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Abstract

In this paper we study the notion of group knowledge in a modal
epistemic context. Starting with the standard definition of this kind of
knowledge on Kripke models, we show that this definition gives rise to
some quite counter-intuitive behaviour. Firstly, using a strong notion
of derivability, we show that group knowledge in a state can always,
but trivially be derived from each of the agents’ individual knowledge.
In that sense, group knowledge 1s not really implicit, but rather explicit
knowledge of the group. Thus, a weaker notion of derivability seems to
be more adequate. However, adopting this more ‘local view’, we argue
that group knowledge need not be distributed over (the members of)
the group: we give an example in which (the traditional concept of)
group knowledge is stronger than what can be derived from the indi-
vidual agents’ knowledge. We then propose two additional properties
on Kripke models: we show that together they are sufficient to guar-
antee ‘distributivity’, while, when leaving one out, one may construct
models that do not fulfil this principle.

1 Introduction

In the field of Al and computer science, the modal system S5 is a well-
accepted and by now familiar logic to model the logic of knowledge (cf. [3,
14]). Since the discovery of S5’s suitability for epistemic logic, many exten-
sions and adaptions of this logic have been proposed. In this paper we look
into one of these extensions, namely a system for knowledge of m agents con-
taining a modality for ‘group knowledge’. Intuitively this ‘group knowledge’
(let us write G for it) is not the knowledge of each of the agents in the group,
but the knowledge that would result if the agents could somehow ‘combine’

*This is an improved and extended version of [6]



their knowledge. The intuition behind this notion is best illustrated by an
example. Let the formula ¢ denote the proposition that P # N P. Assume
that three computer scientists are working on a proof of this proposition.
Suppose that ¢ follows from three lemmas: 1,19 and 3. Assume that
scientist 1 has proved 11 and therefore knows 1. Analogously for agents
2 and 3 with respect to ¥, and 13 = (¢1 A ¥2) = . If these computer
scientists would be able to contact each other at a conference, thereby com-
bining their knowledge, they would be able to conclude . This example
also illustrates the relevance of communication with respect to this kind of
group knowledge: the scientists should somehow transfer their knowledge
through communication in order to make the underlying implicit knowledge
explicit.

In this paper, we try to make the underlying notions that together constitute
G explicit: What does it mean for a group of, say m agents, to combine their
knowledge? We start by giving and explaining a clear semantical definition
of group knowledge, as it was given by Halpern and Moses in [3]. In order to
make some of our points, we distinguish between a global and a local notion
of (deductive and semantic) consequence. Then we argue that the defined
notion of group knowledge may show some counter-intuitive behavior. For
instance, we show in Section 3 that, at the global level, group knowledge does
not add deductive power to the system: group knowledge is not always a true
refinement of individual knowledge. Then, in Section 4, we try to formalize
what it means to combine the knowledge of the members of a group. We
give one principle (called the principle of distributivity: it says that G that is
derived from a set of premises, can always be derived from a conjunction of
m formulae, each known by one of the agents) that is trivially fulfilled in our
set-up. We also study a special case of this definition (called the principle of
full communication), and show that this property is not fulfilled when using
standard definitions in standard Kripke models. In Section 5 we induce two
additional properties on Kripke models; we show that they are sufficient to
guarantee full communication: they are also necessary in the sense that one
can construct models that do not obey one of the additional properties and
that at the same time do not verify the principle under consideration. In
Section 6 we round off. Proofs of theorems are provided in the appendix.



2 Knowledge and Group Knowledge

Halpern and Moses introduced an operator to model group knowledge ([3]).
Initially this knowledge in a group was referred to as ‘implicit knowledge’
and indicated with a modal operator I. Since in systems for knowledge
and belief, the phrase ‘implicit’ already had obtained its own connotation
(cf. [10]), later on, the term ‘distributed knowledge’ (with the operator D)
became the preferred name for the group knowledge we want to consider here
(cf. [4]). Since we do not want to commit ourselves to any fixed terminology
we use the operator G to model the ‘group knowledge’. From the point of
view of communicating agents, G-knowledge may be seen as the knowledge
being obtained if the agents were fully able to communicate with each other.
Actually, instead of being able to communicate with each other, one may also
adopt the idea that the G-knowledge is just the knowledge of one distinct
agent, to whom all the agents communicate their knowledge (this agent was
called the ‘wise man’ in [3]; a system to model such communication was
proposed in [11]). We will refer to this reading of G (i.e., in a ‘send and
receiving context’) as ‘a receiving-agent’s knowledge’. We start by defining
the language that we use.

Definition 2.1 Let II be a non-empty set of propositional variables, and
m € IN be given. The language £ is the smallest superset of Il such that:

if 9971# € L then e, (99 A Qb)v](i@ong‘o €L (l < m)

The familiar connectives V, —, <> are introduced by definitional abbreviation

in the usual way; T def pV —p for some p € 1l and 14T

The intended meaning of K, is ‘agent ¢« knows ¢’ and G'p means ‘¢ is group
knowledge of the m agents.” We assume the following ‘standard’ inference
system S5,,(G) for the multi-agent S5 logic incorporating the operator G.

Definition 2.2 The logic S5,,(G) has the following axioms:



Al any axiomatization for propositional logic
A2 (Ko NKi(p — ) = K
A3 Kip— o
Al Ko — KK
A5 Ko = Ki—-Kp
A6 Kip— Gy
AT (GeAGlp = ¥)) = Gy
A8 Go— ¢
A9 G = GGy
AL0 -Gy > GGy
On top of that, we have the following derivation rules:
Rl Fo,Fp—o>Y =>F¢
R2 F¢ = F Kyp, forall: <m

In words, we assume a logical system (A1, R1) for rational agents. Indi-
vidual knowledge, i.e., the knowledge of one agent, is moreover supposed to
be wveridical (A3). The agents are assumed to be fully introspective: they
are supposed to have positive (A4) as well as negative (A5) introspection.
In the receiving-agent’s reading, the axiom A6 may be understood as the
‘communication axiom’: what is known to some member of the group is also
known to the receiving agent. The other axioms express that the receiver
has the same reasoning and introspection properties as the other agents of
the group. In the group knowledge reading, A6 declares what the members
of the group are; the other axioms enforce this group knowledge to obey the
same properties that are ascribed to the individual agents.

The derivability relation Fgs, (), or - for short, is defined in the usual way.
That is, a formula ¢ is said to be provable, denoted F ¢, if ¢ is an instance
of one of the axioms or if ¢ follows from provable formulae by one of the
inference rules R1 and R2.

To relate this notion of group knowledge to the motivating example of Sec-
tion 1, in which the group is able to derive a conclusion ¢ from the lemma’s
11,19 and 13, each known by one of the agents, let us consider the following



derivation rule which is to be understood to hold for all ¢, ;,7 < m

R3 F(pr A ANpy) = o= F Ky Ao A Kpby) = G

Theorem 2.3 Let the logic S5,,(G)[R3/A6] be the as S5,,(G), with axiom
A6 replaced by the rule R3. Then, the two systems are equally strong: for
all ¢, 85,,(G) F ¢ < S5,,(G)[R3/A6] F ¢.

From the proof of this theorem, as given in [14, page 263] one even can derive
that this equivalence is obtained for any multi-modal logic that is normal
with respect to G, i.e., for any logic X containing the axioms A7 and the
rules R1 and R2' :F ¢ =F GG¢ we have an equivalence between X + A6 and
X + R3.

We now define two variants of provability from premises: one in which ne-
cessitation on premises is allowed and one in which it is not.

Definition 2.4 Let ¢ be some formula, and let ® be a set of formulae.
Using the relation - of provability within the system S5,,(G) we define the
following two relations F* and F~C 2% x £:

Ot Y (P F ) & Fop,..., 0, with ¢, = ¢, and such that for all
1 <1< n:

o cither ¢; € @
e or there are 7,k <1 with ¢; = ¢ = ¢;
e or ¢; is an S5,,(G) axiom

e or p; = Ko where o is such that

o = ; with j <17 in caseof T
Fo in case of F~

So, the relation FT is more liberal than F~ in the sense that FT allows for
necessitation on premises, where -~ only applies necessitation to S5,,(G)-
theorems. From a modal logic point of view, one establishes:

DT oo 0F ¢

such that F ¢ is unambiguously defined as § =+ ¢ or ) F~ ¢, and

For Ao Apn) = & @ryeeon b0 = @1, o T



Also, one can prove the following connection between the two notions of
derivability from premises.

Theorem 2.5 Let {K1y,..., K, }* be the set of sequences of epistemic op-
erators. Then

{Xp| X e{Ky,....,K,}',pe®}F" ¢ & dF 0

From [13, LEMMA Al], for the one agent case without group knowledge (i.e.,
S51), one even obtains

{Kp| €@} F o & FT

From an epistemic point of view, when using -7, we have to view a set of
premises ® as a set of additional given (i.e., true) formulae, whereas in the
case of FT, ® is a set of known formulae.

Definition 2.6 A Kripke model M is a tuple M = (S, 7, Rq,..., Ry)
where

1. § is a non-empty set of states,
2. 1: 8 = Il = {0,1} is a valuation to propositional variables per state,

3. forall 1 <¢<m, R; CSxS& is an equivalence relation. For any s € S
and 7 < m, with R;(s) we mean {t € § |R;st}.

We refer to the class of these Kripke models as S5™, or, when m is under-
stood, as S5.

Definition 2.7 The binary relation |= between a formula ¢ and a pair
M, s consisting of a model M and a state s in M is inductively defined by:

Mislp e as)p) =1

M,sE Ny M,sl=@and M,s =9

MislE-p & MsiEg

M,s|E Ko < Mt ¢ forall t with (s,t) € R;
M,slEGp < Mt ¢forall t with (s,t)€ RyN...N Ry,

For a given ¢ € £ and M € S5, [¢] = {t IM,t | ¢}. For sets of formulae
O, M,s |= & is defined by: M,s|E ® & M,s|= ¢ for all ¢ € . In this
paper, a model M is always a S5-model.



The intuition behind the truth definition of G is as follows: if ¢ is a world
which is not an epistemic alternative for agent ¢, then, if the agents would
be able to communicate, all the agents would eliminate the state t. This is
justified by the idea that the actual, or real state, is always an epistemic
alternative for each agent (on S5-models, R; is reflexive; or, speaking in
terms of the corresponding axiom, knowledge is veridical). Using the wise-
man metaphor: this man does not consider any state which has already been
abandoned by one of the agents.

A formula ¢ is defined to be valid in a model M iff M, s |= ¢ for all s € S;
¢ is valid with respect to S5 iff M = ¢ for all M € S5. The formula ¢ is
satisfiable in M iff M, s |= ¢ for some s € S; ¢ is satisfiable with respect
to S5 iff it is satisfiable in some M € S5. A set of formulae ® is valid with
respect to M /S5 iff each formula ¢ € ® is valid with respect to M /S5. We
define two relations between a set of formulae and a formula: ® =T ¢ iff

VMME®=> ME¢)and @ | ¢ iff YMVYs(M, s |E® = M, s | ¢).

Theorem 2.8 [Soundness and Completeness] Let ¢ be some formula, and
let @ be a set of formulae. The following soundness and completeness results

hold.
L.l & F¢
22.0F ¢ & "o

3.0 o & BT

3 Group Knowledge is not always Implicit

As presented, within the system S5,,(G), all agents are considered ‘equal’:
if we make no additional assumptions, they all know the same.

Lemma 3.1 Tor all 7,5 < m, we have: - K;¢o & F K.

Remark 3.2 One should be sensitive for the comment that Lemma 3.1 is
a meta statement about the system S5,,(G), and as such it should be distin-
guished from the claim that one should be able to claim within the system
S5,,(G) that all agents know the same: i.e., we do not have (nor wish to
have) that - K;p < K¢, if i # j. Considering F ¢ as ‘¢ is derivable from
an empty set of premises’ (cf. our remarks following Definition 2.4), Lemma



3.1 expresses ‘When no contingent fact is known on beforehand, all agents
know the same’. In fact, one easily can prove that ‘When no contingent
facts are given, each agent knows exactly the S5,,(G)- theorems’, since we
have, for each ¢t <m: F ¢ < F K;p [

Interestingly, we are able to prove a property like the one in Lemma 3.1 even
when the GG operator is involved.

Theorem 3.3 Let X and Y range over {Ky, Ko,..., K,,,G}. Then:
Xp &Yy

Theorem 3.3 has, for both the reading as group knowledge as well as that of
a receiving agent for G, some remarkable consequences. It implies that the
knowledge in the group is nothing else than the knowledge of any particular
agent. Phrased differently, let us agree upon what it means to say that
group knowledge is implicit:

Definition 3.4 Given a notion of derivability F,, we say that group knowl-
edge is strongly implicit (under F,) if there is a formula ¢ for which we have
Fo G, but for all ¢« < m t/, K;p. It is said to be weakly implicit under +, if
there is a set of premises ® for which ¢ -, G'p, but ¢ t/, K;¢, for all i < m.

Thus, Theorem 3.3 tells us that, using F of S5,,(G), group knowledge is not
implicit! Although counterintuitive at first, Theorem 3.3 also invites one to
reconsider the meaning of - ¢ as opposed to a statement ® 1 . When
interpreting the case where ® = () as ‘initially’ or, more loosely, ‘nothing has
happened yet’ (in particular when no communication of contingent facts has
yet taken place), it is perhaps not too strange that all agents know the same
and thus that all group knowledge is explicitly present in the knowledge of
all agents.

With regard to derivability from premises, we have to distinguish the two
kinds of derivation introduced in Definition 2.4.

Lemma 3.5 Let ¢ be a formula, ® a set of formulae and ¢ some agent.
¢ PFF G s & Kip

e O Kip= 0 Gy



e bF Gp#A dF Kip

The first clause of Lemma 3.5 states that for derivability from premises in
which necessitation on premises is allowed, group knowledge is also not im-
plicitly but explicitly present in the individual knowledge of each agent in the
group (thus ® may be considered an initial set of facts that are known to ev-
erybody of the group). The second and third clause indicate that the notion
of group knowledge is relevant only for derivation from premises in which
necessitation on premises is not allowed. In that case, group knowledge
has an additional value over individual knowledge. A further investigation
into the nature of group knowledge when necessitation on premises is not
allowed, is the subject of the next section.

4 Group Knowledge is not always Distributed

In the previous section we established that group knowledge is in some cases
not implicit, but explicit. In particular for provability per se and for deriva-
tion from premises with necessitation on premises, group knowledge is rather
uninteresting. The only case where group knowledge could be an interesting
notion on its own, is that of derivability from premises without necessitation
on premises. For this case, we want to formalize the notion of distributed
knowledge. Although intuitively clear, a formalization of distributed knowl-
edge brings a number of hidden parameters to surface. Informally, we say
that the notion of group knowledge is distributed if the group knowledge
(apprehended as a set of formulae) equals the set of formulae that can be
derived from the union of the knowledge of the agents that together consti-
tute the group.

The following quote is taken from a recent dissertation ([1]):

Implicit knowledge is of interest in connection with information
dialogues: if we think of the dialog participants as agents with
information states represented by epistemic formulae, then im-
plicit knowledge precisely defines the propositions the participants
could conclude to during an information dialogue . ..

Borghuis ([1]) means with ‘implicit knowledge” what we call ‘group knowl-
edge’. We will see in this section, that using standard epistemic logic, one



cannot guarantee that group knowledge is precisely that what can be con-
cluded during an information dialogue.

To do so, we will first formalize the notion of distributivity using the notions
of derivability used so far. The reader may wish to skip Section 4.1 and move
on to the semantic approach in Section 4.2 at a first reading.

4.1 A deductive approach

To formalise what we mean with distributed group knowledge, let us have
a second look at derivation rule R3 first. It says that, if ¢ follows from the
conjunction of ¢1,..., @, then, if we also have K11 A -+ - A K0, We are
allowed to conclude that ¢ is known by the group, i.e. then also G¢. Now,
we are inclined to call group knowledge distributed if the converse also holds,
that is, if everything that is known by the group does indeed follow from
the knowledge of the group’s individuals. Let us, for convenience, say that
group knowledge is perfect (over the individuals) if both directions hold.
What we now have to do is become precise about the phrase ‘follows from’
and about the role that can be played be premises here. Let us summarize
our first approximation to the crucial notions in a semi formal definition:

Definition 4.1 (First approximation).

1. We say that G represents complete group knowledge if we have that for
every ¢ and @1, ..., ¢, such that (K1 A---A K, ¢.,) can be derived,
and also the implication (1 A -+ A ¢,,) = ¢, then we also have that
G¢ can be derived.

2. The group knowledge represented by G is called distributed if for ev-
ery ¢ such that G¢ is derived we can find 1, ..., ¢, such that: (1)
together they imply ¢ and (2) The conjunction (Kyp A -+ A K,0) is
derivable.

3. If both items above hold we call the group knowledge represented by
G perfect group knowledge.

Observation 4.2 In S5,,(G), using -, G-knowledge is both complete group
knowledge and distributed.

The proof of Observation 4.2 shows that it holds for a trivial reason. For
distributivity, if - G, by Theorem 3.3, we also have - Ky, ...,F K, ¢,

10



and then distributivity follows from F (¢ A --- A ¢) — ¢. To show that G
models complete group knowledge, one reasons as follows: from F Ky A
AN Kpom and F (@1 A+ A ) = @ one obtains F Gog A -+ A Gy, and
FG((e1 A ANep) — @) from which then F Gy immediately follows.

So, to obtain distributivity in a non-trivial way, we should allow for premises.
However, we know from the previous section that we then have at least two
notions of derivability to consider. Unfortunately, as the following observa-
tion summarizes, there is no simple choice here.

Observation 4.3 If the notion of derivability used in Definition 4.1 is to
be ® =T ¢ or ® = 4, we again obtain distributivity of G-knowledge in a
trivial way.

Let us try to understand the source of Observation 4.3. For both x = 4, <,
if & F* G, then we also have ® F* ¢, and hence & F* (T A---T) = ¢.
Obviously, we also have ® F* (K1 T A --- A K, T), justifying the claim that
group knowledge is distributed.

From the two Observations 4.2 and 4.3 above, we conclude that, in order to
have an interesting notion of distributed group knowledge, we have to allow
for a subtle use of premises and of notions of derivability. Let us therefore
introduce the following notation. Let x € {0,1} be a characteristic func-
tion in the sense that, for every set ®, k- ® = 0 if k = 0, and ® else.
Now, we want to distinguish three types of derivability: one to obtain the
(K191 A+ AN K0, formulas (the ‘knowledge conclusions’), one to obtain
(@1 NNy ) — @ (the ‘logical conclusions’) and one to obtain formulas of
type G'e (the ‘group knowledge conclusions’). For each type of derivability,
we may choose to allow for premises or not, and we also choose between F+

and 7.

Definition 4.1 Let ry,k;, 6, € {0,1} and let K, L and G be variable over
{+.,<}. For each tuple A = (kg, K, Ky, L, ky, G) we now define the following
notions:

o We say that A-derivable group knowledge is complete if, for all sets of
premises ® and every formula ¢:

Ky - ® FC G <301, 0m: [kr- 0N (K11 A+ AN Kppom)&
KU ®E (A A om) = ] (1)

11



e we say that A-derivable group knowledge is distributed, if for every
set of premises @, and every ¢:

Ky - ® & Gy = 3Jo1,..,0om: [kr-® HE (K11 A AN Kpom)
k@D (@0 A A o) = 0]2)

e If both (1) and (2) hold for a tuple A and every ® and ¢, we say that
the knowledge represented by G is perfect with respect to A.

Thus, we have specialized our first attempt to define perfect group knowl-
edge, in notions depending on the choices in A. There are in principle 64
of such notions, but the following observations give a systematic account
of them: the reader may also consult the summarising table Table 1 in the
Appendix.

Observation 4.4 For 49 possibilities for A = (ki, K, K, L, k4, G) one can
show that group knowledge is indeed distributed—but the proofs show that
this is only established in a ‘trivial’ manner.

In the observation above, ‘trivial’ refers to the fact distributivity is proven in
a way similar to that in Observation 4.2 and 4.3—for an exhaustive proof, the
reader is referred to the appendix. Those cases are summarized in Table 1,
with an a, b ¢ or d in the ‘yes’ column.

Observation 4.5 For the 13 of the remaining 15 possibilities for A =
(kg, I, Kk, L, iy, ) one can show that group knowledge is not distributed;
they are summarized in Table 1 with the items e, f and g in the ‘no’ column.

The remaining interesting cases are A = (1,<,0, L, k1, 1) which we take as
a starting point for the next section. Note that in fact this is only one
case, since if x; = 0, the choice of . = <y + is arbitrary. Also note that,
apart from the technical results of the observations above, this remaining
A seems to make sense: we do not distinguish between xj and k,(= 1), we
take premises seriously but we only consider the case where K = G = <5 so
that group knowledge can be called implicit, according to Section 3. Then,
according to Observation 4.3 the only sensible choice for x; is 0. Let us
formulate the notion of distributivity for the remaining A’s:

PFT Gy = de1,... 0om HE (K11 A AN Kpom)
SET (1A A ) = ¢ (3)

12



Thus, the conclusion ¢ should be an S5,,(G)-consequence of the lemma’s
D1y ey Pm, for G and (K191 A -+ A K, 0.,) that are derivable using the
same rules: using premises but without applying necessitation to them.

4.2 A semantic approach

If we try to reformulate (3) semantically, we obtain

If G is true in every situation that verifies ®, then there should
be 1, ..., om such that (1 ANy ) — ¢ is valid and (K191 A
c AN Kppm) is true in every situation verifying ®.

However, we think that the order of quantification in the citation above
deserves some more attention. Consider ® = {KypV Kyp}. Indeed, we have
¢ =" Gp, but does p follow from formulas 1, g such that (K¢ A Kapg) is
true in every situation M, s for ®7 No, obviously not (see Observation 4.6
below or its proof in the Appendix); this is too strong a requirement: instead
of finding such ¢y and @5 such that every situation M,s for ¢ satisfies
(K19 N K3p2), however, we are able to find such formula for every situation
that verifies @, since such a situation M, s either satisfies K1p or Kap, so
that we can take (1, p2) to be either (p, T) or (T,p).

Observation 4.6 Although we have {Kyp Vv Kyp} F~ Gp, there exist no
¥1, 2 with F (01 Apz) = pand {K1pV Kop} B~ (K192 A Kapz).

Corollary 4.7 Group knowledge is not distributed in the sense of (3).

So, according to the latter corollary, also the remaining choices for A do
not yield a notion of distributed knowledge. Let us thus put our argument
about the order of quantification one step further:

We say that group knowledge satisfies the principle of full com-
munication if in every situation in which Gy is true one can
find p1,...,0m such that (Kip1 A -+ A Kpom) also holds in
that situation, and, moreover, (w1 A -+ A @) — ¢ is a valid
implication.

Phrased negatively, group knowledge does not satisfy the principle of full
communication if there is a situation in which the group knows something
i.e., Gy, where ¢ does not follow from the knowledge of the individual group
members.

13



Definition 4.8 Let M be a Kripke model with state s, and ¢+ < m. The
knowledge set of i in M, s is defined by: K (i, M,s)={p | M,s|= K;p}.

Now, the semantic counterpart of full communication reads as follows:

M,sl=Gp = UK(@',M,S) E o (4)

Property (4) expresses that G-knowledge can only be true at some world s
if it is derivable from the set that results when putting all the knowledge of
all the agents in s together.

For multi-agent architectures in which agents have the possibility to com-
municate (like for instance [11]) the principle (4) is rather relevant. This so
called principle of full communication captures the intuition of fact discov-
ery (cf. [5]) through communication. The principle of full communication
formalizes the intuitive idea that it is possible for one agent to become a
wise man by communicating with other agents: these other agents may pass
on formulae from their knowledge that the receiving agent combines to end
up with the knowledge that previously was implicit. As such, the principle
of full communication seems highly desirable a property for group knowl-
edge. It is questionable whether group knowledge is of any use if it cannot
somehow be upgraded to explicit knowledge by a suitable combination of
the agents’ individual knowledge sets, probably brought together through
communication. Coming back to the example of the three computer sci-
entists and the question whether P # N P; if there is no way for them to
combine their knowledge such that the proof results, it is not clear whether
this statement should be said to be distributed over the group at all.

Unfortunately, in the context of S5,,(G), the principle of full communica-
tion does not hold. The following counterexample describes a situation in
which group knowledge cannot be upgraded to explicit knowledge (thereby
answering a question raised in [11]).

Counterexample 4.9 Let the set II of propositional variables contain the
atom ¢g. Consider the Kripke model M such that

o S=A{x1,22,51,¥2, 21, 22},

o m(¢q,z;) = 1,7(q,y;) = 1,7(q,2;) = 0 for j = 1,2 and for all p € 1,
T(p, 1) = 7(p,22), 7(p,y1) = 7(p, y2) and 7(p, 21) = 7(p, 22),

14



e R, is given by the solid lines in Figure 1, and Ry is given by the dashed
ones (reflexive arrows are omitted).

Figure 1: The epistemic accessibility relations.

Observation 4.10 It holds that (see Appendix A for a justification):
o K(1,M,2q1)=K(2,M,z7)
e M,z E Gy
e ¢ K(1,M,21) U K(2, M,z1) = K(1, M, z1)

From this last observation it follows that the principle of full communication
does not hold in this model: although the formula ¢ is group knowledge, it
is not possible to derive this formula from the combined knowledge of the
agents 1 and 2. Thus it is not possible for one of these agents to become
a wise man through receiving knowledge from the other agent. In terms of
Borghuis: the model of Counterexample 4.9! shows that one can have group
knowledge of an atomic fact ¢, although this group knowledge will never be
derived during a dialogue between the agents that are involved.

!Mark Ryan correctly pointed out to us that in fact there is a smaller model that proves
our case: the y-worlds are in fact superfluous. We stick to our original model in order not
to suggest that one has to adopt G < ¢ to be able to make Observation 4.10.

15



Corollary 4.11 1In S5,,(G), group knowledge does not satisfy the princi-
ple of full communication

5 Models in which Group Knowledge is Distributed

In this section, we will characterize a class of Kripke models, in which G-
knowledge is always distributed, in the sense that they satisfy the principle
of full communication. To be more precise, the models that we come up
with will satisfy

M,sEGp < Ulf(i,./\/l,s) E (5)

Definition 5.1 A Kripke model M = (S, 7,Rq,...,R,,) is called finite if
S is finite; moreover it is called a distinguishing model if for all 5,1 € § with
s #t, there is a ¢t ,— such that M, s |= ¢+ ;- and M, T £ o4 4.

When considering an S5;&model as an epistemic state of an agent, it is
quite natural to use only distinguishing models: such a model comprises all
the different possibilities the agent has. One can show that in the 1-agent
case, questions about satisfiability of finite sets of formulae, and hence that
of logical consequence of a finite set of premises, can be decided by consid-
ering only finite distinguishing models. In fact, one only needs to require
such models to be distinguishing at the propositional level already: any two
states in such a simple S5-model differ in assigning a truth value to at least
one atom (see, e.g. [14], Section 1.7). In the multiple-agent case, this distin-
guishing requirement needs to be lifted from the propositional level to the
whole language L.

The nice feature of finite distinguishing models is that sets of states can be
named:

Lemma 5.2 Let M = (S,...) be a finite distinguishing model. Then:
VXCSdaxelVeelS MaEax & reX)

For a given set X, we call ay the characteristic formula for X.

Lemma 5.3 Let M = (S,7, Ry,..., Ry,) be a given finite distinguishing
model, with s € §. Suppose that Z C § is such that for all z € Z we
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have M,z = (. Moreover, suppose X1,...,X,, C & are such that R;(s) C
(X7U...UX,UZ). Then

./\/l,s |: I(i(_‘aXl — (—|04X2 — ( . '(_'O‘Xn — C) .. )))

If one tries to link up the two lemma’s above with the principle of full
communication, one may take the following view point. First of all, note
that, given a state s, all agents at least share one epistemic alternative,
which is s itself. Now, consider the set of epistemic alternatives for agent
iin s, R;(s). Relative to agent j we can partition R;(s) in two subsets: a
set Y; C Ri(s) of worlds that are considered as epistemic alternatives for
agent j, and a set X; = R;(s)\ Y, of worlds that are possible alternatives
for ¢, but not for j. Let ax, and ay, be the characteristic formulas for X;
and Y. respectively. Then, agent ¢ knows that the real world must be in
either one of X; and Y}, i.e. agent ¢ knows that —ayx, — ay,, and agent
J knows —ax,. Thus, agent j may inform agent ¢ so to speak which of i’s
alternatives can be given up. Now, if all the agents h would communicate
this information Xj to agent 7, then finally agent ¢ would end up with those
epistemic alternatives that are considered possible by all of the agents. This
argument is made more precise in the (proof of) the following theorem.

Theorem 5.4 Let M be a finite distinguishing model. Then, in M,
G-knowledge is distributed, in the sense that it satisfies (5).

We finally observe that the two properties of Definition 5.1 are in some sense
also necessary for distributivity. Let us say that in M group knowledge
satisfies the principle of full communication if, for all states s and formulae
¢, equation (5) is satisfied. Then:

Observation 5.5

e There is a finite, not distinguishing model, in which group knowledge
does not fulfil the principle of full communication.

e There is a distinguishing model, not finite, in which group knowledge
does not fulfil the principle of full communication.

6 Conclusion

We have given formal definitions of what it means for group knowledge to be
implicit or to be distributed relative to a group. Basically, group knowledge
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is implicit, if there is some formula known by the group, but not by any of
its members. Here, one has to be precise about the role to be played by
premises, and about the notion of derivability that is used to conclude that
something is known. It appears that, under the standard notion of derivabil-
ity in S5,,(G), and when no premises are allowed, group knowledge is not
implicit. The same holds if one allows for applications of the Necessitation
rule to premises. Thus, the only case in which group knowledge may be
implicit in a group, is the case in which premises describe a situation, rather
than the knowledge present beforehand.

Then, we studied whether group knowledge was always distributed. We
made the notion of distributivity precise by saying that a formula is dis-
tributed (given some set of premises) if it can somehow, using some notion
of derivability and some related set of premises, be derived from the union
of the agents’ knowledge. We argued that there was one way of choosing
the parameters such that distributivity is not trivialised. We then gave a
semantic account of a weak variant of distributivity (called the principle of
full communication): we then were able to show that principle was still not
guaranteed. Then, we gave two properties on Kripke models that guarantee
that group knowledge does allow full communication; we also showed that
both properties are, in some sense, needed.

We think it quite remarkable that such an appealing and natural notion like
group knowledge as discussed in this paper, can give rise to rather compli-
cated behaviour or properties. For instance, it is also well known that the
canonical models for a logic like S5,,(G') only have the property that the
accessibility relation for G, say R¢ is a subset of RyN...NR,,, and cannot be
guaranteed to be equal to this intersection. In other words, this equality is
not modally definable, although one can find a complete axiomatization for
those models that satisfy it. For more on this, the reader is referred to [7]. In
that paper, the authors also show that definability of Ry N...NR,, = Rg is
achieved when using graded modal logic. But in this logic, the assumption
of distinguishability of a model seems to be unnatural; graded modal logic
is typically designed to be able to reason about numbers (and hence copies)
of worlds.

Also, in [8] the same authors demonstrate that proving an epistemic logic in-

volving both group knowledge and common knowledge complete with respect
to 85,,(G)-like models can be quite complicated. Again, distinguishability
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of the models have to be given up. To be more precise, given a state M, s
for ¢, the technique of filtration in modal semantics often yields a finite dis-
tinguishing model M’, such that M, s still verifies ¢, which might suggest
af first sight that finite distinguishing models are always obtained. It is not
guaranteed, however, that this model M is in the appropriate class, i.e., if

M is an S5,,(G)-models, M’ need not be.

Finally, in a recent manuscript ([12]) a rather surprising property of group
knowledge was mentioned in the context of so-called Interpreted Systems,
systems that are widely accepted as a general semantics for distributed sys-
tems. In such a system, one obtains G < ¢, for all ¢. Since such a system
is by definition distinguishing (the states usually differ already on the objec-
tive level), in the finite versions the principle of full communication would be
automatically obtained, but, at the same time, it might be a too strong, and
perhaps optimistic principle: all facts about the world would be eventually
obtained by the agents, would they be able to fully communicate.
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A Proofs

Proof of Theorem2.5 Our proof is inspired by that of [13, LEMMa Al],
where a similar property is proven for an ‘S5;-like’ logic. Let us abbreviate
{X|X € {K1,...K,,}T to W (the set of non-empty words over the alphabet
{Ky,...K}) and, for a set of premises ®, let us write W® for {X¢ | X €
W,p € ®}. We first prove the following lemma

Lemma A.1 Forall®,p, 0 <m: WO+~ v W - K

Proof: The ‘<’ direction follows immediately from an application of R1 to
K ;2 and axiom A3. The ‘=’ direction is proven by induction on the length
{(n~) of a shortest F~-proof 7 = (Y1,... 9y = ¥) of P from W, ie. we
show that, for all n and all ¥,

If W& 7 9 has a shortest proof of length n, then W& = Kb (6)

o If {(m) =1 then

1. either v € W, i.e., ¥ = Xpforsomesequence X = K; K;,...K;, €
W and ¢ € ®. Obviously, K;X¢ € W&, and hence W® -~ K ;4.

2. Or ¢ is an axiom of S5,,(G). By necessitation, we also have

F K and thus Wo = K.

e Suppose that (6) holds for all W& = a with {(7) < k(k > 1) and
suppose now that W& 7 1 has a shortest proof 7 = (¢1,...0p41(=

b))-

1. We don’t have to consider the case that ¥ € W®, since then «
would not be a shortest proof. The same holds for the case %
being an S5,,(G)-axiom.

2. Suppose ¢ = K ;3 with - 3. By necessitation, we then also have
F K;3 and we prove K;v» = K;K;$ by applying A4 and R1,
yielding - K1 and thus W® = K.

3. The only other possibility is that 1 is obtained by an appli-
cation of modus ponens to v; and ¥; = ¥ry1, 7 < k. Using
the induction hypothesis on the proofs for ©; and ¥; — ¥4,
we obtain W& = Kb, Wo F= K(¢¥ — t¢r41). Applying R1
and A2 to the latter two conclusions yields W® F= K41, i.e.
Wo = K.
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We now reformulate and proof Theorem 2.5:

Theorem 2.5 Let {Ky,...K,,}T be the set of non-empty sequences of
epistemic operators. Then

{Xe| X e{Ky,..K}J t,ope® b~ & @FT 0

Proof: ‘=’: Suppose that W® = 1. Since FT extends -~ we then also
have W® T ¢. Moreover, we also have that ® F* W®, (meaning that
® T Xy for any X € W,p € ). Combining, ® T W¢ and W 1 ¢
then yields ® T .

‘<" Suppose that ® ++ o, with 71 = (¢1...¢¥x(= ¥)) a FT-proof of ¢
from ®. Let p(7) be the number of applications of the Necessitation rule in
T to non-S5,,(G)-theorems. We prove, for all n and all 1):

If ® -1 4 has a proof 71 with p(7 %) = n, then W -~ ¢ (7)

o If (™) = 0, we replace every step in 7+ of the form ¢;, which is
justified by ¢; € ®, by the three steps K;p;, K;o; = ¢;,%; to obtain
a proof k(7 t)~ for W® = . (Note that the resulting proof x(7T)~
indeed only uses premises from W®.)

e Suppose that (7) holds for al 7+ with p(7+) < k, and we havea ® = ¢
with a proof 7 with p(7 1) = k+1, say 7+ = (1 ... ¢y, Yrr1, .. bpr1(=
1)), where 1,41 is obtained from ,(h < r) as a result of the last
Necessitation-step to previous formulas. So, 1,41 = K;1y, for some
J < m. Thus, if #'T is the proof for ® F* ¢, then p(x'T) < k. The
induction hypothesis yields W® = 4. By Lemma A.1, we obtain
W® = K;¢. Note that the remaining part ot of the F*-proof 7
with oF = (Yp41(= ) ...¢r + 1(= K;4)) from @ does not involve
Necessitation to formulas in this sequence, so (o) = 0. Thus, as
above, we can transform it in a F~-proof k(o)) for K;¢ from W
(replacing each assumption in ¢ of the form t,(€ ®) by the triple

Kﬂbv(e W(I))yl(llbv — ¢v7¢v)‘

Proof of Theorem 2.8

e This is a standard result in modal logic, see for instance [9] or [2, 14]
for this specific multi-agent epistemic logic S5,,(G). This property is
also referred to as ‘weak soundness and completeness’.
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e This is the standard notion of adding premises in modal logic. Proofs
of this ‘strong soundness and completeness’ result can again be found
in [9] or [2, 14].

o For the =-direction, one only has to check that applying Necessitation
to premises in @ is |=T-valid. The argument for < runs as follows.
Suppose that we have ® and ¢ for which ® I/t ¢. By Theorem 2.5, we
then have W® /= ¢, where W is defined as in the proof for Theorem
2.5 above. Thus, we find some Kripke model M and worlds s for
which M, s = W®, M, s [~ . Using a standard argument in modal
logic (see for instance [13, Theorem 2.12]), one may assume that the
model M is generated from s: for all w € § there is a path ¢ =
(s = wy,wy,...w, = w) such that for each w; and w;41(1 <7 < n)
there is some v; < m with R, w;w;4+1. We now claim that M |= &,
M £ ¢, which is equivalent to @ £+ ¢. To show that M = @, let
1 € ® and let w be an arbitrary element in the set of states, 5. Let
Since M,s |= W®. Let the path ¥ be as above, and similarly for
v; <m, R, wyw;y1. Now, K, K, ... K, _ v is an element of W&, so
M,sE Ky Ky, ... K, _ . But then, also M, w |= ¢, which was to
be proven.

On Observation 4.4, 4.5

Table 1 should be read as follows: the first column gives the name of the
corresponding horizontal line; the second column give possible tuple A and
then, the ‘yes’ column give a reason why this tuple gives rise to the claim
that the corresponding notion of group knowledge indeed may be called
distributed (see the proof of Observation 4.4 below). The ‘no’ column, to
the contrary, argues why the notion cannot be called distributed (see the
proof of Observation 4.5). Then, the same exercise is done for the tuple A’
that is obtained from A by changing xy from 0 to 1.

Proof of Observation 4.4

We claim that the following tuples A = (ky, K, ki, L, k4, G) make the notion
of group knowledge distributed —but in a trivial way.

a Tuples of type (0, K,0,L,0,G), i.e., no premises allowed. This was
already observed in Observation 4.2, and the argument is given also
in Section 4.1.
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b Suppose that x, = x;, and that G = L or ¢ = &, L = 4. Then, if
Kg-® 9 G, then also Kg-® F% » and, under the specified conditions,
also k7 - ® F (T A -+ T) = ¢. Of course, one also has rj F (KT A
-+-AN K., T), independent of k; and K. Note how this item generalizes
(the proof of ) Observation 4.3.

¢ Tuples A for which k;, = 0 (note how this item generalizes item a).
Under this A, suppose that = G¢. Then, by Theorem 3.3, we have
F(Kip1 A+ A Kpen) and hence kg 5 (Kiop A=+ A Koy ). Also,
one has k; F¥ (@ A --+ A @) = . Thus, by this item, we have judged
half of all the possibilities to obtain distributed group knowledge as
trivial.

d Here, K = 4+ and x4 < k. The crucial observation now is that if
kg« ® F¢ G, then sy - @ X K;p. Obviously, we also have x; F

(PN Ap) = o

Proof of Observation 4.5
The following tuples A = (kg, K, xy, L, x4, G) make the notion of group
knowledge to be not distributed.

e iy = k1 = 0, Ky = 1. Let & = {Gp}. Suppose that we would have
P1y -y Pm for which B (K11 A - AK0) and (@1 AN ) = .
Then (using A3 and R1) we would also have - p, which we don’t.

fry =1,G = +. Let & = {p,Gp — ¢q}. We have & T Gq. As
a first subcase, suppose that k; = 0 and L = <. Suppose for this
subcase that there are ¢q,...¢,, with FX (K11 A -+ AN Ko ) and
{p,Gp = q} F~ (1 A+~ AN @) — ¢. Then we would have {p,Gp —
q} F~ ¢q. But the fact that {p,Gp — ¢} £~ ¢ is easily verified, and
then Theorem 2.8 yields {p,Gp — ¢} /™ q.

g As a second subcase to the previous item, suppose, on top of x, =
1,G = +, that Ky = 1, K = < and that either sy =0 or L = & As in
the previous item, we then have that if there would be ¢y, ...¢,, for
which {p,Gp = ¢} F~ (K11 A~ A Koy, and k- FR (@1 A=+ A
¥m) — ¢, then we would also have {p, Gp = ¢} I/~ ¢, which we don’t,
as argued above.

h The remaining tuples are A = (kg, K, k1, L, kg, G) = (1,<,0,L,1,%),
with L = 0,1. That they do not guarantee distributivity of group
knowledge follows from Observation 4.6.
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Proof of Observation 4.6

In Observation 4.6 we claimed the following: Although we have {Kip Vv
Kyp} B~ Gp, there exist no ¢y, g2 with F (91 Apg) = pand {K1pV Kop} H-
(K191 AK3¢3). Consider the model of Figure 2 (reflexive arrows are omitted;
Ry is denoted with the solid line, Ry with a dashed one).

Figure 2: The model proving Observation 4.6

Suppose that there would be formulas ¢; and @5 of the type described
above. Since we both have M,s = KypV Kyp and M.t |= Kip A Kyp, we
have M, s | (K191 A Kapz) and M.t = (K191 A Ka3¢3). Thus, we have
M, u |= @1 A pa. However, this is not compatible with F (1 A ¢2) — p, thus
such o1 and ¢, do not exist. [

Proof of Corollary 4.7

For & = { K pV K3p} we have ® = Gp, but we also saw that there are no ¢
and g such that - (¢1 Ap2) — p and for which ® -7 (K191 A Ka¢2), which
is sufficient to disprove distributivity for the tuples A = (1,<,0,L,1,<),
L=+, & n

Proof of Observation 4.10
Observation 4.10 claimed about 1 that:

1. K(I,M,21) = K(2, M, 21)

2. M,z E Gy

3. g K(IL,M,21) U K(2,M,z1) = K(1, M, 1)
Proof: We first state and prove the following lemma:

Lemma A.2 For allu € {z,y,z}, and all o: M,uy = o & M, uy |= ¢.
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Proof: (of Lemma A.2) Using induction on ¢. For atoms in II this fol-
lows by the definition of the valuation w. The proof for the connectives
A,V and - is straightforward. So let us assume the statement has been
proven for formulas ¢ and consider ¢ = Ky¢. If M,z = K%, we have
that M, uy = ¢ for u = 2,9, 2. The induction hypothesis then yields that
M, uy |= 1 for w = z,y, z, and thus M, 25 |= Ky¢. Similar arguments hold
for the other direction, as well as for the y and z worlds in the model, and
also for ¢ = Kb, Gp. End of Proof of Lemma A.2 m

Now, the first item of Observation 4.10 is proven as follows. Suppose that
P e K(1, M, 1) that, is, M, 21 |E K1%. Thus, by definition of K5, we have
M, uy |= 9 for u = x,y, z. Then, by the previous lemma, we also have that
x9 and yo verify 1. But then, obviously, we have M, 2y | K.

To see the second item, observe that (z1,v) € RiN Ry < (v =21 or v = y1).
And, since ¢ is true in both zy and 3, we have M,z |= Gq.

Finally, since ¢ is false in z;, we have that K¢ is false at 24, so ¢ ¢
K(1,M,z1). The equality K(1,M,z1)U K(2,M,z1) = K(1, M,z,) fol-

lows immediately from the first item. [

Proof of Lemma 5.2
This is easily first obtained for singletons X = {z}. Since M = (§,...) is

finite, we can enumerate the worlds that differ from = as s1, s9,...5,. Let a,
be (@t ;- ANPpt 55— Ao - Ayt 5 ). Then, obviously M, s |= a, & s = 2.
Subsequently, one puts ax =V, cx az. [

Proof of Lemma 5.3

Let ¢t € R;(s). We have toshow that M,t = -ax, — (max, —» (...(-ax, —
¢)...)) (*). Note that, for arbitrary « € & and formulas 3, we have
M,z |E —ax;, = B) & (v ¢ X; == M,z = 3). So, (*) is equal to
g X1=>00¢EgXo=>(..0g X, = Mtl=()..) (*). Now, (**)is
true because t € (X1U...UX,UZ) and,forallz € S,z € Z = M,2=(. =

Proof of Theorem 5.4

For the ‘<=’ direction, suppose |J; K (¢, M,s) E~ ¢, and let ¢ be such that
(s,t) € RiN...R,. Then, for every § € U, K(i, M,s) E~ ¢ we have
M.t = 3 and thus, M,t |= ¢. By definition of ¢, we may conclude that
M, s = Go.

For the ‘="-direction, suppose M, s |= Gp. Let us consider Ri(s): we can
cover it with possibly overlapping regions: let Z C Ry(s) be Ry N ...N Ry,
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and for every agent ¢, let X; = {2 € Rq(s) | = € R;(s)}. Thus, X; is
the set of worlds considered possible by agent 1, but not by agent ¢. If
the agents were able to communicate, agent ¢ could tell agent 1 that each
x € X; is not a good epistemic alternative, so that the agent 1 can eliminate
all worlds = that appear in some set X;, thus ending up in exactly those
alternatives in Ry N ...N R,,. Formally, we put Lemma 5.3 to work. Note
that Ri(s) C (X7 U...UX,, UZ). By Lemma 5.2, we find a characteris-
tic formula ax, for every X;, and, by definition of Z, we have M,z = ¢,
for all z € Z. Then, Lemma 5.3 guarantees that M,s |= Ki(-ax, —
(max, = (...(max, = ¢)...))) and, by definition of X; and ay,, we also
have M, s |= K;-ax, (for, if M,s [£ K;-ay, there would be a t € R;(s)
with M.t |= ax,, i.e., t € X;, which contradicts with the definition of X;).
Thus, {-ax, - (-ax, — (...(max, = ¢)...),"ax,,"ax,,...~ax, } C
U; K(i, M, s), and thus |J; K(i, M,s) E~ ¢. L]

Proof of Observation 5.5

e The proof of this claim is provided by the model of Figure 1

o Take the canonical model M¢ for S5,,,(G'). Thereisaset, = {1p| M, s
1} which is a world in this canonical model M°, where M, s is as in

Figure 1. , is a maximal consistent set, and hence, a member of the
canonical model M°¢. Also, one has M¢,, | (Kia & Kya), for all
a, M¢ , E = Kip and also M€, , = Gp. Thus, M€, , demonstrates

that the principle of full communication is not violated in the canoni-
cal model. This model M*® moreover is infinite, and distinguishing, by
definition (its set of states is the set of all maximal consistent sets).
However, we have to mention here that M€ is in general not a model of
the kind as defined in Definition 2.6; the truth definition of M, s = G
is Vt((s,t) € Rg = M,t |= ¢, where R can only be guaranteed to be
some subset of Ry N...N R,,. For more on this, the reader is referred
to [7].
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Table 1: The table summarizing observations 4.4 and 4.5.
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