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Abstract. For multi-agent systems, as for any complex system, a thorough theoretical foundation is in-
dispensable. Hence, agent-oriented languages used for descriptions and implementations of multi-agent
systems should be logically grounded and accompanied with a clear semantics. As a hopefully fruitful
starting point towards such semantically well-founded languages, we propose a language of Modular
Information-passing Agents. This language is designed for systems of agents inhabiting an environ-
ment on which they have a limited view or expertise, and hence in order to increase their knowledge,
communicate on each other’s expertises. We consider the syntax of the language and subsequently
develop a structural operational semantics via a transition system.

1 Introduction

In this paper we attempt to bridge the gap between the extensive research on concurrent programming
paradigms and the research on multi-agent systems. In our development of a system of Modular Informa-
tion-passing Agents, being a stripped version of a multi-agent system, we try to incorporate as many useful
concepts from existing concurrent programming languages like Concurrent Constraint Programming (CCP)
[14], Communicating Sequential Processes (CSP) [9] and Algebra of Communicating Processes (ACP) [1]
as possible. Whenever necessary we adapt them according to our purposes. We emphasize that our method
contrasts with most of the current approaches, as we aim to develop a theoretically well-falgadedic
description of multi-agent systems. One of the advantages of such an approach is that it allows agent-
oriented programs having a clear syntactical structure. Moreover, the meaning of a complex program can
be understood by combining the meanings of its constituents. In this way a methodology for the top-
down design of agent-oriented programs is obtained together with a mechanism for the specification and
verification of these programs.

Multi-agent systems.

We view multi-agent systems [18] as systems composed of several interacting agents inhabiting an external
environment. These agents are autonomous entities that are able to observe the world they inhabit and are
capable of establishing changes in it. An additional interaction mechanism is provided by their ability to
communicate with each other. The agents may be assigned mentalistic notions, such as knowledge, belief,
desire and intention, which together with their reasoning processes direct their initiative-taking behaviour.
In this paper however, we restrict ourselves to the mental attknde/ledge on the external environment
leaving the explication of other attitudes for future refinements of the framework.

Concurrent programming languages.

Many concurrent programming languages agree upon the incorporation of the general programming con-
structions of sequential composition, parallel composition, non-deterministic choice and recursion. Most
of them also allow the introduction of local variables and mechanisms to rename variables.

We next discuss the distinguishing features of some concurrent programming languages we will base
our framework on. First, CCP is regarded as a generalization of most of the concurrent logical languages.
In this paradigm, several concurrently operating processes interact with each other via a shared store. This



store is seen as a constraint on the range of values that variables can take, rather than as an explicit as-
signment of values to them. The processes build the store by supplying it with new constraints. These
constraints may subsequently be inspected by the other processes, yielding a synchronization mechanism;
the execution of a process checking for a constraint in the store is blocked until the constraint is eventually
implied by the store. The paradigm assumes an underlying constraint system covering an entailment rela-
tion on constraints, an operatiornto combine constraints and an operatdo hide variables in constraints.

In contrast, CSP does not cover shared variables. Processes in this framework interact and synchronize
by means of the transport of values along interconnecting channels. In (the synchronous version of) CSP,
a sending process trying to emit a value, which is implied by its local state, and a receiving process trying
to assign this value to one of its variables, have to agree upon the moment of communication. Until this
moment their execution is blocked. The paradigm can be extended with a functionality from ACP allow-
ing the introduction of encapsulated channels; channels that are local and can only be accessed by some
processes. In this paper, we will attempt to integrate the concepts described above in a system of Modular
Information-passing Agents.

Modular Information-passing Agents.

The framework of MI-Agents assumes a constraint system consisting of an entailment relation and a con-
straint language to express facts about the external world. These facts are gathered in a global store of
constraints, called therorkspaceWe stress that this storetise representation of the external world; it is

used for observations in the world as well as for establishments of new facts in it. We initially restrict our-
selves to a workspace showing monotonic-increasing behaviour, thereby avoiding the problems of theory
revision [5]. In future research, we will examine the implications of dropping this assumption.

The framework incorporates agent systems that maintain the workspace. These agent systems are com-
pound; they are composed of smaller agent systems. The smallest systems are constituted by the basic
agents, which are assigned a programming statement expressing their behaviour. Such a system may be
viewed of as consisting of a team of experts that share a common view, or expertise. This view consti-
tutes the interaction mechanism among the team members, as the members may inspect and extend it. In
this paper, for the sake of clarity, we model views as windows of constraints on a collectoneasfsible
variables. Thereby we abstract from more elaborate formalizations of views like signatures (languages).
The interaction mechanism between teams is provided by the transport of information on expertises along
interconnecting channels. The basic agents are assigned a communication base to store such information,
which together with their own expertises constitute their knowledge bases.

The proposed framework incorporates many design features relating to the object-oriented paradigm.
The agent systems angerarchicalas they are specified in terms of their components. The language allows
the encapsulatiorof interconnecting channels as well as the encapsulation of data (local variables and
expertises). Additionally, programming statements and communication stores assigned to agenttare
to them. Finally, agents are designed imadularfashion; a renaming paradigm can be used to define the
interface with the workspace and the other agents.

The framework in perspective.

Before we examine the framework of MI-Agents in greater detail, we will try to situate its position. We
imagine a wide spectrum of agent-oriented languages; at one end of the spectrum languages like AGENT-0
[15] reside, which arémplementegrogramming languages that however suffer from the lack of both a

firm logical foundation and a clear semantics. At the other spelcificatiodanguages for instance based

on modal logics [16] or on the situation calculus [11] are located, which however cannot straightforwardly
be implemented. As the development of agent-oriented languages that bridge the gap between these two
extremes constitutes one of the current challenges, several alternative languages have been proposed. The
development of the language CONGOLOG [11], which objective is the design executableversion

of an agent-oriented specification language, represents one way of decreasing the discrepancy. Alterna-
tive approaches to bridge the gap are those that start with a general, well-understood and implemented
programming language and aim to accommodate it to suit descriptions of multi-agent systems. The lan-
guage Concurrent KITATEM [17], the language described in [2], as well as our language of Modular



Information-passing Agents serve as examples of the latter. The former two of these treatments are based
on executable temporal logic and higher order logic, respectively, whereas our framework is underpinned
by existing, well-understood concurrent programming languages. We thereby shift the stress on aspects
of agent-oriented languages like concurrency, communication, synchronization and modularity. Moreover,
in contrast to current more or less ad hoc approaches, we deal with these aspects in a theoretically well-
founded algebraic manner.

The rest of the paper is organized as follows. In section 2 we embark on a description of the syntax
of the language. The dynamics of the system is developed in section 3 which deals with transitions and
semantics. We subsequently elaborate an example in section 4. In section 5 we identify several topics that
need a closer examination and finish the treatment by discussing related research in section 6.

2 Syntax

In our framework, as in CCP, information systems are given by systems of constraints.

Definition 1. (The constraint system)

We assume a collection of constraints, which are represented in a first-order lahgragging constructs

built from variables typically denoted asy, z, functions typically written ag,g and predicates typically
denoted ap. The constraint system comprises an information ordéringhich is decided by a constraint
solver. Additionally, to describe the semantics of the programming language, the system explicates an
operationdx to hide information and an operatiendescribing the accumulation of information (which
mathematically corresponds to the least upper bound with resplejt to

For instance, the first-order atoritee, x = 7 andy = x, the compositiox=7Ay = x as well asIx(x =
7Ay = X) are constraints. The latter can be considered equivalent to the congtraifitthat is,Ix(x =
TAy=Xx)Fy=7andy=7F Ix(x=7Ay = x). We assume the familiar notions of free and bound
occurrences of variables in constraints. Vectors of variables are sequences typically given wien
consisting of a single variable simply by If x denotes the vectos, ..., X, andy denotesy,...,y, then
the operatiordx abbreviatesix; - - - I, and additionallyx =y is a shorthand fox; = y1 A -+ A Xy = Yn.
Finally, the seChanis a set of channel names typically represented as

The formulation of the syntax of agent systems in our framework will be preceded by several additional
definitions.

Definition 2. (Workspaces, communication bases and windows)
A workspaces and acommunication base Bre simply constraints ib.. Let Var(g) be the vector of all
variables occurring ilw. A windowon a workspace with respect to the variables is defined as

window(a,X) =gef 3yo  wherey equalsvar(o) \ X.

That is, a window on the workspace consists of the constraints on the varkaplbe constraints on alll
other variables are hidden.

Definition 3. (Syntax of atomic actions a)
Let¢ € L andc € Chan Atomic actionsa are defined as

a:=est(d) | verify(d) | send(c,d) | receive(c,d)

The language covers four atomic actions. The adti () establishes the constraiptin the workspace.
The execution ofverify(¢) succeeds if the constraigt can be verified. Finally, the actiorssnd(c,¢)
andreceive(c,$) denote the emittance of the constrapnalong the channed, and the reception of some
constraint along the channeyielding the constrainp to be known, respectively.

Definition 4. (Syntax of programming statements S)
Letx,y € Var and letl be a finite, non-empty set of indices.

S:=S& S| Sic &.S | 106,S | renyS | P(x) | skip



The statemerfs; & S denotes the parallel composition of the statem8&nndS,. The statemerf;¢, &.S

stands for the non-deterministic choice between the staterSgnich each are prefixed by an atomic
actiong;. A non-deterministic choice with a singleton index set may be denoted by its single operand. The
statemenloc, Sidentifies the variables to be local inS. The statementnyxSexpresses the variablggo

be renamed ta in S. The statemerf®(x) denotes a call to the procedu?éy), where the vectors andy

stand for the actual and the formal parameters of the procedure, respectively (the framework incorporates a
call-by-name parameter-passing mechanism). We assum&\adfgrecursive) procedure declarations of

the formP(y) :: SwhereSis a statement. Finally, the statemekip always succeeds and has no effects;

the construcg i, a.skip may be abbreviated tp;c, a.

Definition 5. (Syntax of agent systemslft B € L andc € Chan
A:=(SB) | A+A | A;A| A|A | &(A)

In our framework, basic agent systems, or teams, are given by their act¥it@mgether with a collection

B representing the information obtained from communication with other teams. We implicitly assume
each basic agent is assigned an expertise, which is modeled as a vector of accessible globalwariables
constituting its window on the workspace. We require that wher@eentains the actiosst(¢), the free
variables occurring i are either local variables, or accessible global variakles are renamed versions

of these local and global variables. This requirement corresponds to the idea that agents are not allowed to
establish facts about variables other than their local variables and the global variables from their window.
Complex agent systems are built from simpler ones by means of non-deterministic choice, denoted as +,
sequential composition, represented as ; and parallel composition, which is dendtethasexecution

of the agent systerA; + A, consists of the execution of eith@g or A;. The execution ofy; ; A is the
execution ofA; followed by that ofA;. The execution of\; || A2 is modeled as an interleaving of the
executions ofA; andA,. The encapsulation operatdy when applied to the agent systeimdefines the
channek to be local inA.

3 Transitions and operational semantics

Computation steps of agent systems are represented by transitions [13], which take systems from one
configuration to subsequent ones. A configuration of an agent systena workspaces is denoted as
(A, 0). A transition is of the form

(A, o) (A, 0').

It indicates that the agent systefnin a workspaces performs a computation step resulting in an agent
systemA’ (i.e. the part ofA still to be executed) in a workspacé The labela in the transition expresses
whether the computation step involves some communication of information among the agents in the sys-
tem, and if this is the case, additionally identifies the type of communication. Labels that denote such
information-passing are of the form! ¢ or ¢ ? ¢, where the symbols ! and ? stand for the emittance and
the reception of information, respectivejydenotes the constraint to be communicatedaisdhe channel

it is to be transported along. The alternative label occurring in transitions is therlkbet CCS [12] rep-
resenting internal, non-communicative computation steps. As agent systems are defined inductively, their
transitions are defined in terms of the transitions of their components. For example, the transitions of the
agent systend\; ; A are defined in terms of those of the agent syst&mandA,. The agent system per-

forms the computation steps performs, and upon termination 8§, the step#\, performs. In general,

we describe the inference of transitions of agent systems by inference rules, which are of the form

(A1,0) S5 (A, 0)) ... (An,0) S5 (A, O)

(A, o) (A, o'

This rule states that the transition below the Iin% can be concluded from the transitions above it. Rules with
no premises are called axioms, written(@sco)<—(A’,0’). A collection of transition rules and axioms
constitutes aransition systernmwhich is a formal system for deriving transitions.



Definition 6. (Transitions for atomic actions)

As mentioned before, we assume each basic agent is assigned axvettmcessible global variables.

Let K(0,x,B) be the knowledge base defined Wwyndow(a,x) A B and letE be the standard symbol
denoting successful termination. The transition system contains the following transitions concerning the
atomic actions.

— The establishment of a constraint is defined to be its addition to the workspace.
T
((est(9),B),0)=—=((E,B),0 A )
— The verification of a constraint succeeds if it is implied by the knowledge base.
{(verify(9),B),0)=>((E,B),0)  if K(0,x,B) ¢

— The emittance of a constraint along a channel is defined for those constraints that are implied by the
knowledge base.

((send(c.0).B).0)&((E.B),0)  if K (0.x,B) F 0

— The reception of a constraigt relative to the constrainp along a channel, succeeds for those con-
straints$ of which addition to the knowledge base yields a base from wiichderivable.

((receive(c, 1), B),0) s (E.BA®),0) i (K(0.x.B)A®)F

Informally, an establishment of a constraint corresponds to the idea that this consthaoughat about

The actions for emittance and reception denote intentions to communicate. They are not executed until in
a parallel context, there is an agent with a matching intention. The stateeaeint(c, ) indicates that

the agent is willing to accept any information along the communication charfnem which it is able

to concluda). We remark that this action integrates two alternative communication primitives. One is the
uncontrolled reception of simply any constraint provided along the chanmglich can be mimicked by
receive(c,true). In the other, the receiver stores the conclusloit wants to draw from the information
provided along the channel, thereby ignoring any stronger information possibly included. The transition
for the latter action is given by

c?

((receive_only(, 1), B), 0} s (E.BAW),0)  if (K (0.X.B)Ad) - .

Hence, the actiomeceive(c, ) represents the trade-off between the storage of just anything provided by
the sender, and the storage of only a specific conclusion drawn from the information received; it accepts
any information provided that the conclusigrcan be drawn from it.

Example 7. (Information Retrieval)

Information Retrieval techniques [10] aim to support, in very large collections of data, the search for docu-
ments that satisfy some relevance criteria. One of the criteria is abl@atnesswhich is used to evaluate
documents on their bearing on some particular piece of information. This example illustrates how the prim-
itive actions from our framework can be used by agents assisting in an information retrieval process. We
consider an information retrieval system containing a collection of documents distributed over several sites.
Each site is assigned a group of agents, whose windows consist of information on the documents they can
access, which are a sub-collection of all the documents located at the site. The agents use the primitives
est(), verify(d), send(c,d) andreceive(c,d) in gathering information concerning the aboutness of doc-
uments. First of all, if at a particular site an agent has ascertained by some decision procedure that the
documenix is aboutp, wherex is one of the agent’s accessible documents, it perfea{sboutx, p))

to exhibit its establishment in the workspace. Subsequently, this constraint may be inspected by all agents
operating at this site that have the documeinttheir view; an agent performerify (aboutx, p)) to check
whether the constraimboutx, p) has already been established (by the agent itself or some other agent hav-
ing access ta@). This action is also used in case the docurésbutside the agent’s expertise, as the agent
may already have gathered relevant information in its communication base. Alternatively, the agent may



choose to communicate with other agents. By performingive(c,aboutx, p)) it indicates that it accepts
any constraint along the channefrom which it is able to derivaboutx, p). Such agent may for in-
stance communicate with another agent, possibly located at another site that pegfeifoabou(x, p)).
Successful communication requires this sending agent todtaw& x, p) in its knowledge base.

Definition 8. (Inference rule for non-deterministic choice between prefixed statements)

((aj,B),0)&((E,B),0")
(5i1a.S),B),0)=5((S},B'),0)  wherej € |

The transition of a non-deterministic choice between prefixed statements is given by a transition of one of
these statements. The first computation step of a prefixed statement equals the transition of its prefix. Hence,
from the transition of one of the prefixag, which is labeled byr and which changes the communication
storeB to B" and the workspace to ¢’, we infer a transition of the non-deterministic choigg, a;.S,

which propagates the labeltogether with the communication store and workspace changes. It additionally
identifies the statemef® as the part that remains to be executed.

Definition 9. (Inference rule for internal parallelism)
((S1.B),0)4=((S,B),0)
((S1& S2.B),0)62((S, & ,B),0)

a

(£2& S1,B),0062((£ & §,B),0')

An inference rule with several conclusions above each other, is used to abbreviate a collection of rules,
each having one of them as its conclusion. The execution of a parallel stat&n&® is modeled as an
interleaving of the computation steps@fandS,. The statemerfy; & S performs a computation step if
one of the statemen& andS, executes one. Therefore, from a transitiorspfve can infer a transition of
S & S inwhich § acts as the left operand, or a transitiorSe® S; in which it is the right operand. We
defineS& E andE & Sto be equal té&s.

To constitute a computational model the framework allows the introduction of local variables. As in
CCP, to describe its transition, we extend the syntax with a constm.% that expresses the variables
to be local inSandp the store of constraints on it. In this representation, the statelng/@is defined
asloc;r”es The corresponding transition rule is analogous to the one in CCP except that it also covers the
communication of constraints along channels.

Definition 10. (Inference rule for local variables)

((S.B1).p1)={(S,B2).p')
((locfs,B), 0) < ((locf' S, B), o)

whereB; = JyB, p1 = pA3dyos, B =BA3yB,, 0/ = oA dyp’ and o’ equalsa except that in case of
communication its constraitis replaced byyé.

The transition of((locﬁ& B),0) is derived from a transition involving the stateméhtAs in Ioc§S the
variablesy are regarded local, and both the communication Beeed the workspaoe contain constraints

on the global variableg, these global constraints should be overwritten by the local ones. This yields

a workspacep;. The communication base does not contain local constraints and is simply givén by
Additionally, it is implicitly assumed that the window is expanded wijttas agents are allowed to verify

and establish constraints on their local variables. After one computatioSstemotes the part & that

remains to be executed aBd andp’ denote the new communication base and workspace, respectively.
The workspac@’ contains two types of constraints: constraints on the local varigidesl constraints on

all the other variables. The latter constraints are reflected in the workspace visible outside the scope of the
statement, by the addition af/p’ to the informations preserved under the computation step. The former

ones are (although together with the other constraints) stored iasthe constructoc}els’ . The visible



change of the communication base is reflected by the additiatyBf to the informationB preserved
under the computation. Additionally, the lakeels adapted by the hiding of local constraints, yieldaig
We defineloc)‘}E to be equal td. To illustrate the rule we consider an example.

Example 11. (Transition involving local variables)

ly=0
((send(c,y=0),true),y=zAz=0) ‘&L ((E,true),y=2zAz=0)

{(loc}~%send(c,y = 0),true),z= 0) & ((E, true),z = 0)

We remark that in this transition rule, whenever possible, we replaced constraints by simpler, logically
equivalent ones. The example shows that the intention to send the local consteaihactually corre-
sponds to the intention to semdie. The example additionally indicates that in contrast to CCP, there is
need for a special renaming paradigm. In CCP, the renaming of a variablgin S, can be simulated
by the construction otbc§=ZS In our system however, such simulation does not take communication into
account. The intention to send the local constrgiatO wheny is a renamed version afshould actually
correspond to the intention to semne: 0 and not like in the example, to the intention to séme. Hence,
communication along channels in our framework gives rise, in addition to a construct for local variables,
to the introduction of a separate renaming operator, as shown by example 11 and example 14 given below.
Renaming of variables allows the design of modular statementgn®S the variables which are
outside known ag, are referred to ag. Before we give the transition rule concerning renaming, we define
what we mean by a simultaneous substitution.

Definition 12. We define thesimultaneous substitutiasf x toy in ¢ by
Oly/X] =def A(IX(PAX=d)Ad=Y)

whered are fresh variables not occurringgnand distinct fronx andy.

The variablegl are introduced in order to avoid problems related to name clashes betveeely. Em-
ploying the definition above we for instance derive thet 0)[x/X] equalsgd(Ix(x=0Ax=d) Ad =X),
which is logically equivalent tdld(d = 0 A d = x), and which subsequently equals- 0.

Definition 13. (Inference rule for the renaming of variables)

((SB1),01)<((S,Bp),02)

((renzyS,B),0) < ((renyS,B'),0’)

whereB; = (3yB)[y/z], o1 = (3yo)[y/z], B'=BABy[z/y], 0’ = 0 A02[z/y] andd’ equalsx except that
in case of communication its constraints replaced by[z/y].

Like for local variables, the transition dfren,,S B),0) is derived from a transition involving. In the
statemenSthe variablez are known ag, which implies that the global variablgsre inaccessible. Hence,

the constraints on the global variabkegan be removed from the communication base and workspace.
Additionally, the constraints on the variablesan be represented as constraintsypwgielding B; and

01. After one computation ste|S represents the part &that remains to be executes; ando, denote

the new communication base and workspace, respectively. The effects visible outside, are reflected by the
addition ofB;[z/y] andoz[z/y], in which the constraints opare represented as constraintszoto B and

o, respectively. The constraints in the laloebre adapted accordingly, yieldirg. We putren,yE to be

equal toE.

Example 14. (Transition involving the renaming of variables)

((send(c,y = 0),true),y = 0) Cg: O((E,true),yz 0)

((rengzsend(c,y = 0),true),z=0) ‘S5 0((E,true),z= 0)

The example shows that the intention to sgrel0, wherey is a renamed version af actually corresponds
to the intention to send= 0.



Definition 15. (Axiom for procedure calls)
((P(2),B),0) < ((renyS.B),0)  whereP(y) =S € W

The transition of a procedure call is an axiom of the transition system. The computation step offe)call
is defined to be the replacement of the name of the procedure by itshudyhich the actual parameters
are renamed to the formal ones. The workspace and the communication store are left intact.

Definition 16. (Axiom for skip)
((skip,B),0)¢+((E,B),0)

The execution of the statemeskip always succeeds and leaves the communication base and workspace
intact.
Next, we define transitions of compound agent systems.

Definition 17. (Inference rules for the parallel, non-deterministic and sequential composition of agent
systems)
(A1,0) &5 (A}, 0') (A1,0) = (A, 0') (A1,0) = (A, 0')
a a [o]

(A1 || Az,0) (A} || A2,0")  (Ar+Ax,0)&—(A],0") (A1 Ap,0)&—(A]; Az, 0)
o)

a a

(A2 | Av,0)=(Az || A, 0") (A2 +As,0) 6 (A,07)

We additionally define successfully terminated basic agéaiB) to be equal tdE. The agent systems

E; A A| E and E | A are all defined to be equal # The execution of the parallel composition

A1 || A2 of two agent systems coincides with that of the parallel composgio& S, of two statements;

it is modeled as the interleaving of the execution steps of its components. The computation steps the non-
deterministic composition of two agent systems takes, are exactly the computation steps of one of the agent
systems involved. The transitions of the sequential composition of two agent systesnsl A, are the
computation steps @%; followed by those of\;.

Definition 18. (Inference rule for communication)
c?¢ , clo ,
(A1,0)5—>(A1,0) (A2,0)&—(AS,0)

T

(A1 || Az,0) (A7 || Az, 0)
T

(A2 || A, 0) =~ (A; || A1, 0)

In case an agentin the agent syst&pand an agent in the agent syst@gwant to communicate by means

of the transport of the constraigitalong the chann, the transition of\; || A; can be inferred from both

the transitions ofA; and A;. We note that the workspace thereby is left intact. Our choice in favour of
synchronougsommunication is not essential. With respect to the asynchronous variant, it however frees us
from the necessity of buffering emitted constraints.

Definition 19. (Inference rule for encapsulation)
(A,0)=(A,d)

<6C(A),0)5'—><6C(A’)70’) if a does not involve the channel

The encapsulation of channels restricts the propagation of communicative labels in inference rules. The
operatoy; when applied to the agent systeéprohibits an agent residing insideto communicate along

the channet with an agent that is located outsideHence, it defines to be a local channel in the agent
systemA. We defined:(E) to be equal td.



Example 20. (Local channels)

Consider the agem\; = (send(c,$).S;,true) which intends to send information and the agefjs=
(receive(c, 9).S, true) andAz = (receive(c, §).Ss, true) which intend to receive information. In the agent
system(d¢(Aq || A2) || As, ), the agenfA; can communicate with the agefy along the channd, but is
however not able to use this channel to communicate with the @geht other words, the transition

(3c(Ar || Az) || As. O) & (Bo(AL || Ap) || As,0)

whereA] = (S, true) andA, = ($,¢) is derivable, whereas the transition

(Bc(Aa || A2) || As.0) & (Be(AY | A2) || As.0)
with A} = (S,true) andA; = (Sg,¢) is not derivable. To elucidate the latter we remark that one of the
premises, viz.
clo
(Bc(Aa [| Az),0) &= (Bc(Ay [| A2),0)

for application of the rule for communication is not derivable as its lalbgl involves the channel.

The transitions of agent systems give rise to computations.

Definition 21. A computatioris a sequence

<A070-0><:(;3><A170-1>7 <A170-1><:(;i><A270-2>7 e

of transitions between subsequent configurations of an agent system. Such a sequence is finite if it has a
final configuration from which no transition is derivable. In case this configuration is of the(fora) we

identify the corresponding computation to have successfieittyinated in all other cases we say that the
computation hadeadlockedA computation imon-terminatingf the sequence of transitions is infinite.

Before we examine semantics, we state two key properties concerning workspaces and communication
bases in computations. One is the property that in a computation the workspace increases in a monotonic
fashion. That s, after each computation step the resulting configuration of the workspace implies the former
configuration and hence, no information is ever removed from the workspace.

Theorem 22. For every transition/A, 0>¢(1—>(A’,0’) we haveo’ F o.

The proof of the theorem as the proof of the subsequent theorem is postponed to the appendix.
The second property amounts to the fact that in computations of the form

<A070-0><:;_><A170-l>7 <A170-1><:;_><A270-2>7 e

all communication bases remain reflections of the workspace. That is, at each point in a computation all
communication bases are implied by the workspace and hence, for instance, no communication base can
become inconsistent with the workspace. The property is stated in theorem 23.

Theorem 23. If all communication bases B of the basic agef8B) in the initial agent system fare
empty then it holds for each configuratiOh,oi) (i=0,1,2,...) in the computation

<A070-0><:;_><A170-1>7 <A170-1><:;_><A270-2>7
that for all (S B) in A : oj - B.

The operational semantics of a programming language is usually given by a nottsearf/ables
These observables, which express what we want to observe of an agent system, are various: entire compu-
tations, subsequent workspace changes, the output workspaces, sequences of transition labels, and so on.
In our system, we choose the observables to be resulting workspaces (and thereby abstract from mental
attitudes).



Definition 24. (Observables of successfully terminating agent systems)

On

O(A)(0) = {0n | (A.0)&3(A1,01),, (An-1,0n1) & (E,On)}

Because of the monotonic-increasing behaviour of workspaces, we are in the position to assign results to
non-terminating computations. The observables of such computations are infinite conjunctions of subse-
guent workspaces.

Definition 25. (Observables of agent systems)

az

ay
0%(A)(0) = O(A)(0) U {or01A - | (A 0)=—=(A1,01), (A1, 01) & - }
whereco A o1 A --- denotes the least upper bound with respect to the information order indu¢ed by

A denotational semantics based on a notion of observables, constitutes a formal basis for the design and
specification/verification of programs. In future research, we will hence aim to develop a compositional
description constituting such a denotational model.

We end our discussion by giving an example, which is adapted from an example implemented in the
DESIRE [4] framework.

4 Example of cooperating agents

Three basic agents;, Ao andAg explore a 3-dimensional grid, which is constituted by the orthogonal base
vectorsx, y andz. The agenA; observes it through the 2-dimensional grid constituted by the vectond

z, i.e. it inspects th@rojectionon this grid. We model this by assigning the ageandz as its accessible
variables. For instance, the formwda((x,z),square denotes that a square of unity length is centred at
(x,2) in the projection, wher& andz in x andz, respectively, and the predicatp stands for ‘appears’. In
this example, the ageA intends to provide along the chanmahe centre of any object in its view:

(Zi,j,osend(cv ap(('v j),o)),true),

in which the index variableis j, 0 range over the elements xfz and the set of observable 2-dimensional
objects, respectively.

In contrast, the ager, senses the 3-dimensional grid through the grid constituted by the vg&ods
z. Hence, it is assigneglandz as its accessible variables. In this ca&gintends to send along the channel
d the centre of any object in its view:

(Zi,j,osend(daap((ia J )70))7true)a

where the index variablesj,o range over the elements gf z and the set of observable 2-dimensional
objects, respectively.

The agentz, which has no view on the grid, invokes the assistance of the agermiisdA; in estab-
lishing a picture of it. The agent considers the space as a collactibpositions. It for instance establishes
ap(v,0) whenever it has concluded that the 3-dimensional olgjeéstcentred at the position In this ex-
ample, the agerfiz asks the agem; to examine the object centred(@tz) in the(x, z) grid. Subsequently,
it requests the agert to take a look at the object centred(stz) in the (y,z) grid. The reception of the
constraints provided bg; andA; gives the agems sufficient information to conclude the 3-dimensional
object that is centred at the positinwherev corresponds to the poifx,y, z) in the 3-dimensional grid.
The agent is given b§P(s),true). Its statement consists of a call to the proced®(r@ :: S, in whichS, S
andS’ are the following abbreviations:

S= Y, receive(c, ap((r1,rs),01)).S
S= ZOZreceive(d,ap((rz,r3),02)).8”
S' = est(ap(rs, f(01,02)))

The index variables; ando; range over the set of observable 2-dimensional objects and the veatuts
r are abbreviations fofx,y,z,v) and(r1,r2,rs,rs), respectively. From this example we extract that agents
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have in addition to explicit knowledge collected in their knowledge base, implicit knowledge present in
their statements. For instance, the @) implicitly assumes that the positionis associated with the
point (x,y,z) in the 3-dimensional grid. By calling this procedure the agensomehow knows of this
relation (this strongly relates to the traditional distinction between the natioms whatandknow how.

We now determine the operational semantics of the agent system constituted by the parallel com-
position of the basic agents;, A» andAs in the workspaces = (ap((x,z),square A ap((y,z),circle) A
f(squarecircle) = cylinder). That is, we want to compute

O((A1 || A2) || As)(0).

To do this, we first show the formal derivation of one of the successfully terminating computations, which
will consist of the derivations of seven consecutive computation steps by means of the transition system.

Computation step 1.

The first computation step concerns the execution of the procedui®(salty the agenfg. It consists of
the replacement of the call by the body of the procedure in which the actual paragmtergnamed to
the formal parameters Using the transition system, we derive from the instantiation

((P(s),true), o) & ((reng; S true), o)

of the axiom for procedure calls, by means of the rule for the parallel composition of agent systems, the
following transition, which constitutes the first computation step of our agent system:

(AL ]| A2) || As,0) & ((Ar || A2) || As,0) (1)

whereA; = (reng S, true).

Computation step 2.

The second computation step of the agent system consists of the communication ofapg fazx, square
along the communication chanridbetween the aget and the agems. First, the following instantiation

c!ap((x,z),square

{(send(c,ap((x,z),square),true),a) S ((E,true),o)

of the emittance axiom is valid, as the knowledge bdg®e, (x,z),true) equalsdya, which implies the
formulaap((x,z),square. Applying the rule for non-deterministic choice, we obtain the transition (recall
that the construcy ¢, & is an abbreviation for the statement, a;.skip):

c!ap((x,z),squarg

((Si,j0send(c,ap((i, j),0)),true),o) PN {(skip,true), o).

From this transition we derive by means of the rule for parallel composition, the computation step of the
sub-agent systerdy, || Az, which is given by:

c!ap((x,z),square

(Acll Az,0) &= (ALl Ag,0) (2)
whereA] = (skip,true). Secondly, from the instantiation

c?ap((ry.rz),square

((receive(c,ap((r1,rs),squarg),true),olr/g) RES ((E,ap((r1,r3),squarg),alr /)

of the reception axiom, which is valid as its condition is trivially satisfied, we deduce employing the rule
for non-deterministic choice, the transition:

c?ap((ry,rs),squarg

(3o, receive(c,ap((r1,rs),01)).S,true),ofr /s|) PR ((S,ap((r1,r3),square),alr/s).

11



From this transition we subsequently derive by means of the inference rule for the renaming of variables,
the transition:

((reners o, receive(c,ap((r1,3),01)).S,true),a) -+ s " ((rene'S, ap((x,2),5quare), o). (3)

The rule for communication enables us to conclude from the transitions (2) and (3), the following, second
computation step of the agent system:

(A1 || A2) || A, 0) = (A || A2) || A%, 0) 4)

whereA] = (rengS,B) and B = ap((x,z),squarg.

Computation step 3.

In order to deduce the next computation step of the agent system, which comprises of the communication
of the factap((y, ), circle) along the communication chanriebetween the agenfs andAgz, we ascertain
that the instantiation

. d!ap((y,z),circle)
{(send(d,ap((y,z),circle)),true), o) S ((E,true),o)

of the emittance axiom is valid, as the knowledge bidge, (y,z),true), which is equal tadxo implies
ap((y,z),circle). Using the inference rule for non-deterministic choice, we infer the following transition:

o d!ap((y.z),circle)
((Zij0send(d,ap((i, j),0)),true),0) &= ((skip,true),o).

From this transition we conclude using the rule for parallel composition, the computation step of the sub-
agent systerA] || A2, which looks like:

’ d!ap((y.2).circle) .
(A1 || A2,0) s (A1 || Az,0) 5)

whereA, = (skip,true). Additionally, an application of the transition rule for non-deterministic choice to
the instantiation

d ?ap((rz,r3),circle)

((receive(d,ap((rz,r3),circle)),B[r/9),0[r/9]) S ((E,B[r/g Aap((rz,r3),circle)),olr /g])

of the reception axiom (its condition is trivially satisfied), yields the transition

d ?ap((rp,r3),circle)

((So,receive(d,ap((r2,rs),02)).S",B[r /g]),a[r /s]) PREN ((S',B[r/s|Aap((rz,r3),circle)),alr /).
The inference rule for the renaming of variables subsequently enables us to derive from this transition:

((rener o, receive(d,ap((r2,12),02)).5",B).0) " ((renerS", B AAP((Y.2),Circle)),0).  (6)

We finally conclude the third computation step of the system by applying the inference rule for communi-
cation to the transitions (5) and (6), giving:

(AL ]| Ao) || A5, o)== (AL || Ap) || AY,0) (7)

whereA]' = (reng,S’,B') and B' =BAap((y,2),circle).
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Computation step 4.

Concerning the next computation step, which consists of the establishment of tagfattsquarecircle))
in the workspace by the agenAg, we infer from the instantiation

{(est(ap(ra, f(squarecircle))), B’[r/s]),o[r/s])c%((E,B’[r/s])70[r/s] Aap(rg, f(squarecircle)))
of the establishment axiom, employing the transition rule for the renaming of variables, the transition :
((rensrest(ap(r4, T (squarecircle))), B'), o)< ((rengrskip, B'), 0 A ap(v, f (squarecircle))).

If we use the rule for the parallel composition, we obtain from this transition the next computation step of
the agent system:

T
(AL A9) [ A5, 0y ((A [ Ao) [l A", ) (8)

whereA]"” = (rengskip,B') and o’ = o Aap(v, f(squarecircle)) .

Computation steps 5, 6 and 7.

The next three computation steps are given by the executions akifhetatement bydy, A; and Az
successively. From the instantiation

((skip, true), o)< ((E, true), o’)
of the axiom for skip we infer using the inference rule for parallel composition and the simplifications
(E,true) = E andA || E = A7, the transition:
(A || Ap), 0y (A}, 0).

Another application of the rule for parallel composition enables us to derive from this transition, the com-
putation step:
(AL A) | A5 0y (A | A", 0). ©)

We are also able to infer from the above instantiation of the axiom for skip, using the rule for parallel
composition and the simplificationi&, true) = E andE || A5 = A3, the computation step:
(AL || Ag,0 ) (A, 0'). (10)
Finally, from the instantiation
((skip,B),0') &= ((E.B),0)

of the axiom for skip, we conclude using the inference rule for renaming and the simplifieatiph = E,
the following transition:

((rengiskip, B'), 0’} ((E, B),0').

The inference rule for parallel composition enables us to derive from this transition, using the simplification
(E,B') = E, the final computation step of the agent system:

(AY' 'V (E,0). (11)

The transitions (1), (4), (7), (8), (9), (10) and (11) constitute a successfully terminating computation of
the agent system. Its resulting workspateémplies ap(v,cylinder). We state that all other successfully
terminating computations also lead to this workspaceHence, the operational semantics of the agent
system in the workspaaegis given by

O((A1 | A2) [ As)(a) = {0}
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5 Extensions of the framework

We distinguish two principal directions for supplementary research. One comprises the deepening of the
formalization of the current framework at hand. For instance, we aim, given the operational semantics, to
develop an equivalent denotational semantics. As such a denotational model provides a basis for the speci-
fication and verification of programs, we might subsequently investigate the link with logical specification
languages (for instance, the one described in [16]).

Alternatively, seen in the light of agent-oriented languages, the development of the framework of Mod-
ular Information-passing Agents is yet still in a preliminary phase. Many aspects of multi-agent systems
need to be passed in review. One of the primary goals of future research is the incorporation of workspaces
that are updated in a non-monotonic fashion, introducing the problems related to theory revision. For in-
stance, if the external world is continuously subject to changes, information obtained from communication
may be outdated. Secondly, in multi-agent systems there is need for elaborate communication primitives
as requesting, informing, refusing, promising and so on. Such primitives at least imply the incorporation
of agent-identity; the assignment of uniqgue names to agents. Additionally, as statements govern the be-
haviours of agents, we should aim to get a hold on the implicit knowledge present in these statements.
Related to this topic are the incorporation of goal-directed behaviour, as comprehensively examined in [8],
and meta-knowledge, which constitute two essential characteristics of agent-oriented systems. Finally, an
interesting aspect for future examination concerns the inheritance of knowledge from agents to complex
agent systems. For instance, it is not immediately clear what kind of knowledge bases should be assigned
to compound agent systems.

6 Related work

In addition to some connections alluded to, we will lightly touch upon the relation with some other affined
approaches. First of all, Concurrent Transaction Logic [3] is a well-founded programming language de-
signed for entities updating the state of a global store (i.e. a relational database, a knowledge base, a col-
lection of communication buffers and so on). The language principally focuses on the interaction between
the entities and the global database. In our framework, however, we additionally stress the knowledge each
agent has about the store, necessitating communication of this knowledge among the agents. Secondly,
whereas our approach concentrates on constraint languages, Transaction Logic leaves the underpinning
language unspecified.

The modeling of communication among agents by means of interactions between actors is described
in [6]. The approach incorporates the actor model, which is a framework that facilitates the expression
of attitudes towards incoming messages. Moreover, in this model, the behaviour of entities is completely
governed by the incoming messages (underlined by the fact that actors in order to change their attitude even
send messages tilemselves The fact that the inhabited environment is left implicit additionally contrasts
with our framework.

A logicaltreatment of modular agent systems; called a Logic of Contexts is described in [7]. Giunchiglia
et al. have developed a formalism in which agent systems are hierarchies of logical theories, called con-
texts, connected by lifting and lowering bridge rules. A lifting rule ensures that if some specified formula
¢ holds in a sub-context, the associated formpllénolds in the encompassing context. A lowering rule
establishes the converse.

The DESIRE [4] framework used to design and specify interacting and reasoning components, also
propagates modularity. It supports the modeling of modular components, which interact with each other
via the transport of information along interconnecting links. The components may be built from smaller
ones; the components that cannot be decomposed, are assigned a knowledge base expressing their reasoning
capabilities and an information state representing their knowledge. In many applications, the external world
is also modeled as a component. Each link in the framework transfers information between two components
and as these components use distinct signatures (languages), the transfer necessitates the translation of
information. The major distinctions with our framework are the use of signatures, the incorporation of
meta-level reasoning, the modeling of the world as a component and the presence of mechanisms to update
knowledge. However, as DESIRE currently possesses a semantics based on temporal logic, we believe that
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our framework may serve as an initial approach towards a structural operational semantics of the DESIRE
methodology.

7 Appendix

In this appendix we show the proofs of theorem 22 and theorem 23.
Theorem 22.For every transition(A, 0)@‘1—><A’,0’> we haveo' - .

Proof. The proof will proceed by induction on the length of derivation of the transithaw) < (A, o').
Concerning the induction basis we remark that for the only axd(:an(¢)7B),c)¢T—>((E,B),oA $) in
which the workspace changes, the conditon ¢ - ¢ certainly holds. The induction step in all cases
immediately follows from an application of the induction hypothesis.

Before we commence the proof of theorem 23, which will consist of the proofs of three lemmas, let us first
introduce a convenient abbreviation.

Definition 26. The propertyP for agent system configurations is defined as
P({A,0)) & for all basic agent§S, B) in Ait holds thato - B.

The core of the proof of theorem 23 is constituted by the proof of lemma 29 which subsequently uses two
results stated in lemma 27 and lemma 28.

Lemma 27. If (A,0)&+(A, o) and R(A,a)) then R(A,0')) anda - 6.

X
Proof. The proof proceeds by induction on the length of derivation of the tranm,@né—%A’, a’). First,
we consider the crucial cage= (send(c, ), B). Its transition is given by the axiom

(send(c, $),B),0) S ((E,B),0)  if (Window(d,x) AB) - b.

To show the claim we assunfeindow(a,x) A B) - ¢ and additionallyP({(receive(c,),B),0)), that is,
o F B. From these assumptior®({(E,B), o)), i.e.a - Bimmediately follows. We also conclude using the
facto - window(o, x) the other consequerd: ¢.

Additionally, we will work out the cas@ = (Iocﬁs B) and omit all other cases as these require a similar,
straightforward use of the induction hypothesis. The transition of this basic agent is given by the rule

((SBy).pr) s ((S.B2).p)

(10c2S.B).0) ' ((loc S, B), )

whereB; = AyB, p1 =pA3dyo, B =BA3yB,, o' =aAdyp'.

In the following, we will frequently employ the fact thgt- ¢ implies 3y$ - Jyy. From the assump-

tion o - B and the above mentioned fact we derive tRat(S, B1),p1)) holds. As the length of derivation
of ((S,B1), pﬁéﬁ((s, By),p’) is shorter, we subsequently apply the induction hypothesis, yiefdind,

andp; + ¢. From the former and - B we conclud@(((loc)‘fls’,B’),o’)). Secondly, fronp; + ¢ we con-
clude (as by theorem 22 we hap'ed= p1) thata’ F Jy¢ holds, which completes the right-hand side of the
claim.

c?d

Lemma 28. If (A,o0)<—(A',d’) and R(A,a)) ando I- ¢ then R(A',0)).
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. . N . A , c?¢
Proof. We will prove this employing induction on the length of derivation of the transifow) <— (A, o).

We consider the most relevant cases (receive(c, 1), B). The applicable transition is given by

((receive(c, ), B), G) 55 ((E.BA §),0).

To show the claim we assunge- B ando - ¢. From these assumptioR$((E,BA $),0)), i.e.cF-BA ¢
immediately follows.
In all other cases, the claim follows by a straightforward application of the induction hypothesis.

Lemma 29. If (A,0)s> (A, 0’) and R(A, o)) then R(A,0')).
Proof. We prove this claim by induction on the length of derivation of the transi{tkm)@%(Aﬁc). We

consider the most interesting cases A || A2. One of its possible transitions is given by the inference rule

c?¢ , clo ,
<A170-><:>_><A170-> <A270-><:>_>< 270>

T
(A1 || A2, 0) (A7 || Az, 0)

for communication. To show the lemma we assupiéd; || Az,0)), from which we deriveP((A1,0))
andP((A,0)). Using lemma 27 we conclude from the lat{A,,c)) ando - ¢. Additionally, using
lemma 28 we conclude frof((A1,0)) ando - ¢ thatP({A7, o)) holds. Combining both results we deduce
P((A, || A, 0)).

The other possible transition is given by the inference rule

(A1, 0) &5 (A}, 0')

a

(A1 [| Az, 0) 5= (AL || Az,0")

for parallel composition. From the assumpt®i{A; || Az,0)) we deriveP((A1,0)) andP({Az,0}). As the
length of derivation of(Al,o)&(A’l,oﬂ is shorter, we subsequently apply the induction hypothesis and
obtainP((A},0’)). Secondly, from theorem 22 we infef - o, and hence we deduce frdRi(A, o)) that
P({A2,0')) holds. If we combine both results we concluRgA; || A2,0’)), which was to be shown.

We remark that in all other cases the claim follows from a simple application of the induction hypothesis
and hence, these cases are omitted.

We are now in the position to prove theorem 23, which we will repeat below.

Theorem 23.1f all communication bases B of the basic agef8sB) in the initial agent system Aare
empty then it holds for each configuratiOh, o) (i=0,1,2,...) in the computation

(Ao, 00) & (A1,01), (A1,01) & (A, 02), -+

that for all (S B) in A : g; F B.

Proof. For each configuration the claim directly follows froroonsecutive applications of lemma 29.
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