
A language for Modular Information-passing Agents

Rogier M. van Eijk, Frank S. de Boer, Wiebe van der Hoek
and John-Jules Ch. Meyer

Universiteit Utrecht, Department of Computer Science
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

tel. +31–30–2531454
frogier, frankb, wiebe, jjg@cs.ruu.nl

Abstract. For multi-agent systems, as for any complex system, a thorough theoretical foundation is in-
dispensable. Hence, agent-oriented languages used for descriptions and implementations of multi-agent
systems should be logically grounded and accompanied with a clear semantics. As a hopefully fruitful
starting point towards such semantically well-founded languages, we propose a language of Modular
Information-passing Agents. This language is designed for systems of agents inhabiting an environ-
ment on which they have a limited view or expertise, and hence in order to increase their knowledge,
communicate on each other’s expertises. We consider the syntax of the language and subsequently
develop a structural operational semantics via a transition system.

1 Introduction

In this paper we attempt to bridge the gap between the extensive research on concurrent programming
paradigms and the research on multi-agent systems. In our development of a system of Modular Informa-
tion-passing Agents, being a stripped version of a multi-agent system, we try to incorporate as many useful
concepts from existing concurrent programming languages like Concurrent Constraint Programming (CCP)
[14], Communicating Sequential Processes (CSP) [9] and Algebra of Communicating Processes (ACP) [1]
as possible. Whenever necessary we adapt them according to our purposes. We emphasize that our method
contrasts with most of the current approaches, as we aim to develop a theoretically well-foundedalgebraic
description of multi-agent systems. One of the advantages of such an approach is that it allows agent-
oriented programs having a clear syntactical structure. Moreover, the meaning of a complex program can
be understood by combining the meanings of its constituents. In this way a methodology for the top-
down design of agent-oriented programs is obtained together with a mechanism for the specification and
verification of these programs.

Multi-agent systems.

We view multi-agent systems [18] as systems composed of several interacting agents inhabiting an external
environment. These agents are autonomous entities that are able to observe the world they inhabit and are
capable of establishing changes in it. An additional interaction mechanism is provided by their ability to
communicate with each other. The agents may be assigned mentalistic notions, such as knowledge, belief,
desire and intention, which together with their reasoning processes direct their initiative-taking behaviour.
In this paper however, we restrict ourselves to the mental attitudeknowledge on the external environment,
leaving the explication of other attitudes for future refinements of the framework.

Concurrent programming languages.

Many concurrent programming languages agree upon the incorporation of the general programming con-
structions of sequential composition, parallel composition, non-deterministic choice and recursion. Most
of them also allow the introduction of local variables and mechanisms to rename variables.

We next discuss the distinguishing features of some concurrent programming languages we will base
our framework on. First, CCP is regarded as a generalization of most of the concurrent logical languages.
In this paradigm, several concurrently operating processes interact with each other via a shared store. This

store is seen as a constraint on the range of values that variables can take, rather than as an explicit as-
signment of values to them. The processes build the store by supplying it with new constraints. These
constraints may subsequently be inspected by the other processes, yielding a synchronization mechanism;
the execution of a process checking for a constraint in the store is blocked until the constraint is eventually
implied by the store. The paradigm assumes an underlying constraint system covering an entailment rela-
tion on constraints, an operation̂to combine constraints and an operator9 to hide variables in constraints.

In contrast, CSP does not cover shared variables. Processes in this framework interact and synchronize
by means of the transport of values along interconnecting channels. In (the synchronous version of) CSP,
a sending process trying to emit a value, which is implied by its local state, and a receiving process trying
to assign this value to one of its variables, have to agree upon the moment of communication. Until this
moment their execution is blocked. The paradigm can be extended with a functionality from ACP allow-
ing the introduction of encapsulated channels; channels that are local and can only be accessed by some
processes. In this paper, we will attempt to integrate the concepts described above in a system of Modular
Information-passing Agents.

Modular Information-passing Agents.

The framework of MI-Agents assumes a constraint system consisting of an entailment relation and a con-
straint language to express facts about the external world. These facts are gathered in a global store of
constraints, called theworkspace. We stress that this store istherepresentation of the external world; it is
used for observations in the world as well as for establishments of new facts in it. We initially restrict our-
selves to a workspace showing monotonic-increasing behaviour, thereby avoiding the problems of theory
revision [5]. In future research, we will examine the implications of dropping this assumption.

The framework incorporates agent systems that maintain the workspace. These agent systems are com-
pound; they are composed of smaller agent systems. The smallest systems are constituted by the basic
agents, which are assigned a programming statement expressing their behaviour. Such a system may be
viewed of as consisting of a team of experts that share a common view, or expertise. This view consti-
tutes the interaction mechanism among the team members, as the members may inspect and extend it. In
this paper, for the sake of clarity, we model views as windows of constraints on a collection ofaccessible
variables. Thereby we abstract from more elaborate formalizations of views like signatures (languages).
The interaction mechanism between teams is provided by the transport of information on expertises along
interconnecting channels. The basic agents are assigned a communication base to store such information,
which together with their own expertises constitute their knowledge bases.

The proposed framework incorporates many design features relating to the object-oriented paradigm.
The agent systems arehierarchicalas they are specified in terms of their components. The language allows
the encapsulationof interconnecting channels as well as the encapsulation of data (local variables and
expertises). Additionally, programming statements and communication stores assigned to agents areprivate
to them. Finally, agents are designed in amodularfashion; a renaming paradigm can be used to define the
interface with the workspace and the other agents.

The framework in perspective.

Before we examine the framework of MI-Agents in greater detail, we will try to situate its position. We
imagine a wide spectrum of agent-oriented languages; at one end of the spectrum languages like AGENT-0
[15] reside, which areimplementedprogramming languages that however suffer from the lack of both a
firm logical foundation and a clear semantics. At the other end,specificationlanguages for instance based
on modal logics [16] or on the situation calculus [11] are located, which however cannot straightforwardly
be implemented. As the development of agent-oriented languages that bridge the gap between these two
extremes constitutes one of the current challenges, several alternative languages have been proposed. The
development of the language CONGOLOG [11], which objective is the design of anexecutableversion
of an agent-oriented specification language, represents one way of decreasing the discrepancy. Alterna-
tive approaches to bridge the gap are those that start with a general, well-understood and implemented
programming language and aim to accommodate it to suit descriptions of multi-agent systems. The lan-
guage Concurrent METATEM [17], the language described in [2], as well as our language of Modular

2

Information-passing Agents serve as examples of the latter. The former two of these treatments are based
on executable temporal logic and higher order logic, respectively, whereas our framework is underpinned
by existing, well-understood concurrent programming languages. We thereby shift the stress on aspects
of agent-oriented languages like concurrency, communication, synchronization and modularity. Moreover,
in contrast to current more or less ad hoc approaches, we deal with these aspects in a theoretically well-
founded algebraic manner.

The rest of the paper is organized as follows. In section 2 we embark on a description of the syntax
of the language. The dynamics of the system is developed in section 3 which deals with transitions and
semantics. We subsequently elaborate an example in section 4. In section 5 we identify several topics that
need a closer examination and finish the treatment by discussing related research in section 6.

2 Syntax

In our framework, as in CCP, information systems are given by systems of constraints.

Definition 1. (The constraint system)
We assume a collection of constraints, which are represented in a first-order languageL covering constructs
built from variables typically denoted asx;y;z, functions typically written asf ;g and predicates typically
denoted asp. The constraint system comprises an information ordering`, which is decided by a constraint
solver. Additionally, to describe the semantics of the programming language, the system explicates an
operation9x to hide information and an operation̂describing the accumulation of information (which
mathematically corresponds to the least upper bound with respect to`).

For instance, the first-order atomstrue, x= 7 andy= x, the compositionx= 7^ y= x as well as9x(x=
7^ y = x) are constraints. The latter can be considered equivalent to the constrainty = 7; that is,9x(x =
7^ y = x) ` y = 7 andy = 7 ` 9x(x = 7^ y = x). We assume the familiar notions of free and bound
occurrences of variables in constraints. Vectors of variables are sequences typically given byx or when
consisting of a single variable simply byx. If x denotes the vectorx1; : : : ;xn andy denotesy1; : : : ;yn then
the operation9x abbreviates9x1 � � �9xn and additionally,x = y is a shorthand forx1 = y1^ �� � ^ xn = yn.
Finally, the setChanis a set of channel names typically represented asc.

The formulation of the syntax of agent systems in our framework will be preceded by several additional
definitions.

Definition 2. (Workspaces, communication bases and windows)
A workspaceσ and acommunication base Bare simply constraints inL . Let Var(σ) be the vector of all
variables occurring inσ. A windowon a workspaceσ with respect to the variablesx, is defined as

window(σ;x) =def 9yσ wherey equalsVar(σ)nx:

That is, a window on the workspace consists of the constraints on the variablesx ; the constraints on all
other variables are hidden.

Definition 3. (Syntax of atomic actions a)
Let ϕ 2 L andc2Chan. Atomic actionsa are defined as

a ::= est(ϕ) j verify(ϕ) j send(c;ϕ) j receive(c;ϕ)

The language covers four atomic actions. The actionest(ϕ) establishes the constraintϕ in the workspace.
The execution ofverify(ϕ) succeeds if the constraintϕ can be verified. Finally, the actionssend(c;ϕ)
andreceive(c;ϕ) denote the emittance of the constraintϕ along the channelc, and the reception of some
constraint along the channelc yielding the constraintϕ to be known, respectively.

Definition 4. (Syntax of programming statements S)
Let x;y2 Var and letI be a finite, non-empty set of indices.

S::= S& S j ∑i2I ai:Si j locxS j renyxS j P(x) j skip

3

The statementS1 & S2 denotes the parallel composition of the statementsS1 andS2. The statement∑i2I ai:Si

stands for the non-deterministic choice between the statementsSi , which each are prefixed by an atomic
actionai. A non-deterministic choice with a singleton index set may be denoted by its single operand. The
statementlocxS identifies the variablesx to be local inS. The statementrenyxSexpresses the variablesy to
be renamed tox in S. The statementP(x) denotes a call to the procedureP(y), where the vectorsx andy
stand for the actual and the formal parameters of the procedure, respectively (the framework incorporates a
call-by-name parameter-passing mechanism). We assume a setW of (recursive) procedure declarations of
the formP(y) :: SwhereS is a statement. Finally, the statementskip always succeeds and has no effects;
the construct∑i2I ai :skip may be abbreviated to∑i2I ai .

Definition 5. (Syntax of agent systems A)Let B2 L andc2Chan.

A ::= (S;B) j A+A j A ; A j A k A j δc(A)

In our framework, basic agent systems, or teams, are given by their activitiesS, together with a collection
B representing the information obtained from communication with other teams. We implicitly assume
each basic agent is assigned an expertise, which is modeled as a vector of accessible global variablesx
constituting its window on the workspace. We require that wheneverScontains the actionest(ϕ), the free
variables occurring inϕ are either local variables, or accessible global variablesx, or are renamed versions
of these local and global variables. This requirement corresponds to the idea that agents are not allowed to
establish facts about variables other than their local variables and the global variables from their window.
Complex agent systems are built from simpler ones by means of non-deterministic choice, denoted as +,
sequential composition, represented as ; and parallel composition, which is denoted ask. The execution
of the agent systemA1+A2 consists of the execution of eitherA1 or A2. The execution ofA1 ; A2 is the
execution ofA1 followed by that ofA2. The execution ofA1 k A2 is modeled as an interleaving of the
executions ofA1 andA2. The encapsulation operatorδc when applied to the agent systemA, defines the
channelc to be local inA.

3 Transitions and operational semantics

Computation steps of agent systems are represented by transitions [13], which take systems from one
configuration to subsequent ones. A configuration of an agent systemA in a workspaceσ is denoted as
hA;σi. A transition is of the form

hA;σi
α

�!hA0;σ0i:

It indicates that the agent systemA in a workspaceσ performs a computation step resulting in an agent
systemA0 (i.e. the part ofA still to be executed) in a workspaceσ0. The labelα in the transition expresses
whether the computation step involves some communication of information among the agents in the sys-
tem, and if this is the case, additionally identifies the type of communication. Labels that denote such
information-passing are of the formc ! ϕ or c ? ϕ, where the symbols ! and ? stand for the emittance and
the reception of information, respectively,ϕ denotes the constraint to be communicated andc is the channel
it is to be transported along. The alternative label occurring in transitions is the labelτ from CCS [12] rep-
resenting internal, non-communicative computation steps. As agent systems are defined inductively, their
transitions are defined in terms of the transitions of their components. For example, the transitions of the
agent systemA1 ; A2 are defined in terms of those of the agent systemsA1 andA2. The agent system per-
forms the computation stepsA1 performs, and upon termination ofA1, the stepsA2 performs. In general,
we describe the inference of transitions of agent systems by inference rules, which are of the form

hA1;σi
α1
�!hA0

1;σ0i : : : hAn;σi
αn
�!hA0

n;σ0i

hA;σi
α

�!hA0;σ0i

.

This rule states that the transition below the line can be concluded from the transitions above it. Rules with
no premises are called axioms, written ashA;σi

α
�!hA0;σ0i. A collection of transition rules and axioms

constitutes atransition system, which is a formal system for deriving transitions.

4

Definition 6. (Transitions for atomic actions)
As mentioned before, we assume each basic agent is assigned a vectorx of accessible global variables.
Let K (σ;x;B) be the knowledge base defined bywindow(σ;x)^ B and letE be the standard symbol
denoting successful termination. The transition system contains the following transitions concerning the
atomic actions.

– The establishment of a constraint is defined to be its addition to the workspace.

h(est(ϕ);B);σi
τ

�!h(E;B);σ^ϕi

– The verification of a constraint succeeds if it is implied by the knowledge base.

h(verify(ϕ);B);σi
τ

�!h(E;B);σi if K (σ;x;B) ` ϕ

– The emittance of a constraint along a channel is defined for those constraints that are implied by the
knowledge base.

h(send(c;ϕ);B);σi
c ! ϕ
�!h(E;B);σi if K (σ;x;B) ` ϕ

– The reception of a constraintϕ relative to the constraintψ along a channel, succeeds for those con-
straintsϕ of which addition to the knowledge base yields a base from whichψ is derivable.

h(receive(c;ψ);B);σi
c ? ϕ
�!h(E;B^ϕ);σi if (K (σ;x;B)^ϕ) ` ψ

Informally, an establishment of a constraint corresponds to the idea that this constraint isbrought about.
The actions for emittance and reception denote intentions to communicate. They are not executed until in
a parallel context, there is an agent with a matching intention. The statementreceive(c;ψ) indicates that
the agent is willing to accept any information along the communication channelc from which it is able
to concludeψ. We remark that this action integrates two alternative communication primitives. One is the
uncontrolled reception of simply any constraint provided along the channelc, which can be mimicked by
receive(c; true). In the other, the receiver stores the conclusionψ it wants to draw from the information
provided along the channel, thereby ignoring any stronger information possibly included. The transition
for the latter action is given by

h(receive only(c;ψ);B);σi
c ? ϕ
�!h(E;B^ψ);σi if (K (σ;x;B)^ϕ) ` ψ:

Hence, the actionreceive(c;ψ) represents the trade-off between the storage of just anything provided by
the sender, and the storage of only a specific conclusion drawn from the information received; it accepts
any information provided that the conclusionψ can be drawn from it.

Example 7. (Information Retrieval)
Information Retrieval techniques [10] aim to support, in very large collections of data, the search for docu-
ments that satisfy some relevance criteria. One of the criteria is calledaboutness, which is used to evaluate
documents on their bearing on some particular piece of information. This example illustrates how the prim-
itive actions from our framework can be used by agents assisting in an information retrieval process. We
consider an information retrieval system containing a collection of documents distributed over several sites.
Each site is assigned a group of agents, whose windows consist of information on the documents they can
access, which are a sub-collection of all the documents located at the site. The agents use the primitives
est(ϕ), verify(ϕ), send(c;ϕ) andreceive(c;ϕ) in gathering information concerning the aboutness of doc-
uments. First of all, if at a particular site an agent has ascertained by some decision procedure that the
documentx is aboutp, wherex is one of the agent’s accessible documents, it performsest(about(x; p))
to exhibit its establishment in the workspace. Subsequently, this constraint may be inspected by all agents
operating at this site that have the documentx in their view; an agent performsverify(about(x; p)) to check
whether the constraintabout(x; p) has already been established (by the agent itself or some other agent hav-
ing access tox). This action is also used in case the documentx is outside the agent’s expertise, as the agent
may already have gathered relevant information in its communication base. Alternatively, the agent may

5

choose to communicate with other agents. By performingreceive(c;about(x; p)) it indicates that it accepts
any constraint along the channelc from which it is able to deriveabout(x; p). Such agent may for in-
stance communicate with another agent, possibly located at another site that performssend(c;about(x; p)).
Successful communication requires this sending agent to haveabout(x; p) in its knowledge base.

Definition 8. (Inference rule for non-deterministic choice between prefixed statements)

h(aj ;B);σi
α

�!h(E;B0);σ0i

h((∑i2I ai:Si);B);σi
α

�!h(Sj ;B0);σ0i where j 2 I

The transition of a non-deterministic choice between prefixed statements is given by a transition of one of
these statements. The first computation step of a prefixed statement equals the transition of its prefix. Hence,
from the transition of one of the prefixesaj , which is labeled byα and which changes the communication
storeB to B0 and the workspaceσ to σ0, we infer a transition of the non-deterministic choice∑i2I ai :Si,
which propagates the labelα together with the communication store and workspace changes. It additionally
identifies the statementSj as the part that remains to be executed.

Definition 9. (Inference rule for internal parallelism)

h(S1;B);σi
α

�!h(S01;B
0);σ0i

h(S1 & S2;B);σi
α

�!h(S01 & S2;B0);σ0i

h(S2 & S1;B);σi
α

�!h(S2 & S01;B
0);σ0i

An inference rule with several conclusions above each other, is used to abbreviate a collection of rules,
each having one of them as its conclusion. The execution of a parallel statementS1 & S2 is modeled as an
interleaving of the computation steps ofS1 andS2. The statementS1 & S2 performs a computation step if
one of the statementsS1 andS2 executes one. Therefore, from a transition ofS1 we can infer a transition of
S1 & S2 in whichS1 acts as the left operand, or a transition ofS2 & S1 in which it is the right operand. We
defineS& E andE & S to be equal toS.

To constitute a computational model the framework allows the introduction of local variables. As in
CCP, to describe its transition, we extend the syntax with a constructloc

ρ
yS that expresses the variablesy

to be local inS andρ the store of constraints on it. In this representation, the statementlocyS is defined
asloctrue

y S. The corresponding transition rule is analogous to the one in CCP except that it also covers the
communication of constraints along channels.

Definition 10. (Inference rule for local variables)

h(S;B1);ρ1i
α

�!h(S0;B2);ρ0i

h(loc
ρ
yS;B);σi

α0

�!h(loc
ρ0

y S0;B0);σ0i

whereB1 = 9yB; ρ1 = ρ^9yσ; B0 = B^9yB2; σ0 = σ^9yρ0 and α0 equalsα except that in case of
communication its constraintϕ is replaced by9yϕ.

The transition ofh(locρ
yS;B);σi is derived from a transition involving the statementS. As in loc

ρ
yS the

variablesy are regarded local, and both the communication baseB and the workspaceσ contain constraints
on the global variablesy, these global constraints should be overwritten by the local ones. This yields
a workspaceρ1. The communication base does not contain local constraints and is simply given byB1.
Additionally, it is implicitly assumed that the window is expanded withy, as agents are allowed to verify
and establish constraints on their local variables. After one computation stepS0 denotes the part ofS that
remains to be executed andB2 andρ0 denote the new communication base and workspace, respectively.
The workspaceρ0 contains two types of constraints: constraints on the local variablesy and constraints on
all the other variables. The latter constraints are reflected in the workspace visible outside the scope of the
statement, by the addition of9yρ0 to the informationσ preserved under the computation step. The former

ones are (although together with the other constraints) stored asρ0 in the constructlocρ0

y S0. The visible

6

change of the communication base is reflected by the addition of9yB2 to the informationB preserved
under the computation. Additionally, the labelα is adapted by the hiding of local constraints, yieldingα0.
We definelocρ

yE to be equal toE. To illustrate the rule we consider an example.

Example 11. (Transition involving local variables)

h(send(c;y= 0); true);y= z^z= 0i
c ! y= 0
�! h(E; true);y= z^z= 0i

h(locy=z
y send(c;y= 0); true);z= 0i

c ! true
�! h(E; true);z= 0i

We remark that in this transition rule, whenever possible, we replaced constraints by simpler, logically
equivalent ones. The example shows that the intention to send the local constrainty = 0 actually corre-
sponds to the intention to sendtrue. The example additionally indicates that in contrast to CCP, there is
need for a special renaming paradigm. In CCP, the renaming of a variablez to y in S, can be simulated
by the construction oflocy=z

y S. In our system however, such simulation does not take communication into
account. The intention to send the local constrainty= 0 wheny is a renamed version ofz should actually
correspond to the intention to sendz= 0 and not like in the example, to the intention to sendtrue. Hence,
communication along channels in our framework gives rise, in addition to a construct for local variables,
to the introduction of a separate renaming operator, as shown by example 11 and example 14 given below.

Renaming of variables allows the design of modular statements; inrenzyS the variables which are
outside known asz, are referred to asy. Before we give the transition rule concerning renaming, we define
what we mean by a simultaneous substitution.

Definition 12. We define thesimultaneous substitutionof x to y in ϕ by

ϕ[y=x] =def 9d(9x(ϕ^x = d)^d = y)

whered are fresh variables not occurring inϕ and distinct fromx andy.

The variablesd are introduced in order to avoid problems related to name clashes betweenx andy. Em-
ploying the definition above we for instance derive that(x= 0)[x=x] equals9d(9x(x= 0^x= d)^d = x),
which is logically equivalent to9d(d = 0^d = x), and which subsequently equalsx= 0.

Definition 13. (Inference rule for the renaming of variables)

h(S;B1);σ1i
α

�!h(S0;B2);σ2i

h(renzyS;B);σi
α0

�!h(renzyS0;B0);σ0i

whereB1 = (9yB)[y=z], σ1 = (9yσ)[y=z], B0 = B^B2[z=y], σ0 = σ^σ2[z=y] andα0 equalsα except that
in case of communication its constraintϕ is replaced byϕ[z=y].

Like for local variables, the transition ofh(renzyS;B);σi is derived from a transition involvingS. In the
statementSthe variablesz are known asy, which implies that the global variablesy are inaccessible. Hence,
the constraints on the global variablesy can be removed from the communication base and workspace.
Additionally, the constraints on the variablesz can be represented as constraints ony, yielding B1 and
σ1. After one computation step,S0 represents the part ofS that remains to be executed,B2 andσ2 denote
the new communication base and workspace, respectively. The effects visible outside, are reflected by the
addition ofB2[z=y] andσ2[z=y], in which the constraints ony are represented as constraints onz, to B and
σ, respectively. The constraints in the labelα are adapted accordingly, yieldingα0. We putrenzyE to be
equal toE.

Example 14. (Transition involving the renaming of variables)

h(send(c;y= 0); true);y= 0i
c ! y= 0
�! h(E; true);y= 0i

h(renzysend(c;y= 0); true);z= 0i
c ! z= 0
�! h(E; true);z= 0i

The example shows that the intention to sendy= 0, wherey is a renamed version ofz, actually corresponds
to the intention to sendz= 0.

7

Definition 15. (Axiom for procedure calls)

h(P(z);B);σi
τ

�!h(renzyS;B);σi whereP(y) :: S 2 W

The transition of a procedure call is an axiom of the transition system. The computation step of the callP(z)
is defined to be the replacement of the name of the procedure by its bodyS, in which the actual parameters
are renamed to the formal ones. The workspace and the communication store are left intact.

Definition 16. (Axiom for skip)

h(skip;B);σi
τ

�!h(E;B);σi

The execution of the statementskip always succeeds and leaves the communication base and workspace
intact.

Next, we define transitions of compound agent systems.

Definition 17. (Inference rules for the parallel, non-deterministic and sequential composition of agent
systems)

hA1;σi
α

�!hA0

1;σ0i

hA1 k A2;σi
α

�!hA0

1 k A2;σ0i

hA2 k A1;σi
α

�!hA2 k A0

1;σ0i

hA1;σi
α

�!hA0

1;σ0i

hA1+A2;σi
α

�!hA0

1;σ0i

hA2+A1;σi
α

�!hA0

1;σ0i

hA1;σi
α

�!hA0

1;σ0i

hA1 ; A2;σi
α

�!hA0

1 ; A2;σ0i

We additionally define successfully terminated basic agents(E;B) to be equal toE. The agent systems
E ; A, A k E and E k A are all defined to be equal toA. The execution of the parallel composition
A1 k A2 of two agent systems coincides with that of the parallel compositionS1 & S2 of two statements;
it is modeled as the interleaving of the execution steps of its components. The computation steps the non-
deterministic composition of two agent systems takes, are exactly the computation steps of one of the agent
systems involved. The transitions of the sequential composition of two agent systemsA1 andA2 are the
computation steps ofA1 followed by those ofA2.

Definition 18. (Inference rule for communication)

hA1;σi
c ?ϕ
�!hA0

1;σi hA2;σi
c ! ϕ
�!hA0

2;σi

hA1 k A2;σi
τ

�!hA0

1 k A0

2;σi
hA2 k A1;σi

τ
�!hA0

2 k A0

1;σi

In case an agent in the agent systemA1 and an agent in the agent systemA2 want to communicate by means
of the transport of the constraintϕ along the channelc, the transition ofA1 k A2 can be inferred from both
the transitions ofA1 andA2. We note that the workspace thereby is left intact. Our choice in favour of
synchronouscommunication is not essential. With respect to the asynchronous variant, it however frees us
from the necessity of buffering emitted constraints.

Definition 19. (Inference rule for encapsulation)

hA;σi
α

�!hA0;σ0i

hδc(A);σi
α

�!hδc(A0);σ0i if α does not involve the channelc

The encapsulation of channels restricts the propagation of communicative labels in inference rules. The
operatorδc when applied to the agent systemA prohibits an agent residing insideA to communicate along
the channelc with an agent that is located outsideA. Hence, it definesc to be a local channel in the agent
systemA. We defineδc(E) to be equal toE.

8

Example 20. (Local channels)
Consider the agentA1 = (send(c;ϕ):S1; true) which intends to send information and the agentsA2 =
(receive(c;ϕ):S2; true) andA3 = (receive(c;ϕ):S3; true) which intend to receive information. In the agent
systemhδc(A1 k A2) k A3;σi, the agentA1 can communicate with the agentA2 along the channelc, but is
however not able to use this channel to communicate with the agentA3. In other words, the transition

hδc(A1 k A2) k A3;σi
τ

�!hδc(A
0

1 k A0

2) k A3;σi

whereA0

1 = (S1; true) andA0

2 = (S2;ϕ) is derivable, whereas the transition

hδc(A1 k A2) k A3;σi
τ

�!hδc(A
0

1 k A2) k A0

3;σi

with A0

1 = (S1; true) andA0

3 = (S3;ϕ) is not derivable. To elucidate the latter we remark that one of the
premises, viz.

hδc(A1 k A2);σi
c ! ϕ
�!hδc(A

0

1 k A2);σi

for application of the rule for communication is not derivable as its labelc ! ϕ involves the channelc.

The transitions of agent systems give rise to computations.

Definition 21. A computationis a sequence

hA0;σ0i
α0
�!hA1;σ1i; hA1;σ1i

α1
�!hA2;σ2i; � � �

of transitions between subsequent configurations of an agent system. Such a sequence is finite if it has a
final configuration from which no transition is derivable. In case this configuration is of the formhE;σi we
identify the corresponding computation to have successfullyterminated; in all other cases we say that the
computation hasdeadlocked. A computation isnon-terminatingif the sequence of transitions is infinite.

Before we examine semantics, we state two key properties concerning workspaces and communication
bases in computations. One is the property that in a computation the workspace increases in a monotonic
fashion. That is, after each computation step the resulting configuration of the workspace implies the former
configuration and hence, no information is ever removed from the workspace.

Theorem 22. For every transitionhA;σi
α

�!hA0;σ0i we haveσ0 ` σ.

The proof of the theorem as the proof of the subsequent theorem is postponed to the appendix.
The second property amounts to the fact that in computations of the form

hA0;σ0i
τ

�!hA1;σ1i; hA1;σ1i
τ

�!hA2;σ2i; � � �

all communication bases remain reflections of the workspace. That is, at each point in a computation all
communication bases are implied by the workspace and hence, for instance, no communication base can
become inconsistent with the workspace. The property is stated in theorem 23.

Theorem 23. If all communication bases B of the basic agents(S;B) in the initial agent system A0 are
empty then it holds for each configurationhAi ;σii (i = 0;1;2; : : :) in the computation

hA0;σ0i
τ

�!hA1;σ1i; hA1;σ1i
τ

�!hA2;σ2i; � � �

that for all (S;B) in Ai : σi ` B.

The operational semantics of a programming language is usually given by a notion ofobservables.
These observables, which express what we want to observe of an agent system, are various: entire compu-
tations, subsequent workspace changes, the output workspaces, sequences of transition labels, and so on.
In our system, we choose the observables to be resulting workspaces (and thereby abstract from mental
attitudes).

9

Definition 24. (Observables of successfully terminating agent systems)

O(A)(σ) = fσn j hA;σi
α1
�!hA1;σ1i; � � � ;hAn�1;σn�1i

αn
�!hE;σnig

Because of the monotonic-increasing behaviour of workspaces, we are in the position to assign results to
non-terminating computations. The observables of such computations are infinite conjunctions of subse-
quent workspaces.

Definition 25. (Observables of agent systems)

O∞(A)(σ) = O(A)(σ) [fσ^σ1^ �� � j hA;σi
α1
�!hA1;σ1i; hA1;σ1i

α2
�! �� � g

whereσ^σ1^ �� � denotes the least upper bound with respect to the information order induced by`.

A denotational semantics based on a notion of observables, constitutes a formal basis for the design and
specification/verification of programs. In future research, we will hence aim to develop a compositional
description constituting such a denotational model.

We end our discussion by giving an example, which is adapted from an example implemented in the
DESIRE [4] framework.

4 Example of cooperating agents

Three basic agentsA1, A2 andA3 explore a 3-dimensional grid, which is constituted by the orthogonal base
vectorsx, y andz. The agentA1 observes it through the 2-dimensional grid constituted by the vectorsx and
z, i.e. it inspects theprojectionon this grid. We model this by assigning the agentx andz as its accessible
variables. For instance, the formulaap((x;z);square) denotes that a square of unity length is centred at
(x;z) in the projection, wherex andz in x andz, respectively, and the predicateap stands for ‘appears’. In
this example, the agentA1 intends to provide along the channelc the centre of any object in its view:

(∑i; j ;osend(c;ap((i; j);o)); true);

in which the index variablesi; j;o range over the elements ofx, z and the set of observable 2-dimensional
objects, respectively.

In contrast, the agentA2 senses the 3-dimensional grid through the grid constituted by the vectorsy and
z. Hence, it is assignedy andz as its accessible variables. In this case,A2 intends to send along the channel
d the centre of any object in its view:

(∑i; j ;osend(d;ap((i; j);o)); true);

where the index variablesi; j;o range over the elements ofy, z and the set of observable 2-dimensional
objects, respectively.

The agentA3, which has no view on the grid, invokes the assistance of the agentsA1 andA2 in estab-
lishing a picture of it. The agent considers the space as a collectionv of positions. It for instance establishes
ap(v;o) whenever it has concluded that the 3-dimensional objecto is centred at the positionv. In this ex-
ample, the agentA3 asks the agentA1 to examine the object centred at(x;z) in the(x;z) grid. Subsequently,
it requests the agentA2 to take a look at the object centred at(y;z) in the(y;z) grid. The reception of the
constraints provided byA1 andA2 gives the agentA3 sufficient information to conclude the 3-dimensional
object that is centred at the positionv, wherev corresponds to the point(x;y;z) in the 3-dimensional grid.
The agent is given by(P(s); true). Its statement consists of a call to the procedureP(r) :: S, in whichS, S0

andS00 are the following abbreviations:

S= ∑o1
receive(c;ap((r1; r3);o1)):S0

S0 = ∑o2
receive(d;ap((r2; r3);o2)):S00

S00 = est(ap(r4; f (o1;o2)))

The index variableso1 ando2 range over the set of observable 2-dimensional objects and the vectorssand
r are abbreviations for(x;y;z;v) and(r1; r2; r3; r4), respectively. From this example we extract that agents

10

have in addition to explicit knowledge collected in their knowledge base, implicit knowledge present in
their statements. For instance, the callP(s) implicitly assumes that the positionv is associated with the
point (x;y;z) in the 3-dimensional grid. By calling this procedure the agentA3 somehow knows of this
relation (this strongly relates to the traditional distinction between the notionsknow whatandknow how).

We now determine the operational semantics of the agent system constituted by the parallel com-
position of the basic agentsA1, A2 andA3 in the workspaceσ = (ap((x;z);square)^ ap((y;z);circle)^
f (square;circle) = cylinder): That is, we want to compute

O((A1 k A2) k A3)(σ):

To do this, we first show the formal derivation of one of the successfully terminating computations, which
will consist of the derivations of seven consecutive computation steps by means of the transition system.

Computation step 1.

The first computation step concerns the execution of the procedure callP(s) by the agentA3. It consists of
the replacement of the call by the body of the procedure in which the actual parameterss are renamed to
the formal parametersr . Using the transition system, we derive from the instantiation

h(P(s); true);σi
τ

�!h(rensrS; true);σi

of the axiom for procedure calls, by means of the rule for the parallel composition of agent systems, the
following transition, which constitutes the first computation step of our agent system:

h(A1 k A2) k A3;σi
τ

�!h(A1 k A2) k A0

3;σi (1)

whereA0

3 = (rensrS; true).

Computation step 2.

The second computation step of the agent system consists of the communication of the factap((x;z);square)
along the communication channelc between the agentA1 and the agentA3. First, the following instantiation

h(send(c;ap((x;z);square)); true);σi
c ! ap((x;z);square)

�! h(E; true);σi

of the emittance axiom is valid, as the knowledge baseK (σ;(x;z); true) equals9yσ, which implies the
formulaap((x;z);square). Applying the rule for non-deterministic choice, we obtain the transition (recall
that the construct∑i2I ai is an abbreviation for the statement∑i2I ai :skip):

h(∑i; j ;osend(c;ap((i; j);o)); true);σi
c ! ap((x;z);square)

�! h(skip; true);σi:

From this transition we derive by means of the rule for parallel composition, the computation step of the
sub-agent systemA1 k A2, which is given by:

hA1 k A2;σi
c ! ap((x;z);square)

�! hA0

1 k A2;σi (2)

whereA0

1 = (skip; true). Secondly, from the instantiation

h(receive(c;ap((r1; r3);square)); true);σ[r=s]i
c ?ap((r1; r3);square)

�! h(E;ap((r1; r3);square));σ[r=s]i

of the reception axiom, which is valid as its condition is trivially satisfied, we deduce employing the rule
for non-deterministic choice, the transition:

h(∑o1
receive(c;ap((r1; r3);o1)):S

0; true);σ[r=s]i
c ?ap((r1; r3);square)

�! h(S0;ap((r1; r3);square));σ[r=s]i:

11

From this transition we subsequently derive by means of the inference rule for the renaming of variables,
the transition:

h(rensr∑o1
receive(c;ap((r1; r3);o1)):S

0; true);σi
c ?ap((x;z);square)

�! h(rensrS
0;ap((x;z);square));σi: (3)

The rule for communication enables us to conclude from the transitions (2) and (3), the following, second
computation step of the agent system:

h(A1 k A2) k A0

3;σi
τ

�!h(A0

1 k A2) k A00

3;σi (4)

whereA00

3 = (rensrS0;B) and B= ap((x;z);square).

Computation step 3.

In order to deduce the next computation step of the agent system, which comprises of the communication
of the factap((y;z);circle) along the communication channeld between the agentsA2 andA3, we ascertain
that the instantiation

h(send(d;ap((y;z);circle)); true);σi
d ! ap((y;z);circle)

�! h(E; true);σi

of the emittance axiom is valid, as the knowledge baseK (σ;(y;z); true), which is equal to9xσ implies
ap((y;z);circle). Using the inference rule for non-deterministic choice, we infer the following transition:

h(∑i; j ;osend(d;ap((i; j);o)); true);σi
d ! ap((y;z);circle)

�! h(skip; true);σi:

From this transition we conclude using the rule for parallel composition, the computation step of the sub-
agent systemA0

1 k A2, which looks like:

hA0

1 k A2;σi
d ! ap((y;z);circle)

�! hA0

1 k A0

2;σi (5)

whereA0

2 = (skip; true). Additionally, an application of the transition rule for non-deterministic choice to
the instantiation

h(receive(d;ap((r2; r3);circle));B[r=s]);σ[r=s]i
d ? ap((r2; r3);circle)

�! h(E;B[r=s]^ap((r2; r3);circle));σ[r=s]i

of the reception axiom (its condition is trivially satisfied), yields the transition

h(∑o2
receive(d;ap((r2; r3);o2)):S

00;B[r=s]);σ[r=s]i
d ?ap((r2; r3);circle)

�! h(S00;B[r=s]^ap((r2; r3);circle));σ[r=s]i:

The inference rule for the renaming of variables subsequently enables us to derive from this transition:

h(rensr∑o2
receive(d;ap((r2; r3);o2)):S

00;B);σi
d ?ap((y;z);circle)

�! h(rensrS
00;B^ap((y;z);circle));σi: (6)

We finally conclude the third computation step of the system by applying the inference rule for communi-
cation to the transitions (5) and (6), giving:

h(A0

1 k A2) k A00

3;σi
τ

�!h(A0

1 k A0

2) k A000

3 ;σi (7)

whereA000

3 = (rensrS00;B0) and B0 = B^ap((y;z);circle).

12

Computation step 4.

Concerning the next computation step, which consists of the establishment of the factap(v; f (square;circle))
in the workspaceσ by the agentA3, we infer from the instantiation

h(est(ap(r4; f (square;circle)));B0[r=s]);σ[r=s]i
τ

�!h(E;B0[r=s]);σ[r=s]^ap(r4; f (square;circle))i

of the establishment axiom, employing the transition rule for the renaming of variables, the transition :

h(rensrest(ap(r4; f (square;circle)));B0);σi
τ

�!h(rensrskip;B
0);σ^ap(v; f (square;circle))i:

If we use the rule for the parallel composition, we obtain from this transition the next computation step of
the agent system:

h(A0

1 k A0

2) k A000

3 ;σi
τ

�!h(A0

1 k A0

2) k A0000

3 ;σ0i (8)

whereA0000

3 = (rensrskip;B0) and σ0 = σ^ap(v; f (square;circle)) .

Computation steps 5, 6 and 7.

The next three computation steps are given by the executions of theskip statement byA2, A1 and A3

successively. From the instantiation

h(skip; true);σ0i
τ

�!h(E; true);σ0i

of the axiom for skip we infer using the inference rule for parallel composition and the simplifications
(E; true) = E andA0

1 k E = A0

1, the transition:

h(A0

1 k A0

2);σ0i
τ

�!hA0

1;σ0i:

Another application of the rule for parallel composition enables us to derive from this transition, the com-
putation step:

h(A0

1 k A0

2) k A0000

3 ;σ0i
τ

�!hA0

1 k A0000

3 ;σ0i: (9)

We are also able to infer from the above instantiation of the axiom for skip, using the rule for parallel
composition and the simplifications(E; true) = E andE k A0

3 = A0

3, the computation step:

hA0

1 k A0000

3 ;σ0i
τ

�!hA0000

3 ;σ0i: (10)

Finally, from the instantiation
h(skip;B0);σ0i

τ
�!h(E;B0);σ0i

of the axiom for skip, we conclude using the inference rule for renaming and the simplificationrensrE =E,
the following transition:

h(rensrskip;B
0);σ0i

τ
�!h(E;B0);σ0i:

The inference rule for parallel composition enables us to derive from this transition, using the simplification
(E;B0) = E, the final computation step of the agent system:

hA0000

3 ;σ0i
τ

�!hE;σ0i: (11)

The transitions (1), (4), (7), (8), (9), (10) and (11) constitute a successfully terminating computation of
the agent system. Its resulting workspaceσ0 implies ap(v;cylinder). We state that all other successfully
terminating computations also lead to this workspaceσ0. Hence, the operational semantics of the agent
system in the workspaceσ is given by

O((A1 k A2) k A3)(σ) = fσ0g:

13

5 Extensions of the framework

We distinguish two principal directions for supplementary research. One comprises the deepening of the
formalization of the current framework at hand. For instance, we aim, given the operational semantics, to
develop an equivalent denotational semantics. As such a denotational model provides a basis for the speci-
fication and verification of programs, we might subsequently investigate the link with logical specification
languages (for instance, the one described in [16]).

Alternatively, seen in the light of agent-oriented languages, the development of the framework of Mod-
ular Information-passing Agents is yet still in a preliminary phase. Many aspects of multi-agent systems
need to be passed in review. One of the primary goals of future research is the incorporation of workspaces
that are updated in a non-monotonic fashion, introducing the problems related to theory revision. For in-
stance, if the external world is continuously subject to changes, information obtained from communication
may be outdated. Secondly, in multi-agent systems there is need for elaborate communication primitives
as requesting, informing, refusing, promising and so on. Such primitives at least imply the incorporation
of agent-identity; the assignment of unique names to agents. Additionally, as statements govern the be-
haviours of agents, we should aim to get a hold on the implicit knowledge present in these statements.
Related to this topic are the incorporation of goal-directed behaviour, as comprehensively examined in [8],
and meta-knowledge, which constitute two essential characteristics of agent-oriented systems. Finally, an
interesting aspect for future examination concerns the inheritance of knowledge from agents to complex
agent systems. For instance, it is not immediately clear what kind of knowledge bases should be assigned
to compound agent systems.

6 Related work

In addition to some connections alluded to, we will lightly touch upon the relation with some other affined
approaches. First of all, Concurrent Transaction Logic [3] is a well-founded programming language de-
signed for entities updating the state of a global store (i.e. a relational database, a knowledge base, a col-
lection of communication buffers and so on). The language principally focuses on the interaction between
the entities and the global database. In our framework, however, we additionally stress the knowledge each
agent has about the store, necessitating communication of this knowledge among the agents. Secondly,
whereas our approach concentrates on constraint languages, Transaction Logic leaves the underpinning
language unspecified.

The modeling of communication among agents by means of interactions between actors is described
in [6]. The approach incorporates the actor model, which is a framework that facilitates the expression
of attitudes towards incoming messages. Moreover, in this model, the behaviour of entities is completely
governed by the incoming messages (underlined by the fact that actors in order to change their attitude even
send messages tothemselves). The fact that the inhabited environment is left implicit additionally contrasts
with our framework.

A logical treatment of modular agent systems; called a Logic of Contexts is described in [7]. Giunchiglia
et al. have developed a formalism in which agent systems are hierarchies of logical theories, called con-
texts, connected by lifting and lowering bridge rules. A lifting rule ensures that if some specified formula
ϕ holds in a sub-context, the associated formulaϕ0 holds in the encompassing context. A lowering rule
establishes the converse.

The DESIRE [4] framework used to design and specify interacting and reasoning components, also
propagates modularity. It supports the modeling of modular components, which interact with each other
via the transport of information along interconnecting links. The components may be built from smaller
ones; the components that cannot be decomposed, are assigned a knowledge base expressing their reasoning
capabilities and an information state representing their knowledge. In many applications, the external world
is also modeled as a component. Each link in the framework transfers information between two components
and as these components use distinct signatures (languages), the transfer necessitates the translation of
information. The major distinctions with our framework are the use of signatures, the incorporation of
meta-level reasoning, the modeling of the world as a component and the presence of mechanisms to update
knowledge. However, as DESIRE currently possesses a semantics based on temporal logic, we believe that

14

our framework may serve as an initial approach towards a structural operational semantics of the DESIRE
methodology.

7 Appendix

In this appendix we show the proofs of theorem 22 and theorem 23.

Theorem 22.For every transitionhA;σi
α

�!hA0;σ0i we haveσ0 ` σ.

Proof. The proof will proceed by induction on the length of derivation of the transitionhA;σi
α

�!hA0;σ0i.
Concerning the induction basis we remark that for the only axiomh(est(ϕ);B);σi

τ
�!h(E;B);σ^ ϕi in

which the workspace changes, the conditionσ^ϕ ` σ certainly holds. The induction step in all cases
immediately follows from an application of the induction hypothesis.

Before we commence the proof of theorem 23, which will consist of the proofs of three lemmas, let us first
introduce a convenient abbreviation.

Definition 26. The propertyP for agent system configurations is defined as

P(hA;σi), for all basic agents(S;B) in A it holds thatσ ` B:

The core of the proof of theorem 23 is constituted by the proof of lemma 29 which subsequently uses two
results stated in lemma 27 and lemma 28.

Lemma 27. If hA;σi
c ! ϕ
�!hA0;σ0i and P(hA;σi) then P(hA0;σ0i) andσ ` ϕ.

Proof. The proof proceeds by induction on the length of derivation of the transitionhA;σi
c ! ϕ
�!hA0;σ0i. First,

we consider the crucial caseA� (send(c;ϕ);B). Its transition is given by the axiom

h(send(c;ϕ);B);σi
c ! ϕ
�!h(E;B);σi if (window(σ;x)^B) ` ϕ:

To show the claim we assume(window(σ;x)^B) ` ϕ and additionallyP(h(receive(c;ψ);B);σi), that is,
σ ` B. From these assumptions,P(h(E;B);σi), i.e.σ ` B immediately follows. We also conclude using the
factσ `window(σ;x) the other consequent:σ ` ϕ.

Additionally, we will work out the caseA� (loc
ρ
yS;B) and omit all other cases as these require a similar,

straightforward use of the induction hypothesis. The transition of this basic agent is given by the rule

h(S;B1);ρ1i
c ! ϕ
�!h(S0;B2);ρ0i

h(loc
ρ
yS;B);σi

c ! 9yϕ
�! h(loc

ρ0

y S0;B0);σ0i

whereB1 = 9yB; ρ1 = ρ^9yσ; B0 = B^9yB2; σ0 = σ^9yρ0.

In the following, we will frequently employ the fact thatϕ ` ψ implies 9yϕ ` 9yψ. From the assump-
tion σ ` B and the above mentioned fact we derive thatP(h(S;B1);ρ1i) holds. As the length of derivation

of h(S;B1);ρ1i
c ! ϕ
�!h(S0;B2);ρ0i is shorter, we subsequently apply the induction hypothesis, yieldingρ0 `B2

andρ1 ` ϕ. From the former andσ ` B we concludeP(h(locρ0

y S0;B0);σ0i). Secondly, fromρ1 ` ϕ we con-
clude (as by theorem 22 we haveρ0 j= ρ1) thatσ0 ` 9yϕ holds, which completes the right-hand side of the
claim.

Lemma 28. If hA;σi
c ?ϕ
�!hA0;σ0i and P(hA;σi) andσ ` ϕ then P(hA0;σ0i).

15

Proof. We will prove this employing induction on the length of derivation of the transitionhA;σi
c ?ϕ
�!hA0;σi.

We consider the most relevant caseA� (receive(c;ψ);B). The applicable transition is given by

h(receive(c;ψ);B);σi
c ?ϕ
�!h(E;B^ϕ);σi:

To show the claim we assumeσ ` B andσ ` ϕ. From these assumptionsP(h(E;B^ϕ);σi), i.e. σ ` B^ϕ
immediately follows.

In all other cases, the claim follows by a straightforward application of the induction hypothesis.

Lemma 29. If hA;σi
τ

�!hA0;σ0i and P(hA;σi) then P(hA0;σ0i).

Proof. We prove this claim by induction on the length of derivation of the transitionhA;σi
τ

�!hA0;σi. We
consider the most interesting caseA� A1 k A2. One of its possible transitions is given by the inference rule

hA1;σi
c ?ϕ
�!hA0

1;σi hA2;σi
c ! ϕ
�!hA0

2;σi

hA1 k A2;σi
τ

�!hA0

1 k A0

2;σi

for communication. To show the lemma we assumeP(hA1 k A2;σi), from which we deriveP(hA1;σi)
andP(hA2;σi). Using lemma 27 we conclude from the latterP(hA0

2;σi) andσ ` ϕ. Additionally, using
lemma 28 we conclude fromP(hA1;σi) andσ `ϕ thatP(hA0

1;σi) holds. Combining both results we deduce
P(hA0

1 k A0

2;σi).
The other possible transition is given by the inference rule

hA1;σi
α

�!hA0

1;σ0i

hA1 k A2;σi
α

�!hA0

1 k A2;σ0i

for parallel composition. From the assumptionP(hA1 k A2;σi) we deriveP(hA1;σi) andP(hA2;σi). As the
length of derivation ofhA1;σi

α
�!hA0

1;σ0i is shorter, we subsequently apply the induction hypothesis and
obtainP(hA0

1;σ0i). Secondly, from theorem 22 we inferσ0 ` σ, and hence we deduce fromP(hA2;σi) that
P(hA2;σ0i) holds. If we combine both results we concludeP(hA0

1 k A2;σ0i), which was to be shown.
We remark that in all other cases the claim follows from a simple application of the induction hypothesis

and hence, these cases are omitted.

We are now in the position to prove theorem 23, which we will repeat below.

Theorem 23.If all communication bases B of the basic agents(S;B) in the initial agent system A0 are
empty then it holds for each configurationhAi ;σii (i = 0;1;2; : : :) in the computation

hA0;σ0i
τ

�!hA1;σ1i; hA1;σ1i
τ

�!hA2;σ2i; � � �

that for all (S;B) in Ai : σi ` B.

Proof. For each configuration the claim directly follows fromi consecutive applications of lemma 29.

References

1. J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication.Information and Control, 60:109–
137, 1984.

2. C. Beyssade, P. Enjalbert, and C. Lef`evre. Cooperating logical agents. InProceedings of IJCAI’95 Workshop
(ATAL), volume 1037 ofLNAI, pages 299–314. Springer-Verlag, 1995.

3. A. Bonner and M. Kifer. Concurrency and communication in transaction logic. InProceedings of the Joint
International Conference and Symposium on Logic Programming, pages 142–156, Bonn, 1996. MIT Press.

4. F. Brazier, B. Dunin-Keplicz, N. Jennings, and J. Treur. Formal specification of multi-agent systems: a real-world
case. InProceedings of ICMAS-95, pages 25–32. MIT Press, 1995.

16

5. P. Gärdenfors. Knowledge in flux : Modelling the dynamics of epistemic states. Bradford Books, MIT press,
Cambridge, 1988.

6. M. Gaspari. Modelling interactions in agent system. InProceedings of the 4th Congres of the Italian Association
for Artificial Intelligence, pages 426–438. LNAI 992, 1995.

7. F. Giunchiglia, L. Serafini, E. Giunchiglia, and M. Frixione. Non-omniscient belief as context-based reasoning.
In IJCAI-93, pages 548–554, 1993.

8. K.V. Hindriks, F.S. de Boer, W. van der Hoek, and J.-J.Ch. Meyer. Formal semantics for an abstract agent pro-
gramming language. Technical report, Universiteit Utrecht, Department of Computer Science, 1997.

9. C.A.R. Hoare. Communicating sequential processes.Communications of the ACM, 21(8):666–677, 1978.
10. Th. Huibers.An Axiomatic Theory for Information Retrieval. PhD thesis, Universiteit Utrecht, 1996.
11. Y. Lespérance, H.J. Levesque, F. Lin, D. Marcu, R. Reiter, and R.B. Scherl. Foundations of a logical approach

to agent programming. InProceedings of IJCAI’95 Workshop (ATAL), volume 1037 ofLNAI, pages 331–346.
Springer-Verlag, 1995.

12. R. Milner. A Calculus of Communicating Systems, volume 92 ofLecture Notes in Computer Science. Springer-
Verlag, 1980.

13. G. Plotkin. A structured approach to operational semantics. Technical Report DAIMI FN-19, Computer Science
Department, Aarhus University, 1981.

14. V.A. Saraswat and M. Rinard. Concurrent constraint programming. InProceedings of Seventeenth ACM Sympo-
sium on Principles of Programming Languages, 1990.

15. Y. Shoham. Agent-oriented programming.Artificial Intelligence, 60:51–92, 1993.
16. B. van Linder, W. van der Hoek, and J.-J.Ch. Meyer. Communicating rational agents. InKI-94: Advances in AI,

volume 861 ofLNCS, pages 202–213. Springer-Verlag, 1994.
17. M. Wooldridge. A knowledge-theoretic semantics for concurrentMETATEM. In Proceedings of ECAI’96 Workshop

(ATAL), volume 1193 ofLNAI, pages 357–374. Springer-Verlag, 1996.
18. M. Wooldridge and N. Jennings. Intelligent agents: theory and practice.The Knowledge Engineering Review,

10(2):115–152, 1995.

17

