We now see that for all 1 � i � m, u H(�) si
and :(si H(�) u). We have that 81 � i � m : t H(�) si and :(si H(�) t). By
the remark above we also have u H(�) t, so applying the induction hypothesis, we
conclude that u H(�) si, for all 1 � i � m. If there would be an index i such that
si H(�) u, then from u H(�) t and induction hypothesis we would get si H(�) t,
deriving a contradiction. So for all 1 � i � m, :(si H(�) u) also holds. Finally, we
have that s � u (since s � t � u) and that s eq(�(�)) u (since s eq(�(�)) t and
t eq(�(�)) u); so case 1c holds for s; u. 2

The following lemma will be quite useful.

Lemma 3.5. For any � 2 QOT (F ;X ), for any non-trivial context C and any term
s 2 T (F ;X ), we have that :(s H(�) C[s]).

Proof Let � be an arbitrary element of QOT (F ;X ). We proceed by induction on the
lexicographic product (jsj; C). For terms of size 1, the result holds since for concluding
that s H(�) f(: : : ; s; : : :), for any f 2 F , with arity �1, the only case of the de�nition
of H applicable is case 1. and then we must have simultaneously s H(�) s and
:(s H(�) s), which is impossible; and if D is a context for which the result holds
then s H(�) f(: : : ; D[s]; : : :) again would imply (case 1 is the only possibility) that
s H(�) D[s], contradicting the induction hypothesis.

Take now a term s with jsj = k, for a �xed k > 1, for which the result is not yet
veri�ed. i. e., the result holds for all terms u and contexts D if juj < k. Take
f 2 F with arity �1. If s H(�) f(: : : ; s; : : :), case 1 of de�nition 3.3 is not applicable,
since both s H(�) s and its negation would have to hold. So we must have s =
h(s1; : : : ; sm), for some h 2 F with arity m � 1, and si H(�) f(: : : ; s; : : :), for
some 1 � i � m. But f(: : : ; s; : : :) can be written as D[si], for some non-trivial
context D, so we have si H(�) D[si], contradicting the induction hypothesis. Suppose
now that the result holds for the pair s and some non-trivial context C. Suppose
also that s H(�) f(: : : ; C[s]; : : :), for some f 2 F with arity �1. Again case 1
gives a contradiction (since we would have s H(�) C[s]) and case 2 will also give a
contradiction since then we conclude that si H(�) D[si], for some non-trivial context
D and proper subterm si of s, contradicting the induction hypothesis. 2

Lemma 3.6. For any quasi-order � and terms s; t:

1. if s H(�) t by case 1c of de�nition 3.3, then also t H(�) s, by the same case .

2. s H(�) t and t H(�) s i� case 1c of de�nition 3.3 is applicable to derive both s H(�) t
and t H(�) s.
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Proof 1 is a trivial consequence of de�nition 3.3 and re
exivity of � and eq(�(�)). As
for 2, the if part is a consequence of part 1. For the only-if part, remark that if
both s H(�) t and t H(�) s, then given the decomposition properties of quasi-orders,
lemma 3.5 and transitivity of H(�), it is not di�cult to see that the only possible
combination of cases from de�nition 3.3 is 1c vs. 1c. 2

Lemma 3.7. The function H is weakly monotone.

Proof We have to see that if � = �0 then H(�) w H(�0) or equivalently that

� s H(�0) t) s H(�) t, for all terms s; t 2 T (F ;X ), and

� ord(H(�)) � ord(H(�0)).

We prove, by induction on jsj+ jtj, that if s H(�0) t then s H(�) t and if additionally
:(t H(�0) s) then also :(t H(�) s). It is not di�cult to see that the statement holds
for terms s; t with jsj+ jtj = 2. Let s; t be a minimal pair of terms such that s H(�0) t
and for which the implications are not yet veri�ed, i. e., if u; v are terms such that
juj+ jvj < jsj+ jtj, then u and v satisfy the implications. We have to do some case
analysis. If s H(�0) t by case

1. We have t = g(t1; : : : ; tm), for some g 2 F [ X , having arity m � 0, and for all
1 � j � m, we have s H(�0) tj and :(tj H(�

0) s). By induction hypothesis we
also have s H(�) tj and :(tj H(�) s), for all 1 � j � m.

(a) If case 1a is applicable then we have s � t and consequently also s H(�) t.
Suppose additionally that :(t H(�0) s). If we would have t H(�) s, then
cases 1a, 1b and 1c cannot be applied since we cannot have simultaneously
s � t and t � s or t � s; therefore we must have t H(�) s by case 2 and this
means that tj H(�) s, for some 1 � j � m, which gives a contradiction.

(b) If case 1b is applicable then we have s � t and s ord(�(�0)) t. Since �
is weakly monotone, we also have s ord(�(�)) t and so also s H(�) t. If
additionally :(t H(�0) s) and t H(�) s, then we conclude that we must
have t H(�) s by case 2 (case 1a, 1b and 1c are not applicable since we
cannot have both s � t and t � s, nor s ord(�(�)) t and t ord(�(�)) s
nor t eq(�(�)) s); and case 2 leads to a contradiction as above.

(c) If case 1c is applicable then we have s � t and s eq(�(�0)) t. Furthermore
we also have t H(�0) sj and :(sj H(�

0) t), for all 1 � j � k, where s =
f(s1; : : : ; sk), for some f 2 F [ X , k � 0. By weak monotonicity of �, we
also have s eq(�(�)) t and by induction hypothesis we can conclude that
t H(�) sj and :(sj H(�) t), for all 1 � j � k; so by case 1c we conclude that
s H(�) t. By lemma 3.6, we can have neither :(t H(�0) s) nor :(t H(�) s).

2. case 2; then s = f(s1; : : : ; sn), for some f 2 F , having arity n � 1, and si H(�
0) t,

for some 1 � i � n. By induction hypothesis we conclude that si H(�) t and
so that s H(�) t. Suppose additionally that :(t H(�0) s). If we would have
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t H(�) s then transitivity of H(�) would give si H(�) s, contradicting lemma
3.5.

We have just established that

H(�) � H(�0) and ord(H(�)) � ord(H(�0))

Thus we have that H is weakly monotone. 2

Since the function H is weakly monotone (or order-preserving), theorem 2.22 tells us
that H has a least �xed point which we take to be the path quasi-order .

De�nition 3.8. The path quasi-order associated with a status � and the quasi-order �
is denoted by ��;�

po and is de�ned as the least �xed point of function H.

In order to ease the notation we omit, whenever possible, both the status � and the
quasi-order �, and write �po instead of ��;�

po .
Obviously, as a consequence of the de�nition of �po we have that:

Proposition 3.9. The relation �po is a quasi-order on T (F ;X ) satisfying

s = f(s1; : : : ; sk) �po t

with f 2 F [ X , having arity k � 0, if and only if one of the following conditions holds:

1. t = g(t1; : : : ; tm), for some g 2 F [X , having arity m � 0, and for all 1 � j � m, we
have s �po tj and :(tj �po s), and either

(a) s � t, or

(b) s � t and s ord(�(�po)) t, or

(c) s � t and s eq(�(�po)) t, and for all 1 � j � k we have that t �po sj and
:(sj �po t); or

2. 91 � i � k : si �po t.

The quasi-order �po bears a striking similarity with the usual de�nition of spo (Kamin
and L�evy [13]). Indeed, �po is a generalization of spo and rpo since this orders can be
obtained from �po by proper instantiations of the parameters � and �, as we shall later
see. �po represents a class of quasi-orders on terms that share the same structure and di�er
only in the way \equivalent" terms are handled.

In order to simplify the notation we give now characterizations of the strict and equiv-
alent part of the quasi-order �po. Usually we would denote such parts by ord(�po) and
eq(�po), respectively, but this is a bit cumbersome, so whenever possible we will use the
notations >po instead of ord(�po) and �po instead of eq(�po). We can then state:
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Proposition 3.10. The equivalence relation �po on T (F ;X ) satis�es

s = f(s1; : : : ; sk) �po t;

with f 2 F [ X , having arity k � 0, if and only if

1. t = g(t1; : : : ; tm), for some g 2 F [X , having arity m � 0, and for all 1 � j � m, we
have s >po tj and

� s � t and s eq(�(�po)) t, and for all 1 � j � k holds t >po sj.

Proof This is a trivial consequence of lemma 3.6, part 2. 2

Proposition 3.11. The partial order >po on T (F ;X ) satis�es

s = f(s1; : : : ; sk) >po t;

with f 2 F [ X , having arity k � 0, if and only if one of the following conditions holds:

1. t = g(t1; : : : ; tm), for some g 2 F [X , having arity m � 0, and for all 1 � j � m, we
have s >po tj and either

(a) s � t, or

(b) s � t and s ord(�(�po)) t; or

2. 91 � i � k : si �po t.

Proof Note that s >po t means that s �po t and :(t �po s) (in other words
:(s �po t)). Using lemma 3.6 (or proposition 3.10) and proposition 3.9, we can
conclude that s �po t only by application of cases 1a, 1b or 2; on the other hand if
s �po t can be concluded by application of one of these cases then (using the same
results) we also have s �po t and :(t �po s). 2

3.3 Properties of the scheme

We now discuss what kind of properties does the quasi-order �po enjoy. Since �po is
parameterised by the status � and the quasi-order � it is to be expected that the properties
�po enjoys depend directly on the properties enjoyed by � and maintained by �. There
is however one such property which is universal, i. e., does not depend on the parameters,
namely the subterm property . As we now show, the quasi-order �po enjoys the subterm
property; more precisely the strict part of it does.

Lemma 3.12. The partial order >po satis�es C[s] >po s, for any term s and any
non-trivial context C.
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Proof (Sketch) Since re
exivity of �po ensures that s �po s, case 2 of proposition 3.9
gives f(: : : ; s; : : :) �po s, for any f 2 F having arity n � 1. That the relation is
strict, i. e., that :(s �po f(: : : ; s; : : :)) is a consequence of lemma 3.5. 2

What about other important properties as closedness under substitutions, closedness
under contexts, well-foundedness and totality? In general the quasi-order �po will not
enjoy these other properties. The reason why stems from the use (and de�nition) of status
appearing in the construction of the order. For example, if the status function produces an
order which is not closed under substitutions or if the parameter � is itself not closed under
substitutions, �po will not be closed under substitutions. A similar observation applies to
the other properties as well. In many cases some of these properties are not only desirable
but essential - that is the case of well-foundedness for termination proofs - therefore it
is important that su�cient conditions can be given in order to ensure those properties.
Before doing so, we present a series of examples to illustrate the problems envolved.

Example 3.13. Suppose F = ff=2; a=0; b=0g, X = fxg. Let � be a quasi-order on
T (F ;X ) satisfying:

� a � b � x,

� f(s; t) � f(t; s), for all s; t 2 T (F ;X ) (f is a commutative symbol).

De�ne the status � by

s �(�) t ()

8><>:
s = t or
s 6= t and s = f(s1; s2); t = f(t1; t2); and

hs1; s2i �lex ht1; t2i

where for any quasi-order �, �lex denotes its lexicographic extension (in this case in se-
quences of length 2).

It is not di�cult to see that �(�) is a quasi-order and that � is weakly monotone, thus
a well-de�ned status. Consider now �po associated with this particular choice of � and
�. We see that �po is not closed under substitutions. Indeed we have f(b; x) �po f(x; b)
since f(b; x) �po b; x, and neither x �po f(b; x) nor b �po f(b; x), and f(b; x) � f(x; b) and
hb; xi ord(�po;lex) hx; bi (this last inequality comes as a consequence of b � x).

Let � be the substitution associating a to the variable x. Then f(b; x) �po f(x; b) but
f(b; x)� 6�po f(x; b)�, actually f(x; b)� = f(a; b) �po f(b; a) = f(b; x)�.

Note that in this case the quasi-order � is not closed under substitutions: we have
b � x but if �(x) = f(a; b) then we do not have b� = b � f(a; b) = �(x). One can
wonder whether closedness under substitutions of � is enough to obtain closedness under
substitution for �po. That is not so as the following example shows.

Example 3.14. Suppose F = fg=2; f=1; a=0g, X = fxg. Let � be the quasi-order on
T (F ;X ) de�ned by: s � t () root(s) = root(t). Note that � is closed under
substitutions.
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De�ne the status � as the function that assigns to any quasi-order the quasi-order w
denoting the size of a term (i. e., s w t () jsj � jtj). Note that this relation is not
closed under substitutions and consequently neither will �po be. It is not di�cult to see
that w is a quasi-order and that � is weakly monotone, thus a well-de�ned status.

Let s = g(f(a); x); t = g(x; x), then s >po t: indeed s >po x, by lemma 3.12, and
further s � t (they have equal roots) and s = t (since jsj > jtj), thus the statement follows
from case 1b in proposition 3.11. Take the substitution � such that �(x) = f(f(a)), then
s� = g(f(a); f(f(a))) and t� = g(f(f(a)); f(f(a))) and it is easy to see that t� >po s�.

Example 3.15. Let F = ff=1; a=0; b=0g, X = ;. Let � be a quasi-order on T (F)
satisfying: a � b and f(b) � f(a). De�ne the status � by

s �(�) t ()

(
s = t or
s 6= t and s = f(s1); t = f(t1); and s1 � t1

As in the previous examples it is not di�cult to see that � is a well-de�ned status.
Consider the quasi-order �po obtained using these parameters. Then it is easy to see

that a �po b (actually a >po b) while if we place both a and b within the context f(2), we
cannot conclude that f(a) �po f(b).

Note that if we would replace f(b) � f(a) by f(b) � f(a), then we could conclude that
f(a) >po f(b).

Example 3.16. Let F = ff=1; a=0g, X = ;. Let � be de�ned again by s � t ()
root(s) = root(t). Note that this quasi-order is well-founded since its strict part is
empty.

Let the status � be a constant function given by the quasi-order

s w t () s = f i(a); t = f j(a); and 0 � i � j

Again it is not di�cult to see that � is a well-de�ned status. Note that w is not well-
founded, in particular we have the in�nite descending chain:

f(a) = f(f(a)) = f(f(f(a))) = � � �

Consider the quasi-order �po obtained using these parameters. It is not di�cult to see
that �po is well-founded. Indeed, if s; t 2 T (F) then we must have s = f i(a); t = f j(a),
for some i; j � 0 and if s >po t then we must have that t is a proper subterm of s. If
i = j then the terms are equal and we cannot have s >po t; if j > i then s is a proper
subterm of t and by lemma 3.12 we conclude that t >po s, so the only remaining case is
i > j which means that t is a proper subterm of s. So if s >po t we also have jsj > jtj
and since all terms are �nite this rules out the existence of an in�nite descending chain
s0 >po s1 >po s2 : : :.
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Example 3.17. Let F = fci=1j i � 0g, X = ;. Let � be a precedence based quasi-order
for the precedence � satisfying ci� cj if and only if i < j. Note that � is not well-founded
since we have c0 � c1 � c2 � � � �.

Let � be any well-de�ned status yielding a well-founded quasi-order. The quasi-order
�po associated with these parameters is not well-founded since we also have

c0 >po c1 >po c2 >po � � �

Example 3.18.
Let F = fa=0; b=0g, X = ;. Let � be equality. Note that � is not total in T (F ;X )

since a and b are not comparable. No matter what our choice for the status � is, a and b
will remain incomparable under �po.

Example 3.19. Let F = ff=2; a=0; b=0g, X = ;. Let � be any total quasi-order in T (F)
satisfying f(s; t) � f(t; s), for any s; t 2 T (F).

Let the status � be a constant function given by equality, i. e.,

8� : s �(�) t () s = t

Again � is a well-de�ned status. Note that ord(�(�)) = ;, for any quasi-order �.
Consider the quasi-order �po obtained using these parameters. This quasi-order is not

total: the terms f(a; b) and f(b; a) are not comparable. Due to lemma 3.12 we could never
apply case 2 (in proposition 3.9) and since f(a; b) � f(b; a) we can only try cases 1b or 1c.
The �rst is not applicable because ord(�(�)) = ;, and the second would require the terms
to be equal.

The previous examples hint that if we want the quasi-order �po to enjoy a certain
property we may need to require that both � and � enjoy the same property (or a variation
thereof). That may not be necessary but will help provide su�cient conditions.

3.3.1 Closedness under substitutions

As we saw in examples 3.13, 3.14, �po need not be closed under substitutions. We now
provide a su�cient condition to guarantee that that happens. First we need a de�nition.

De�nition 3.20. We say that a status � is (strictly) stable if it satis�es the following
condition: if � is (strictly) closed under substitutions for S � T (F ;X ) then �(�) is (strictly)
closed under substitutions for S � T (F ;X ), where

S = ff(s1; : : : ; sk)j f=k 2 F [ X ; k � 0; and 81 � i � k : si 2 Sg

Theorem 3.21. If � is strictly closed under substitutions and the status � is strictly
stable then �po is strictly closed under substitutions.
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Proof We have to prove both that if s �po t and � is any arbitrary substitution we
have s� �po t� and if s >po t we also have s� >po t�. We prove both assertions
simultaneously and proceed by induction on jsj+ jtj. Suppose we have two minimal
terms s; t with s �po t and for which the property is not yet veri�ed, i. e., if s0; t0 are
terms such that js0j + jt0j < jsj+ jtj then s0; t0 satisfy the property. We now proceed
by case analysis.

� If s �po t holds by cases 1a, 1b or 1c of proposition 3.9, then s = f(s1; : : : ; sk)
for some k � 0, and f 2 F [ X , and t = g(t1; : : : ; tm) for some m � 0 and
g 2 F [X . Furthermore s >po tj for all 1 � j � m, so by induction hypothesis
we get s� >po tj� for all 1 � j � m.

If case 1a is applicable we have s � t and therefore s� � t�; by the same case we
conclude that s� �po t�. Since s �po t by case 1a, proposition 3.11 ensures
that actually we have s >po t. We have concluded that s� �po t� also by
case 1a and using again proposition 3.11, we can conclude that s� >po t�, as
we wanted.

If case 1b is applicable, we have s � t and so also s� � t�. We also have
s ord(�(�po)) t. By induction hypothesis �po is strictly closed under substi-
tutions in S = fs1; : : : ; sk; t1; : : : ; tmg, and since � is strictly stable we get that
�(�po) is strictly closed under substitutions in S. Consequently (and because
s; t 2 S), we have s� ord(�(�po)) t�. By the same case we conclude that
s� �po t�. As in the previous case, proposition 3.11 ensures that actually we
have s >po t, and since s� �po t� was derived using the same case, proposition
3.11 gives us s� >po t�.

If case 1c is applicable, we again have s � t and therefore s� � t�. We also
have s eq(�(�po)) t. By a similar argument as in the previous case we conclude
that s� eq(�(�po)) t�. By the same case (1c) we conclude that s� �po t�.
Due to proposition 3.11, we do not have neither s >po t nor s� >po t�.

� If s �po t holds by case 2, of proposition 3.9, then s = f(s1; : : : ; sk) for some
k � 1 and f 2 F and si �po t, for some 1 � i � k. By induction hypothesis we
get that si� �po t�. Furthermore, if si >po t, again by induction hypothesis
we conclude that si� >po t�.

2

3.3.2 Closedness under contexts

As we saw in example 3.15, �po need not be closed under contexts. Note that while most
existing path orders are indeed closed under substitutions, that does not hold for closedness
under contexts; in particular spo is not closed under contexts in general.

We can try to provide a su�cient condition to guarantee closedness under contexts in a
similar way we did it for closedness under substitutions, i. e., requiring that the parameter
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� is closed under contexts and that the status � enjoys some kind of closure property akin
to stability. However that is not possible as the following example will show.

Example 3.22.
Let F = ff=1; g=1g, X = fxg. Consider the following rewrite system:

f(f(x)) ! f(g(f(x)))
f(f(x)) ! g(f(x))

This rewrite system is terminating: we sketch a proof of termination. It is well-known
that the system consisting only of the �rst rule is terminating (see for example [9] for a
proof of termination); thus we can say that there is some algebra (A;>A), with >A being
a well-founded partial order, where terms are interpreted and such that if s ! t (using
that rule) then �(s) >A �(t), being � the interpretation function. Consider now another
measure denoted by #f (s), that given a term s counts the number of occurrences of the
symbol f in the term. It is not di�cult to see that for the rewrite system above, for
every reduction s ! t then either #f (s) > #f (t), if the rule used was the second one, or
#f (s) = #f (t), if the rule used was the �rst one, and in this case we can use the measure
>A to deduce that �(s) >A �(t). Combining lexicogra�cally #f with >A (in this order) we
obtain a well-founded order, say =, such that if s! t then s = t, giving us termination of
the system.

We now take � as follows: � is just equality and � is exactly the transitive closure of
the reduction relation above, i. e., � =!+. Note that � is strictly closed under contexts
(and substitutions).

Let the status � be a constant function given by equality. This status ful�ls any
condition akin to context stability that we may think of since for any input the quasi-order
produced is strictly closed under contexts!

Consider the quasi-order �po obtained using these parameters. This quasi-order is
not closed under contexts: we have that g(f(x)) >po f(x) due to subterm compati-
bility (lemma 3.12) but we do not have f(g(f(x))) �po f(f(x)). In fact we have the
reverse relation: f(f(x)) >po f(x) and since f(f(x)) � g(f(x)), we may conclude
that f(f(x)) >po g(f(x)). But since also f(f(x)) � f(g(f(x))), we conclude that
f(f(x)) >po f(g(f(x))).

If we restrict the parameter � to be a precedence on F and we impose a trivial condition
on the status �, we can come up with a su�cient condition for closedness under contexts.
It is no coincidence that the resulting �po is similar to rpo, known to be closed under
contexts.

De�nition 3.23. We say that a status � is context stable if it satis�es the following
condition: if s � t then f(: : : ; s; : : :) �(�) f(: : : ; t; : : :), for any f 2 F and terms s; t 2
T (F ;X ). A status � is strictly context stable if the previous condition holds for both the
strict parts of � and �(�), and the equivalent parts of � and �(�), respectively.

23



Theorem 3.24. If � is precedence based and the status � is strictly context stable then
�po is strictly closed under contexts.

Proof We have to prove both that

� if s �po t then f(s1; : : : ; s; : : : ; sk) �po f(s1; : : : ; t; : : : ; sk), and

� if s >po t we also have f(s1; : : : ; s; : : : ; sk) >po f(s1; : : : ; t; : : : ; sk),

for any arbitrary function symbol f 2 F with arity k � 1, and arbitrary terms sj, 1 �
j � k; j 6= i, with s and t occurring at position i. We prove both assertions simultane-
ously and proceed by induction on the context. For the the trivial context the result
obviously holds. Suppose then that s �po t and let f 2 F have arity k � 1. We have
either s >po t and in this case we also have f(: : : ; s; : : :) ord(�(�po)) f(: : : ; t; : : :), or
s �po t and in this case f(: : : ; s; : : :) eq(�(�po)) f(: : : ; t; : : :) (this is due to the hy-
pothesis that � is strictly context stable). Since � is precedence based, we have that
f(: : : ; s; : : :) � f(: : : ; t; : : :), so we only need to see that f(s1; : : : ; s; : : : ; sk) >po si,
for i 6= j and f(s1; : : : ; s; : : : ; sk) >po t. The �rst part follows directly from lemma
3.12, as for the second, the same lemma and the hypothesis allows us to write:

f(s1; : : : ; s; : : : ; sk) >po s �po t

and the result follows from transitivity and the fact that for any quasi-order holds
� �� � � � �.

Now if s �po t, by the exposed above and using case 1c or 1b in proposition
3.9, we conclude that f(: : : ; s; : : :) �po f(: : : ; t; : : :), and if s >po t, again
from by the exposed above and using case 1b of proposition 3.11, we conclude that
f(: : : ; s; : : :) >po f(: : : ; t; : : :). 2

3.3.3 Totality

Totality is a property which is usually relevant in the restricted context of ground terms.
This is so because totality and closedness under substitutions are incompatible properties:
if one has a set of variables containing more than one variable, in order to have closedness
under substitutions one needs to have di�erent variables to be incomparable, thus no
totality is possible in the set of open terms. But totality on ground terms can be achieved
even combined with closedness under substitutions. We now present a su�cient condition
for obtaining a total �po on ground terms. It is easy to transpose this condition to the open
terms case. Nevertheless, because we believe that in practice totality on ground terms is
more relevant, we restrict our presentation to the ground case.

De�nition 3.25. We say that a status � is totality stable if it satis�es the following
condition: for any S 2 T (F), if � is total in S then �(�), is total in bS, where

bS = ff(s1; : : : ; sk)j f=k 2 F ; k � 0; and 81 � i � k : si 2 Sg
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Theorem 3.26. If � is total on T (F) and the status � is totality stable then �po is total
on T (F).

Proof We need to see that for any s; t 2 T (F) either s �po t or t �po s. We proceed by
induction on jsj+ jtj.

If s; t are constants then either s � t or t � s or s � t. In the �rst two cases we
obtain respectively s �po t and t �po s. In the last case since �po is total in ; and
� is totality stable, we have that �(�po) is total in F0, the set of constants, and
therefore either s ord(�(�po)) t, or t ord(�(�po)) s or s eq(�(�po)) t. In all cases
we can state that either s �po t or t �po s.

Suppose now that t = g(t1; : : : ; tm). Either there is an j such that tj �po s and
then t �po s or, by induction hypothesis, for all 1 � j � m, s >po tj. Also if
s = f(s1; : : : ; sk), then either there is an i such that si �po t and then s �po t or, by
induction hypothesis, for all 1 � i � k, t >po si. Suppose then that both s >po tj, for
all 1 � j � m, and t >po si, for all 1 � i � k. If s � t we can conclude that s �po t
(by case 1a in proposition 3.9), if t � s, we conclude the reverse by the same case.
If s � t, since by induction hypothesis �po is total in S = fs1; : : : ; sk; t1; : : : ; tmg
and � is totality stable, then �(�po) is total in bS and since s; t 2 bS, we have either
s ord(�(�po)) t, or t ord(�(�po)) s, or s eq(�(�po)) t. In all cases we can state
that either s �po t or t �po s. 2

3.3.4 Well-foundedness

An important and extensive use of orders on terms is in termination proofs, but for an
order to be used for such purpose it is essential that the order is well-founded.

As we saw in examples 3.16, 3.17, in general �po will not be well-founded, but we
can impose conditions both on the quasi-order � and on the status � in order to obtain
well-founded quasi-orders.

A generalized way of proving well-foundedness of terms orders is through Kruskal's
theorem ([17, 19, 11]). Roughly this theorem implies that any simpli�cation ordering (an
order closed under substitutions and contexts and satisfying the subterm property) is well-
founded; clearly it cannot be applied to non-simpli�cation orderings, so Kruskal's theorem
cannot help us prove well-foundedness of our orders, which are not, in general, simpli�cation
orderings. In [10, 9] the problem of proving well-foundedness of (quasi) orders was studied
and simple su�cient conditions are given; these results apply also to orders which are not
closed under contexts and/or substitutions.

The following de�nition and theorem are taken from [10, 9], slightly modi�ed in order
to �t the quasi-order framework.

De�nition 3.27. A status � is said to be well-foundedness stable2 if it satis�es the
following condition: if � is a quasi-order in T (F ;X ) well-founded in A � T (F ;X ) then �(�)
is well-founded in A = ff(t1; : : : ; tk) : f=k 2 F [ X ; k � 0; and ti 2 A for all 1 � i � kg.

2
Term status in the terminology of [10, 9].
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Theorem 3.28. Let � be a quasi-order on T (F ;X ) and let � be a well-foundedness
stable status. Suppose > has the subterm property and satis�es the following condition:

� 8f=m; g=n 2 F [ X ; s1; : : : ; sm; t1; : : : ; tn 2 T (F ;X ) :
if s = f(s1; : : : ; sm) > g(t1; : : : ; tn) = t then either

{ 91 � i � m : si � g(t1; : : : ; tn), or

{ s ord(�(�)) t

Then � is well-founded on T (F ;X ).

We can now give a su�cient condition for �po to be well-founded.

Theorem 3.29. If � is a well-founded quasi-order on T (F ;X ) and � is a well-foundedness
stable status then �po is well-founded.

Proof We de�ne the following function � on quasi-orders on T (F ;X ).

s �(�) t ()

(
s � t or
s � t and s �(�) t

It is not di�cult to see that whenever � is a well-foundedness stable status then �
is also a well-foundedness stable status. Furthermore we have

s ord(�(�)) t ()

(
s � t or
s � t and s ord(�(�)) t

Due to the de�nition of �, the statement above and proposition 3.11, we have indeed
that whenever s = f(s1; : : : ; sm) >po g(t1; : : : ; tn) = t, for some f=m; g=n 2 F [
X ; s1; : : : ; sm; t1; : : : ; tn 2 T (F ;X ) then either

� 91 � i � m : si �po g(t1; : : : ; tn), or

� s ord(�(�po)) t

Since by lemma 3.12 >po has the subterm property, all conditions of theorem 3.28
are met so we can apply it to conclude that �po is well-founded. 2

3.4 Semantic and Recursive path orders

We now show how the quasi-order versions of spo and rpo can be obtained as instances
of the scheme presented. We will restrict ourselves to the \pure" versions of these orders
in which the extension associated to the orders is either the multiset extension or the
lexicographic extension. In the last years other extensions have been proposed (see eg. [24,
25]), notably mixing the two before mentioned extensions. The idea is that the extension
used is associated with function symbols, so for example if we compare f(: : :) with g(: : :)
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and f and g are \equal" then their subterms are compared in a way which depends on the
symbols f and g. It is not di�cult to see that these variations are still within our framework
(see [9, 8]); for the sake of simplicity and because we believe that dealing with the more
complicated cases would not add anything to the understanding of the mechanism, we
choose not to treat those cases here.

3.4.1 rpo

The following de�nition of rpo is due to Dershowitz [4].

De�nition 3.30. (rpo) Let � be a quasi-order in the set F . The recursive path order
denoted by �rpo on the set T (F) is de�ned as follows:

s = f(s1; : : : ; sk) �rpo g(t1; : : : ; tm) = t

if one of the following conditions holds:

1. si �rpo t, for some i = 1; : : : ; k; or

2. f � g and s >rpo tj, for all j = 1; : : : ; m; or

3. f � g and ffs1; : : : ; skgg �rpo;mul fft1; : : : ; tmgg.

To see how �rpo can be obtained from our construction we de�ne the parameters �
and �. For � we take the precedence based order for the precedence �, extending it to
cope with the variables in X :

f(s1; : : : ; sk) � g(t1; : : : ; tm) ()

(
f � g if f; g 2 F
f = g if f; g 2 X

As for � we de�ne it as follows:

s = f(s1; : : : ; sk) �(�) g(t1; : : : ; tm) () ffs1; : : : ; skgg �mul fft1; : : : ; tmgg

For any quasi-order its multiset extension is also a quasi-order; furthermore if � = �0

then also �mul w �0mul. Indeed it is well-known that �mul � �0mul; suppose that X =
ffx1; : : : ; xkgg ord(�0mul) ffy1; : : : ; ymgg = Y then for each yj there is an element xi such
that xi ord(�

0) yj and then also xi ord(�) yj implying X ord(�mul) Y . So � is a well-
de�ned status.

The quasi-order �po obtained using these parameters can be writen as (see proposition
3.9):
s = f(s1; : : : ; sk) �po t, with f 2 F [ X , having arity k � 0, if and only if one of the
following conditions holds:

1. t = g(t1; : : : ; tm), for some g 2 F [X , having arity m � 0, and for all 1 � j � m, we
have s >po tj, and either
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(a) f � g, or

(b) f � g and ffs1; : : : ; skgg ord(�po;mul) fft1; : : : ; tmgg, or

(c) f � g and ffs1; : : : ; skgg eq(�po;mul) fft1; : : : ; tmgg, and for all 1 � j � k we
have that t >po sj; or

2. 91 � i � k : si �po t.

Apparently the two de�nition do not coincide: in case 1c extra conditions are imposed
on the terms which do not occur in de�nition 3.30. However it is not di�cult to see that
both de�nitions are the same.

Indeed in this particular case the status � satis�es the following:

f(s1; : : : ; sk) eq(�(�po)) g(t1; : : : ; tm)) g(t1; : : : ; tm) >po si; 81 � i � k

Due to the de�nition of �, f(s1; : : : ; sk) eq(�(�po)) g(t1; : : : ; tm) is equivalent to
ffs1; : : : ; skgg eq(�po;mul) fft1; : : : ; tmgg and then for each term si there is a term tj such
that si eq(�po) tj. From g(t1; : : : ; tm) >po tj eq(�po) si we conclude that g(t1; : : : ; tm) >po

si. So we can eliminate the condition \ t >po sj, for all 1 � j � k", in clause 1c, and
then clauses 1b and 1c simply correspond to clause 3 in de�nition 3.30, with the strict and
equivalent parts discriminated.

Thus �po coincides with �rpo in the set T (F). Note that it is not essential to de�ne
�rpo in this set; in de�nition 3.30 we could have used the set of terms T (F ;X ). Then the
orders coincide in the whole set of terms.

Since �rpo is a particular instance of our scheme, we can apply all the derived results
to it. So we immediately conclude that (lemma 3.12) >rpo enjoys the subterm property.
The other usual properties of �rpo can also be derived from the results presented, as we
now see.

Note that the status � is strictly stable. Suppose � is a quasi-order strictly closed under
substitutions in S � T (F ;X ). Let X; Y 2 M(S) be such that X �mul Y . Then for every
element y 2 Y there is an element x 2 X such that x � y; since both x; y 2 S we can
conclude that x� � y�, for any substitution � and this implies that X� �mul Y � (where
Z� denotes the multiset obtained from Z by applying the substitution � to each one of its
elements). If the relation is strict, i. e., if X ord(�mul) Y , in a similar way we can also see
that X� ord(�mul) Y �.

Since � is also strictly closed under substitutions, we can apply theorem 3.21 to con-
clude that �rpo is strictly closed under substitutions.

The status � is also strictly context stable. If s; t 2 T (F ;X ) and s � t then X t
ffsgg �mul X t fftgg, for any multiset of terms X, implying f(: : : ; s; : : :) �(�) f(: : : ; t; : : :).
Note that the relation is strict if the relation between s and t is itself strict. Application
of theorem 3.24 yields that �rpo is strictly closed under contexts.

As for well-foundedness, it is well-known that the multiset extension of a quasi-order
is well-founded if and only if the quasi-order is well-founded. Therefore � is a well-
foundedness stable status and we can state (cf. theorem 3.29) that if � is well-founded on
F then �rpo is well-founded on T (F ;X ). The reverse statement also holds.

28



3.4.2 spo

The de�nition of spo is due to Kamin and L�evy [13]. The reader should note the sim-
ilarity between �po and �spo: �po is actually a general formulation of �spo, being this
generalization a consequence of the freer de�nition of status used.

The following de�nition of spo extends the original one [13] to quasi-orders and can be
found in [4].

De�nition 3.31. (spo) Let � be a well-founded quasi-order on T (F). The semantic path
order >spo is de�ned on T (F) as follows: s = f(s1; : : : ; sm) �spo t if either

1. t = g(t1; : : : ; tn), for some g 2 F having arity n � 0, and s >spo ti, for all 1 � i � n,
and either:

(a) s > t, or

(b) s � t and ffs1 : : : ; smgg �spo;mul fft1; : : : ; tngg, or

2. 9i 2 f1; : : : ; mg : si �spo t.

It can be seen [13] that >spo satis�es the subterm property and is in general not mono-
tonic though closed under substitutions.

As with �rpo, we can de�ne �spo over the set of open terms: the easiest way may be to
take � as de�ned over T (F ;X ) and not only over T (F).

The way �spo can be obtained from our our scheme is again by appropriate instantiation
of the parameters � and �. For � we take � and for � we take the same status we did
for �rpo, namely

s = f(s1; : : : ; sk) �(�) g(t1; : : : ; tm) () ffs1; : : : ; skgg �mul fft1; : : : ; tmgg

Note that just like in the case of �rpo, �spo and the path order �po obtained using
these parameters do not coincide at �rst sight: again in clause 1c in proposition 3.9 some
extra conditions seem to be required. But just like in the previous case (and for the same
reason) the extra conditions are always satis�ed for this choice of status and thus can be
omitted.

As we saw before, the status � is strictly stable, strictly context stable and well-
foundedness stable. This allows us to state that:

� whenever � is strictly closed under substitutions, �spo also is strictly closed under
substitutions (theorem 3.21);

� whenever � is strictly closed under contexts, �spo also is strictly closed under contexts
(theorem 3.24);

� whenever � is well-founded on T (F ;X ), �spo also is well-founded on T (F ;X ) (the-
orem 3.29).

As for the subterm property, lemma 3.12 ensures that >spo enjoys this property.
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4 A scheme for de�nition of partial orders

We now turn to the problem of de�ning partial orders instead of quasi-orders. The pro-
cedure is similar but because we are interested in objects having di�erent properties, we
need to work with a di�erent CPO and a di�erent notion of status.

4.1 The CPO of partial orders

Since our aim is to de�ne partial orders, we choose as underlying set for our construction
the set of all partial orders. Let S be a set and let POS be the set of all partial orders
over S. We consider the structure (POS;�), where � is set inclusion. It is not di�cult to
see that (POS;�) is a partially ordered set. Furthermore:

Lemma 4.1. The poset (POS;�) is a CPO with the bottom element being the empty
set and with the supremum of directed sets given by the union of the elements in the set.

Proof Clearly ; is a partial order over any set S, and for any other partial order � 2 POS,
� � ;, so ; is the least element of POS.

Let D be a directed set of partial orders over S. We see that
S
D is irre
exive and

transitive (and thus an element of POS). Suppose
S
D is not irre
exive, then there

is an element s 2 S such that (s; s) 2
S
D, which means there is an element � 2 D

such that (s; s) 2 �, contradicting irre
exivity of �. Transitivity of
S
D is proven just

like in lemma 3.1. Finally we have to prove that
S
D is the least upper bound for D.

Obviously, for any � 2 D,
S
D � �. Suppose � is another upper bound for D; then

� � �, for every � 2 D, and therefore � �
S
D. 3 2

We need to adapt the notion of status (cf. de�nition 3.2) to this new setting. In
the quasi-order case, a status is a function that given a quasi-order delivers also a quasi-
order. As it should be expected, now a status will be a function that given a partial
order will deliver a partial order. To keep the notation used minimal, we will overload our
terminology: the same names and notations will be used for similar concepts both in the
quasi-order as in the partial order setting. It should be clear from context which one is
meant at any given time.

De�nition 4.2. Let (S;>) be a a partially ordered set. A status is a function � : POS !
POS which is weakly monotone with respect to the CPO (POS;�).

4.2 The partial order scheme

We now �x our CPO to be (POT (F ;X );�). Let � be a �xed quasi-order on T (F ;X ) and
let � be a status with domain POT (F ;X ).

3Actually this structure is far richer that we needed it to be, (POS ;�) is not only a CPO but a complete
lattice.
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De�nition 4.3. The function G : POT (F ;X ) ! POT (F ;X ) is given by:

s = f(s1; : : : ; sk) G(�) t

with f 2 F [ X having arity k � 0, if one of the following conditions holds:

1. t = g(t1; : : : ; tm), for some g 2 F [ X having arity m � 0, and s G(�) tj, for all
1 � j � m, and either

(a) s � t, or

(b) s � t and s �(�) t, or

2. 91 � i � k : si G(�) t or si = t.

The �rst thing that needs to be checked is that the function G de�nes a relation on
T (F ;X ), or in other words that the recursion in the de�nition of G stops. This can easily
be done by induction on the sum of the size of the terms: in every recursive \call" of G,
the size of the terms involved decreases. We also need to see that the result of applying
G to a partial order on terms results in a partial order on terms. This is what the next
lemma is about.

Lemma 4.4. If � is a partial order in T (F ;X ) then G(�) is a partial order in T (F ;X ).

Proof We need to see that for any � 2 POT (F ;X ), G(�) 2 POT (F ;X ), i. e., that G(�)
is irre
exive and transitive. Fix then � 2 POT (F ;X ). We �rst prove transitivity:
if s G(�) t and t G(�) u then s G(�) u, by induction on jsj + jtj + juj. Let then
s; t; u 2 T (F ;X ) be minimal terms satisfying s G(�) t and t G(�) u and for which we
still have to see that s G(�) u holds. As in the proof of transitivity in lemma 3.4, we
have to consider the possible cases of de�nition 4.3 by which we can conclude that
s G(�) t and t G(�) u: 9 cases in total. The case analysis is quite similar to the one
done in the proof of lemma 3.4, though substantially simpler, so we skip most of it
and present only case 1b vs. 1b, the most interesting. We have s = f(s1; : : : ; sk),
t = g(t1; : : : ; tm) and u = h(u1; : : : ; un), for some f; g; h 2 F [ X , with arities
respectively k;m; n � 0. Since t G(�) u by case 1b, we have that t G(�) ul, for
all 1 � l � n, and combining this with s G(�) t, the induction hypothesis gives us
s G(�) ul, for all 1 � l � n. Also s � t � u and since � is transitive we obtain s � u.
Finally s �(�) t and t �(�) u and since �(�) is transitive, we also have s �(�) u;
applying case 1b we can conclude that s G(�) u.

We now prove irre
exivity, i. e., that for any s 2 T (F ;X ) we don't have s G(�) s, by
induction over jsj and using the already proven fact that G(�) is transitive. Suppose
then that s 2 T (F ;X ) is a minimal term such that s G(�) s, i. e., if u 2 T (F ;X )
is such that juj < jsj then :(u G(�) u). If s G(�) s holds by case 1a of de�nition
4.3 then we must have s � s, contradicting irre
exivity of �. If s G(�) s holds
by case 1b of de�nition 4.3 then we must have s � s and s �(�) s, contradicting
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irre
exivity of �(�). And �nally if s G(�) s holds by case 2 of de�nition 4.3 then we
must have either si = s or si G(�) s, for some principal subterm si of s; clearly the
�rst case is impossible and in the second, since s G(�) si, by transitivity we conclude
that si G(�) si, contradicting the minimality of s. So we derive that G(�) is also
irre
exive, concluding our proof. 2

We want to use the function G to obtain a de�nition of a path order. For that order
to be uniquely determined it is enough to ensure that G has a least �xed point; we then
take the order to be that least �xed point. From theorem 2.22 we know that if G is weakly
monotone then it has a least �xed point. Our next task is to prove weak monotonicity of
G.

Lemma 4.5. The function G is weakly monotone with respect to the CPO (POT (F ;X );�).

Proof We need to prove that if �; �0 2 POT (F ;X ) and � � �0 then G(�) � G(�0). This
is achieved by showing that for any terms s; t if s G(�0) t then also s G(�) t. We
proceed by induction on jsj + jtj. Let s; t be two minimal terms (i. e., terms for
which jsj+ jtj is minimal) such that s G(�0) t. Our induction hypothesis states that
(u G(�0) v)) (u G(�) v) for any terms u; v with juj+ jvj < jsj+ jtj. We consider the
cases of de�nition 4.3 by which we can derive s G(�0) t. If s G(�0) t holds by cases
1a or 1b then s = f(s1; : : : ; sk); t = g(t1; : : : ; tm), for some f; g 2 F [ X with arities
respectively k;m � 0, and s G(�0) tj for all 1 � j � m. By induction hypothesis we
conclude that also s G(�) tj for all 1 � j � m. If

� case 1a holds then s � t and by the same case we can conclude that s G(�) t;

� case 1b holds then s � t and s �(�0) t. Since � is weakly monotone, we also
have that s �(�) t and we can use the same case to conclude that s G(�) t;

If s G(�0) t holds by case 2 then s = f(s1; : : : ; sk), for some f 2 F with arity k � 1,
and for some 1 � i � k, either si G(�

0) t, and by induction hypothesis we conclude
that si G(�) t, or si = t; in both cases we can apply case 2 of de�nition 4.3 to conclude
that s G(�) t. 2

Since the function G is weakly monotone (or order-preserving), theorem 2.22 tells us
that G has a least �xed point which we take to be the path order .

De�nition 4.6. The path order associated with a status � and the quasi-order � is
denoted by ��;�

po and is de�ned as the least �xed point of the function G.

As we did in the quasi-order case, we omit, whenever possible, both the status � and
the quasi-order �, and write �po instead of ��;�

po .
As a consequence of the de�nition of �po we have that:
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Proposition 4.7. The relation �po is a partial order on T (F ;X ) satisfying

s = f(s1; : : : ; sk)�po t

with f 2 F [ X having arity k � 0, if and only if one of the following conditions holds:

1. t = g(t1; : : : ; tm), for some g 2 F [ X having arity m � 0, and s �po tj, for all
1 � j � m, and either

(a) s � t, or

(b) s � t and s �(�po) t; or

2. 91 � i � k : si �po t or si = t.

Example 4.8. Let F = ff=3; s=1g and let X = fx; y; zg. Suppose � is de�ned by
s � t () root(s) � root(t), where � is de�ned by f � s and p � q () p = q. Let
the status � be de�ned as:

s �(�) t ()

(
s = f(s1; s2; s3); t = f(t1; t2; t3) and
ffs1; s2gg �mul fft1; t2gg or (ffs1; s2gg = fft1; t2gg and s3 � t3)

It is not di�cult to see that for any partial order �, �(�) is also a partial order. Furthermore
since multiset and lexicographic extension of partial orders are monotone, we can also easily
derive that � is monotone, thus a proper status according to de�nition 4.2.

Using the �po associated with these parameters we can conclude that

f(s(x); s(y); z)�po f(y; x; s(z))

From the subterm property, we can conclude that f(s(x); s(y); z)�po x; y; z. Also since f�
s, we have f(s(x); s(y); z)�po s(z). Finally f(s(x); s(y); z) � f(y; x; s(z)) (they have the
same root) and (with�po;mul denoting the multiset extension of�po) ffs(x); s(y)gg �po;mul

ffy; xgg, giving the result.

4.3 Properties of the partial order scheme

We discuss what properties are enjoyed by the partial order �po. Not surprisingly this
section follows closely section 3.3.

As remarked in section 3.3, since �po is parameterised by a quasi-order � and a status
�, the properties enjoyed by �po depend directly on which properties are enjoyed by �
and maintained by �. The subterm property however is once again universal, i. e., we have
the following lemma (akin to lemma 3.12).

Lemma 4.9. The partial order�po satis�es C[s]�po s, for any term s and any non-trivial
context C.
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Proof Let s 2 T (F ;X ) be an arbitrary term. We proceed by induction on the context.
If C[s] = f(: : : ; s; : : :) for some f 2 F then case 2 in proposition 4.7 allows us to
conclude that f(: : : ; s; : : :)�po s. Suppose D[ ] is a context for which the property is
valid and let C[s] = f(: : : ; D[s]; : : :), for some f 2 F . Again by case 2 in proposition
4.7 we conclude that f(: : : ; D[s]; : : :)�po D[s] and by induction hypothesis D[s]�po

s; from transitivity follows f(: : : ; D[s]; : : :)�po s. 2

Just as with �po, the other relevant properties (closedness under substitutions and/or
contexts, well-foundedness and totality) are in general not enjoyed by �po. We will also
present su�cient conditions to ensure these properties, similar to the ones presented for
�po. Before doing so we give some examples.

Example 4.10. Suppose F = ff=1g, X = fx; y; zg. Let � be given by:

� x � y � z, and s � t i� it can be derived by the previous inequalities using transi-
tivity, and

� s � t () s = t.

De�ne the status � by �(�) = ;, for all �.
The path order�po associated with these parameters is not closed under substitutions

nor contexts: we have x �po y while :(f(x) �po f(y)) and �(x) = f(z) 6�po f(f(z)) =
�(y), for example.

Example 4.11. Suppose F = ff=2; a=0; b=0g, X = ;. Let � be the size of a term. Note
that � is total in T (F). De�ne the status � by

s �(�) t () ~s �mul
~t

It is not di�cult to check that � is a well-de�ned status (cf. de�nition 4.2). Using the path
order�po associated with these parameters, the terms f(a; b) and f(b; a) are incomparable.
That is so because ffa; bgg = ffb; agg.

Example 4.12. Let F = fg=1; f=1; c=0g, X = ;. Let � be a precedence based quasi-order
for the precedence � satisfying g � f; c. Note that � is well-founded.

Let the status � be de�ned as follows. For any partial order � in T (F ;X ), �(�) is the
partial order = given by:

s = t () s = g(f i(c)); t = g(f j(c)) and 0 � i < j

Note that = is not well-founded since we have g(c) = g(f(c)) = g(f(f(c))) = � � �. It
is not di�cult to see that taking �po associated with these parameters, we also have
g(c)�po g(f(c))�po g(f(f(c))) �po � � �, so �po is not well-founded.
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4.3.1 Closedness under substitutions

We present a su�cient condition for obtaining closedness under substitutions for the partial
order �po.

De�nition 4.13. We say that a status � is stable if it satis�es the following condition: if
� is closed under substitutions in S � T (F ;X ) then �(�) is closed under substitutions in
S � T (F ;X ), where

S = ff(s1; : : : ; sk)j f=k 2 F [ X ; k � 0; and 81 � i � k : si 2 Sg

Theorem 4.14. If � is strictly closed under substitutions and the status � is stable then
�po is closed under substitutions.

Proof We have to prove that if s �po t and � is any arbitrary substitution we have
s� �po t�. We prove this by induction on jsj+ jtj. Suppose we have two minimal
terms s; t with s �po t and for which the property is not yet veri�ed, i. e., if s0; t0 are
terms such that js0j + jt0j < jsj+ jtj then s0; t0 satisfy the property. We now proceed
by case analysis.

� If s �po t holds by cases 1a, 1b of proposition 4.7, then s = f(s1; : : : ; sk) for
some k � 0, f 2 F [ X , and t = g(t1; : : : ; tm) for some m � 0, g 2 F [ X .
Furthermore s �po tj for all 1 � j � m, so by induction hypothesis we get
s� �po tj� for all 1 � j � m.

If case 1a is applicable we have s � t and therefore s� � t�; by the same case
we conclude that s� �po t�.

If case 1b is applicable, we have s � t and so also s� � t�. We also have
s �(�po) t. By induction hypothesis �po is closed under substitutions in S =
fs1; : : : ; sk; t1; : : : ; tmg, and since � is stable we get that �(�po) is closed under
substitutions in S. Consequently (and because s; t 2 S), we have s� �(�po) t�.
By the same case we conclude that s� �po t�.

� If s �po t holds by case 2, of proposition 4.7, then s = f(s1; : : : ; sk) for some
k � 1, f 2 F , and si �po t or si = t, for some 1 � i � k. In the �rst case by
induction hypothesis we get that si� �po t�, and in the second case obviously
si� = t�. Using proposition 4.7 we conclude that si� �po t�.

2

4.3.2 Closedness under contexts

As we did in section 3.3.2, we provide here a su�cient condition for closedness under
contexts of �po.

De�nition 4.15. We say that a status � is context stable if it satis�es the following
condition: if s � t then f(: : : ; s; : : :) �(�) f(: : : ; t; : : :), for any f 2 F , s; t 2 T (F ;X ).
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Theorem 4.16. If � is precedence based and the status � is context stable then �po is
closed under contexts.

Proof We have to prove that if s�po t then f(s1; : : : ; s; : : : ; sk)�po f(s1; : : : ; t; : : : ; sk),
for any arbitrary function symbol f 2 F with arity k � 1, and arbitrary terms sj,
1 � j � k; j 6= i, with s and t occurring at position i. We proceed by induction on the
context. For the the trivial context the result obviously holds. Suppose that s�po t
and let f 2 F have arity k � 1. We have f(: : : ; s; : : :) �(�po) f(: : : ; t; : : :), (this is due
to the hypothesis that � is context stable). Since � is precedence based, we have that
f(: : : ; s; : : :) � f(: : : ; t; : : :), so we only need to see that f(s1; : : : ; s; : : : ; sk) �po si,
for i 6= j and f(s1; : : : ; s; : : : ; sk) �po t. The �rst part follows directly from lemma
4.9, as for the second, the same lemma and the hypothesis allows us to write:

f(s1; : : : ; s; : : : ; sk)�po s�po t

and the result follows from transitivity. 2

4.3.3 Totality

Again we restrict the study of totality to the set of ground terms. It is not di�cult to
modify the notions given for achieving totality in the set of open terms. We do not do it
because it seems not natural and of no practical use to require totality on open terms.

De�nition 4.17. We say that a status � is totality stable if it satis�es the following
condition: for any S 2 T (F), if � is total in S then �(�), is total in bS, wherebS = ff(s1; : : : ; sk)j f=k 2 F ; k � 0; and 81 � i � k : si 2 Sg

Theorem 4.18. If � is total on T (F) and the status � is totality stable then�po is total
on T (F).

Proof We need to see that for any s; t 2 T (F), if s 6= t then either s �po t or t �po s.
We proceed by induction on jsj+ jtj.

Suppose s 6= t. If s; t are constants then either s � t or t � s or s � t. In the �rst
two cases we obtain respectively s �po t and t �po s. In the last case since �po

is total in ; and � is totality stable, we have that �(�po) is total in F0, the set of
constants, and therefore either s �(�po) t, or t �(�po) s. In both cases we can state
that either s �po t or t �po s. Suppose now that t = g(t1; : : : ; tm). Either there is
an j such that tj �po s or tj = s, and then t �po s or, by induction hypothesis, for
all 1 � j � m, s�po tj. Also if s = f(s1; : : : ; sk), then either there is an i such that
si �po t or si = t, and then s �po t or, by induction hypothesis, for all 1 � i � k,
t �po si. Suppose then that both s �po tj, for all 1 � j � m, and t �po si, for
all 1 � i � k. If s � t we can conclude that s �po t (by case 1a in proposition
4.7), if t � s, we conclude the reverse by the same case. If s � t, since by induction
hypothesis �po is total in S = fs1; : : : ; sk; t1; : : : ; tmg and � is totality stable, then
�(�po) is total in bS and since s; t 2 bS, we have either s �(�po) t, or t �(�po) s. In
both cases we can state that either s�po t or t�po s. 2
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4.3.4 Well-foundedness

Just like its quasi-order counterpart, �po will not be well-founded in general. Again
Kruskal's theorem is not enough to help prove well-foundedness of the order obtained via
the partial order scheme since the resulting order may not be a simpli�cation ordering.
As we did in section 3.3.4, we use results from [10, 9] to provide a su�cient condition for
ensuring well-foundedness of �po.

The following de�nition and theorem are taken from [10, 9].

De�nition 4.19. A status � is said to be well-foundedness stable4 if it satis�es the
following condition: if � is a partial order in T (F ;X ) well-founded in A � T (F ;X ) then
�(�) is well-founded in A = ff(t1; : : : ; tk) : f=k 2 F [ X ; k � 0; and ti 2 A for all 1 �
i � kg.

Theorem 4.20. Let > be a partial order on T (F ;X ) and let � be a well-foundedness
stable status. Suppose > has the subterm property and satis�es the following condition:

� 8f=m; g=n 2 F [ X ; s1; : : : ; sm; t1; : : : ; tn 2 T (F ;X ) :
if s = f(s1; : : : ; sm) > g(t1; : : : ; tn) = t then either

{ 91 � i � m : si � g(t1; : : : ; tn), or

{ s �(�) t

Then > is well-founded on T (F ;X ).

Now it is easy to give a su�cient condition for well-foundedness of �po.

Theorem 4.21. If � is a well-founded quasi-order on T (F ;X ) and � is a well-foundedness
stable status then �po is well-founded.

Proof (Sketch). We de�ne � : POT (F ;X ) ! POT (F ;X ) as follows:

s �(�) t ()

(
s � t or
s � t and s �(�) t

The rest of the proof is similar to the proof of theorem 3.29 replacing the results on
quasi-orders by the corresponding results for partial orders. 2

4.4 Lexicographic path order and Knuth-Bendix order

Here we show how the lexicographic path order , abbreviatedly lpo, and the Knuth-Bendix
order , abbreviatedly kbo, can be obtained as instances of the scheme presented.

4
Term status in the terminology of [10, 9].
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4.4.1 lpo

The lexicographic path order was originally proposed by Kamin and L�evy [13] and is very
similar to recursive path order : instead of comparing multisets of principal subterms, a
lexicographic comparison is performed.

De�nition 4.22. (lpo) Let � be a quasi-order in the set F . The lexicographic path order
denoted by >lpo is de�ned, in the set T (F ;X ), as follows: s = f(s1; : : : ; sk) >lpo t if either:

1. t = g(t1; : : : ; tm) and s >lpo tj, for all 1 � j � m, and either:

(a) f � g; or

(b) f � g and hs1; : : : ; ski >lpo;lex ht1; : : : ; tmi; or

2. si >lpo t, or si = t, for some i = 1; : : : ; k.

To see how >lpo can be obtained from our construction we de�ne the parameters � and
�. For � we take the precedence based order for the precedence �, i. e.,

f(s1; : : : ; sk) � g(t1; : : : ; tm) () f � g

As for � we de�ne it as follows:

s = f(s1; : : : ; sk) �(�) g(t1; : : : ; tm) () hs1; : : : ; ski �lex ht1; : : : ; tmi

For any partial order its lexicographic extension is also a partial order; furthermore it
is well-known that lexicographic lifting is monotone with respect to the order lifted, i. e.,
if � � �0 then also �lex � �0lex. So � is a well-de�ned status.

The partial order�po obtained using these parameters can be writen as (see proposition
4.7):

Proposition 4.23. The partial order �po satis�es: s = f(s1; : : : ; sk) �po t, with
f 2 F [ X , having arity k � 0, if and only if one of the following conditions holds:

1. t = g(t1; : : : ; tm), for some g 2 F [X , having arity m � 0, and for all 1 � j � m, we
have s �po tj, and either

(a) f � g, or

(b) f � g and hs1; : : : ; ski �po;lex ht1; : : : ; tmi; or

2. 91 � i � k : si �po t or si = t.

It is trivial to see that the order so obtained coincides with the one of de�nition 4.22.
Since >lpo is a particular instance of our scheme, we can apply all the derived results

to it. By lemma 4.9 we conclude that >lpo enjoys the subterm property. The other usual
properties of >lpo can also be derived from the results presented. It is not di�cult to see
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that the status � is stable and context stable. Furthermore � is precedence based and
strictly closed under substitutions and contexts so we can apply theorem 4.14 and 4.16 to
conclude that >lpo is both closed under substitutions and contexts.

Another well-known property of >lpo is totality on ground terms whenever � is total
on F . It is not di�cult to see that � is totality stable (cf. de�nition 4.17) so totality of
>lpo can be concluded by theorem 4.18, provided � is total.

As for well-foundedness it is well-known that a simple lexicographic extension on se-
quences of any size is not well-founded even if the extended order is well-founded. If we
only consider sequences of size bounded by some naturtal number, then the lexicographic
extension is well-founded i� the extended order is well-founded. In the particular case
of >lpo there are several ways of getting around this problem; one of them is to restrict
equivalent function symbols to be equal, thus only sequences of the same size are com-
pared lexicographically. Another slightly more general possibility is to require that there
is a bound on the arities of equivalent function symbols. Yet another possibility is to use
a de�nition of lexicographic extension in which lengths of sequences are �rst inspected
and the lexicographic comparison is e�ectively used only on sequences of the same size.
Whatever solution one choses, it is routine work to verify that well-foundedness of >lpo in
this cases can be obtained via theorem 4.21.

4.4.2 kbo

The Knuth-Bendix order was originally proposed by Knuth and Bendix [16]. It is a path
order of a di�erent kind since not only is the syntactical structure of terms used for the
comparison but also a \semantical" component which associates weights to terms. In its
simplest form (see [26] for extensions) a weight is a natural number which is associated to
each function or variable symbol and which is then extended uniquely to terms. We will
consider a de�nition of weight and of the kbo similar to the one presented in [7], however
we extend the precedence to be a quasi-order in F and allow for more than one maximum
element in F with arity one and weight zero. Other more general possibilities for weight
functions do exist. In [27] a general weight function is given using an interpretation of
terms in a weakly monotone algebra.

In the following we assume lexicographic extension as de�ned in 2.11.

De�nition 4.24.
A weight function � : F [ X ! IN is a function satisfying:

�(f) is

8><>:
= �0 if f 2 X
� �0 if arity(f)= 0
> 0 if arity(f)= 1 and 9g 2 F : f 6 �g

where � is a precedence in F and �0 2 IN is a �xed natural greater than zero. � is extended

to terms as follows: �(f(s1; : : : ; sm)) = �(f) +
mX
i=1

�(si).
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Note that the last condition on � in de�nition 4.24 means that if f 2 F , has arity 1
and weight 0, then it must satisfy f � g for all function symbols g 2 F . In other words, f
has to be a maximum, but not necessarily unique.

We introduce the Knuth-Bendix order.

De�nition 4.25. (kbo) We say that s >kbo t i� 8x 2 X : #x(s) � #x(t) and either

1. �(s) > �(t), or

2. �(s) = �(t), and either

(a) t 2 X and 9k > 0 : s = fk0 (t), where f0 is an element of F having weight 0,
arity one and being a maximum in the precedence,

(b) s = f(s1; : : : ; sm), t = g(t1; : : : ; tn) and

� f � g, or

� f � g and hs1; : : : ; smi >kbo;lex ht1; : : : ; tni

where #x(t) denotes the number of occurrences of variable x in term t.

Suppose we have a �xed precedence � in F and let � be a weight function with respect
to some �xed positive natural �0; let also f0 denote any (possibly non-existent) function
symbol in F with arity one and being a maximum in the precedence.

We de�ne the quasi-order � on T (F ;X ) as follows: its strict part is empty and its equiv-
alence part is the whole set of terms; in other words � = ; and � = T (F ;X )� T (F ;X ).

We de�ne the status � as follows. For any partial order � 2 POT (F ;X ):

s �(�) t ()

8>>>>>>>><>>>>>>>>:

8x 2 X : #x(s) � #x(t) and either
i) �(s) > �(t); or
ii) �(s) = �(t); and either
a) t 2 X and 9k > 0 : s = fk0 (t); or

b) s = f(~s); t = g(~t) and

(
f � g or
f ' g and h~si �lex h~ti

It is not di�cult to see that if � is a partial order, so is �(�) and that � is weakly monotone,
thus a well-de�ned status (cf. de�nition 4.2).

According to proposition 4.7 and unfolding the parameters � and � we can write the
associated path order �po as follows:

Proposition 4.26. The partial order �po satis�es: s = f(s1; : : : ; sk) �po t, with f 2
F [ X having arity k � 0, if and only if one of the following conditions holds:

1. t = g(t1; : : : ; tm), for some g 2 F [ X having arity m � 0, and s �po tj, for all
1 � j � m, and either

(a) (8x 2 X : #x(s) � #x(t)) and either
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i. �(s) > �(t), or

ii. �(s) = �(t) and either

� t 2 X and 9k > 0 : s = fk0 (t), or

� s = f(~s); t = g(~t) and

(
f � g or
f ' g and h~si �po;lex h~ti

2. 91 � i � k : si �po t or si = t.

Apparently the order �po and >kbo are not the same object, but they actually are two
di�erent representations of the same thing. Before we prove so, we need some auxiliary
results.

Lemma 4.27. Suppose s = C[t], for some non-trivial context C. If �(s) = �(t) then
s = fi1(: : : fik(t) : : :), with each fij (1 � j � k, k � 1) having arity one, weight zero and
satisfying fij � g, for all g 2 F (i. e., being a maximum in the precedence).

Proof If C contains any symbol with weight � 0 then we would have �(s) > �(t). So all
symbols occurring in C have weight zero and this excludes constants and variables. If
C would contain a function symbol with arity � 2 it would forcibly contain a variable
or a constant, so that cannot happen either. Therefore C contains only function
symbols of arity one and with weight zero, and given the restrictions on the weight
function, they have to be maximums in the precedence, i. e., s = fi1(: : : fik(t) : : :),
with each fij (1 � j � k, k � 1) having arity one, weight zero and satisfying fij � g,
for all g 2 F , as we wanted to prove. 2

Lemma 4.28. C[t] >kbo t, for any non-trivial context C.

Proof The proof is by induction on the size of s = C[t]. Clearly we have �(C[t]) � �(t)
for any context C. If the inequality is strict, since #x(C[t]) � #x(t), for all x 2 X ,
we have C[t] >kbo t. Suppose then that �(C[t]) = �(t). By lemma 4.27 we can write
s = C[t] = fi1(: : : fik(t) : : :), with each fij (1 � j � k, k � 1) having arity one, weight
zero and satisfying fij � g, for all g 2 F . If k > 1 then by induction hypothesis we
can state that fik(t) >kbo t and since

8x 2 X : #x(fi1(: : : fik(t) : : :)) � #x(fi2(: : : fik(t) : : :)) � : : : � #x(fik(t)) � #x(t)

and fi1 ' : : : ' fik , and all the terms fi1(: : : fik(t) : : :), : : :, fik(t) have the same
weight, we can conclude that fi1(: : : fik(t) : : :) >kbo t.

If k = 1 then we consider the structure of t. Note that #x(f(t)) � #x(t), for all
x 2 X . If t 2 X then we have s = f0(t) and by de�nition of >kbo we conclude that
s >kbo t. If t = g(t1; : : : ; tm) then either f � g and we are done, or f0 ' g and then
by induction hypothesis g(t1; : : : ; tk) >kbo ti, for each 1 � i � m and consequently
hg(t1; : : : ; tk)i >kbo;lex ht1; : : : ; tmi and so s = f0(t) >kbo t. 2
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Lemma 4.29. For any terms s; t 2 T (F ;X ) s�po t i� s >kbo t.

Proof We �rst see that for any s; t 2 T (F ;X ) if s �po t then s >kbo t, by induction
on jsj + jtj. Suppose then s; t are minimal terms such that s �po t; our induction
hypothesis states that if u; v are terms such that juj < jtj then u �po t ) u >kbo t.
If s �po t by case 1a it is obvious that also s >kbo t. If s �po t by case 2 then
either si �po t or si = t, with si being a principal subterm of s. In the �rst case we
conclude that si >kbo t by induction hypothesis and by lemma 4.28 we have s >kbo si
and thus s >kbo t. In the last case t is a principal subterm of s and by the same
lemma we conclude that s >kbo t.

For the opposite inclusion we proceed similarly, i. e., by proving that s >kbo t implies
s �po t, by induction on jsj + jtj. Note that if s >kbo t then we can conclude that
s �po t by case 1a provided we can show that if t = g(t1; : : : ; tm) then s �po tj for
all 1 � j � m. But if s >kbo t and t has that form, by lemma 4.28, we also have that
t >kbo tj, for all 1 � j � m. Using transitivity we conclude that s >kbo tj, for all
1 � j � m and by induction hypothesis we have s �po tj, for all 1 � j � m, as we
wanted. 2

It is not di�cult though cumbersome to see that the status � is stable, context stable
and well-foundedness stable if � is well-founded on F and the lexicographic extension
satis�es appropriate requirements for well-foundedness, therefore we can derive that >kbo

is closed under substitutions and contexts and well-founded (provided � is well-founded),
using the results presented in section 4.3.1, 4.3.2, and 4.3.4.

5 Conclusions

We provided a characterization of recursively de�ned path partial and quasi-orders on
terms. Though many such orders are known, proofs of their well-de�nedness are, as far as
we know, quite often not to be found in the literature. With the characterizations given, we
can provide such a proof since any relation on terms �tting our schemes will be a partial
or quasi-order. So by simply checking the relation falls within our schemes we ensure
its well-de�nedness and eventually other properties characterizing the ordering; we did so
for the semantic path order , the recursive path order , the lexicographic path order , and
the Knuth-Bendix order. We chose these orderings for historical reasons and also because
though many variations have been proposed since the advents of these orderings, they still
remain as the best known representatives of path orders.

Our approach has several major advantages: proving properties like well-de�nedness,
transitivity, (ir)re
exivity etc. has to be done only once, namely for the schemes presented.
Then for any particular relation we wish to establish as a partial or quasi-order, we only
need to see that the relation �ts in our scheme, and that is usually much simpler than
providing an independent proof. Another important aspect of our approach is that it
abstracts from the form of the actual existing orders and enables us to concentrate on the
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properties and the ingredients needed for the de�nition of partial or quasi-orders. As a
consequence a better understanding of the mechanisms at play is obtained. And last but
not least, it is possible to use the schemes for the de�nition of new orderings on terms; this
may be especially relevant in practical situations where orderings tailored for a particular
problem may be needed.

In the future it would be interesting to investigate whether a similar scheme can be
obtained for orders in an equational setting, i. e., when we want the orders to be compatible
with some equational theory. The de�nition of path orders compatible with equational
theories has proved to be a hard problem, especially when other properties like totality are
required.
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